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AbstractIn this work we present an efficient method for solving an optimal control problem
for a batch reactor, where a temperature dependent exothermic reaction takes place within
a preset duration and within specified temperature bounds. The Hamilton-Jacobi-Bellman
(HJB) equation corresponding to the optimal control problem is nonlinear and has infinite
boundary conditions due to the state constraints (bounds on temperature and concentration),
which makes it troublesome to solve. However, using a logarithmic transformation, the HJB-
equation is transformed into a linear partial differential equation with zero boundary conditions.
Furthermore, the problem can then be solved using variable separation such that the time-
dependent part has an analytical solution and the state dependent part becomes a linear
eigenvalue problem which can readily be solved using standard software.
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Figure 1. Illustration of the batch process.

1. INTRODUCTION

Consider the system illustrated in Figure 1, which is a
batch process where a substance A reacts at a rate

r = k0e
−

E
RT(t) cA(t) (mol/l/s)

where E is the activation energy (J/mol), R is the ideal gas
constant (J/mol/K), T is the temperature (K), k0 is the
reaction rate coefficient (1/s) and cA is the concentration
of A (mol/l). The reaction is exothermic, releasing ∆Hr

Joule per mol A reacted.

The dynamics in the coolant system is ignored for simplic-
ity and therefore we may consider the coolant temperature
Tc (see Figure 1) to be the manipulated variable. The
heat transfer coefficient α is assumed to be a constant
parameter but in reality the transfer depends on local
flows inside the reactor, coolant temperature fluctuations,
flow fluctuations etc. These uncertainties and others, such
as nonuniform reactions, are considered as one random
disturbance that adds to the coolant temperature.

For control purposes we may write the mass and the energy
balances for this system as

V
d

dt
cA(t) =−k0V e

−
E

RT (t) cA(t)

V ρcp

d

dt
T (t) = ∆Hrk0V e

−
E

RT(t) cA(t)

−αc(T (t) − Tc(t) − ∆Tc)

where V is the volume (l), ρ is the density (assumed
unchanged by the reaction), cp is the specific heat capacity
(also assumed unchanged), and ∆Tc is the disturbance.

Selecting cA to be the first state, T to be the second state
and assuming the noise can be described by a Gaussian
white noise with variance σ2, we may write this on the
form

ẋ = f(x) + G(x)(u + w), (1)

where

f(x) =

[
−k0x1e

−
a

x2

k1x1e
−

a
x2 − k2x2

]

and G(x) =

[
0
k2

]

where k1 = ∆Hrk0/(ρcp) and k2 = αc/(ρcpV ).

2. CONTROL PROBLEM

The batch process is operating with a cycle time tf and at
the end the concentration of A should have decreased to
cA,f (with a corresponding produce of B). To maintain a
sufficient rate of reaction the temperature should never go
below Tmin and to avoid problems of overheating it should
never go above Tmax (see Figure 2). The control problem
can the be formulated as an optimization problem

min
u

V (x(t), t)

subject to Eq. (1) and

0 ≤ x1(t) ≤ cA(0)

Tmin ≤ x2(t) ≤ Tmax

(2)
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ere the coefficients n ∈ R are given by the projection
max of the final condition

c
A
(0) (

γ2
)

Z(tf ,x) = exp −
2
(x1 − cA,f)2 (8)

σ
Tmin onto the space spanned by the eigenfunctions φn.
c

A,f
The optimal control policy can then be determined as

0
t σ2
f

u = GT (
Z

∇Z)T

Figure 2. Constraints on the temperature and concentra-
tion trajectories. This is illustrated by an application of the method to

the reactor system described by Lagerberg and Breitholtz
where the cost function is [1997].{∫

tf
}

V (x(t), t) = E u2(τ)dτ + γ(x1 − cA,f)2
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∂t

− ∇ T ∇ T ∇ control problems. Automatica, 44:1800–1805, 2008.( V )GG ( V ) + ( V )f
4 (3)
σ2

+ tr
[
(∇T∇V )GGT

]

2

with V → ∞ as x → ∂Ω, where the boundary ∂Ω is given
by the state constraints (2).

3. METHOD

The nonlinearity and the infinite boundary conditions
make this partial differential equation difficult to solve.
However, by applying the transformation introduced by
Rutquist et al. [2008] for stationary infinite horizon prob-
lems, i.e.

2σ2

V = − log(Z), (4)
γ

and separation of variables, i.e. Z(t, x) = Γ(t)Φ(x) we
show that the optimal control is given by the solution to

d
λΓ(t) = Γ(t), (5)

dt

which has the analytical solution Γ(t) = ceλt, and

σ2

λΦ = (∇Φ)f − tr
[
(∇T∇Φ)GGT

]
(6)

2
with the boundary condition

Φ(x) = 0, x ∈ ∂Ω

In contrast to the difficult original HJB-equation this is a
linear eigenvalue problem with zero boundary conditions
that can readily be solved with standard software. The
result is a family of solutions (λn, Tn, φn) from which the
transformed cost is determined as a linear combination of
the solutions for different eigenvalues, i.e.

∞

Z(t,x) =
∑

βn exp(−λn(tf t))φ (x) , (7)
n=1

− n
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