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Abstract

The lattice-Boltzmann method is used to model flow in electrokinetic systems. A mod-
elling approach based on the coupling of Navier-Stokes, Nernst-Planck and Poisson’s
equation of electrostatics is utilised. Three lattice-Boltzmann methods are formulated
for the three equations respectively.

The method is implemented in C++ with the aim of being high performing. Topics as
locality, instruction pipelines and parallel computing are considered. The implementa-
tion is tested for a number of classic examples with known solutions, e.g. Taylor-Green
vortex flow, an Helmholtz equation and an advection-diffusion situation. The computed
solutions agree well with the analytic solutions.

The physical systems modelled consists mainly of various charged channel flows of
ionic solutions. Electrokinetic effects, such as electroosmosis and the electrovicous effect
are studied. This is done in thin channels where the thickness of the electrical double
layers is comparable to the channel dimension. The electroviscous effect is shown to
slow the flow down and a local minimum is found in the velocity profile for thick enough
double layers. Other more complicated systems are also studied; electroosmotic flow in
a channel with heterogeneously charged walls and flow in a an array of charged squares.

Keywords: lattice-Boltzmann, electrokinetics, electrohydrodynamics, Nernst-Planck,
Poisson-Boltzmann, high performance computing.
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1
Introduction

This thesis deals with modelling of physical problems in the interdisciplinary field of hy-
drodynamics and electrostatics. The tool used for realising this is the new and promising
but somewhat immature lattice-Boltzmann method. This is a method that is still under
development but is today used in practical applications both in industry and academy.

1.1 Background

There is currently an ongoing project at the mathematics faculty of Chalmers University
in producing a modelling package that should be able to deal with transport of various
liquids and particles through complicated structures. The method of choice has fallen
upon the lattice-Boltzmann method for its suitable characteristics in the systems of
interest.

This work aims to investigate the possibility and procedure for taking electrical effects
into account in the modelling of charged fluids. More theoretical questions about the
method itself and of the physics involved is of interest as well as how the method may
be effectively implemented on a computer.

From both industry and academy, there is a demand on the modelling of this kind
of physics. For instance, in medical sciences, accurate modelling of transport of charged
fluids is a fundamental ingredient in understanding biological systems and to be able to
manipulate them. As a consequence of the always so present desire of more environmental
friendly ways of using the planet, automotive industry are now engineering electrical
cars. A great challenge is to produce high performing and durable batteries, the ability
to accurate model the electrolytes in the batteries is indeed an advantage in achieving
this.
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1.2. OUTLINE

1.2 Outline

The text is structured in five main chapters. In chapter 2, the physics involved and
the equations of interest are presented. This is followed by chapter 3 where the lattice-
Boltzmann method is formulated for the different equations of interest. Also an introduc-
tion to the method as well as some discussion on different boundary conditions is given
here. In chapter 4, the implementation of the method is discussed together with some
general aspects that is important to have in mind in order to produce a high performing
code. The implementation is then tested for classic examples with known solutions in
chapter 5. Finally some results in electrokintetics are presented and discussed in chapter
6. Here, the focus is rather on the physics of the simulated systems then on LBM aspects
of the problems. These aspects, such as grid dimensions, how LBM parameters relate to
physical quanities etc. are discussed for the problems in chapter 5.

1.3 Previous work

An extensive treatment of both theory and experiments in the field of electrokinetics is
carried out in [1]. Mainly the Poisson-Boltzmann model is used in the modelling but
also in some situations, the model used in this work based on the coupling of Navier-
Stokes, Nernst-Planck and Poisson’s equation of electrostatics is discussed. Also in [27],
this modelling approach is used. However, the computational model is not the Lattice-
Boltzmann method (LBM).

There are a lot of formulations of the LBM for the Navier-Stokes equations as the
method typically is used in the modelling of fluid dynamics. Not so common are formu-
lations for the Nernst-Planck and Poisson’s equation. However there are a few, e.g. in
[4] and [26] formulations for the Poisson’s equation is discussed. In [28] a complete for-
mulation for the three equations are presented together with some example simulations
of electrokinetic systems. The formulation presented in [28] will not be completely the
same as the one used in this work as is discussed in later chapters of this text.
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2
Electrohydrodynamics in

microchannels

In this chapter, the fundamental physics behind electrokinetic flow, important for later
discussions, will be presented. Particularly, a modelling approach based on the coupling
of Navier-Stokes, Nernst-Planck and Poission’s equations is given.

2.1 Basic concepts of electrokinetic flow

Electrohydrodynamics involves the study of electric phenomena on fluid flow. How fluids
carrying electrical charges (electrolytes) react upon external electrical fields or interact
with charged objects are examples of problems that arise in this field.

2.1.1 Electrical double layers

As a charged object is brought into contact with an electrolyte it is, qualitatively, easily
deduced that ions with a sign of charge opposite to that of the object will be attracted
to the object and ions with the same sign of charge will be repelled. These two distinct
categories of ions will from hereon be referred to as counter- and co-ions respectively. In
this case, for a neutral electrolyte, a surplus of counter-ions will be present in the direct
vicinity of the object and a surplus of co-ions will be present at some other location
further from the object.

The area with a surplus of counter-ions in an electrolyte in contact with a charged
object is often referred to as an electrical double layer (EDL). Two distinct regions will
be formed in this area, thus the name double layer. The two layers are often referred to
as the Stern layer (adsorbed ions) and the diffusive layer (mobile ions). The Stern layer
is usually several orders of magnitude thinner than the diffusive layer and is therefore
seldom considered when it comes to modelling [1].

3



2.2. COMPLETE PHYSICAL MODEL

2.1.2 Electroosmosis

As a fluid carrying a net charge, e.g. in the diffusive layer of an EDL, is under influence
of an electric field, the charged particles will move due to the electric forces. As the
charge particles move, they will affect the surrounding liquid, causing it to move as well.
This liquid motion is often referred to as electroosmotic flow. [1]

2.2 Complete physical model

To model the fluid motion of a charged fluid under influences of electrostatic forces, a
coupling between different models is considered.

The electric field and potential in the system are obtained from solving Poisson’s
equation (PE) for electrostatics (section 2.3) with a given charge density. This charge
density is obtained from a set of Nernst-Planck (NP) equations (section 2.4) by including
effects on the charge distribution from the electric field previously mentioned, diffusion
and advection. One NP equation is solved for each different ion species in the solution.
For instance in a 1:1 solution, two equations are solved one for the positive and one for
the negative ions respectively. advective charge flux is given from the velocity field in
the fluid that is obtatined by solving the Navier-Stokes (NS) equations (section 2.5).
Forces due to present electric fields on net charged areas of the fluid also couples the NS
equations to the NP equation. More about the force coupling is discussed in sections.
2.6 and 2.7. The coupling between the different equations are visualised in fig. 2.1.

2.3 The potential - Poisson’s equation

To be able to model the flow dynamics of liquids in a channel with present EDLs, the
potential and charge distribution in the channel must be determined. These quantities
are mutually related through Poisson’s equation for electrostatics:

∇2ψ = − ρe
εrε0

(2.1)

where ψ is the electrical potential, ρe the electrical charge density, εr is the relative
permittivity and ε0 the vacuum permittivity. Under certain assumptions, the charge
density may be explicitly determined as a function of the potential distribution, one
such result is the so called Poisson-Boltzmann equation, further discussed in section
2.4.2.

2.3.1 Boundary conditions

At the charged boundaries, most physical situations may be covered by either specifying
the potential or the surface charge density. The former would be a boundary condition
of Dirichlet type:

ψ(x) = ζ(x) , x ∈ Γ (2.2)

4



2.4. THE TRANSPORT OF CHARGES - NERNST-PLANCK EQUATION

Figure 2.1: Visualisation of the coupling between the three equations present in the model.
Poisson’s equation (PE), the set of Nernst-Planck equations (NP1 ... NPn) for the different
ion species and the Navier-Stokes equations (NS). The dependencies have also be marked
with arrows indicating what quantities for a certain equation that are needed from an other.

and the latter a boundary condition of Neumann type:

∇ψ(x) · n = −σ(x)

ε0εr
, x ∈ Γ (2.3)

where Γ denotes the boundary of the domain and n is the normal to the boundary
surface. [2]

2.4 The transport of charges - Nernst-Planck equation

The charge concentration in an electrolyte is indeed affected by its environment. In
the model proposed here, influences from: advection of the electrolyte, diffusion due
to concentration gradients and effects from the electric field originating from charged
objects placed at the border or in the flow is considered. Charge conservation without
any external sources of the ion density, c(x, t), gives:

∂c

∂t
+∇ · J = 0 (2.4)

where J(x, t) is the net flux induced by the effects described above. Explicit expressions
for the fluxes due to advection and diffusion respectively are

5



2.4. THE TRANSPORT OF CHARGES - NERNST-PLANCK EQUATION

Jadv = cu (2.5)

and
Jdif = −D∇c (2.6)

where u is the advective velocity and D is a diffusion coefficient. The ionic flux due to
the presence of an electric potential, ψ(x, t), is given by the Nernst equation [1]:

Jele = −zqeD
kBT

c∇ψ (2.7)

where z is the relative charge of the ion species, qe is the fundamental charge, kB is the
Boltzmann constant and T is the temperature of the fluid.

Summing up the fluxes and putting them into eq. (2.4) gives

∂c

∂t
= ∇ ·

[
D∇c− cu +

zqeD

kBT
c∇ψ

]
(2.8)

which is a known result often referred to as the Nernst-Planck equation. This is the
equation for the transport of one species of ions, if several are present one NP equa-
tion for each species needs to be solved. The advective velocity, u, and the potential
gradient, ∇ψ, are obtained from couplings to the Navier-Stokes and Poisson’s equation
respectively. More about the coupling between the equations is discussed in section 2.2.

2.4.1 Boundary conditions

Depending on the physical situation being modelled, different conditions may be imposed
at the boundaries of the domain. Throughout this work, at hard boundaries (walls), the
charge flux through the boundary is set to zero, i.e.:

J · n = 0 , x ∈ Γ (2.9)

where n denotes the normal to the surface and Γ is the boundary of the domain.

2.4.2 Poisson-Boltzmann equation

Consider a system consisting of an electrolyte in contact with a (flat) charged wall.
Under certain assumptions, it is possible to explicitly determine the charge density in
eq. (2.8) as a function of the electric potential. E.g. if there is no advection present and
if the system has reached a steady state, i.e. ∂c/∂t = 0 and u = 0 we have:

D∇c +
zqeD

kBT
c∇ψ = J0 (2.10)

where J0 is a constant flux. Due to the steady state assumption, what the equation
above actually says is that the net flux of charge in the system is constant. Since no
charges are wanted to flow through the wall boundary, the flux is set to zero on the

6



2.4. THE TRANSPORT OF CHARGES - NERNST-PLANCK EQUATION

wall and since the flux is constant it will therefore be zero everywhere in the liquid, i.e.
J0 = 0.

Considering only a one-dimensional situation with a position variable y varying in a
direction out from the wall into the liquid, eq. (2.10) reads

1

c

dc

dy
+

zqe
kBT

dψ

dy
= 0. (2.11)

The charge density is determined by solving eq. (2.11) for c, i.e. integrating the
equation. In order to avoid introducing additional unknown quantities, the equation is
integrated to far away from the wall where the potential from the EDL is assumed to
have decreased to zero and where the concentrations, c∞, of the electrolyte is known.∫ ∞

y
d ln(c(y′)) = − zqe

kBT

∫ ∞
y

dψ(y′) (2.12)

This gives an expression for C(y):

c(y) = c∞ exp

(
−zqeψ(y)

kBT

)
. (2.13)

In a general case, there may be several species of ions in the electrolyte, the net
charge density, ρe, is then given by simply summing up the contributions from the
different species:

ρe = qe
∑
i

zici. (2.14)

Summarising eqs. (2.1), (2.13) and (2.14) gives the Poisson-Boltzmann equation in
one dimension

d2ψ(y)

dy2
= − qe

εrε0

∑
i

zic
∞
i exp

(
−ziqeψ(y)

kBT

)
. (2.15)

The Debye–Hückel approximation

Historically, the non-linear nature of eq. (2.15) complicated for those wanting to solve
it. This was a major difficulty in the past when the computational power at hands were
rather limited. A linearisation is therefore sometimes done, this linear version of the
PB equation is often referred to as the Debye–Hückel approximation. The solution of
the linearisation gives, something to compare with and is usually used when defining a
characteristic length scale of the EDL.

For a 1:1 electrolyte solution with an equal amount of positive and negatively charged
ions, eq. (2.15) reduces to

d2ψ(x)

dx2
=

2c∞qez

εrε0
sinh

(
zqeψ(x)

kBT

)
. (2.16)

7



2.5. THE VELOCITY FIELD - NAVIER-STOKES EQUATIONS

and the linearised equation is

d2ψ(x)

dx2
=

2c∞q2ez
2

εrε0kBT
ψ(x) = κ2ψ(x) (2.17)

where κ−1 is the Debye length which is where the exponential solution has decayed to
e−1 of the boundary value. This quantity gives therefore a measure for the characteristic
thickness of the EDL.

2.5 The velocity field - Navier-Stokes equations

The Navier-Stokes equations are among the most fundamental corner stones of hydro-
dynamics. They describe the motion of a fluid under the influence of various internal
and external forces.

For later convenience and for reference when it comes to deriving the Lattice-Boltzmann
formulation of the NS equation, a brief sketch of a derivation will here be presented. A
most general form of the Navier-Stokes equation follows from momentum conservation

∂(ρu)

∂t
+∇ · (ρu⊗ u) + Q = 0 (2.18)

where, ρ is fluid density, u is velocity, ⊗ represents the outer product and Q is a momen-
tum source term (force per volume). Expanding the time derivative and the divergence
terms respectively gives

u

(
∂ρ

∂t
+∇ · (ρu)

)
+ ρ

(
∂u

∂t
+ u · ∇u

)
+ Q = 0. (2.19)

To assure mass conservation (without sources) we have

∂ρ

∂t
+∇ · (ρu) = 0 (2.20)

and eq. (2.19) reduces to

ρ

(
∂u

∂t
+ u · ∇u

)
+ Q = 0 (2.21)

which together with eq. (2.20) is a general formulation of the Navier stokes equations.
The force term Q, is determined by the physical properties of the fluid and from its

environment. In this work, only incompressible (ρ = constant) Newtonian fluids will be
studied. The force contribution to Q involved in that case is limited to viscous forces,
pressure gradients in the fluid and to external force fields. Putting this into eqs. (2.20)
and (2.21) gives

∇ · u = 0 (2.22)

and
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ρ

(
∂u

∂t
+ u · ∇u

)
= −∇P + µ∇2u + F (2.23)

where P is the pressure, µ the kinematic viscosity and F is the contributions from external
forces.

2.5.1 Boundary conditions

At hard boundaries (walls), the boundary conditions to eqs. (2.22) and (2.23) are set
on the velocity of either a Dirichlet or Neumann type. In most physical situations the
Dirichlet condition is used which corresponds to that there is a friction between the fluid
and the wall, usually full friction, i.e. when no relative movement between fluid and wall
is present and the velocity at the wall boundary is set to zero, i.e.

u = 0 , x ∈ Γ (2.24)

where Γ denotes the boundary. The Neumann type conditions are used for no-friction
walls where the normal component of the derivative of the velocity is specified, usually
to zero.

At wet boundaries, inlets and outlets, of the domain various boundary conditions
may be set. For instance the pressure or the velocity could be fixed. In the case of a
fixed pressure boundary, a flow direction must also be specified for completeness. [3]

2.6 Pressure-driven electrokinetic flow

As a charged fluid is driven by a pressure gradient, a movement of charges, i.e. an
electrical current will be induced. Due to the charge flux, a potential gradient will
build up along the flow direction. This potential is usually referred to as the streaming
potential, φ(x), and its magnitude is determined from the induced current through Ohm’s
law

J = −σ∇φ (2.25)

where σ is the conductivity of the fluid. in a perfectly conducting fluid there will be no
potential differences. Also a complete neutral solution will carry no net current and also
in this case there will be no potential differences.

Charges under the influence of an electric field will be affected by a force. Charges
moving due to this force will, in a liquid, also pull liquid (uncharged) molecules with
them. In a macroscopic limit, the force density affecting the charges in the liquid is
assumed to affect the liquid as a whole. The volumetric force affecting the fluid from
the presence of the streaming potential is then given by:

F = −ρe∇φ (2.26)
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Figure 2.2: Example of an electroviscous system. The fluid is driven by a pressure gradient,
∇P. The directions of the forces on the fluid are always opposite to the flow direction. The
force originates from the potential difference, φ, that builds up along the channel. The force
is always opposite to the flow direction, thus slowing the flow down.

where ρe is the charge density. This is an example of how the charge density from the
Nernst-Planck equation may couple to the force term in Navier-Stokes equations.

This force will always be affecting the fluid in a direction opposite to the net flux of
charge, i.e. the force will slow the fluid down, this is illustrated in fig. 2.2. This effect
that a moving net charged fluid is slowed down is called the electroviscous effect. The
name originates from that a similar effect might be achieved by increasing the viscosity
of the fluid.

2.7 Electroosmotic flow

Instead of driving the fluid flow through a pressure drop, a net charged fluid may be
driven by an external electric field. This may be seen as the opposite case to that in
section 2.6 where a current is induced by a pressure drop.

The volumetric force on the fluid from the external field, Eext, is given by

F = ρeEext (2.27)

where ρe is the charge density. If the electric field is constant (or at least has the
same direction) everywhere, the sign of the force is not in the same direction for a net
charged positive area of the fluid as for a net charged negative. Thus the fluid may
be either slowed down or sped up. This is a qualitative difference to pressure driven
situation and is illustrated in fig. 2.3.

The electroviscous effect is in the case of pure electroosmotic flow usually neglected
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Figure 2.3: Example of an electroosmotic system. The fluid is driven by an external
electric field, E. The directions of the forces on the fluid from the electric field are indicated
with arrows. Note however that the fluid does not necessarily has to flow in the direction of
the force, this due to viscous effects in the fluid.

as the field due to the streaming potential is, in most physical cases, small in comparison
to the applied external field. [4]
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3
The lattice-Boltzmann method

Rather than modelling on a macroscopic or microscopic scale, the lattice-Boltzmann
method (LBM) operates at a scale in between those, often referred to as a mesoscopic
scale. Nowadays, the method is most frequently used in modelling of fluid dynamics,
i.e. computing solutions of the macroscopic Navier-Stokes equations. However, the
lattice-Boltzmann method is not limited to this case and may be used to model other
macroscopic systems as well. In this chapter a LBM approach will, in addition to the
Navier-Stokes equations, also be formulated for the Nernst-Planck and Poission’s equa-
tion.

3.1 Historical overview

With the introduction of electronic calculating machines came also completely new pos-
sibilities of tackling difficult problems. New fields of computational science was born and
methods for solving both new and traditional problems were developed.

The idea of using a discrete and simplified version of the Boltzmann-equation dates
back to the mid 60’s [5] with an experimental attempt to model simple gas dynamics.
However, at the time, this kind of statistical computational approaches was not consid-
ered a serious alternative for the modelling of more sophisticated and complex systems
such as fluid behaviour. It was first in the mid 80’s when Frisch, Hasslacher and Pomeau
showed that a lattice automaton that conserved mass and momentum in the collisions
and with a lattice of certain symmetry, reproduced the Navier-Stokes equations in a
macroscopic limit. It was by their work and the always increasing computational power
that made the idea of fluid modelling on a mesoscopic scale a serious research topic. [6]

The lattice gas automata (LGA) approach was not perfect and suffered from some
notable flaws, e.g. that the boolean nature of the method introduced statistical noise
and that lack of symmetry in the lattices used made the advection non-isotropic. The
statistical noise was usually dealt with by averaging which resulted in a coarsed domain
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and the advection issue was handled by introducing lattices of higher symmetry. An
other consequence of the boolean variables is that only one particle per state was allowed
which resulted in an equilibrium state from Fermi-Dirac statistics rather than the desired
Maxwell-Boltzmann statistics.

As the flaws of the LGA approach was resolved one by another, the method evolved
into what we today know as the lattice-Boltzmann method, with the crucial refinement
of using continuous distributions over boolean variables. [6]

Today, the lattice-Boltzmann method is in many situations indeed a competitor to
more traditional CFD methods. For example with advantages when it comes to par-
allelisation or implementing boundary conditions in complex geometries. One major
downside with the LBM is the lack of theoretical work done and lack of literature com-
pared to the case with more traditional methods such as finite element/volume methods.
[7]

3.2 Statistical background

Consider one litre of air. At STP, the volume will contain in the order of 1022 molecules.
In order to model this system microscopically, 6 variables per molecule will be needed to
describe the microstate of the system. Just to store the state of the system in a computer
would require more space than the estimated size of the whole world wide web times
one million [8]. Thus, for these kind of systems, the microscopic approach is somewhat
impractical.

Statistical approaches have been developed for these types of problems. A fun-
damental quantity used for describing the system is a continuous probability density
distribution, f . This distribution may be regarded as an average over the microstates.
Consider a volume of d3xd3p in phase space, the number of molecules, dN in this volume
is then given through the density distribution, f as

dN(x,p, t) = f(x,p, t)d3xd3p. (3.1)

Thus f(x,p, t) is a measure of the number of particles at location x with momentum p
and at time t. Macroscopic variables are obtained by summing, e.g. the particle density,
n, is obtained from

n(x, t) =

∫
f(x,p, t)d3p (3.2)

and the macroscopic momentum density of the system is determined by

ρ(x, t)u(x, t) =

∫
pf(x,p, t)d3p (3.3)

where ρ = mn is the mass density. Multiplying f by a power k of p or v = p/m and
integrating is often referred to as taking the k:th moment of f and is a term that will
be used throughout this chapter.
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In the late 19th century, Boltzmann developed a model for the time evolution of f . To
do this he had to make several assumptions. First, only collisions between two particles
are considered, this makes the equation mostly applicable to dilute gases. Second, the two
particles colliding are assumed to be uncorrelated before the collision. Third, external
forces are assumed not to affect the collisions [6]. The equation is named after its father
to the Boltzmann (transport) equation and reads:

∂tf +
p

m
· ∇xf +

F

m
· ∇vf = Q(f, f) (3.4)

where f is the distribution function for a single species collection of particles of mass m, F
is external forces, p is momentum, ∇x and ∇v are the gradients in location and velocity
space respectively. The right-hand side contains the so called collision term which in
the general case is expressed as an integral. This integral states how the distribution
function changes after a two particle collision. However, the structure of this integral is
in most physical situations too complicated to be used directly. Therefore, a number of
simplifications have been proposed during the years.

When designing these approximations, at least two main properties of the collision
integral must be kept. [6]

1. The same quantities that are conserved under collisions in the collsion integral
must also be conserved in the approximation.

2. Boltzmann’s H-theorem must be fulfilled for the approximated collision operator.

Without being to specific, the H-theorem states that the entropy computed from
f is always increasing with time and that the maximum entropy is obtained for a so
called Maxwellian distribution in momentum/velocity space. Boltzmann used an other
quantity denoted by H closely related to entropy, thus the name of the theorem. The
Maxwellian distribution in two dimensions that f tends towards is given by

f (M)(x,v, t) = n

(
m

2πkBT

)
exp

(
− m

2kBT
(v − u)2

)
(3.5)

where u(x, t) is the mean velocity of the particles in the system and n(x, t) is the number
of particles at location x. In section 3.4, one of the most widely used approximations of
the collision integral will be presented.

3.3 Basic idea of the LBM

As previously noted, the lattice-Boltzmann method is a mesoscopic method. This means
that the modelling is neither done on a microscopic (molecular) level nor by direct
solving of the macroscopic equations involved. The aim, in most situations with the
lattice-Boltzmann method is indeed to solve some macroscopic equation but not direct.
Instead a statistical model is used with various mesoscopic variables that, in some limit,
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reproduces the macroscopic variables. It is also possible to ensure that these variables
(to some extent) fulfil a certain macroscopic equation by using a certain scheme.

Basically the lattice-Boltzmann method solves a discretised version of eq. (3.4) for
the distribution functions from which the macroscopic quantities may be determined.
Both the spatial positions and the velocity space is discretised allowing the distributions
to “sit” only at certain positions and to stream to neighbouring locations only in certain
directions. A naive way to visualise the evolution of f is to consider the distribution
functions at the lattice nodes as pseudo particles that move along the lattice and collide.

Usually in two dimensions the velocity space is discretised into 9 distinct velocities,
more about the choice of lattice is discussed in section 3.5. In this case 9 distribu-
tion functions are needed per node which might correspond to one or two macroscopic
variables but is indeed fewer than the number of variables needed for a microscopic
approach.

The discretised Boltzmann equation is referred to as the lattice-Boltzmann equation
(LBE) and is one of the fundamental corner stones in the lattice-Boltzmann method, it
reads:

fi(x + ciδt, t+ δt)− fi(x, t) = Ωij(x, t) (3.6)

where fi denotes the distribution function for direction ci, δt is the time step and Ωij is
the (for now non-specified) collision operator. An implicit sum over the second velocity
index j is assumed. Various forms of collision operators exist and will be further discussed
in section 3.4.

3.3.1 Computational algorithm

In order to solve eq. (3.6) the distribution functions must be set to some initial value.
The choice of initial value is in most cases crucial with respect to stability and accuracy
of the method. More about the initialisation will be discussed in later sections of this
chapter.

When a proper initialisation has been performed, the time evolution of the distri-
bution functions is determined iteratively by the explicit scheme in the LBE, eq. (3.6).
The update in each time step is usually divided into two computational tasks. First, the
new value that later will be propagated to a neighbouring node is computed, i.e.

f∗i (x, t+ δt) = fi(x, t) + Ωij(x, t) (3.7)

This step will be referred to as the collision step since it is here the“collision”is computed.
The second step consists of propagating the distribution functions to the neighbouring
node in its corresponding direction, i.e.

fi(x + ciδt, t+ δt) = f∗i (x, t+ δt) (3.8)

This step will be referred to as the streaming step.
In the case of a finite domain, certain rules (boundary conditions) must be specified

at the boundaries. Typically the distribution functions that are going to be streamed
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Figure 3.1: Flowchart of the most fundamental parts in an implementation of the LBM.
The convergence is usually tested for a macroscopic variable.

out of the domain is used to define the unknown ones that will “enter” the domain.
More about boundary conditions in section 3.11. Thus, at each time step, the boundary
conditions must also be handled.

This is broadly the whole computational algorithm behind the LBM, in fig. 3.1, a
flow scheme of the algorithm is shown.

3.4 The BGK collision operator

The collision term in the LBE is the main ingredient in what determines the physics of
the system that is being modelled. Here the desired interaction of the pseudo particles
is stated. In section 3.2, two necessary properties to approximations of the full collision
integral was stated.

One of the simplest collision operators that fulfil conditions (1) and (2) in section
3.2 is the BGK operator (BGK from its creators: Bhatnagar, Gross and Krook). It was
proposed in 1954 and is today one of the most commonly used collision operators both
in the case of the lattice-Boltzmann and the continuous Boltzmann equation. It is based
on the principle of relaxing f towards a Maxwellian distribution. The relaxation is also
performed in such a way that the collision invariants are preserved. In the discrete case,
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eq. (3.6), the operator is given by:

Ωij = Ωi = −ω
[
fi(x, t)− f (eq)i (x, t)

]
(3.9)

where ω is a parameter determining the relaxation rate and f
(eq)
i should be an equilibrium

distribution that makes sure that the necessary conditions are fulfilled. In the discrete
case, a truncated expansion of eq. (3.5) is typically used [6]. This gives for instance

f
(eq)
i = wiρ

[
1 +

ci · u
c2s

+
(ci · u)2

2c4s
− u2

2c2s

]
(3.10)

where wi is a lattice specific weight, ρ is the zeroth moment of fi and ci is a unit velocity
in the discretised velocity space.

The BGK operator is due to its simplicity both when it comes to theoretical treatment
and implementation a popular choice. However in some physical situations, e.g. multi-
phase or high Reynolds-number flows, more sophisticated alternatives are required [6].
Throughout this work, the BGK operator will be used.

3.5 The lattice

The discrete spatial coordinates together with the discrete velocity coordinates forms a
lattice. Spatial coordinates are neighbourwise connect through the discrete velocities.
The discretisation in the LBM must be performed in such a way that the lattice may
be produced from translating a single unit cell. This gives that the spatial resolution
is constant for the whole domain. In other approaches, e.g. finite element methods the
mesh may locally be refined at interesting regions of the domain which is a strength to
these methods over the LBM.

There exist a convention for naming different lattices. A lattice of dimension d and
with q distinct velocities is denoted by DdQq. For example a lattice with 9 velocities in
dimension 2 is denoted D2Q9. An example of two different lattices is presented in fig.
3.2. The D2Q9 lattice is also the one that will be used in this work, the velocities ci are
given by

{ci} =

{[
0

0

]
,

[
1

0

]
,

[
0

1

]
,

[
−1

0

]
,

[
0

−1

]
,

[
1

1

]
,

[
−1

1

]
,

[
−1

−1

]
,

[
1

−1

]}
(3.11)

To be able to retrieve the desired equations in the macroscopic limit of the LBE, the
lattice used must possess a certain degree of isotropy. Thus the choice of lattice is not
arbitrary. For instance, for obtaining the Navier-Stokes equations, the lattice velocities
must at least posses the following properties:
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(a) D2Q7 (b) D2Q9

Figure 3.2: Two different unit cells for lattices used in the LBM in two dimensions. In
(a) the D2Q7 seven speed lattice is shown and in (b) the nine speed D2Q9 lattice. The
numbering at the edges is the usual naming convention for the different velocities.

∑
i

wi = 1 (3.12a)∑
i

wiciα = 0 (3.12b)∑
i

wiciαciβ = c2sδαβ (3.12c)∑
i

wiciαciβciγ = 0 (3.12d)∑
i

wiciαciβciγciδ = c4s(δαβδγδ + δαγδβδ + δαδδβγ) (3.12e)

where the sums are over the discrete velocities ci, wi are lattice specific weights cs is
the speed of sound for the lattice and δij is a Kroenecker delta.

The weights are introduced to compensate for the fact that different velocity vectors
are of different length. See for example the D2Q9 lattice in fig. 3.2b where three lengths
are present. In this case, three different weights will be needed. From the relations in
eqs. (3.12) follow that these weights are:

wi =


4/9 if i = 0

1/9 if i = 1, 2, 3, 4

1/36 if i = 5, 6, 7, 8

(3.13)

The quantity cs which often is referred to as the speed of sound may be thought of as
an effective propagation velocity of the lattice and is determined, for the D2Q9 lattice,
to
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cs = c/
√

3 (3.14)

where c = |c1,2,3,4| = δx/δt.

3.6 Asymptotic analysis

Methods from asymptotic analysis will, in this section, be used to investigate the macro-
scopic limit of the general LBE. More detailed and specific analyses for the three different
equations considered will be presented in sections 3.7.1, 3.8.1 and 3.9.1 respectively.

Asymptotic analysis is basically about describing mathematical objects in some limit,
e.g. how a function behaves for large or small values of some variable or parameter.
Consider for example the series Sε:

Sε = a(0) + a(1)ε+ a(2)ε2 + a(3)ε3 +O(ε4) (3.15)

It is clear that for sufficiently small values of ε, the terms of higher order is of negligible
magnitude to those of lower order and the series may be truncated at some point and
still be a good approximation of Sε. For example if ε is small, then Sε ≈ a(0) and we say
that if a(1) 6= 0 that this approximation is of first order accuracy.

There are different approaches to go from the discrete LBE to a continuous macro-
scopic equation. The most frequently applied one to obtain the Navier-Stokes equations
is the Chapman-Enskog method [9], which will reproduce the compressible equations.
Another method, often employed by M. Junk and his associates, e.g. in [7], is a method
based on regular asymptotic expansions, this is also the method that will be utilised
in this work and will in the case of Navier-Stokes reproduce the incompressible equa-
tions. A brief discussion of the differences between the Chapman-Enskog and the regular
expansion approaches will be carried out at the end of this chapter.

The basic idea behind the analysis is to expand the distribution function fi in some
small parameter, ε. Also this parameter will be related to the spatial and time scales.
The macroscopic limit is obtained by taking the Taylor expansion of the discrete LBE and
comparing terms of equal order in ε. Together with the fact that certain quantities are
invariant under collisions, macroscopic differential equations are obtained. Now follows
the part of the analysis which is common for the three equations, the more equation
specific analysis is carried out in sections 3.7.1, 3.8.1 and 3.9.1 respectively.

3.6.1 Motivation of the choice of expansion parameter

A most desired property of the expansion parameter is that it should be a small and
dimensionless number. If the lattice is dense enough with respect to the characteristic
length scale of the system, a suitable choice is the Knudsen number, ε, which is defined
as the ratio of the mean free path, δx, and the characteristic length of the system under
consideration, `0, i.e. ε = δx/`o. To be able to perform the asymptotic analysis we
must also relate the time scale to this parameter. From the fact that the lattice speed
c = δx/δt and by introducing a characteristic speed, uo = `0/t0, we have
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ε =
δx
`0

=
c

u0

δt
t0

(3.16)

It is now clear that what determines the relation between the timescale and the parameter
ε is the ratio of the characteristic speed and the lattice speed which is usually referred to
as the Mach number, Ma. In our particular case we will operate in the incompressible
limit, i.e. Ma � 1 and a suitable choice is a small number, thus Ma = ε is chosen [9].
The discretisation of the space and time step is then related through

δ′2x = δ′t = ε2 (3.17)

where the primes denote dimensionless variables. This particular scaling is usually re-
ferred to as diffusive scaling.

3.6.2 Expanding the LBE

The LBE, eq. (3.6), with dimensionless variables and the BGK collision operator reads:

fi(x
′ + εc′i, t

′ + ε2)− fi(x′, t′) = −ω
[
fi(x

′, t′)− f (eq)i (x′, t′)
]
. (3.18)

The primes denoting dimensionless variables will, for readability reasons, from hereon
be dropped. If nothing else is stated we always consider dimensionless variables.

To obtain a differential equation, the difference equation in eq. (3.18) is Taylor
expanded, which gives

ε(ci ·∇fi)+ε2(∂tfi+(ci ·∇fi)2/2)+ε3(∂t(ci ·∇fi)+(ci ·∇fi)3/6)+O(ε4) = −ω
[
fi − f (eq)i

]
(3.19)

Expanding also fi and f
(eq)
i in the parameter ε:

fi = f
(0)
i + εf

(1)
i + ε2f

(2)
i + ε3f

(3)
i +O(ε4) (3.20)

f
(eq)
i = f

(eq,0)
i + εf

(eq,1)
i + ε2f

(eq,2)
i + ε3f

(eq,3)
i +O(ε4) (3.21)

and inserting these expressions into eq. (3.19) gives an equation with terms of varying
orders of ε. Separating this equation in equations of common orders allows for an analysis
of what happens at different scales of ε. For the four leading orders in ε we have:

ε0 : 0 = −ω
[
f
(0)
i − f

(eq,0)
i

]
, (3.22)

ε1 : ci · ∇f (0)i = −ω
[
f
(1)
i − f

(eq,1)
i

]
, (3.23)

ε2 : ci · ∇f (1)i + ∂tf
(0)
i + (ci · ∇f (0)i )2/2 = −ω

[
f
(2)
i − f

(eq,2)
i

]
(3.24)
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and

ε3 : ci·∇f (2)i +∂tf
(1)
i +(ci·∇f (1)i )2/2+∂t(ci·∇f (0)i )+(ci·∇f (0)i )3/6 = −ω

[
f
(3)
i − f

(eq,3)
i

]
.

(3.25)
The idea is now that for an equation of a particular order in ε, use collision invariants

and eliminate unknown f
(n)
i by using equations of lower order in ε. This will in the end,

result in differential equations for macroscopic variables, given by moments of the fi:s.

3.7 LBM for the Nernst-Planck equation

The method presented here is based on representing the Nernst-Planck equation, eq.
(2.8), as an equation of advection-diffusion type. Considering the quantity:

ū = u− zqeD

kBT
∇ψ (3.26)

as an effective advective velocity, we have:

∂ρ

∂t
+∇ · (ūρ−D∇ρ) = 0 (3.27)

which is a mass conservation equation with fluxes from diffusion and from advection
respectively. The letter c for denoting the charge concentration has in this section been
replaced by the letter ρ to avoid the risk of confusing it with the lattice velocities which
traditionally are denoted by ci.

A collision operator of BGK type, eq. (3.9) will be used together with a D2Q9 lattice.
The lattice-Boltzmann equation then reads:

fi(x + ciδt, t+ δt)− fi(x, t) = −ω
[
fi(x, t)− f (eq)i (x, t)

]
(3.28)

with {ci}Q−1i=0 for the D2Q9 lattice as in eq. (3.11). The equilibrium function, f
(eq)
i , is

chosen as [10]:

f
(eq)
i = wiρ

(
1 +

ci · ū
c2s

)
(3.29)

with the weights, wi, as in eq. (3.13). The charge density and charge flux density is
obtained by taking the zeroth and first moments of the distribution function respectively,
i.e:

ρ =
∑
i

fi (3.30)

and
j =

∑
i

fici (3.31)

The diffusion constant, D, is related to the relaxation parameter ω through
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D = c2s

(
1

ω
− 1

2

)
. (3.32)

3.7.1 Asymptotic analysis

To motivate the appearance of the above suggested method for solving eq. (3.27) and for
showing under what premises the method is valid, the macroscopic limit of the discrete
scheme will now be analysed in an asymptotic manner. Note that for the advection
diffusion equation mass is but flux is not conserved.

From the expansion of fi in eq. (3.20) and from eqs. (3.47) and (3.48) follow the
expansions of the mass density and flux respectively as

ρ = ρ(0) + ερ(1) + ε2ρ(2) + ε3ρ(3) +O(ε4) (3.33)

and

j = j(0) + εj(1) + ε2j(2) + ε3j(3) +O(ε4) (3.34)

The advective velocity is also expanded as:

ū = ū(0) + εū(1) + ε2ū(2) + ε3ū(3) +O(ε4) (3.35)

By plugging these expansion into the equilibrium distribution eq. (3.29), the expansion
in eq. (3.21) is obtained. The terms of order zero is used in the zeroth order equation
of the LBE, eq. (3.22), which gives

f
(0)
i = wiρ

(0)

(
1 +

ci · ū(0)

c2s

)
. (3.36)

However, since we are only considering advection in the low Mach limit, i.e. |ū| ∼ ε, we
will in this analysis assume that ū(0) = 0. ū will then be of order ε to leading order. It
is possible to show [7] that this assumption holds if ū is initialised properly, i.e. small

and if no major momentum sources are present. Thus the expression for f
(0)
i reduces to

f
(0)
i = wiρ

(0). (3.37)

We now continue to the equation of order one in ε, eq. (3.23). Taking the zeroth
moment gives the equation 0 = 0 which indeed is true but not very useful. Note that

the right hand side vanishes due to mass conservation. f
(1)
i will be needed in the next

step and is, by using eq. (3.37):

f
(1)
i = − 1

ω
(ci · ∇)(wiρ

(0)) + wi

(
ρ(1) + ρ(0)

ci · ū(1)

c2s

)
. (3.38)

Taking the first moment of f
(1)
i gives the leading order in the flux (j(0) = 0 since ū(0) = 0):

23



3.8. LBM FOR THE INCOMPRESSIBLE NAVIER-STOKES

j(1) = ρ(0)ū(1) − c2s/ω∇ρ(0) (3.39)

Continuing to the equation of order two in ε, eq. (3.24) and taking the zeroth moment
of the equation gives

∇ · j(1) + ∂tρ
(0) + c2s/2∇2ρ(0) = 0 (3.40)

and by inserting the expression for j(1) we end up with

∂tρ
(0) +∇ ·

[
ρ(0)ū(1) − c2s

(
1

ω
− 1

2

)
∇ρ(0)

]
= 0 (3.41)

which is an advection diffusion equation with a diffusion constant as in eq. (3.32). Since
ρ(0) fulfils the equation of interest, the solution ρ that we get from the lattice-Boltzmann
method is at least of first order accuracy. To determine the exact order of accuracy,
higher order terms, ρ(k>0), must be determined. If also all those terms would be zero the
method would be exact, unfortunately that is not the case. The analysis of higher order
terms will not be performed here, but it is possible to show that ρ(1) is zero only under
certain premises, i.e. for a proper initialisation [10]. ρ(2) is however in general non-zero
and the obtained solution is thus second order accurate.

3.8 LBM for the incompressible Navier-Stokes

The most frequent use of the LBM is to solve the Navier-Stokes equations. In this work
only the incompressible case, eqs. (2.22) and (2.23) will be considered. The LBM may
however be used to reproduce weak compressibility [6]. The incorporation of forces will
be treated in section 3.8.2. We recall the incompressible Navier-Stokes equations without
external forces present from chapter 2 as:

∇ · u = 0 (3.42)

and

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇P + ρν∇2u (3.43)

where ν is the kinematic viscosity related through the dynamic viscosity, µ, by

µ = ρν. (3.44)

A LBM will now be formulated for eqs. (3.42) and (3.43). The LBE with a BGK
collision operator is given by

fi(x + ciδt, t+ δt)− fi(x, t) = −ω
[
fi(x, t)− f (eq)i (x, t)

]
(3.45)

where
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f
(eq)
i = wiρ

[
1 +

ci · u
c2s

+
(ci · u)2

2c4s
− u2

2c2s

]
(3.46)

where wi are the weights in eq. (3.13).
The density, ρ, and the mass flux, ρu, is determined from fi by taking the zeroth

and first moments respectively:

ρ =
∑
i

fi (3.47)

and
ρu =

∑
i

fici. (3.48)

The kinematic viscosity is related to the relaxation parameter, ω

ν = c2s

(
1

ω
− 1

2

)
. (3.49)

3.8.1 Asymptotic analysis

Partially based on [7], an asymptotic analysis of the above suggested method will be
performed. In most literature available, when reproducing the Navier-Stokes equations
in the macroscopic limit, a Chapman-Enskog expansion is performed. Note that this is
not what is done here.

From the expansion of fi in eq. (3.20) follows the expansion of the macroscopic mass
and velocity as

ρ = ρ(0) + ερ(1) + ε2ρ(2) + ε3ρ(3) +O(ε4) (3.50)

and

u = u(0) + εu(1) + ε2u(2) + ε3u(3) +O(ε4). (3.51)

These expansions are plugged into the equilibrium distribution in eq. (3.46) and
from the equation of order zero in ε, eq. (3.22) gives:

f
(0)
i = wiρ

(0) (3.52)

Here u(0) has been assumed to be zero by the same argumentation as in the Nernst-
Planck analysis, section 3.7.1. Continuing to the equation of order 1 in ε, eq. (3.23) and
taking the first moment gives

∇ρ(0) = 0. (3.53)

Further, by using this fact that ρ(0) is constant in space and that

f
(1)
i = − 1

ω
ci · ∇f (0)i + f

(eq,1)
i (3.54)
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where

f
(eq,1)
i = wi

[
ρ(1) + ρ(0)

ci · u(1)

c2s

]
(3.55)

gives when taking the zeroth moment of the equation of order two in ε, eq. (3.24)

∂tρ
(0) +∇ · (ρ(0)u(1)) = 0. (3.56)

This equation states the conservation of mass for ρ(0). Since we are considering only
systems in the incompressible limit, ρ(0) will be assumed to also be constant in time and
we have

∇ · u(1) = 0. (3.57)

Taking the first moment of eq. 3.24 gives

∇ρ(1) = 0. (3.58)

It can be showed [7] that if ρ(1) is initialised properly, then it does not change in time.
Therefore, if ρ(1) is initialised to zero, it will also remain zero for all time.

As we now continue to the equation of order three in ε, things will get a bit more
technical as we will make use of the fourth order lattice isotropy, eq. (3.12). The zeroth
moment of the equation gives

∇ · u(2) = 0. (3.59)

which may be used to show that u(2) = 0 [7], it will not be shown here. Instead we
continue by taking the first moment of the equation, as it gets a bit more technical now,
some intermediate steps in the calculation will explicitly be written out. First from the
equation of order two in ε we have that

f
(2)
i = − 1

ω
ci · ∇f (1)i −

1

ω
∂tf

(0)
i −

1

2ω
(ci · ∇f (0)i )2 + f

(eq,2)
i (3.60)

where

f
(eq,2)
i = wi

[
ρ(2) + ρ(0)

(ci · u(1))2

2c4s
− ρ(0)

(
u(1)

)2
2c2s

]
(3.61)

where the fact that u(2) = 0 have been used. Inserting the expression for f
(2)
i into eq.

(3.25) gives, in index notation

ciαciβ∂β

[
−ρ

(0)

ωc2s
ciγ∂γciδu

(1)
δ + wiρ

(2) +
ρ(0)wi

2c4s

(
ciγciδu

(1)
γ u

(1)
δ − (u(1))2

)]
+

+∂twiρ
(0)u(1)α +

ρ(0)

2c2s
ciαciβ∂βciγ∂γciδ = 0

(3.62)
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For brevity, the terms that in the end will equal zero have been omitted. The indices
α, β, γ and δ may take the x or y component respectively. Summing eq. (3.62) over the
directional index i and by using the isotropity properties of the lattice, eq. (3.12) gives:

c2sρ
(0)

(
1

2
− 1

ω

)
∂β (δαβδγδ + δαγδβδ + δαδδβγ) + c2s∂βδαβρ

(2)+

+
ρ(0)

2

(
(δαβδγδ + δαγδβδ + δαδδβγ)u(1)γ u

(1)
δ − δαβ(u(1))2

)
+ ρ(0)∂tu

(1)
α = 0

(3.63)

On the form it is written now, it is not totally clear whether the above equation is the
incompressible Navier-Stokes momentum equation or not. A simplification is in order
and for brevity only the simplification of one term is shown here.

By noting that (u(1))2 may be written as δγδu
(1)
γ u

(1)
δ we have

∂β

[
(δαβδγδ + δαγδβδ + δαδδβγ)u(1)γ u

(1)
δ − δαβ(u(1))2

]
=

= ∂β

[
(δαβδγδ + δαγδβδ)u

(1)
γ u

(1)
δ

] (3.64)

and by summing over γ and δ the above expression reduces to:

∂β

[
u(1)α u

(1)
β + u

(1)
β u(1)α

]
= 2∂βu

(1)
α u

(1)
β (3.65)

and from incompressibility (∂βu
(1)
β = 0), eq. (3.57) we end up with

2u
(1)
β ∂βu

(1)
α . (3.66)

By analogous simplification of the remaining terms in eq. (3.63) we get

ρ(0)
(
∂tu

(1)
α + u

(1)
β ∂βu

(1)
α

)
= −∂β(c2sρ

(2)) + ρ(0)ν∂β

(
∂βu

(1)
α + ∂αu

(1)
β

)
(3.67)

where ν is defined as in eq. (3.49), and if the quantity c2sρ
(2) is interpreted as the pressure,

the above equation is indeed the incompressible Navier-Stokes momentum equation, eq.
(3.43). It is satisfied by u(1) in the expansion of u, since u(2) = 0, the error will be of
order ε3 and we say that the LB formulation is of second order accuracy in velocity. ρ(0)

satisfies the mass equation and since ρ(1) = 0 we say that the method is second order
in density as well [7]. Since the pressure is included as a term in the density expansion,
problems with keeping the incompressibility might arise if large enough pressures are
present.

3.8.2 Forcing schemes

Several methods have been proposed to add the forcing term in eq. (2.23) to the LBE.
In [11] five of these methods have been compared. To briefly summarise the article; for
single phase flows, the methods achieve comparable.
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Due to its simplicity, a method formulated by Shan and Chen [12] was used in this
work. It consists of modifying the equilibrium distribution by computing it with the
modified velocity

u(eq) =
1

ρ

(∑
i

fici +
Fδt
ω

)
(3.68)

where F is the external force. The physical velocity, u, is computed by

u =
1

ρ

(∑
i

fici +
Fδt
2

)
. (3.69)

3.9 LBM for Poisson’s equation

As Poisson’s equation, eq. (2.1), is considered, a fundamental difference to the Nernst-
Planck and Navier-Stokes equations is imediatley noted. It is not a differential equation
of parabolic but of elliptic type. If we consider what has been said about the LBM so
far in this chapter, it seems that it is a method that deals with parabolic equations and
not elliptic. However, by introducing a time derivative to the Poisson’s equation and
only considering the steady state solution the LBM may be used even for this equation.
A diffusion-like equation with a source term is then obtained

∂tρ+∇2ρ = R (3.70)

where R is the right-hand side of the Poisson’s equation.
A LBM for this equation will now be formulated. The LBE to be solved in this case

is, an equation of the form:

fi(x + ciδt, t+ δt)− fi(x, t) = −ω
[
fi(x, t)− f (eq)i (x, t)

]
+ Gi(R) (3.71)

where Gi(R) is an addition to the BGK collision operator to account for the source term
R in eq. (3.70). The equilibrium distribution is given by

f
(eq)
i = wiρ (3.72)

where wi are the weights in eq. (3.13).
The quantity ρ which in this work is interpreted to electric potential in the steady

state is determined by

ρ =
∑
i

fi (3.73)

and the quantity which, to us, is of even more interest, i.e. the electric field, is given by

∇ρ = − ω

c2sδx

∑
i

fici. (3.74)
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Finally, the addtional source term in the collision operator, Gi(R), is given by

Gi(R) = wic
2
s

(
1

2
− 1

ω

)
R. (3.75)

3.9.1 Asymptotic analysis

The given method for solving eq. (3.70) will now be motivated by preforming an asymp-
totic analysis of the suggested LBE.

fi is expanded as in eq. (3.20) which gives an expansion of ρ as in eq. (3.33). Further,
the source term R is expanded:

R = R(0) + εR(1) + ε2R(2) + ε3R(3) +O(ε4) (3.76)

which also gives an expansion for the LBE source term as

Gi = Gi
(0) + εGi

(1) + ε2Gi
(2) + ε3Gi

(3) +O(ε4). (3.77)

The equilibrium distribution is expanded by plugging in the expansion of ρ from eq.
(3.33). This gives for the zeroth order equation in ε, eq. (3.22) that

f
(0)
i = wiρ

(0) +
1

ω
Gi

(0) (3.78)

However, taking the first moment of the equation gives Gi
(0) = 0 and the above expres-

sion for f
(0)
i reduces to

f
(0)
i = wiρ

(0). (3.79)

Coninuing to the equation of first order in ε, eq. (3.23) and taking the zeroth moment
gives that also Gi

(1) = 0. Taking the first moment of the same equation gives

∇ρ(0) = − ω
c2s

∑
i

f
(1)
i ci ≈ −

ω

c2sδx

∑
i

fici (3.80)

Here, for the approximation, the expansion of fi is used together with the fact that
ε = δx in dimensionless variables.

The next equation in ε, i.e. the one of order two, will eventually give us what we are
looking for. Taking the zeroth moment gives

− c2s
ω
∇2ρ(0) + ∂tρ

(0) +
c2s
2
∇2ρ(0) =

∑
i

Gi
(2)(R(2)) (3.81)

From this equation, it is deduced that in order to obtain Poisson’s equation in a steady
state situation, i.e. when ∂tρ

(0) = 0 the right-hand side must fulfill the follwong condition∑
i

Gi
(2)(R(2)) = c2s

(
1

2
− 1

ω

)
R(2) (3.82)

One such Gi
(2)(R) is the one described in eq. (3.75).
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Figure 3.3: Flow scheme of the algorithm for solving the coupled equations.

3.10 Algorithm/Scheme for solving the coupled equations

In this section, the scheme to solve the coupled Poisson’s, Nernst-Planck and Navier-
Stokes equations is described. The dependencies between the equations are shown in fig.
2.1.

Following an initialisation of the velocity field and charge density, an iteration in
time is performed. At each time step, a potential and electric field is computed by
solving Poisson’s equation for the present charge density. This is followed by updating
the charge density from the new potential and then the velocity field is updated with the
prescence of a force related to the charge density. The main ingredients in the iterative
algorithm are shown in fig. 3.3.

3.11 Boundary conditions

In all physical situations, when solving a differential equations on a domain, conditions
for what is happening on the boundary of the domain must be specified. So far, only
the update rule for fi on the interior of this domain has been treated. In this section
we will also define rules for the boundaries of the domain. The nodes in the interior
and the boundary will be referred to as interior nodes and boundary nodes respectively.
Typically, a boundary condition in a macroscopic variable, e.g. velocity, is specified
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3.11. BOUNDARY CONDITIONS

Figure 3.4: Three distinct boundary situations that in general has to be treated differently.
From left to right, a straight boundary, a corner and an edge. Grey areas are outer of the
domain. The solid arrows corresponds to known directions of the distribution function and
dotted lines to unknown.

from the physical problem. This condition must be translated into a condition for the
distribution function, fi, on the statistical level. In this section some, to this work, useful
boundary conditions will be formulated and discussed.

3.11.1 Bounce-back boundaries

The lattice-Boltzmann approach is often praised for its rather straight-forward easiness
of implementing boundary conditions. One of the simplest and most commonly used is
the bounce-back rule. It is a mesoscopic rule for implying a Dirichlet condition on the
first moment. In the case of specifying boundary conditions for Navier-Stokes, it may
be used to set a velocity at a boundary, typically at wall boundaries the velocity is set
to zero.

The bounce-back rule for setting the first moment to zero reads

f
(bb)
i = fi∗ (3.83)

where ci∗ is the direction opposite to ci. This justifies the name of the rule, all pseudo
particles are propagated in a direction opposite to where they came from, i.e. bounced
back. If the boundary nodes are updated between the collision and streaming step, all
directions should be updated with its opposite counterpart. However, if the update is
performed after the streaming step, only the unknown directions are to be updated, see
fig. 3.4. These two schemes are referred to full-way and half-way bounce-back. If a
non-zero Dirichlet condition is desired, it is possible to add some momentum to suitable
directions.

It is possible to show that, in the case of a straight boundary, the actual boundary
is with second order accuracy located half a node-node distance into the computational
domain [9]. Thus, the boundary will not be located at the boundary node.

As suggested earlier in this section, this type of local boundary conditions allows
for easy implementation of more or less arbitrary boundaries. In fig. 3.5, an example
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Figure 3.5: Example of flow in a non-trivial geometry where bounce-back boundaries are
used.

of 2D flow in a complicated domain is shown. At the walls in the figure, bounce-back
conditions are used.

3.11.2 Slip boundaries

A zero friction (slip) boundary condition may be imposed by the following rule for the
straight boundary situation in fig. 3.4. Instead of making all pseudo particles “bounce
back”, they are reflected in a mirror-like manner, see fig. 3.6b. This gives that the
component normal to the boundary of the first moment is zero while the tangential
component is unchanged. In this work, this condition is used to set the ion flux through
the boundary to zero, eq. (2.9).

It is not as straight-forward to define rules at corner and edge nodes, as for the
straight boundary nodes. From tests, it has been shown that adequate accuracy may be
obtained by treating the corner or edge as two perpendicular straight boundaries and
mirror reflect half of the distributions at each plane respectively.

With momentum addition

In the case with the fixed surface charge boundary condition, eq. (2.3), we do not wish
to set the normal component to zero but to some value of the surface charge. This is
realised by adding some “momentum” in the three directions pointing in to the domain.
The total surface charge may be divided between the directions in different proportions,
in this work it is however evenly distributed, i.e. one third per direction.

3.12 Physical and lattice units

A physical system may in its physical units contain quantities whose numerical values
may differ a lot from each other. It is therefore, from a numerical point of view, a very
bad idea and in the case with lattice-Boltzmann it will in general not work to just solve
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(a) Bounce-back (b) Mirror reflection

Figure 3.6: Intuitive scheme for an incoming pseudo particle for two common boundary
conditions in the LBM. The bounce-back rule (a) and mirror reflection (b).

the equation in physical units. The equation is therefore scaled to dimensionless form
by introducing characteristic quantities. For example a quantity A is scaled by A0 to a
dimensionless quantity A′ through

A′ = A/A0 (3.84)

Usually the dimensionless quantities are wanted to be of order one.
In the case with Navier-Stokes equation, three characteristic quantities are needed to

put it on dimensionless form. I.e. one for the density (ρ0), velocity (u0) and length (`0).
The non-dimensional incompressible N-S will contain one dimensionless parameter, i.e.
the Reynolds number Re = ρ0u0`0/µ.

For the advection-diffusion equation, in addition to a characteristic length and ve-
locity, a characteristic concentration (c0) is needed. One dimensionless parameter arise
when non-dimensionalising the equation, i.e. the Peclet number, Pe = u0`0/D where D
is the diffusion coefficient.

Poisson’s equation is non-dimensionalised by using a length and a characteristic volt-
age (V0). The RHS then gets multiplied by factor `20/V0 in the non-dimensional form.

When the non-dimensional form of the equations are determined, the domain is
discretised. The non-dimensional length of the system is now typically 1 and δx = 1/N
where N is the number of lattice cells used. From the diffusive scaling used, δt = δ2x is
usually a good choice.

3.13 Chapman-Enskog vs. regular expansion analysis

When reading literature and articles about the LBM, different approaches may be used
to derive the macroscopic behaviour of the LBM. The aim of this section is to bring
some clarity and briefly explain the main differences between two of these.

The method used in this work is referred to as regular (error) expansion analysis [13]
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and is used with one time scale. In the case of analysing the macroscopic behaviour of the
LBM for the Navier-Stokes equations, the incompressible equations are obtained. The
mass and momentum equations are exactly satisfied by ρ(0) and u(1) from the regular
expansions of ρ and u respectively.

An other approach is by using the so called Chapman-Enskog analysis [6]. This is
a traditional method in kinetic theory and is the most frequently used in litterature
about the LBM. Here two time scales are used, on faster (convective) and one slower
(diffusive). This gives that in the macroscopic limit of the LBE, the compressible Navier-
Stokes equations are obtained. In the C-E analysis, the full quantities ρ and u are showed
to satisfy, not the exact, but the N-S equations with higher order error terms.
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4
High performance computing and

the LBM

To benefit as much as possible from a numerical method, it is crucial that it is im-
plemented in an efficient manner. In this chapter, some important aspects of this is
discussed. In order to write a code that allows for efficient execution, some principles
behind how a computer operates must be considered in detail. This varies considerable
between various computer architectures. In this chapter, the discussion is limited to
computers that implement the x86(-64) architecture which is a very common alternative
among today’s workstations.

4.1 The pipeline

To execute an instruction, several parts of the hardware is typically involved. The basic
idea of pipelining is to allow these different parts of hardware to operate simultaneously.
For example at the same time as an instruction is executed the instruction that will
be executed in the next clock cycle may be decoded. In principle all modern computer
architectures are pipelined.

The x86 architecture is a CISC (Complex instruction set computing) arcitecture
which means that it consists of a rather large number of specific instructions. The
opposite case is a RISC (Reduced instruction set computing) architecture that only has
a very few but general instructions. Due to the pipelining, an important property of
RISC is that the instructions execute in one clock cycle which is a great performance
benefit of the RISC architectures. The modern CISC architectures is however said to
be RISC-like and has also the ability of pipelining. Since The CISC pipelining is rather
complicated, e.g. the Intel Xeon processor in the computer that this text is written on
has a 20 stage pipeline [14]. The principle is however the same as in the RISC case,
therefore a brief explanation of the classical RISC pipeline is given here. The RISC
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pipeline consists of the following 5 stages:

1. Fetch of instruction

2. Decoding of fetched instruction

3. Execution of instruction

4. Memory access

5. Write result to register

Each of these tasks takes one clock cycle to perform. Thus if a single instruction,
e.g. an addition is to be computed, it will take 5 clock cycles. This is the start-up time
of the pipeline and when it is filled, one instruction per clock cycle is executed.

In order to achieve as many instructions computed per time as possible, the objective
must be to keep the pipeline filled. However, situations may arise when this seems
difficult. For instance when there are dependencies between stages, e.g. that the output
from execution E1 is the input to execution E2. This means that E2 may have to wait for
E1 to finish and the pipeline is stalled for a number of clock cycles. An other situation
is the following branch:

...

if(a == 3)

a = 2

else

a++

end if

...

Here as the instruction for the if statement has been fetched, it is not clear what instruc-
tion will be fetched in the next clock cycle. The if statement must first be evaluated
before such a decision can be made. Thus the pipeline is stalled also in this case. From
this example we conclude that having branch statements in places where they are often
executed, e.g. in loops, is a performance loss and should be avoided. Sometimes it is
not avoidable and therefore, modern compilers have a way of dealing with this issue.
A usual approach is to guess which branch that will be taken and continue to fill the
pipeline with its content. Some compilers always “guess” the branch following the first
conditional statement, in this case it is important for the programmer to know this in
order to put the most likely case here. [15]

The conclusion from this section is that unnecessary branches and data dependency
in loops must be avoided and when this may not be the case, one must make sure that
the compiler does its best to optimise these situations.
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Figure 4.1: Sketch of memory layout in a modern computer. I1 is the instruction cache and
L1 the smallest data cache. Memories to the left are faster and smaller but more expensive.

4.2 Locality

In a modern computer, memory is arranged in a subsequent manner, different types of
memory are used in order to keep cost down and speed up. Closer to the CPU small
and fast memory types are used those are often referred to as cache memories and are
an intermediate memory level between the CPU registers and the RAM. In today’s
computers, usually several layers of cache memories are used. A schematic image of this
is shown in fig. 4.1.

When data are to be fetched from the memory into the registers of the CPU, it is
first looked for in the L1 data cache if it is not present there, the next level cache (L2)
are tried and so on. If the data is not present in any level of the cache it has to be read
from the main memory, this is often referred to as a cache miss and is the opposite to
a cache hit. To fetch data from the main memory takes, for a modern CPU, the same
amount of time in which the CPU may execute about 100 instructions [16]. It is much
slower than to fetch from the cache.

As a cache miss occurs, not only the value at the specific address that was wanted but
also data that is adjacent to that value is fetched and placed in the cache. This collection
of data is called a cache line. In order to keep down memory latency, it may be a good
idea if the other data in the cache line could be used before it is overwritten. This is
the concept of locality, to keep data adjacent in memory that are to be used adjacent in
time. It is a major topic in high performance computing and great performance losses
may arise if the principle of locality is not considered.

4.2.1 Locality and the LBM

In an implementation of the lattice-Boltzmann method, the main quantity that is used
in computation is the distribution function fi. It is in the implementation realised as an
array of dimension Nx × Ny ×Q where Q is the number of directions in the discretised
velocity space. Basically, two models for arranging fi in memory exist:

A. All directions for a certain node are placed adjacent in memory.

B. All nodes for a certain direction are placed adjacent in memory.

To decide which model that is chosen, they must be examined with respect to locality
and the algorithm used. The algorithm in the LBM consists of two main parts, i.e.
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the collision step and the streaming step. In a BGK collision, to update fi, i.e. the
distribution function for direction i, the distribution functions for all other directions
from this node must be used in order to compute the equilibrium distribution. Thus
for the collision step, model A would give better locality. On the other hand, in the
streaming step, to stream fi, the streaming must start at the nodes where, i is directed
out of the domain. Otherwise will unstreamed distributions be overwritten. Thus it
is not directly possible to stream all directions for a certain node adjacent in time but
instead all nodes for a certain direction. This suggests that model B is more favourable
for the streaming step. There is an approach proposed in [17] where two arrays are used
for fi and in the streaming step, the streaming is done from one array to the other and
nothing is overwritten. This requires however twice as much memory and it has not
been tested in the implementation done in this work.

Q is typically much smaller than the number of nodes Nx×Ny. This gives that when
a cache line is fetched for model A, same directions from neighbouring nodes will also
be fetched into the cache and a cache miss will not occur for each node update in the
streaming. In model B, different directions will typically not be fetched for the same
node and in the collision step, a cache miss will probably occur for each direction. The
conclusion is that model A is better with respect to locality for the “worst” part of the
algorithm and is therefore chosen. Tests performed on a laptop with an Intel Core 2
Duo processor also shows that model A in general gives better locality.

4.3 Parallelisation

Parallel computing has, during the last decade, become a major topic not only in high-
performance computing but in other fields of computing as well. As it gets tougher
and tougher to squeeze in more circuits in a CPU, the idea of having several CPUs
(or CPU cores) is today not only utilised in super computers but in most modern user
workstations as well.

There are mainly two different hardware setups that has to be distinguished between
in parallel computing. Either the memory is shared between all or distributed locally at
each processing unit (PU). The former is often referred to as a shared memory and the
latter to a distributed memory computer. An example of a shared memory computer
would be a workstation having two CPU cores sharing the same RAM. A system us-
ing distributed memory could for instance be a super computing cluster where several
computers (nodes) are connected in a network.

Obvious differences arise in how the processing units may access data and commu-
nicate data between each other. In the case with shared memory computers, common
address spaces may be used for communication and for distributed, messages are passed
over the network. As a programmer there is a major difference in how this is done. Since
this is a common task, there exist software for simplifying the parallelistation of a code.
In distributed parallel computing an interface is defined for how the communication over
the network may be done, this interface is called MPI (Message Passing Interface). There
are several implementations of MPI, one example is Open MPI [18]. For shared memory
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Figure 4.2: Speedup of the parallelised lattice-Boltzmann code. Only the collision step
with a BGK collision operator and not the streaming step is parallelised. The computation
was done on a computer with two 12 cores Intel(R) Xeon(R) X5650 CPUs.

computers OpenMP [19] is an API that allows for a rather effortless way of parallelising
a code.

An algorithm may in a varying degree be suited for parallelising. If there is a lot of
data dependence or dependencies in general. It may be difficult to divide the compu-
tation in independent tasks on different PUs. In the case with the algorithm in lattice-
Boltzmann, the algorithm is very well suited for parallelisation. This is often considered
a great strength of the lattice-Boltzmann method. The main part of the computation
is done in the collision step, and a collision on a node is computed independently of
data from other nodes. In parallelisation of the streaming step however, communication
between nodes are needed. The win in performing the streaming step in parallel is much
smaller than for the collision step. By this reason and the fact that a shared memory
parallelisation using OpenMP is chosen, only the collision step is parallelised in this
work.

The parallelisation was tested for a sample system of 100× 100 nodes with periodic
boundary conditions and large number of time steps. The speedup was measured for
different number of parallel processes used. The result using 2, 5 and 10 respectively
cores is shown in fig. 4.2. The computer used had more than 10 CPU cores.
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4.4 LBM implementation

The choice of computer language for implementing the LBM methods fell on C++. The
main reasons for this choice are that C++ allows both for good possibilities of structuring
the good using object oriented features of the language and good performance. Both of
these are typically highly desired properties of a computer code. Other alternatives of
compiled languages that are known to allow for high performing code are C or Fortran,
but due to the lack of object orientation in C and the lack of previous experience in
Fortran neither of those were chosen. Both OpenMP and MPI are also available in C++.

This particular implementation was kept general with respect to allowing for an
extension to three dimensions without having to change to much of the code. However,
due to lack of time, the three dimensional code was never realised. Sometimes when
keeping this general approach, performance sacrifices had to be made. If the performance
loss was to large, the general approach was put aside and a 2D specific implementation
was used. For a concrete example see section 4.5.

One main aim in designing the code interface, was to make it simple to add new
classes, representing e.g. collision operators or boundary conditions without having to
rewrite any existing code. Another was to make it easy and straightforward to use the
code to solve actual problems. To illustrate how the code may be used in such a case,
in appendix A follows a snippet of how the implementation is used to model Poiseuille
flow.

The performance of the implementation was tested for the different implementations
but is here only presented for the Navier-Stokes case, section 3.8, for which it exist
comparative work for reference. A common measure in the case of lattice-Boltzmann
performance analysis is million lattice updates per second (MLUPS). A crucial parameter
in these tests is the lattice dimension, whether the whole f array fits in the last level
cache or not may affect the results drastically. The results for a single thread execution
and for different grid sizes are presented in fig. 4.3. Here we see a sudden drop about
when the grid size passes the cache size. For large enough grids the update frequency
seems to converge to about 4.5 MLUPS. In most physical systems the f array will not
fit in the cache and if any number should be presented for the performance of the code,
this is it.

The update frequency is a very hardware independent measure, it is therefore difficult
to compare implementations directly unless you find a benchmark using the exact same
hardware setup as you use. However, there are some tests carried out and even if the
numbers are not to be compared exactly, it may give a good hunch about the performance
of the implementation. In [20], LBM implementations in different computer languages
are compared, the C++ implementation is measured to 3.15 MLUPS. Other results are
4.46 MLUPS [21], 1.0− 4.6 MLUPS [22] and 6.18 MLUPS (D3Q19) [23]. The numbers
here are of comparable magnitude with the one in this work of 4.5 MLUPS.
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Figure 4.3: Performance of code measured in MLUPS (Million Lattice Updates Per Second)
for different grid sized. The dotted vertical line denotes the grid size where the f array has
the same size as the L3 cache. These computations were carried out on a Intel(R) Core(TM)

i7-3770 CPU @ 3.40GHz.

4.5 Profiling

In the development phase of optimising a code, a most valuable tool is a profiler. Ba-
sically it is a program that allows for analysing the program as it runs, e.g. to give
information of which instructions are executed, if the CPU stalls or if and when cache
misses are present. This information is also connected to the source code which gives
easy access for the developer to correct eventual performance issues.

A popular profiler used on UNIX systems is gprof [24]. In this work, it is used to
determine which routines that most contribute to the total execution time. It is in those
routines that a code optimisation is most profitable. In order to be able to profile with
gprof, the code must be compiled with additional compiler flags (-pg with gcc). This
profilable program will run slower than a program compiled without profiling flags, it
is thus important to not to forget to compile the “finished” code without profiling flags.
Below is an example of some output given by gprof when profiling the Navier-Stokes
LBM implementation:

% cumulative self

time seconds seconds calls name

40.98 1.61 1.61 40000000 BGKNS::get1moment(int, int, double*)

30.54 2.81 1.20 40000000 BGKNS::fEq(double, double*, double*)

10.69 3.23 0.42 40000000 BGKNS::get0moment(int, int)

10.18 3.63 0.40 1000 StreamD2Q9::stream()
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for brevity, only the output of the most time consuming routines are shown. These four
routines stands together for about 90 % of the total execution time. The main part of
this time is for computing the equilibrium distribution which includes computing the
zeroth and first moments of the distribution function. The reason why the first moment
is four times as time consuming as the zeroth moment, is that the implementation is
for a general lattice using the lattice vectors instead of just hardcoding it for the D2Q9
lattice which would have given a computation two times as time consuming as the zeroth
moment. This is an example of when less general approach may give a performance boost
on the cost of, in this case, to have to define separate routines for each lattice rather
than having one general routine.

4.5.1 Memory specific profiling

Even though gprof is a good tool in many profiling situations, there may be cases where
more low level information such as cache misses or certain instruction counts are desired.
Fortunately there exist other more specialised tools to deal with these situations. One
popular set of tools for memory profiling/debugging is valgrind [25]. Basically it works
by simulating a virtual CPU and e.g. memory accesses and cache misses are counted as a
program is run on this virtual CPU. In this work the cachegrind tool of valgrind is used
to count cache misses, here is an example output for the Navier-Stokes implementation:

I refs: 33,986,419,147

I1 misses: 1,828

LLi misses: 1,771

I1 miss rate: 0.00%

LLi miss rate: 0.00%

D refs: 17,284,324,380 (12,564,330,224 rd + 4,719,994,156 wr)

D1 misses: 364,260,481 ( 354,685,981 rd + 9,574,500 wr)

LLd misses: 175,534,108 ( 165,973,036 rd + 9,561,072 wr)

D1 miss rate: 2.1% ( 2.8% + 0.2% )

LLd miss rate: 1.0% ( 1.3% + 0.2% )

LL refs: 364,262,309 ( 354,687,809 rd + 9,574,500 wr)

LL misses: 175,535,879 ( 165,974,807 rd + 9,561,072 wr)

LL miss rate: 0.3% ( 0.3% + 0.2% )

where I, D and LL is the instruction, L1 and last level (L3 in this particular case) caches
respectively. The grid is chosen large enough to keep the size of the f array much larger
(∼ 300 MiB) than the 8 MiB L3 cache. We see that about 1% of the data memory
lookups result in cache misses. A more thorough investigation using cg_annotate of in
what routines the cache misses arise, gives that about two thirds are in the streaming
step and about one third in the collision step. This behaviour is in accordance with the
memory model chosen, see section 4.2.1.
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Verification of model and

implementation

Prior the interconnection of the three solvers, they are in this chapter evaluated inde-
pendently. This is done by comparing computed solutions to known solutions of some
classic systems.

5.1 Poiseuille flow

First out for evaluating the LBM solver of the Navier-Stokes equations is the situation
with Poiseuille flow. This is a classic example and one of the easiest situations were the
NS equations are exact solvable. Consider a 2D channel of length l and width H. If
the flow in this channel is driven by a constant force, e.g. a constant pressure drop, the
velocity profile will adopt a parabolic shape in the steady state situation. Here follows
a brief derivation of the exact expression for the velocity profile.

Consider the (non-dimensional) Navier-Stokes eqs. (3.43) and (3.42) in 2D. Let x be
the direction along the channel and y the direction across the channel. In the case of
a pressure gradient in the x direction and no other external forces involved we deduce
that the y component of the velocity is zero. Thus eq. (3.43) reduces to an equation for
the x component of the velocity

∂ux

∂t
− ux

∂ux

∂x
= ν

∂2ux

∂y2
− ∂P

∂x
. (5.1)

Under the assumption of a system in steady state, i.e. ∂ux/∂t = 0. Further if the
flow is fully developed ∂ux/∂x = 0, this also follows from (3.42). We now have together
with writing the constant pressure gradient as ∆P/l:
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∂2ux

∂y2
=

∆P

νl
. (5.2)

Solving this equation with no slip boundary conditions, ux(0) = ux(H) = 0 gives an
expression of the velocity profile

ux(y) =
∆P

2νl
y(y −H). (5.3)

In this benchmark, the pressure gradient is incorporated as a force. Other possibilities
would be to drive the fluid by imposing fixed pressures/velocities at the inlet and outlet.
In this case, with a driving force, periodic boundary conditions are imposed at the
inlet and outlet. At the channel walls, the bounce-back boundary condition described
in section 3.11.1 is used. The actual boundary will then be located half a node-node
distance into the fluid.

A grid with 50 nodes across the channel and 3 in the flow direction is used. The
driving force is set to ∆P/l = 1·10−4 and the viscosity is ν = 0.2778 from eq. (3.49) with
relaxation parameter ω = 0.75. The solution that was obtained after 20000 iterations is
presented in fig. 5.1. The analytical solution, eq. (5.3), is plotted for comparison.

The agreement between computed and analytical solution is satisfying. With an
RMS error of 9.271·10−5 l.u. and a maximum absolute error of 1.198·10−4 l.u. Note
that the actual boundary is located half a node-node distance into the computational
domain, this is due to the implementation of the bounce-back scheme, see section 3.11.1.

5.2 Taylor-Green vortex

A more sophisticated system than the Poisseuille flow is the decaying Taylor-Green
vortex flow. Also this system is one of the few where an analytical solution to the
Navier-Stokes equation is possible to find. In this section, the Taylor-Green flow is used
to benchmark the 2D LBM proposed in section 3.8. A 2D test of the force implementation
is also carried out in section 5.2.1.

The Taylor-Green vortex flow in two dimensions is defined by the following pressure
and velocity fields [7]:

ux(x, t) = −1

a
cos(ax) sin(by) exp(−ν(a2 + b2)t)

uy(x, t) =
1

b
sin(ax) cos(by) exp(−ν(a2 + b2)t)

P (x, t) = −1

4

(
1

a2
cos(2ax) +

1

b2
cos(2by)

)
exp(−2ν(a2 + b2)t)

(5.4)

where ν is the viscosity, x ∈ [0, 2π]2 and a and b are two real constants. It is straight-
forward to verify that these quantities satisfy the incompressible Navier-Stokes, eqs.
(2.22) and (2.23). The constants a and b are chosen as a = b = 2π/N where N = Nx =
Ny = 100 is the grid resolution. This particular choice of a and b allows us to use lattice
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Figure 5.1: Computed velocity profile of Poiseuille flow (×) compared to the analytical
solution (solid line). A grid of 3×50 nodes were used. There was also no variation of the
velocity field in the flow direction (not shown in this figure). The velocity is given in lattice
units.

units with δx = δt = 1 in the simulation. The maximum velocity in the vortex at t = 0
is chosen as u0 = 1/a = 1/b.

The simulation is performed with ν = 0.05 l.u. on a 100× 100 lattice. Following the
initialisation with the analytical solution, eq. (5.4), at t = 0, the decay is studied and
compared with the analytical solution. Initialisation of the velocities is done by setting

fi = f
(eq)
i (ρ,u) where ρ includes both the constant density (order ε0) and the pressure

(order ε2), compare eq. (3.67).
The result is presented in fig. 5.2 where the velocity field and the magnitude of the

velocity field is visualised. This is at a time, t1/2, where the maximum magnitude of the
velocity has decreased to half of the initial value, i.e. t1/2 = log(2)/(2ν(2π/N)2). In fig.
5.2, the analytical and the computed solutions is compared on a section of the domain
at t = t1/2. The agreement with an average error in the order of 10−3 is comparable
with previous works, e.g. [7].

5.2.1 Four rows mill

In the decaying Taylor-Green flow, the time derivative term in Navier-Stokes momentum
equation is balanced by the viscous term. We now wish to compensate for the decay by
introducing a force. In a steady state situation: ∂tu = 0 and the force must balance the
viscous term. The force is therefore chosen as
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Figure 5.2: Visualised velocity field (a) and magnitude of the velocities (b) for a decaying
Taylor-Green vortex. The velocity field is taken at t = t1/2 and the values in (b) varies from
−u0/2 (blue) to u0/2 (red).
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Figure 5.3: 1D section of the decaying Taylor-Green flow. The y component of the velocity
is plotted at y = π. Computed solutions (×) are compared with analytical (solid) at two
different times t = 0 and t = t1/2. A domain of 100× 100 nodes were used.
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Figure 5.4: 1D section of the steady four rows mills flow at t = t1/2. An external force have
been included to compensate the decay (dashed). The y component is plotted for y = π.
We observe no decay as the computed solution (×) and the initial velocity (solid) coincide.

Fx(x, t) = ν(a2 + b2)ux(x, t)

Fy(x, t) = ν(a2 + b2)uy(x, t)
(5.5)

where ux and uy are the velocities from eq. (5.4). Using the same parameters, initiali-
sation and domain as in the decaying case, no decay is observed. In fig. 5.4, a section of
the y component of the velocity is shown at t = t1/2.

5.3 Helmholtz equation

The LB formulation for solving Poisson’s equation as well as the implementation was
tested by solving Helmholtz equation with a certain set of boundary conditions allowing
for finding an analytical solution. The homogeneous Helmholtz equation reads:

∇ψ = λ2ψ (5.6)

where λ is a real parameter. The equation was solved for λ = 2 on the domain (x, y) ∈
[0, 1]× [0, 1] with the following Dirichlet boundary conditions:

ψ(0, y) = −ψ(1, y) = sinh
√
λ2+π2(1−y)

sinh
√
λ2+π2

,

ψ(x, 0) = cosπx, ψ(x, 1) = 0.
(5.7)

The analytical solution to eq. (5.6) with the given boundary conditions is [26]:
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Figure 5.5: To the left, the computed solution of the Helmholtz equation, eq. (5.6). To
the right, the error.

ψ(x, y) = cosπx
sinh
√
λ2 + π2(1− y)

sinh
√
λ2 + π2

. (5.8)

A grid of 65 × 65 nodes was used when computing the LBM solution. The com-
putational domain was rescaled to the desired one by setting δx = 1/(nx − 1) = 1/64
and δt = δ2x. An other possibility would have been to rescale the parameter λ and have
δx = δt = 1.

The boundary conditions in eq. (5.7) was implemented using the He/Zou approach.
A bounce back approach with some momentum addition would also have been possible
but was not chosen due to that the actual boundary location is then not at the node
location, but half a node-node distance into the computational domain. Also the bounce-
back implementation is previously tested.

In fig. 5.5a, the obtained solution is presented together with the absolute error in fig.
5.5b. The agreement is satisfying, with an error which magnitude is about the same as
in previous works [26]. The error takes on its maximum at the boundary of the domain,
implying that the fulfilment of the boundary conditions is not complete.

5.4 Advection-Diffusion

Before the implementation of the Nernst-Planck part of the model is tested, a special
case is considered, i.e. when the electrical potential in the domain is constant. This
makes the flux term including the electrical potential in eq. (2.8) vanish and we have to
solve only for pure advection and diffusion.

Introducing characteristic scales for the concentration (c0), advective velocity (u0)
and length (l0) respectively, gives the non-dimensional advection-diffusion equation:

∂c

∂t
+ u · ∇c− D

u0l0
∇2c = 0. (5.9)
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Figure 5.6: Computed solutions (×) of the advection-diffusion equation for a point mass
evolving in time and space. Three different times (tn = 100n) are compared to analytical
solutions (solid). The Amplitude of the solutions as function of time has also been plotted
(dashed). The advecting velocity, u0 = 0.1 was used together with a Peclet number, Pe = 10.
All units are in lattice units.

All variables in (5.9) are non-dimensional. The quantity Pe = u0l0/D is often re-
ferred to as the Péclet number. It determines the relation between contributions to
the dynamics from advection and diffusion respectively. For Pe � 1 the dynamics is
dominated by advection and for Pe� 1 by diffusion.

The LB model described in section 3.7 was tested by studying the evolution in time
and space of a point mass in one dimension. The analytical solution of eq. (5.9) in one
dimension with initial conditions c(x, t = 0) = δ(x) on an infinite domain is:

c(x, t) =

√
Pe

4πt
exp

(
−(x− ut)2Pe

4t

)
. (5.10)

In the numerical computation, the parameters Pe = 10 and |u| = 0.1 were used. The
domain consists of 200 lattice nodes and three snapshots in time at t = 100, 200, 300 l.u.
were compared to the analytical solution. The result is presented in fig. 5.6.

5.5 Nernst-Planck, a special case

This benchmark aims to test the advection due to present electrical fields in the advection
diffusion solver. It is done by solving for the ion concentration in a system that fulfils the
assumptions for the Poisson-Boltzmann distribution. Beside a system in steady state,
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the assumptions are a simple geometry that allows for the one dimensional integration
and a zero advective velocity, see section 2.4.2.

A 1:1 ion solution will be considered and therefore two solvers for the Nernst-Planck
equation are needed. One for positive and one for negative ions. These will be coupled to
a solver for Poisson’s equation which will update the potential each time step according
to the present ion concentration. In the steady state, the ion concentrations for positive
and negative ions respectively are compared to the exponential expression in the Poisson-
Boltzmann situation, eq. (2.13). The potential in this expression is obtained by solving
the Poisson-Boltzmann equation, eq. (2.15).

Two solvers using the method in section, 3.7 are set up with the following set of
parameters:

z = ± 1

D = 10−8 m2s−1

T = 293 K

εr = 80

The Nernst-Planck equation is put on non-dimensional form by introducing the following
characteristic quantities:

c0 = 10−4 mol/m3

`0 = 2·10−5/ny m

V0 = -50 mV

u0 = 0.1 m/s.

These parameters gives a Peclet number of Pe = 2 which gives a relaxation parameter
ωNP = 0.5.

The geometry of the system simulated is an infinite channel with straight walls. A
grid of 3×100 nodes is used for the computation, i.e. 100 nodes across the channel.
At the walls, the no flux boundary condition, eq. (2.9), is implied through the mirror
reflection approach described in section, 3.11.2. For the Poisson solver, a constant surface
charge density of σ = −0.17 µC/m2 is applied to the walls, eq. (2.3). This is realised by
a modified mirror reflection, see section 3.11.2.

The charge concentration at the middle of the channel (denoted by c∞ in eq. (2.13))
in the Poisson-Boltzmann distribution are set to the values obtained from the Nernst-
Planck solver.

In fig. 5.7, the resulting charge distributions are presented.
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Figure 5.7: Computed charge concentrations for positive (c+) and negative (c−) ions
respectively in contact with a negatively charged wall. The concentrations are compared
with the Poisson-Boltzmann distribution (solid).
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6
Modelling of electrokinetic flow

In this chapter, results of modelling of electrokinetic flow using the previously described
lattice-Boltzmann method are presented. The choice of systems is done with focus on
those where the Poisson-Boltzmann approach is not applicable. First simple 1D systems
in channels are considered, then more complicated systems in 2D. All results presented
here are for systems in steady state. The liquid used in the modelling is a KCl solution
defined by the parameters in tab. 6.1.

6.1 Charge concentration and potential in 1D system

To get a feeling for the systems dealt with here, a system where no advection is present
is first be considered. The geometry consists of a 2D channel where both walls are
negatively charged. As earlier discussed in chapter 2, positive ions will be attracted to
the walls and negative will be repelled.

Table 6.1: Physical parameters of the KCl ion solution that is modelled in this chapter.
Parameters are from [1].

Relative permittivity, εr 80

Mean ionic conentration, c0 10−4 mol/m3

Conductivity, σc 1.5 mS/m

Temperature, T 293 K

kinematic viscosity, ν 1.0 µm2/s

Diffusion coefficient, D+ = D− 10−10 m2/s
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6.1. CHARGE CONCENTRATION AND POTENTIAL IN 1D SYSTEM
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Figure 6.1: Computed electric potential across a channel of width d = 10µm. The solution
in the channel is a KCl solution defined by parameters in table 6.1. The channel walls are
negatively charged. Note that V0 is negative.

A channel of width 10µm and with walls with a surface charge of 3.5µC/m is con-
sidered. The computed electric potential in the steady state for this system is presented
in fig. 6.1. With the particular choice of width and surface charge, we see that the
double layers extend a substantial length into the channel. The Debye length is in this
case κ−1 = 1µm and dκ = 10. It is the charcteristic EDL length that is compared with
when stating that a channel is wide or narrow. If dκ� 1, the channel is said to be wide
otherwise narrow. In this section mainly narrow channels are studied.

Also the concentrations of positive and negative ions corresponding to the potential
are visualised in fig. 6.2. The surplus of positive ions in the vicinity of the walls together
with the surplus of negative ions at the centre of the channel are clearly shown.

6.1.1 Nernst-Planck vs. Poisson-Boltzmann

In the Poisson-Boltzmann model, section 2.4.2, the parameter c∞i that determines the
value of the concentration far from the EDL is chosen as the bulk concentration of the
fluid. The problem with narrow channels is that there is no bulk and as we see in fig. 6.2,
it would not be an accurate choice. Also if c∞i would be set to the bulk concentration
for a narrow channel the total number of ions would not be preserved. For a 1:1 solution
and with negatively charged channel walls, the number of positive ions would not equal
the number of negative ions.

Further assumptions made in the Poisson-Boltzmann model is that of a simple ge-
ometry, the thickness of the EDL must be small to the curvature of the boundary. Also
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6.2. ELECTROVISCOUS EFFECT
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Figure 6.2: Computed positive (solid) and negative (dashed) charge distribution across
a channel of width d = 10µm. The solution in the channel is a KCl solution defined by
parameters in table 6.1. The channel walls are negatively charged.

no advection is assumed.

6.2 Electroviscous effect

In section 2.6, the physical model behind pressure-driven electrokinetic flow is presented.
The effect of interest that arise in this kind of systems is the electroviscous effect.

Velocity profiles computed in a 1D situation is presented here. We consider a 1 µm
wide channel that has negatively charged walls. The wall charge is a parameter that is
varied and from this the effect on the velocity profile is studied. The system is setup
with a Peclet number, Pe = 1 and a Reynolds number, Re = 10−4. To drive the flow, a
pressure gradient of 1 kPa/m is set. The resulting velocity profiles are presented in fig.
6.3.

The velocity profiles obtained agrees qualitatively with a similar simulation preformed
in [27]. The local minimum that arises for σs = 20σ0 is due the high accumulation of
negative ions in the middle of the channel. This is an effect that only is seen for narrow
channels.

In the model proposed here, using Ohm’s law to relate the ion current to the stream-
ing potential, the force on the flow due to the electroviscous effect is opposite to the
flow everywhere where there is a net charge present in the fluid. However, in most texts
about the electroviscous effect, e.g. in [1], [4] and [27], this force is computed using a
mean current approach. An integration of ion flux over the cross-section of the channel is
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Figure 6.3: Computed velocity profiles across a 2D channel of width d = 1µm. The flow
is driven by a pressure gradient and the flow is slowed down due to the electroviscouos
effect, this effects dependence on the surface charge σs is here illustrated. The solution
in the channel is a KCl solution defined by parameters in table 6.1. In this simulation,
σ0 = 0.89µC/m2, ∂xP = 1 kPa/m and u0 = 10 mm/s.

performed and then a net current for the whole channel is obtained. From this current,
a mean streaming potential is obtained for the channel and a force is calculated using
the charge density. This gives that positive and negative net charged regions of the
fluid will be affected with forces of opposite sign respectively. Having a mean streaming
potential for the whole channel also gives contraintuitve results when considering the
fact that regions in the fluid with the same net charge but different velocities is affected
by the same force. Also with this approach the electroviscous effect would in principle
be able to locally oppose the flow direction. Also, in a more complicated geometry, this
approach would break down. In fig. 6.4, two velocity profiles from fig. 6.3 are compared
with corresponding profiles computed using the mean current approach. It is seen that
the force slowing down flow is smaller for the case when using a mean current. This is
due to the cancellation between negative and positive ion fluxes in the integration.

6.3 Electroosmotic flow

As described in section 2.7, electroosmotic flow is driven by an electric field rather than
a pressure gradient. Charge particles will be affected by a force and will drag the fluid
with them. The effect is investigated in this section.

A 10 µm channel is considered with walls charged with 3.56µC/m2. The 1:1 ratio
between positive and negative ions is in this section put aside for a moment. To inves-
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Figure 6.4: Comparison between velocity profiles computed using a mean current (dotted)
and by using the actual local current (dashed) for the streaming potential. The solution
in the channel is a KCl solution defined by parameters in table 6.1. In this simulation,
σ0 = 0.89µC/m2, ∂xP = 1 kPa/m and u0 = 10 mm/s.

tigate how the electroosmotic flow behaves for different situations of the charge density,
especially in the middle of the channel, the amount of negative ions are varied. The
different situations are investigated, a surplus and a lack of negative ions together with
a neutral solution at the middle of the channel. Thus, the following values of the mean
concentration of negative ions are set: 0.7c0, 0.75c0, 0.78c0, 0.8c0 and 0.85c0.

A constant electric field of 105 V/m along the channel are set and the same Peclet and
Reynolds number as before are used. The obtained ion concentrations and the velocity
profiles are presented in fig. 6.5 and fig. 6.6 respectively.

In the case with a neutral middle of the channel the traditional “plug profile” of
electroosmotic flow for wide channels are reproduced. In this case the force from the
electric field only affects the fluid near the walls where a net charge is present, due to
viscous forces, a constant velocity profile is then obtained in the middle of the channel.
For a positive net charge in the middle of the channel and thereby everywhere in the
channel, the velocity profiles are not of the “plug” shape but more parabolic. For a
negatively net charged middle of the channel and with the parameter of choice, the
viscous effect only compensates for the opposing effect from the electric field when there
is a small negative net charge. We see that in this case, with the chosen parameters,
for a 1:1 solution the flow would be completely opposite of the electric field which is an
apparent difference to the wide channel case.
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Figure 6.5: Computed charge distributions for positive (solid) and negative (dashed) ions.
The mean concentration of positive ions is c0 while that of negative ions are varied between
the values 0.7c0, 0.75c0, 0.78c0, 0.8c0 and 0.85c0. The geometry is a channel of width 10µm.
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Figure 6.6: Computed velocity profiles for electroosmotic flow, in a 10µm wide channel.
The different profiles correspond to different ratios between positive and negative ions, see
fig. 6.5. The solid profile is the “plug flow” that corresponds to the Poisson-Boltzmann case,
where the middle of the channel is net neutrally charged.
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6.4. FLOW IN A CHANNEL WITH HETEROGENEOUSLY CHARGED WALLS

(a) Heterogeneous wall charge (b) Array of charged squares

Figure 6.7: Sketch of setups for the two physical 2D systems that are modelled. In (a),
electroosmotic flow through a channel with heterogenously charged walls. In (b), pressure
driven flow in an array of squares.

6.4 Flow in a channel with heterogeneously charged walls

Now a channel with walls charged with a varying charge is considered. The walls are
charged piecewise constant with every second piece positive and negative respectively,
see fig. 6.7a. The length of the charged sections are chosen as d/4 where d = 10µm is
the width of the channel. The flow is electroosmotic and driven by an external field of
50 kV/m.

The resulting velocity profile together with the charge distribution of positive ions
in the steady state is presented in fig. 6.8.

There is an accumulation of positive and negative ions in the vicinity of the negative
and positive charged boundaries respectively. In the middle of the channel, the fluid is
neutral.

The vortexes obtained agrees qualitatively with those computed in [28]. This kind of
system is for example used in mixing of charge fluids [29]. Varying charges are imposed
on the boundary of a domain and an electric field is applied, this results typically in a
flow similar to the vortexes obtained here.

6.5 Flow in an array of charged squares

In this section, flow through a periodic structure is modelled. The structure is consists
of squares placed in a periodic pattern shown in fig. 6.7b. The unit cell, used in the
computation is marked by the dashed box in the figure. The dimension of the unit cell is
chosen to 10µm and the permeability through the structure is investigated for different
sizes of the squares. Also the effect of having charged vs. uncharged squares is studied.

In fig. 6.9 and fig. 6.10 the computed velocity fields around a square in a unit cell is
visualised. The side of the square is of length 0.5d.
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Figure 6.8: Visualised velocity field (a), magnitude of the velocities (b) and charge con-
centration of positive ions for a flow in a 2D channel with heterogeneously charged walls.
A constant electric field of 50 kV/m drives the flow. The velocity field in (b) varies from
0.02µm/s (blue) to 2.2µm/s (red). The charge concentration in (c) varies from 0.45c0 (blue)
to 2.12c0 (red).
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Figure 6.9: Visualised velocity field for flow through an array of uncharged squares. The
magnitude of the velocity varies between 0.20 m/s (red) to 0 m/s (blue).
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Figure 6.10: Visualised velocity field for flow through an array of charged squares. The
magnitude of the velocity varies between 0.16 m/s (orange) to 0 m/s (blue). The surface
charge is set to σs = 1.78µC/m2. The same colour scale as is fig. 6.9 is used.

The main effect noted that the charge on the square has on the flow, is that it is
slowed down. This is due to that charge inhomogeneities arise when the charged square
is introduced and from this the flow is slowed down due to the electroviscous effect. In
figs. 6.11 and 6.12, the velocity component in the pressure drop direction (x) is shown
in a section at x = d/2 and x = 0 respectively.
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Figure 6.11: Velocity profiles across the square array at x = d/2 in the cell. The sides of
the squares are varied between 0.3d, 0.5d and 0.7d where d = 10µm is the length of the cell.
The flow is driven by a pressure gradient and the uncharged (dashed) and charged (solid)
squares are compared. σs = 1.78µC/m2 (solid), ∂xP = 0.5 kPa/m and u0 = 1 mm/s.
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Figure 6.12: Velocity profiles across the square array at x = 0 in the cell. The sides of
the squares are varied between 0.3d, 0.5d and 0.7d where d = 10µm is the length of the cell.
The flow is driven by a pressure gradient and the uncharged (dashed) and charged (solid)
squares are compared. σs = 1.78µC/m2 (solid), ∂xP = 0.5 kPa/m and u0 = 1 mm/s.
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7
Conclusions

From the theoretical analysis made, the benchmarks performed and the results obtained,
the main conclusion in this work is that the lattice-Boltzmann method may indeed be
used to model electrokinetic systems. In [28], a coupling of the same equations as
in this work is done. Also a lattice-Boltzmann approach for solving the equations is
proposed. There are however several differences between what is done here and in [28].
First, different equilibrium distributions are used for the Nernst-Planck and Poisson’s
equations. In [28], a Navier-Stokes-like equilibrium including quadratic terms1 are used
for the Nernst-Planck equation and for the Poisson’s equation different weights are used.
Second, different implementations of the boundary conditions are used. Also, the no-
flux boundary condition used in the Nernst-Planck equation is integrated into the fluid
domain and rewritten as a Dirichlet condition. This is not very accurate, since the
boundary condition only apply for the boundary and not in the interior of the domain.
Further, some results are contradictory to the system modelled, e.g. it is stated that a
1:1 solution is modelled even though the computed, charge density is strictly positive.
It must therefore be some source of positive or leak of negative ions present, a guess is
that it is due to the incorrect boundary treatment for the ion flux at the channel walls.

The lack of scientific results on the lattice-Boltzmann method or results which some-
times seem a bit off, is a sign of the youth of the method and a rather great limitation
when working with it. There are few “school books” with detailed explanations. Instead,
scientific papers where all details sometimes are not written out explicitly have to be
addressed.

When browsing work on modelling of electrokinetics, usually the Poisson-Boltzmann
method is utilised. Sometimes even without reflection of whether it is applicable or not.
From this work it is concluded that as the thickness of the double layer gets comparable to

1One of the “quadratic terms” is actually missing the square, this must be a typo. Otherwise the
concentration is not obtained as the zeroth moment as stated. It also does not agree with the reference
used for motivating the equilibrium distribution.
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the dimensions of the system considered or if advection is present, the Poisson-Boltzmann
approach may not be an accurate model. The underlying assumptions used in the
derivation must be studied and assured to be fulfilled in the system under consideration.

In situations where the Poisson-Boltzmann approach fails, the more general method
proposed in this work may be used instead. Few results of the more complicated systems
modelled in this work was found and it is therefore difficult to determine a qualitative and
quantitative correctness. Experimental results for this kind of system is very difficult
to obtain, the detailed measurement of a velocity field in a system is not simple to
determine. This is also the main reason why a computational approach is so much
desired.

To get an efficient implementation of the method, topics from high-performance
computing must be considered. The distribution function must be organised in memory
to allow for good locality in the computation. Also unnecessary branches and data
dependence should be avoided in the innermost loop. It is important to use a modern
and uptodate compiler and it may be a good idea to tell the compiler to optimise the
code as much as possible. The LBM algorithm is also very well suited for parallelisation.
This is due to that there is no data dependence between nodes in the collision step.
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A
Code snippet

An example code defining Poiseuille flow driven by a constant force (pressure gradient)
using the LBM library developed in this work.

#include <iostream>

#include "../LBM.h"

using namespace std;

int main(){

int nx = 3, ny = 50, tMax = 1000;

double w = 0.75;

double c = 1.0;

LatticeModel *lm = new Lattice2D(nx, ny);

StreamD2Q9Periodic *sm = new StreamD2Q9Periodic();

CollisionD2Q9BGKNSF *cm = new CollisionD2Q9BGKNSF();

LBM *lbm = new LBM(lm, cm, sm);

double **fx = allocate2DArray(ny, nx);

double **fy = allocate2DArray(ny, nx);

cm->setW(w);

cm->setC(c);

/* Set boundary conditions*/

BounceBackNodes<CollisionD2Q9BGKNSF> *bbns =

new BounceBackNodes<CollisionD2Q9BGKNSF>();
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bbns->setCollisionModel(cm);

for(int i = 0; i < nx; i++){

bbns->addNode(i, 0, 0);

bbns->addNode(i, ny-1, 0);

}

lbm->addBoundaryNodes(bbns);

/* Set force */

for(int i = 0; i < nx; i++){

for(int j = 0; j < ny; j++){

fx[j][i] = 0.0001;

fy[j][i] = 0.0;

}

}

cm->setForce(fx, fy);

/* Initialize solver */

lbm->init();

/* Main loop */

for(int t = 0; t < tMax; t++){

lbm->collideAndStream();

}

cm->dataToFile("bench_force_poi/");

return 0;

}

70


	Introduction
	Background
	Outline
	Previous work

	Electrohydrodynamics in microchannels
	Basic concepts of electrokinetic flow
	Electrical double layers
	Electroosmosis

	Complete physical model
	The potential - Poisson's equation
	Boundary conditions

	The transport of charges - Nernst-Planck equation
	Boundary conditions
	Poisson-Boltzmann equation

	The velocity field - Navier-Stokes equations
	Boundary conditions

	Pressure-driven electrokinetic flow
	Electroosmotic flow

	The lattice-Boltzmann method
	Historical overview
	Statistical background
	Basic idea of the LBM
	Computational algorithm

	The BGK collision operator
	The lattice
	Asymptotic analysis
	Motivation of the choice of expansion parameter
	Expanding the LBE

	LBM for the Nernst-Planck equation
	Asymptotic analysis

	LBM for the incompressible Navier-Stokes
	Asymptotic analysis
	Forcing schemes

	LBM for Poisson's equation
	Asymptotic analysis

	Algorithm/Scheme for solving the coupled equations
	Boundary conditions
	Bounce-back boundaries
	Slip boundaries

	Physical and lattice units
	Chapman-Enskog vs. regular expansion analysis

	High performance computing and the LBM
	The pipeline
	Locality
	Locality and the LBM

	Parallelisation
	LBM implementation
	Profiling
	Memory specific profiling


	Verification of model and implementation
	Poiseuille flow
	Taylor-Green vortex
	Four rows mill

	Helmholtz equation
	Advection-Diffusion
	Nernst-Planck, a special case

	Modelling of electrokinetic flow
	Charge concentration and potential in 1D system
	Nernst-Planck vs. Poisson-Boltzmann

	Electroviscous effect
	Electroosmotic flow
	Flow in a channel with heterogeneously charged walls
	Flow in an array of charged squares

	Conclusions
	 Bibliography
	Code snippet

