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The potential of phosphorus (P) recycling from municipal solid waste incineration (MSWI) residue is
investigated. Vast and ever increasing amounts of incineration residues are produced worldwide; these
are an environmental burden, but also a resource, as they are a major sink for the material flows of soci-
ety. Due to strict environmental regulations, in combination with decreasing landfilling space, the dis-
posal of the MSWI residues is problematic. At the same time, resource scarcity is recognized as a

f\(/leyvyo_rdsi i global challenge for the modern world, and even more so for future generations.
lnlcjirrlllec;apsioio 1d waste This paper reports on the methods and efficiency of P extraction from MSWI fly ash by acid and base

leaching and precipitation procedures. Phosphorus extracted from the MSWI residues generated each
year could meet 30% of the annual demand for mineral phosphorus fertiliser in Sweden, given a recovery
rate of 70% achieved in this initial test.

The phosphorus content of the obtained product is slightly higher than in sewage sludge, but due to the
trace metal content it is not acceptable for application to agricultural land in Sweden, whereas applica-
tion in the rest of the EU would be possible. However, it would be preferable to use the product as a raw
material to replace rock phosphate in fertilizer production. Further development is currently underway in
relation to procedure optimization, purification of the phosphorus product, and the simultaneous recov-
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Wet chemical method
Urban mining

ery of other resources.

© 2013 Elsevier Ltd. Open access under CC BY-NC-ND license.

1. Introduction

Ever since the industrial revolution, perpetually increasing
amounts of natural resources have been transferred to the anthro-
pogenic sphere, where they accumulate as waste products or,
alternatively, are dissipated into the environment in the form of
emissions.

In this study, we particularly recognize the environmental
impact caused by the anthropogenic phosphorus (P) cycle and
the decreasing reserves of high-quality phosphate rock (Heffer,
2006). The anthropogenic phosphorus cycle is characterized by
major diffuse losses, which cause phosphorus transfer from
the geosphere to the hydrosphere, consequently leading to
eutrophication. Some 27 million tony~' of phosphorus (as P) is
added to agricultural land in the form of fertilizer, while only
3 milliontony~! is consumed by humans through our diet,
and the rest is dissipated (van Enk and van der Vee, 2011).
This transfer is expected to intensify due to an increase in
the global population, the gradual elimination of under-
nutrition, and a dietary transition towards higher consumption
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of both animal-derived products and of fruit and vegetables in
developing countries. Based on these facts, we believe that
every opportunity to keep the anthropogenic phosphorus in a
closed loop, thereby mitigating the use of phosphorus rock,
should be considered.

Landfills are sinks for resources and can potentially be used for
resource mining. Incineration is a commonly used method for
treatment of waste, before landfilling, to reduce volume and some-
times also for energy recovery. A study of phosphorus flows for the
EU27, Japan and for a municipality in Sweden, recently showed
that solid waste, and its incineration residues in particular, contain
as much phosphorus as does the sewage sludge (Kalmykova and
Harder, 2012; Matsubae-Yokoyama et al., 2009; Ott and Rechber-
ger, 2012). Food and food processing wastes is a major source of
P in solid waste (4.0 g P/kg TS, total solid). Other sources of P in so-
lid waste are wood, paper and textile (0.2-0.3 g P/kg TS). Separate
collection of food waste is implemented only in a few countries
worldwide. When implemented, a minor part of the total food
and processing waste is separately collected due to both, the low
collection rate from households and large non-separated flows
from food distribution and retail, restaurants and public institu-
tions (Kalmykova and Harder, 2012). Therefore, solid waste is ex-
pected to contain considerable amount of P even in the
foreseeable future.
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The municipal solid waste incineration (MSWI) residue offers a
relatively homogeneous and concentrated stock for mineral recov-
ery. Metal recovery is currently being investigated, and full-scale
plants for Zn recovery are under development in Switzerland
(Karlfeldt Fedje et al., 2012; Schlumberger and Buehler, 2012).
MSWI residues generally contain lower amounts of phosphorus
compared to wastewater sludge, ~0.4% and 2-6% respectively
(Karlfeldt Fedje, 2010; Pettersson et al., 2008). On the other hand,
large quantities of waste ash and slag are available worldwide. In
Sweden alone, the estimated amount of P in MSWI residues is
4400tony~! and in the EU27, the corresponding value is
52,000 ton y~! (Sverige, 2011; Eurostat, 2011).

Previous studies of phosphorus recovery from waste materials
have looked at extraction from sewage sludge (SS), sewage sludge
ash (SSA), and chicken manure ash (CMA). The methods used to ex-
tract phosphorus from ashes include electro-kinetic (Sturm et al.,
2010), thermo-chemical (Adam et al., 2009); bioleaching and accu-
mulation (Zimmermann and Dott, 2009), and wet chemical meth-
ods, such as acid leaching (Biplob Kumar Biswas et al., 2009;
Donatello et al., 2010) and acid or acid-base leaching with subse-
quent precipitation (Kaikake et al., 2009; Levlin et al., 2005; Petzet
et al., 2011). In this study, the wet chemical methods have been
investigated, due to the low efficiency or long processing time re-
quired for the other methods. The electro-kinetic method achieved
less than 1% recovery, while bioleaching and bioaccumulation re-
quires 11 days for completion, something which could potentially
hinder its up-scaling to an industrial facility. In contrast, the acid
dissolution-alkali precipitation method could yield 92% P extrac-
tion from CMA (Kaikake et al., 2009), the acid leaching of ashes
from co-combustion of sewage sludge and wood (Pettersson
et al., 2008), and the two-step acid-base leaching of the SSA,
showed 50-80% and 60-80% of phosphorus release respectively
(Levlin et al., 2005; Petzet et al., 2011).

This paper describes the procedures and results of wet chemical
method applications to P recovery from MSWI fly ash. Modified
versions of the acid dissolution-alkali precipitation and the two-
step acid-base leaching have been applied. The original ash, the
intermediate solutions, and the resulting phosphorus products
have been analyzed and their possible further uses are discussed.

2. Materials and methods
2.1. Material

A mixture of three electrostatic filter ash samples collected dur-
ing 24 h and generated during normal circumstances by a mass
burn (MB) combustor for incineration of municipal and industrial
solid waste, was used in this study. No lime was added for flue
gas treatment before the electrostatic filter. The ash is a dry, fine
material with particle size in the range 50-950 um (median
340 um) and no grinding was required. Material has been dried
overnight at 105 °C prior to experiments.

2.2. Analytical methods

The main crystalline compounds in the original ash sample
were identified by qualitative X-ray powder diffractometry
(XRD), using a Siemens D5000 X-ray powder diffractometer with
the characteristic Cu radiation and a scintillation detector. The
measurement was made using a continuous scan in region 10-
70° in 20 with step 0.02° with 1 s measurement time each step.
The identification of compounds was carried out using the Joint
Committee of Powder Diffraction Standards Database (JCPDS,
2010). The detection limit of this method is about 1% by weight
for a certain mineral. In the study of optimal leaching conditions,

the phosphorus in ash leachates was measured by HACH DR/890
colorimeter with the standard PhosVer3 Method. For the subse-
quent tests, the elemental composition, including phosphorus,
of the ash leachates, filtrates and precipitants were analyzed at
an accredited lab by the ICP-AES with the reported measurement
uncertainties +10-20%. Carbon, H and N were analyzed by Ele-
mentar vario MAX CHN, and Cl by Konelab Aqua 60. When
needed during the leaching and recovery experiments, the pH
was controlled by a Metrohm SM 702 Titrino. All tests were con-
ducted at room temperature and in triplicates, except for the
maximum P leaching experiments that were done in duplicates.
All filtration was performed using membrane filters with a
0.45 um pore diameter. Simulations of the leachates solution
chemistry were carried out using CHEAQS Pro software (Verweij,
2012).

2.3. Leaching and recovery experiments

The composition of the ash has important implications for the
development of the extraction procedures. The wet chemical
methods of extraction are based on the solubility of salts as a func-
tion of pH. For solubility of phosphates, see Stumm and Morgan,
1996. For solubility of trace metal’s salts, see Drever, 1997. Most
metal salts are soluble at acidic pH and have very low solubility
at basic pH. Phosphates, on the other hand, are soluble at acidic
and AIPOy also at basic pH values. Therefore, the leaching of MSWI
ash with base could potentially be selective for phosphorus. How-
ever, CaHPO,4 and Ca4H(PO,4); have low solubility at neutral to basic
pH values and could potentially inhibit the extraction of phospho-
rus. As an example, Ca content has been shown to be a limiting fac-
tor for P release at basic leaching of SSA (Stendahl and Jafverstrom,
2004). While 90% of P has leached from the SSA with a 3% Ca con-
tent, 65% of P has leached from the SSA with an 8% Ca content.
Therefore two leaching and recovery processes were tested in this
study:

- acidic leaching of the ash, followed by recovery of P from the
leachate using sequential precipitation at pH=3, 4 (Method
1;

- acidic leaching of the ash, followed by alkaline leaching of the
remaining ash to achieve a P-rich solution (Method II).

The P leaching efficiency, Pje, in wt.% is calculated according to
Pleachate/Pash x 100 = Ple (1)

where Pieachate and Pagp, refers to the average P amounts given as mg
P/kg dry ash in the leachate and in the ash, respectively. Corre-
sponding equations were also used to calculate the leaching effi-
ciencies for the other elements of interest.

The overall recovery efficiency for P (REp) is calculated accord-
ing to

MP 2nd prec/mP leachate * 100 = REP (2)

where Mp 2nd prec is the mass (g) of P found in the 2nd precipitant
and Mp jeachate 1S the mass (g) of P present in 20 mL of the original
batch leachate.

The dissolution of the ash matrix (D,sy) during leaching is calcu-
lated according to

1-— (mash leach orig/mash) * 100 = Dygn (3)

where Mg orig is the mass of original ash used and Mash each is the
mass of the corresponding ash residue, both calculated on 100% dry
ashes.



Y. Kalmykova, K. Karlfeldt Fedje/Waste Management 33 (2013) 1403-1410

2.3.1. Recovery Method I - Acidic leaching and precipitation

To begin with, the dissolution step was optimized to obtain
maximum P leaching. Factors such as acid concentration and hence
the pH, leaching time and sedimentation time were considered to
be critical factors effecting P leaching. Hydrochloric acid (HCl) con-
centrations of 1, 1.5, 2, 2.5 and 3 M, and leaching times of 2, 4 and
24 h were used, while the liquid-to-solid-ratio (L/S) was kept con-
stant at 5 in all leaching experiments. For acid concentrations of
1.5 and 2.5 M, only a 2-h leaching time was tested. The samples
were rotated upside-down for the required time in air tight, acid
pre-cleaned plastic bottles. Sedimentation times of 5 min and
24 h were tested. The leachates were then filtrated through a
0.45 pum filter and the pH recorded. A flow chart describing the
procedure for the optimal acidic leaching followed by acidic pre-
cipitation (Method I) is presented in Fig. 1.

Larger amounts of leachate were produced under the identified
optimal conditions (100 g of dry ash and 500 mL 2 M HCl i.e. L/S 5).
However, due to the large sample volume, decantation was used
instead of filtration to separate leachate and ash residue. To obtain
the first precipitation, 20 mL of the P rich leachate was titrated
with 1 M NaOH at a constant pH = 3.0 for 1 h at a 500 rpm stirring
rate. The particles formed during this process were separated by
filtration and oven-dried at 50 °C. The resulting filtrate was titrated
with 1 M NaOH at a constant pH of 4, for 5 h at a 400 rpm stirring
rate. The formed precipitant, i.e. the P product, was separated by
filtration and oven-dried at 50 °C.

2.3.2. Recovery Method II - Two step acidic-alkaline leaching

A flow chart which describes the procedure for the acid leach-
ing-alkaline precipitation method is presented in Fig. 1, and is
based on the method suggested by Levlin et al. (2005). The samples
were rotated upside-down for the required time in air tight acid
pre-cleaned plastic bottles. In the first step, the ash was leached
for 2 h with 1 M HCI at pH =4 to release Ca. The remaining solids
were separated by filtration and leached in a second step for 4 h
with 1M NaOH at pH interval 11-13. A P-rich solution was ob-
tained after filtration.
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3. Results and discussion
3.1. Characteristics of the ash sample

The XRD analyses showed that the dominating crystalline com-
pounds were NaCl and CaSO4 (Fig. 2). Aluminum was also identi-
fied, but not the Iron (Fe). The latter is probably due to the fact
that Fe is distributed through several different minerals while
the detection limit of the XRD method is 1% by weight for a certain
mineral. The prevalent form of phosphorus is likely to be KCaPO,.
The contents of major and minor elements in the studied ash are
given in Table 1.

The high content of Ca (14%) in the MSWI ash sample could
make the basic leaching of P inefficient. In addition, the contents
of Fe (2%) and Al (3%) are several times higher than the P content
(0.6%) (Table 1). Acidic leaching would result in a higher extraction
of P, whereas basic leaching could potentially result in a cleaner fi-
nal product since few heavy metals are dissolved at alkaline pH
values. Both approaches are tested in this study, with a preliminary
step aimed at the reduction of Ca, Fe and Al. For this reason, Meth-
od |, the acidic leaching and precipitation, employs an intermediate
precipitation step at pH 3 to remove precipitated Al and Fe salts. In
particular, Kaikake et al. (2009) has shown for the CMA that precip-
itation at pH 3 removed 98% of Fe (and 7% of P). Iron and Al are un-
wanted in the final solid product because their phosphates have
low solubility and plant availability. In Method II, Ca is removed
in the preliminary acidic leaching (washing) in order to enable sub-
sequent basic leaching of phosphorus.

3.2. Method I - Leaching and recovery of P by acidic leaching and
precipitation

3.2.1. Optimal leaching conditions for P

Leaching using 1 M HCl released low fractions of P, while both
2 M HCI and 3 M HCI more or less released all P originally present
in the ash, independently of leaching time used (Fig. 3 and Table 2).
To minimize the consumption of virgin chemicals (HCl) and to

1M NaOH

2M HCl 1M NaOH
MSWI ash N J' ) l
Ash leaching leachate 1st precipitation filtrate 2nd precipitation . .
' pH<1 pH=3 pH=4 ——— Residual filtrate
A l
Ash residue Fe rich solid Solid P product
Method |
1M HCI 1M NaOH
l Ash residue ]'
MSWI ash with P i
Ash leaching Alkaline leaching P rich filtrate
pH=4 pH=11-13
Ca rich leachate Ash residue
Method Il

Fig. 1. Applied methods: Method I - acidic leaching and precipitation (above); Method II - two step acidic-alkaline leaching.
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Fig. 2. The main crystalline compounds in the original ash sample as identified by qualitative X-ray powder diffractometry (XRD).

Table 1
Composition of the MSWI fly ash.
Major elements Al Ca Fe K Mg
glkg 32 141 19 54 13
Minor elements Ag As B Ba Be
mg/kg 32 460 300 400 <25
Mo Mn Ni Pb Sb
36 810 100 4600 1900

Na Si Ti P S Zn
58 45 10 5.9 65 37
Cd Co Cr Cu Hg

270 12 490 2000 0.51

Se Sn \%

<10 1200 49

reach a time and energy efficient P recovery process the optimal
conditions for maximum P release were chosen to 2 h leaching
with 2 M HCI (L/S = 5). In addition, the dissolution of the ash matrix
itself (D,sn) was lower after 2 h leaching compared to 24 h leaching
(30 wt.% and 40 wt.%, respectively) using 2 M HCl. The solutions
used in the subsequent P precipitation experiments were obtained
under these conditions. In the 2-h experiment 1.5 M and 2.5 M HCl
were also tested and yielded 90% and 100% respectively (results are
not shown in Fig. 3 or in the Table 2 because no 4-h and 24-h
experiments were done for these concentrations).

100%
80%
60%
40%

20%

Phosphorus leaching efficiency

24 hours

0% 4 hours
6

2 hours
2M HCI

1M HCI

Fig. 3. Phosphorus release from the MSWI ash as a function of reaction time and
HCI concentration.

It was noted that ash leachates obtained at short reaction times
of 2 and 4 h, and with acid concentrations of 1.5-2 M, became a gel
within 24 h if the leachates were separated from the ash residue
immediately. In contrast, sedimentation for 24 h before separation
of the leachate and ash residue prevented the gel formation and all
subsequent samples were therefore allowed to sediment for 24 h
before filtration.

Sedimentation decreased the aqueous Si concentration by a fac-
tor of 3, whereas the decrease in P concentration was negligible.
The possible mechanism of this phenomenon is the reaction of sil-
icate and hydrogen ions to form silicic acid in acidic solutions (pH
was <0.9 in all the leachates that turned into gel). Silicic acid is
inherently unstable, and will condense and grow to form silica
gel (Hauser, 1955). Silicic acid formation is prevented by sedimen-
tation, due to the release of alkaline compounds from the ash res-
idue, such as CaCOs, which in turn increases the pH.

Table 2
Average concentrations of P (mg/L) detected in leachates using different HCI
concentrations (1, 2 and 3 M) and leaching times (2, 4 and 24 h).

Leaching time 3 M HCl 2 M HCl 1M HCl

(h) Leachate (mg/L P) Leachate (mg/L P) Leachate (mg/L P)
2 60.9 +0.06 55.0 £ 0.05 18.5 £0.00
4 60.5 + 0.04 52.7 £0.03 19.8 £0.03

24 60.6 + 0.03 61.3+0.1 5.1+0.02
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Table 3
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Leaching efficiencies (wt.%) [Eq. (1)] and distribution of elements between the Method I steps. From the 20 mL of P rich batch leachate that was used in the recovery process 0.8 g

(precipitant 1) and 0.31 g (precipitant 2) dry solid products were generated, respectively.

(1) Leaching (2) mg i.e. mass in the Fraction of (2) found in 1st Fraction of (2) found in 2nd Fraction of (2) found in Mass

efficiency (wt.%) leachate® (mg) precipitant® (wt.%) precipitant® (wt.%) residual filtrate? (wt.%) balances®
P 93 22 27 72 29 100
Al 48 92 12 45 9.9 67
As 100 1.9 27 68 43 100
Ca 30 280 9.0 1.8 49 60
Ccd 98 1.1 9.9 33 56 69
Co 46 0.04 11 <D.L. 72 -
Cr 39 0.8 15 98 15 100
Cu 95 7.6 7.4 7.7 42 57
Fe 42 32 19 63 16 98
Mg 80 42 9.3 1.9 47 58
Mn 80 2.6 8.7 29 53 65
Ni 42 0.17 12 9.9 <D.L -
Pb 100 20 12 12 51 75
Sn 46 2.2 44 80 1.0 100
\Y 100 0.12 20 86 0.85 100
Zn 69 130 11 3.9 55 70

<D.L. below detection limit.

@ Corig leachate * Vieachate used = Mo, Where Corig leachate T€fers to the concentration of metal M or P in the original leachate using the optimal leaching parameters, Vieachate used
refers to the volume of the original leachate used in recovery Method I and my refers to the mass found in Vieachate used-

b Fraction of element M detected in 1st precipitant = m prec/Mo * 100.
¢ Fraction of element M detected in 2nd precipitant = mang prec/Mo * 100.
94 Fraction of element M detected in the residue leachate = Myes fierate/Mo * 100.

€ Mass balance (%) = (M1t prec + Mand prec + Mres filtrate)/Mo * 100, where m, refers to the mass of each element detected in precipitants 1 and 2 and in the residual filtrate,

respectively.

3.2.2. Recovery of P from the leachate

The recovery of P from the leachate was divided into two pre-
cipitation steps. The aim of the first step was to remove Fe and
Al, while the second produced the final solid P product. The frac-
tion and the mass of the elements leached from the ash, and the
distribution of elements in the two steps are presented in Table 3.
Phosphorus was effectively leached from the ash by 93%, however
also As and metals such as Cd, Cu, Pb and Zn were released by 70-
100%. Despite this, only a minor proportion of the metals accumu-
lated in the solid products (precipitants), due to the low pH during
the precipitation steps (pH = 3-4), at which most metals are found
as free ions in the solution. The major part of the metals was found
in a small volume of phosphorus-poor residual filtrate that has
been investigated for metals recovery in another study (Modin
and Karlfeldt Fedje, 2012).

According to the XRD analysis (Fig. 2) Al is present as low solu-
ble silicate and oxide, while Ca is present as more easily soluble
compounds (CaSO4 and CaCOs), if in an acidic environment. There-
fore, Ca is expected to be released to a higher extent compared to
Al during the acidic leaching. This was however not found (30% and
48%, respectively), which is likely due to the high Ca concentration
in the leachate decreasing the rate of further Ca release. It should
be noted that twice higher release of P (93%) is obtained by the
acidic leaching compared to the Al (48%) and Fe (42%) and three
times higher than the Ca (30%). In such a way, Fe/P and Al/P molar
ratios decrease, which is important for potential use of the result-
ing product as a fertiliser because iron and aluminum phosphates
may have low solubility in soils (depending on the pH of the soil).
Whether or not the first precipitation step aimed at Fe and Al re-
moval was necessary is debatable, as considerable fraction of P
(27%) was also removed. The alternative of precipitation in one
step would result in an Fe concentration of 16 gkg™! , i.e. three
times lower than the Fe content of the sewage sludge obtained
from chemical precipitation, which is considered to be a relatively
good fertilizing product (Eriksson, 2001). Calculation of the solu-
tion chemistry with CHEAQS Pro for the two precipitation steps
has been conducted. The solid phases Al;(PO4),(OH)3(H>0)s and
Fe(I1)3(PO4)2(H,0)s has been formed at both pH 3 and 4; other

solids at pH =4 were AIPO4, and Cas(PO4);(OH). The residual fil-
trate contained 2.9% of the initial leachate P content and no further
precipitation steps are required. The final product (2nd precipitant)
contained 72% of the initial leachate P content and 30gkg ! P,
which is slightly higher than the average of 27 gkg ™' P in 48 sew-
age sludge samples studied in Sweden (Eriksson, 2001).

Egs. (4)-(7) below describe the probable mechanism of P pre-
cipitation reactions through the two precipitation steps. Equilib-
rium distributions of phosphorus species as a function of pH are
well known (Beukenkamp et al., 1954). At the initial pH=0.1 in
the leachate, the dominant specie is H3PO,4. As the pH rises,
H3PO,4 begins to transform into H,PO, (Eq.4). At the pH =3-4 Al;
(POy4),, Fes(PO4), and AIPO, are formed (Eq. (5)). The H,PO,
reaches its peak when the pH rises to 4 and HPO?~ begins to form
(Eq. (7)). Even after pH = 4 is reached during the second precipita-
tion step, the addition of more NaOH is required to keep the pH
constant, which indicates the presence of reactions that consume
hydroxide ions. It is likely that these are caused by the production
of solid phosphate compounds (Egs. (8)-(10)), as there are large
amounts of e.g. Fe, Mg and Ca in the 2nd precipitation.

H;PO4 + OH™ — H,PO; + H,0 (4)
AP" 4 H3PO4 + 30H™ — AIPO4(s) + 3H,0 (5)
3Fe*" + 2H3P0, + 60H™ — Fe3(P0Oy),(s) + 6H,0 (6)
H,PO, + OH™ « HPO; +H,0 (7)
Mg?®* + HPOZ~ — MgHPO,(s) (8)
HPO; + OH™ « PO;™ + H,0 9)

3Ca®" 4+ 2P0, — Ca3(P0y),(s) (10)

The overall efficiency of phosphorus recovery (REp) from MSWI
ash is about 70 wt.%. The recovery is lower than the 92% obtained
for the CMA (Kaikake et al., 2009) and within the range of recovery
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Table 4

Compositions of the MSWI ash and other ashes used for wet chemical extraction of phosphorus.

glkg Studied MSWI ash Sewage sludge Chicken manure Co-combustion of sewage
ash? (SSA) ash® (CMA) sludge and wood*
Al 32 218 - 36-210
Ca 141 49 72 40-380
Fe 19 83 5.0 21-190
Mg 13 6.0 22 7.0-28
Si 45 94 - 11-560
P 5.9 81 85 17-66
Cr 0.49 0.14 0.03 -
Cu 2.0 0.44 0.27 -
Zn 37 - 1.6 -
Pb 4.6 0.02 0.01 -
cd 0.07 - - -
“~" No value was provided.
2 Levlin et al. (2005).
b Kaikake et al. (2009).
¢ Pettersson et al. (2008).
Table 5
Leaching efficiencies (wt.%) [Eq. (1)] of selected metals and P in the acid washing step at pH = 4.
Element Al Ca Fe K Mg Na P S Si
Leaching efficiency (wt.%) 4 9 3 100 32 94 <1 <1 <1
Element Ag Ba Ccd Co Cr Cu Mo Mn Ni Pb Sn Ti Zn
Leaching efficiency (wt.%) 2 <1 100 33 3 4 2 19 27 29 1 <1 56

obtained for different batches of the ash through co-combustion of
the sewage sludge and wood (Pettersson et al., 2008). Under the
same experimental conditions, Pettersson et al. have obtained
higher P release from Al-rich ashes compared to Fe-rich ashes
(75-95% and 50-65% respectively), while no trend has been re-
ported for the Ca content. Composition of the studied ash in com-
parison to other ashes used for wet chemical extraction of
phosphorus is presented in Table 4.

3.3. Method Il - Two step acidic-alkaline leaching

The first step of Extraction Method II is acidic leaching of the
ash (washing) at pH = 4, to remove Ca and enable effective leaching
of the phosphorus in the next basic leaching step. As expected, al-
most no phosphorus was released but also only 9% of the Ca (Ta-
ble 5). Therefore, the Ca content in the ash remains high, at 13%,
something which could inhibit the release of phosphorus. Elements
present as chlorides, such as Na and K, were released in high
amounts, >90%, and metals like Cd and Zn were also leached at
>50% (Table 5). Nonetheless, the alkaline dissolution of P from
the treated ash was tested at several pH values between 11 and
13. As expected the metal release was low at these pH values but
unfortunately also the P release (Table 6). The highest dissolution
of P was obtained at pH = 12, but still less than 0.1% was released.
At pH =12, metal phosphates are soluble except from calcium
phosphates, why it is likely that P is precipitated as calcium phos-
phate. Therefore, several Ca leaching steps would be needed,

Table 6
Trace element loads from 22 kg P hay~! application of the P product and limits for
trace metal loads from sewage sludge application to agricultural land.

Trace elements Cd Cr Cu Hg Ni Pb Zn
(ghay™)

Phosphorus product 50 1030 800 <0.5 23 3400 6600
Swedish thresholds® 0.75 40 300 1.5 25 25 600
EU thresholds® 50 3500 7500 100 3000 4000 7500

3 Swedish EPA (1994).
> EU Council (2001).

requiring larger volumes of acid. In further studies, the newly pub-
lished method for pre-concentration of alkaline soluble aluminum
phosphate will be tested (Petzet et al., 2011). Application of a series
acid washing steps at pH = 3-3.5 applied to the SSA with high Al
and Ca content was proven to improve consequent alkaline recov-
ery of P from 20% to 67%. Considerable part of contaminants is re-
moved by the first washing step, in particular 100% of Cd, 56% of Zn
and 29% of Pb (Table 5). As shown in Table 6, the product obtained
by the Method I exceeds the Swedish threshold for trace metals
loads to agricultural land for these particular metals. However,
their separation from the P-rich material in the Method II could
potentially yield a more pure and suitable for agriculture product.

3.4. The purity and usages of the phosphorus product

The composition of the phosphorus product obtained by Meth-
od I is presented in Fig. 4. The P accounts for 3w% (dry weight) of
the final product, calculated as elemental P, and its content is mag-
nified 5 times compared to the ash.

Commercial mineral fertilizers contain 2.6-20 wt.% of elemen-
tal P, depending on sector of application (Yara, 2012). The obtained
P product contains 3% P, which is higher than in NPK mineral fer-
tiliser and in the sewage sludge (both 2.7% P). However, the trace
element content is much higher than in the sludge and the fertil-
iser, which prevents the application of P product to agricultural
land. Table 7 shows the load of Cd, Cr, Cu, Hg, Ni and Pb, assuming
the P product application of 22 kg P hay~! (average P application
in Sweden). All trace elements except Hg and Ni exceed the Swed-
ish limits for metal load through sludge application (Swedish EPA,
1994), while no element exceeds the corresponding EU limits (EU
Council, 2001).

In order to avoid any contamination of agricultural land with
trace metals, it is preferable for the P product to be used as a sec-
ondary resource and substitute virgin phosphate ore in the conven-
tional mineral fertiliser production. Phosphate ores are divided
into three quality categories: low-grade (up to 3 wt.% P), interme-
diate-grade (4-5 wt.% P), and high-grade (6-8 wt.% P). As a result
of high-grade phosphate ores becoming scarce, the utilization of
low-grade phosphate sources will become increasingly important.
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Fig. 4. Composition of the phosphorus product, wt.%. Other metals include Pb, Sn,
As, Mg, Cr, Cu, Ti, Sb, V, Mn, Ba, Cd, Ni, Mo, Be and Co.

Table 7
Composition (wt.%) of low-grade phosphate ores compared to the obtained P product.

Low grade ore Low grade ore Phosphorus product from

(Iran)? (Turkey)® MSWI ash
P 2.2 2.4 3.0
Ca 346 36.6 9.5
Al 13 0.6 7.8
Fe 1.6 0.7 15
Mg 03 038 3.8

2 Keles et al. (2010).
> Mohammadkhani et al. (2011).

Examples of low-grade phosphate ore composition are given in Ta-
ble 7. No information could be found for trace metal content of the
low-grade phosphate ore, as the standard analysis method used by
the industry (X-ray fluorescence of selected oxides) does not in-
clude trace metals. The P content in the obtained product is 25—
30% higher than in the low grade ore.

An important issue in the overall P recovery process is how to
treat the residual filtrate and the first precipitation product, as
these contain high concentrations of Al, Cu, Mg and Zn. It would
be possible to recover these valuable metals as well. For instance,
Karlfeldt-Fedje, 2011 states that Cu can be recovered (>90%) from
MSWI fly ash leachates through the use of solvent extraction re-
agents based on oximes. In the future method development two
alternatives will be tested: extraction of metals from the residual
filtrate and extraction of metals from the ash leachate prior to
the phosphorus extraction. Copper extraction from the residual fil-
trate has already been tested in another study (Modin and Karlfeldt
Fedje, 2012).

Solid waste is and will remain a major sink for phosphorus and
incineration of solid waste is increasing worldwide. There are sev-
eral EU legislation acts that divert biodegradable waste, which is
also the most P-rich waste type, from landfilling. In particular,
the EU Landfill Directive 1999/31/EC obliges member states to re-
duce the amount of biodegradable waste they place in landfill to
35% of 1995 levels by 2016. In addition, the Animal By-products
Regulation (EC) No. 1774/2002 prohibits the feeding of food waste

to animals (EU Council, 2002). Therefore, the incineration of waste
and of biodegradable waste in particular, will probably increase in
the EU, resulting in larger amounts of phosphorus being found in
the MSWI ash.

While phosphorus content is considerably higher in the SSA and
CMA, then in the MSWI ash method development for P recycling
from MSWI residues is important. Recycling of P from MSWI resi-
dues would provide an alternative P resource and improve resil-
ience of the food supply chain by contributing to diverse
fertilizer supply.

Based on the 70% P recovery efficiency obtained in this study,
30% of the annual demand for mineral fertilisers in Sweden can
be met by the MSWI residues. In 2008, the mineral fertiliser con-
sumption in the EU was 1600 thousand tons P,0s (i.e. 400 thou-
sand tons P). The recovery potential from MSWI ash for the EU is
10%. It should be noted, however, that of the waste incinerated
in the EU27, 85% relates to the EU15 countries and the expected
built up of the incineration capacity in the new member states will
increase amounts of the MSWI residues (Eurostat, 2011).

4. Conclusions

The recovery of P from MSWI fly ash with acidic leaching and
precipitation (Method I) and acidic and alkaline leaching (Method
1) was investigated in this study. Method I resulted in a recovery of
70% of P content of the ash and the final product contains about 3%
P, which is slightly higher than the content of sewage sludge and
the low grade phosphate ore. However, the trace metal content
limits direct application of this product on agricultural land. It is
suggested that the P product is used as a secondary resource for
phosphates production, thereby mitigating the use of this non-
renewable mineral resource. The method is currently optimized
by complementing the P recovery with extraction of metals, and,
usage of industrial liquid wastes instead of chemicals and reduc-
tion of materials requirements.

Method II resulted in <1% P recovery. The low efficiency is due
to the high Ca content of the ash. In further studies, the method
will be modified to include a pre-concentration step that reduces
Ca content but increases alkaline soluble P. Our results suggest that
potentially more pure P product can be obtained by the Method II.

The majority of the world’s population live in cities, and solid
waste and MSWI residues serve as a sink for urban material flows.
In this paper, the potential for mining of P and other resources
from MSWI residues has been proved and may be a viable way
to meet the increasing demand for resources.
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