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EDIT HELGEE
Department of Applied Physics
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ABSTRACT

Due to the negative environmental effects of fossil fuels itis necessary to develop
technology that may reduce or eliminate the need for oil and coal. Fuel cells are
highly important in this context as they provide an efficientway of converting chem-
ical energy into electrical energy. However, the development is hampered by a lack
of electrolyte materials able to function at temperatures high enough to enable use
of hydrocarbon fuels, yet low enough to avoid the wear on component materials
caused by high operating temperatures. Solid oxide proton conductors are found to
have several of the characteristics of a good electrolyte material in this temperature
range, but increasing the conductivity to the level needed in practical applications
remains a challenge.

The aim of this thesis is to elucidate microscale phenomena that affect the per-
formance of proton-conducting oxides. The material under investigation is BaZrO3,
which is regarded as a promising electrolyte material due toits chemical stability and
high grain interior conductivity. However, the grain boundaries in the material are
highly resistive and lower the total conductivity. The cause of this high grain bound-
ary resistivity has been investigated using atomistic simulations and thermodynamic
modelling. Particular attention is devoted to the role of defect segregregation to the
grain boundaries.

From atomistic simulations it has been found that positively charged defects such
as oxygen vacancies and protons segregate to the grain boundaires of BaZrO3. The
accumulation of positive charge in the grain boundaries creates a potential barrier
and leads to depletion of positive mobile defects from the surrounding region, im-
peding transport across the boundary. Thermodynamic models have been used to
determine the height of the potential barrier resulting from segregation of positive
defects, and the results compare well with experimental findings.

Keywords: solid oxide fuel cell, oxygen vacancy, proton, grain boundary, seg-
regation, space charge, depletion, perovskite, BaZrO3, first-principles calculation,
density-functional theory, atomistic simulation, interatomic potential.
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(Submitted to Solid State Ionics)

Specification of my contribution to the publications

I I prepared the atomic configurations for simulations and contributed to ana-
lyzing the results, and assisted in writing the paper.

II I conducted preparatory simulations with the interatomic potential, contributed
to the thermodynamical modelling and assisted in writing the paper.

III I did the thermodynamical modelling and most of the density functional theory
calculations, and wrote the paper.

IV I contributed to the thermodynamical modelling and assisted in writing the
paper



vi



Contents

1 Introduction 1
1.1 Fuel cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Oxygen ion conductors . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Proton conductors . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Thesis aim and outline . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Defects in BaZrO3 9
2.1 Point defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Defect equilibrium . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 Proton diffusion . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.3 Diffusion and conductivity . . . . . . . . . . . . . . . . . . 14

2.2 Grain boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.1 Measuring grain boundary conductivity . . . . . . . . . . . 16
2.2.2 Space charge . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Method 21
3.1 Density functional theory . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.1 The Hohenberg-Kohn theorems . . . . . . . . . . . . . . . 23
3.1.2 The Kohn-Sham equations . . . . . . . . . . . . . . . . . . 23
3.1.3 Exchange-correlation functionals . . . . . . . . . . . . . . 24
3.1.4 Practical implementation . . . . . . . . . . . . . . . . . . . 25

3.2 Interatomic potentials . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 Defects in periodic supercells . . . . . . . . . . . . . . . . . . . . .28

4 Results 31

5 Outlook 35

Acknowledgments 37

Bibliography 39

Papers I-IV 47

vii



Contents

viii



Chapter 1

Introduction

In an industrialized society like ours, large amounts of energy are used to make
production more efficient, transportation faster and everyday life more convenient.
Today, a large part of that energy comes from fossil fuels such as oil, especially
the energy used for transportation. However, the combustion of hydrocarbons from
fossil sources releases carbon dioxide, a gas which is regarded as the prime cause
of global warming. Additionally, experts claim that we are fast approaching Peak
Oil, the point where production of fossil fuels starts to decrease as old sources run
dry and the new prove difficult to access. Meanwhile there hasbeen no decrease in
the demand for cheap, practical energy. If anything, the demand is increasing with
increasing world population and economic growth. Clearly, there is a pressing need
to develop technologies that can increase our use of renewable and environmentally
sustainable energy sources. Renewable energy always originates in the radiation
from the Sun, but can also take the shape of windpower, hydropower or biomass
(plants).

Hydrocarbon fuels, while unsustainable, have a few distinct practical advan-
tages. Although they are only found in a limited number of places on Earth, they
can relatively easily be transported across the globe and used where conveninent.
Internal combustion engines also provide a portable power source powered by liq-
uid hydrocarbons. Renewable energy, on the other hand, can in many cases only be
produced in places with especially favourable conditions.To make renewable en-
ergy competitive in terms of practicality, we therefore need methods for storage and
transport. Proponents of the hydrogen economy suggest thathydrogen is well suited
to be a carrier of renewable energy.

Within the hydrogen economy, reneawable energy is used to produce hydrogen
by electrolysis (running an electrical current through water), by an electrocatalytic
reaction [1] or even using microorganisms [2]. The hydrogenmust then be safely
stored and transported to wherever the energy is needed. Finally, a clean and effi-
cient method of converting the chemical energy of hydrogen into electrical energy
is provided by fuel cell technology. All three stages of thisprocess present technical
challenges and are the subject of extensive research. In this thesis the focus will be
on the last step in the process, the fuel cells.
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1 Introduction

Although the vision of the hydrogen economy is to use pure, sustainably pro-
duced hydrogen in fuel cells, this must be regarded as a long-term goal since it
requires building an infrastructure for storage and transportation of hydrogen. A
reasonable short-term goal would therefore be to use fuel cells with hydrocarbon
fuels produced either from fossil sources or plants [3–7]. Due to the superior effi-
ciency of fuel cells compared to e.g. internal combustion engines, this would still
constitute a substantial improvement.

1.1 Fuel cells

In both internal combustion engines and oil-fired power plants, the chemical energy
of the fuel is released in the form of heat, which causes a gas to expand. This me-
chanical work is then used, perhaps to power a car or generateelectricity. A fuel
cell on the other hand converts the chemical energy of the fuel directly to electrical
energy through a reaction with oxygen. The direct conversion, which does not use
heat as an intermediate step, gives fuel cells considerablyhigher efficiencies than
conventional methods of power generation. This section will give a brief introduc-
tion to the basic principles of fuel cells and describe some of the challenges inherent
to the technique, but more information can be found in e.g. [3–14]. Even though
some fuel cells can run on hydrocarbon fuels, the following discussion will consider
hydrogen as the fuel. The basic reactions are almost the samesince other fuels are
frequently reformed to hydrogen within the cell.

When hydrogen gas is ignited in the presence of oxygen, the following reaction
occurs:

H2 +
1
2

O2 → H2O (1.1)

This reaction is exothermic and will release energy in the form of heat. In a fuel cell,
the reaction is divided into two parts (see Figure 1.1). Hydrogen gas is supplied at
the anode, where it is split and incorporated into the electrode material according to
the oxidation reaction

H2 → 2H+ +2e− (1.2)

The free electrons generated in this process flow through an electrical circuit to get
to the cathode. At the cathode, oxygen gas undergoes reduction and forms ions:

1
2

O2 +2e− → O2− (1.3)

To complete the reaction, a water formation step is also necessary:

2H+ +O2− → H2O (1.4)

This last step takes place at the cathode if the electrolyte is a proton conductor and at
the anode if it is an oxygen ion conductor. By separating the reduction and oxidation
processes, the energy released by the formation of water from hydrogen and oxygen
is transformed into an electrical voltage that can be used todo work.
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1.1 Fuel cells

(a)

(b)

Figure 1.1: Schematic of fuel cells with an oxygen ion conducting electrolyte (a) and a
proton conducting electrolyte (b).

In order for the fuel cell to function efficiently, it is important that the splitting re-
actions (1.2 and 1.3) occur at a high enough rate. The transport of electrons from the
electrodes to the electrical load must be swift, as must the transport of ions through
the electrolyte. Simultaneously, it is important that the anode and cathode reactions
are kept separate and that all electrons travel through the electrical load, rather than
short-circuiting the cell by leaking through the electrolyte. The electrolyte must
therefore be a good ionic conductor, an electronic insulator and inpermeable to gas
molecules such as O2 and H2. The electrodes should be good catalysts for the split-
ting reactions and electrically conducting in order to transport the electrons to the
electrical circuit. Ideally, the electrodes should also beionic conductors so that ions
can be transported through the electrode to the electrolyte, enabling the splitting re-
action to take place anywhere on the surface of the electode.If the electrode is not
an ionic conductor the reaction is confined to points where the electrode, electrolyte
and surrounding gas are in contact, which may be a considerably smaller area. In
addition, the component materials should not react with each other at the operation
temperature of the fuel cell. They must also be chemically stable in the presence of
water, which always forms in the cell, and CO2 and CO which may form as a result
of impurities in the fuel or reforming of hydrocarbon fuels.

Since the invention of fuel cells almost two hundred years ago, many differ-
ent materials have been found which fulfill the abovementioned requirements to a
greater or lesser extent. The existing fuel cell types are subdivided into two ma-
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1 Introduction

jor categories, low-temperature and high-temperature fuel cells. The designation
is related to the operational temperature of the fuel cell, which is to large extent
determined by the properties of the electrolyte. Electrolyte materials used in low-
temperature fuel cells include solid polymer membranes such as NAFION and liquid
solutions of alkaline salts or phosphoric acid. High temperature fuel cells employ
electrolytes consisting of molten carbonate or oxygen-conducting solid oxides.

Low-temperature fuel cells typically have operation temperatures in the range
50-200◦C. The low temperature gives a short start-up time and makes itfeasible
to use the fuel cell for portable power generation in for example cars and boats or
even computers. However, the splitting of hydrogen at this temperature requires the
use of highly efficient catalysts, typically platinum. Apart from making the fuel cell
more expensive, this also renders the cell sensitive to carbon impurities in the fuel.
Carbon oxides may attach themselves very firmly to the platinum surface (catalyst
poisoning) and thereby impede the hydrogen splitting. Use of hydrocarbons rather
than pure hydrogen as a fuel therefore requires reformationof the hydrocarbons to
hydrogen outside the fuel cell itself.

Among the high temperature fuel cells, the ones using a molten carbonate elec-
trolyte have operation temperatures around 650◦C and the solid oxide fuel cells
have operation temperatures around 800 to 1000◦C. At these temperatures, hydro-
carbons can be reformed into hydrogen within the cell itself, giving an increased fuel
flexibility. The high temperature also eliminates the need for expensive platinum cat-
alysts. On the other hand, higher demands are placed on the materials. Differences
in thermal expansion coefficients may cause damage to the cell as it is heated or
cooled, and there is an increased risk of reactions or interdiffusion of the component
materials. High temperature also requires that the cell be thermally insulated from
its surroundings and gives longer start-up times, making use in mobile applications
impractical.

Considering the problems of high and low operation temperatures, it is not sur-
prising that there is an ongoing search for electrolyte materials that function in the
intermediate temperature range, 200 to 700◦C. A fuel cell useable in this tempera-
ture range may have the fuel flexibility of the high temperature cells, but the lower
demands on the materials associated with the lower operating temperature. Although
molten carbonate fuel cells operate in the upper part of thisrange, a solid electrolyte
would be preferable as it would give a higher mechanical stability and eliminate the
risk of leakage. Thus, a solid oxide electrolyte with high ionic conductivity between
200 and 700◦C is highly sought after.

1.2 Oxygen ion conductors

The solid oxide fuel cells in use today contain an oxygen ion conducting elec-
trolyte, normally consisting of scandia- or yttria-stabilized zirconia. The yttrium
or scandium doping stabilizes the zirconium oxide in the cubic fluorite structure
and introduces oxygen vacancies which gives the materials its high ionic conductiv-
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1.3 Proton conductors

Figure 1.2: Temperature dependence of the conductivity of the oxygen ion conductors yttria-
stabilized zirconia (YSZ), Sm-doped ceria (SDC) and doped lanthanum gallate (LSGM)
compared to the proton conductor BaZrO3 (BZO). Image from [16].

ity [15]. As previously mentioned, the conductivity is onlyhigh enough at temper-
atures above about 800◦C. Another material that is frequently considered is doped
cerium oxide, which has the same structure as stabilized zirconia but a higher ionic
conductivity at lower temperatures. However, this material also has a significant
electronic conductivity and is chemically unstable under fuel cell operating condi-
titons. Extensive research efforts are devoted to alteringthese characteristics, for
example by doping the material [15]. Other kinds of oxide ionconductors include
materials with apatite or perovskite structure. Although there is frequently problems
related to either electronic conductivity or chemical stability the research into these
materials is ongoing [15].

1.3 Proton conductors

In the 1980s, Iwahara and coworkers discovered that the perovskite oxides strontium
and barium cerate would display proton conductivity when doped and exposed to a
hydrogen-containing atmosphere [17–19]. Later, calcium,strontium and barium zir-
conate were also found to be proton conductors [20]. Interestingly, the activation
energies for proton transport turned out to be lower than those for oxygen ion trans-
port, promising a higher conductivity at lower temperatures (see Figure 1.2). Since
then many proton-conducting solid oxides have been discovered [15,21], but barium
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Figure 1.3: Comparison of bulk, grain boundary and total conductivity in BaZrO3. Bulk and
grain boundary conductivities are taken from Ref. [25]. The total conductivity is calculated
assuming a grain size of 1µm.

cerate (BaCeO3) and barium zirconate (BaZrO3) are still two of the most interesting
materials [22]. Of these two oxides BaCeO3 generally displays a higher total pro-
ton conductivity. However, it is chemically unstable in thepresence of CO2, which
makes it unsuitable for fuel cells running on hydrocarbons.BaZrO3, on the other
hand, is chemically stable at fuel cell operating conditions but shows a lower to-
tal conductivity. Interestingly, it has been found that this low total conductivity is
mainly due to that the grain boundaries of the material are highly resistive (Figure
1.3). In contrast, the bulk conductivity is high and compares favourably with that of
other proton-conducting oxides (Figure 1.4) [22–24]. BaZrO3 is the material studied
in this thesis, and the structure of the material can be seen in Figure 1.5.

Related to the problem of blocking grain boundaries is the fact that BaZrO3 is
difficult to sinter, which leads to small grain sizes and thusa relatively high number
of grain boundaries. Efforts to alleviate this problem include forming solid solutions
of BaCeO3 and BaZrO3, and using sintering aids such as ZnO to improve the sin-
terability and increase the grain size. Fabrication methods that favour formation of
larger grains are also being developed (see [21] and references therein).

BaZrO3 is not the only oxide in which grain boundaries have a significant effect
on the conductivity. Grain boundary-related phenomena arealso seen in oxide ion
conductors such as stabilized zirconia and doped ceria [27]and the mixed conductor
strontium titanate [28]. In these materials, the effect of grain boundaries can be
explained by aggregation of charged defects in the boundaries. The resulting net
charge in the grain boundary leads to depletion of defects ofthe same polarity in the
surrounding region, the space charge layers. Several experimental studies suggest
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1.3 Proton conductors

Figure 1.4: Bulk conductivities for a number of proton conducting solid oxides, calculated
from proton concentrations and mobilities. From [26].
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Figure 1.5: The cubic perovskite structure of BaZrO3

that this model is also applicable to BaZrO3 [25,29–34], indicating the existence of
a positive grain boundary charge and depletion of protons inthe space charge zones.

1.4 Thesis aim and outline

In the four papers included in this thesis, we investigate the segregation of positive
defects such as oxygen vacancies and protons to the grain boundaries in BaZrO3
using atomistic simulations. Our aim is to ascertain whether such segregation may
be the cause of the positive grain boundary charge. The thesis is organized as fol-
lows: In the next chapter the defect chemistry of BaZrO3 is introduced, along with a
further discussion of the space charge model. Chapter 3 describes the computational
method and Chapter 4 contains a summary of the results, while Chapter 5 outlines
the direction of future work.
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Chapter 2

Defects in BaZrO3

The aim of this chapter is to introduce the point defects thatare typically present in
BaZrO3 and that are relevant to the proton conductivity of the material. Interaction
of the point defects with grain boundaries is discussed, andthe space charge model
for the effect of grain boundaries on the conductivity is presented. As the introduc-
tion to the defect chemistry of ionic materials given here isnecessarily limited, the
interested reader is referred to [35] for a more detailed description.

2.1 Point defects

The energetic ground state of a crystalline solid is a perfectly ordered lattice. At
temperatures above absolute zero, however, a real materialwill always contain point
defects which increase the system entropy, thereby lowering the free energy. A
point defect can be created by removal of an atom and thus forming a vacancy, or by
placing an atom in a position which would normally not be occupied (interstitial).
An atom in the lattice can also be replaced by an atom of a different species, an
impurity or substitutional defect (see Figure 2.1). Additionally, the defects may
carry a relative charge. As an example, a zirconium ion in BaZrO3 has the charge
+4e. The zirconium ion may be replaced by an yttrium ion, with thecharge +3e.
Relative to the perfect crystal this amounts to an effectivecharge of -1e, since there
will be an excess of negative charge around the substitutional defect. In the Kr̈oger-
Vink notation, which is often used for defects, this would bewritten as Y

′
Zr, where

Y signifies yttrium, the subscript ”Zr” indicates that it occupies a zirconium site and
the apostrophe indicates the negative effective charge. Anoxygen vacancy would
be denoted V••O , where the V stands for vacancy, the subscript ”O” indicatesthat
it occupies an oxygen site and the two dots in the superscriptindicate an effective
charge of +2e. An interstitial +4echarged Zr, finally, would be denoted Zr••••

I .
The introduction of defects can noticeably change several properties of a ma-

terial, from colour (e.g. colour centres in alkali halides)to brittleness and strength
(e.g. the small amounts of carbon present in steel). Our maininterest, however, is

9



2 Defects in BaZrO3

(a) (b)

Figure 2.1: Schematic depicting point defect types, a vacancy (1), an interstitial (2) and an
impurity (3). 2.1(a) shows the lattice atoms in their normal positions while 2.1(b) depicts
the displacements that may occur in the surrounding lattice due to the defect.

the effect on the ionic conductivity. Defects, especially vacancies and interstitials,
are frequently more mobile than ordinary lattice ions and can therefore act as charge
carriers.

In the case of BaZrO3, we wish to introduce protons into the material as a mobile
defect. To achieve this we start by doping the material with trivalent cations on the
zirconium site. As the Zr ion is tetravalent the result will be an effectively negative
defect, A

′
Zr. This is frequently referred to as an acceptor defect, a termused in

semiconductor physics to describe an impurity which has onevalence electron less
than the atom that would occupy the site in the perfect lattice. In a semiconductor
this leads to the formation of an electron hole. Analogously, the dopant atom in
BaZrO3 gives away one valence electron less than the zirconium atomwhen it is
ionized. As a consequence there will be one valence electronmissing in the material,
i.e. an electron hole will form.

Instead of formation of electron holes, acceptor doping maycause a deficiency
of oxygen ions. As oxygen ions in BaZrO3 have a charge of -2e this will create
oxygen vacancies with an effective charge of +2e. It has been shown that oxygen
vacancies will be more abundant than electron holes except at very high oxygen
partial pressure [36]. When no electron holes form, the requirement of total charge
neutrality gives the following relation between the vacancy concentrationcV and the
dopant concentrationcA:

cV =
cA

2
(2.1)

The oxygen vacancies are fairly mobile at intermediate temperatures (down to 300
K) [37] and diffuse through a hopping mechanism (Figure 2.2). Dopant ions on the
other hand will be immobile except at very high temperatures, above 1400 K [33].

In the presence of water vapour, oxygen vacancies can be filled with hydroxide
ions according to the reaction

H2O(g)+V••
O +O×

O ⇋ 2OH•
O (2.2)

Unlike the case of oxygen vacancies and electron holes, bothhydroxide ions and

10



2.1 Point defects

Figure 2.2: Schematic of the vacancy diffusion mechanism. An atom next to the vacancy
(picked out in red) moves to fill the vacancy, which is thereby displaced one step to the right.

oxygen vacancies will be present in the material over a rangeof temperatures and
water partial pressures. Since we cannot assume that one or the other defect will
dominate, the equilibrium defect concentrations will be calculated from the change
in Gibbs’ free energy of the reaction.

2.1.1 Defect equilibrium

In order to arrive at a general expression for the defect concentration we will consider
a model material, consisting of a single element which will be denoted M. Consider
the formation of a single vacancy by removing an atom from thelattice and placing
it on the surface:

MM ⇋ MM +vM (2.3)

As the atom is removed from its site the bonds to neighbouringatoms must be bro-
ken, a process which costs energy. Some of this energy may be regained as new
bonds are formed to other atoms at the surface. Also, the atoms around the vacancy
will be displaced from their lattice positions in a way that minimizes the energy cost
(Figure 2.1). This may in turn cause a small increase or decrease in the volume of
the material. Taken together these changes in volume and internal energy are de-
scribed by the enthalpy of formation,∆H f. Additionally, the vacancy will alter the
lattice vibrations causing a change∆Sf in the vibrational entropy. Finally, there will
be an increase in the configurational entropy of the lattice which we will call∆Sconf.
These processes produce a change in the Gibbs’ free energy ofthe system,

∆G = ∆H f −T(∆Sf +∆Sconf) (2.4)

∆H f and∆Sf both depend on the specific material, but for∆Sconf we can obtain a
general expression at low defect concentrations. Suppose thatND defects are formed
in a lattice containingN sites that the defect might occupy. Then the number of
possible ways to arrange these defects on the lattice is

Ω =

(

N
ND

)

=
N!

ND!(N−ND)!
(2.5)

The configurational entropy contribution is then

∆Sconf = kB lnΩ = kB ln
N!

ND!(N−ND)!
(2.6)

11



2 Defects in BaZrO3

As bothN andND are typically very large numbers we can use Stirling’s approxi-
mation to rewrite the above as

∆Sconf = kB

(

N ln
N

N−ND
−ND ln

ND

N−ND

)

(2.7)

The total Gibbs’ free energy of the system withND defects is

G = Gpure+∆G = Gpure+ND∆H f −NDT∆Sf −T∆Sconf (2.8)

WhereGpure is the Gibbs’ free energy of the lattice without defects. We can differ-
entiate this with with regard toND to obtain the chemical potential of the defect

µD = ∆H f −T∆Sf +kBT ln
ND

N−ND
(2.9)

or, denoting the concentration of defects bycD = ND/N

µD = ∆H f −T∆Sf +kBT ln
cD

1−cD
(2.10)

In equilibrium, the Gibbs’ free energy must have a minimum with respect to changes
in the defect concentration. This means that the chemical potential of the defect,
which is the derivative of the Gibbs’ free energy, must be zero. Assuming that the
number of sites is much larger than the number of defects we can approximate the
denominator in the last term by one and obtain

µD = ∆H f −T∆Sf +kBT lncD = µ◦D +kBT lncD (2.11)

and

cD = exp

(

−∆H f −T∆Sf

kBT

)

(2.12)

The above expression assumes a small number of noninteracting defects dis-
tributed randomly over a large number of sites. If the defects interact with each
other the concentration must be replaced with the activityaD = f cD, where f is a
concentration-dependent activity coefficient.

In the chemical reaction described by equation 2.2, there isnot just one defect
species but two, in equilibrium with a surrounding atmosphere. To find the relation
beteen free energy and concentration in this case we consider a more general reac-
tion, wherea moles of species A andb moles of species B formc andd moles of
species C and D:

aA +bB ⇋ cC+dD (2.13)

The change in Gibbs’ free energy of the entire system for sucha reaction must be
the free energy of the products minus the free energy of the reactants, or

∆G = cµC +dµD −aµA −bµB (2.14)

12



2.1 Point defects

Using equation 2.11 to rewrite the chemical potentials and setting ∆G◦ = cµ◦C +
dµ◦D −aµ◦A −bµ◦B, we find

cc
Ccd

D

ca
Acb

B

= exp

(

−∆G◦

kBT

)

≡ K (2.15)

where concentrations may be replaced by activities for systems with interacting de-
fects, as above. For reactants in the gas phase the activity is taken to be equivalent
to the partial pressure of the gas. The constantK is referred to as the equilibrium
constant of the reaction.

According to equation 2.15, the equilibrium constant of thehydration reaction
described by equation 2.2 is

Khydr =
c2

OH

cVcOpH2O
(2.16)

wherepH2O is the water vapour partial pressure. There are now three species com-
peting for the oxygen sites in the lattice: oxygen ions, oxygen vacancies and hy-
droxide ions. If we let the concentrations be measured per chemical unit (containing
three oxygen sites) this gives the site restriction

3 = cO +cV +cOH (2.17)

and the condition of charge neutrality gives a relation to the dopant concentration
cA:

2cV +cOH = cA (2.18)

Combining these equations and settingκ = pH2OKhydr we get the following expres-
sion for the concentration of hydroxide ions

cOH =
3κ

κ−4

[

1−
√

1− κ−4
3κ

cA

(

2− cA

3

)

]

(2.19)

2.1.2 Proton diffusion

Once incorporated into the lattice the comparatively smallproton remains close to
the oxygen ion, practically embedded in the electron cloud [38]. Apart from the
strong covalent bond to the host oxygen it also forms a weakerhydrogen bond to a
neighbouring oxygen ion. This bond distorts the lattice andbrings the two oxygen
ions closer to each other. The proton rotates around the hostoxygen, forming and
breaking hydrogen bonds with the neighbouring oxygen ions.It may also transfer
to another oxygen ion, a process aided by the lattice relaxations around the protonic
defect [26, 39]. This diffusion mechanism, in which the proton jumps from oxygen
to oxygen, is called the Grotthuss mechanism (see Figure 2.3) [22,37,38].

The proton diffusion process is associated with an activation enthalpy or barrier
∆Hdiff . The height of this barrier is affected by the surrounding lattice, most notably
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2 Defects in BaZrO3

(a) (b) (c)

Figure 2.3: Schematic depicting the movement of a proton in the oxygen sublattice. The
proton will first rotate around the oxygen ion (a) and then transfer to a second oxygen ion
aided by relaxation of the oxygen lattice (b). Figure (c) shows the proton at the second
oxygen.

by the acceptor dopants. The dopant ion will distort the lattice around it, which
may change the oxygen-oxygen distances and thereby alter the activation enthalpy.
Since dopants and protons have effective charges of opposite sign, there may also
be an electrostatic attraction. Additionally, it is thought that the dopants change the
chemical behaviour of the surrounding oxygen ions. These three factors contribute
to the trapping of protons near dopant ions. The strength of this trapping depends on
which dopant element is used. For BaZrO3 it appears that yttrium dopants have the
smallest detrimental effect on proton conduction, possibly due to that it produces a
relatively small change in the behaviour of the oxygen ions [22,40–44].

2.1.3 Diffusion and conductivity

The rate of long-range diffusion in a lattice is expressed through the diffusion co-
efficientD. According to random walk theory, the diffusion coefficientwill depend
on the number of neighbouring sitesn, the fraction of occupied sitesk, the distance
between sitesa and a characteristic frequencyν which describes how frequently the
diffusing particle attempts to overcome the energy barrier. There is also a correlation
factor f which accounts for deviations from a perfectly random walk.Together with
the Gibbs’ free energy∆Gdiff = ∆Hdiff −T∆Sdiff this gives the expression [45]

D(T) =
n
6

f (1−k)a2νexp

(

−∆Gdiff

kBT

)

(2.20)

While the diffusion coefficient can be directly related to lattice structure and
processes on the atomic level, the quantity of interest for experimental and practi-
cal purposes is the conductivityσ. The conductivity depends on both the diffusion
coefficient and the concentration of charge carriers according to

σ = zec
ze

kBT
D (2.21)

wherez is the charge number of the diffusing species,e is the elementary charge and
c is the concentration. The factorzeD/kBT is called the mobility of the defect [26].

14



2.2 Grain boundaries

(a) (b)

Figure 2.4: Schematic depicting construction of a tilt (a) and twist (b) grain boundary from
a slab by rotation by an angleθ.

2.2 Grain boundaries

So far we have considered point defects in an otherwise undisturbed lattice. How-
ever, point defects also interact with higher dimensional defects. In BaZrO3, grain
boundaries in particular have been shown to impede proton transport and lower the
total conductivity of the material.

Grain boundaries are interfaces between two pieces of material of the same
structure and composition, but different orientations. Unlike point defects, grain
boundaries do not have a favourable free energy of formationat any concentration
and a material at perfect thermodynamic equilibrium will therefore not contain any
grain boundaries [35]. Still, grain boundaries may result from the formation pro-
cess. Consider for example solidification of a molten substance. As the temperature
drops below the melting point, solid particles with different orientations will form at
different points in the melt. These solid particles will grow and eventually the sur-
faces will meet. Reorienting the grains to the same orientation would at this point
require a fairly large amount of energy, and if this energy isnot available (e.g. if
the temperature is too low) a grain boundary will form as a metastable state. In the
region close to the boundary the lattice will be distorted and certain material proper-
ties may be different from in the grain interior, for instance the formation energy of
point defects.

When attempting to understand grain boundaries from a theoretical perspective,
it is more convenient to imagine the formation process as starting with a block of
boundary-free material. This block is divided along some direction and one of the
parts is rotated with respect to the other. The blocks are then joined, and as the
lattice orientations no longer match a grain boundary has been formed. If the axis of
rotation is parallel to the grain boundary it is characterized as a tilt grain boundary,
while if the axis of rotation is perpendicular to the boundary it is called a twist grain
boundary (see Figure 2.4). The process of formation is accompanied by an increase
in the free energyγdA, wheredA is the grain boundary area andγ is termed the grain
boundary energy.

Although grain boundaries are metastable, the energies required for reorienta-
tion are huge and any movement of the boundary itself will occur on a timescale
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2 Defects in BaZrO3

Figure 2.5: An RC circuit (left) and the corresponding Nyquist plot (right). The arrow
indicates the direction of increasing frequency.

substantially longer than that of equilibration of point defects. For our purposes it
is therefore sufficient to consider grain boundaries as fixedstructural features of the
material.

2.2.1 Measuring grain boundary conductivity

To investigate experimentally the effects of grain boundaries on the properties of a
material one must find a way to separate the grain boundary andbulk properties.
For the case of ionic conductivity in oxides, it has been found that impedance spec-
troscopy provides a way to do so. In impedance spectroscopy,a voltage or current
is applied to a sample and the resulting current is measured.The most common ap-
proach is to apply a signal consisting of a single-frequencyac voltage, and extract
the impedance for that frequency from the phase shift and amplitude of the current
response. The frequency dependent impedance is obtained byrepeating the process
for a wide range of frequencies. To interpret the impedance an equivalent circuit
is constructed, consisting of ideal resistances, capacitances and inductances which
would together give the same impedance as the sample [46]. For a single-crystal
ionic conductor this circuit may consist of a resistance anda capacitance connected
in parallel (RC circuit). The value of the resistance that gives the best fit to the
impedance data is then interpreted as the total resistance of the sample. Impedance
is frequently presented in the shape of a Nyquist plot, with the real part of the com-
plex impedance on thex axis and the imaginary part on they axis. Each plotted point
will then correspond to the impedance at a certain frequency. The Nyquist plot for
theRCcircuit mentioned above is a semicircle, see Figure 2.5.

For polycrystalline BaZrO3 at moderate temperatures the impedance plot shows
two semicircles, a smaller one at high frequencies and a larger one at lower frequen-
cies (see e.g. [23]). The high-frequency semicircle is generally taken to correspond
to transport in grain interiors or along the grain boundary,while the low-frequency
semicircle is taken to correspond to transport across the grain boundaries. An equiv-
alent circuit may then be constructed as twoRC circuits connected in series, one
corresponding to transport across grain boundaries and theother to transport along
grain boundaries or in the grain interior. In order to extract the conductivity of
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2.2 Grain boundaries

Figure 2.6: Two dimensional representation of the brick layer model: Square grains (light
grey) separated by grain boundaries of uniform thickness (dark grey)

grain interior and grain boundaries it is necessary to use a model for the sample mi-
crostructure. A simple yet effective model is the brick layer model [47], in which
the grains are considered to be cubic and separated by grain boundaries of a constant
width that is much smaller than the grain size (see Figure 2.6). Using this model it
is possible to show that the impedance curve typical of polycrystalline BaZrO3 cor-
responds to the case where the grain interior conductivity is higher than the grain
boundary conductivity. It is thus possible to determine separate resistances and ca-
pacitances for the grain interior and grain boundary. With knowledge of the physical
dimensions of the sample and the average grain size this enables us to obtain both the
grain boundary and grain interior conductivity as well as the grain boundary width.

2.2.2 Space charge

Impedance spectroscopy results show that the proton conductivity of grain bound-
aries in BaZrO3 is orders of magnitude lower than that of the grain interior [22–24].
To explain this effect we turn to the space charge model. As previously mentioned,
the distortion of the lattice structure near the boundary can result in a difference in
point defect formation energies compared to the undistorted lattice. Mobile defects
that are more stable in the grain boundaries will therefore aggregate in the distorted
region, the grain boundary core. If the defects are charged this results in a charged
grain boundary core, which must be compensated by depletionof charged defects of
the same polarity and accumulation of defects of opposite polarity in the surround-
ing region, the space charge zone (see Figure 2.7). The charge accumulation in the
core creates a potential barrier that impedes transport across the boundary.

For a quantitative understanding of the implications of space charge we consider
again the defect chemistry of the material. The chemical potential of an uncharged
defect is given by equation 2.11. In the case of a charged defect in an electrostatic
potentialφ, an additional termzeφ must be included to account for the electrostatic
energy. The chemical potential is therefore

µ= µ◦ +kBT lnc+zeφ (2.22)

Consider now a grain boundary situated atx = 0. In equilibrium, the chemical po-
tential at any pointx in the region around the grain boundary has to be equal to the
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Figure 2.7: Schematic of a grain boundary with space charge layers in BaZrO3, assuming a
constant dopant concentration

chemical potential in bulk, or infinitely far from the boundary:

µ◦(∞)+kBT lnc(∞)+zeφ(∞) = µ◦(x)+kBT lnc(x)+zeφ(x) (2.23)

Which may be rewritten

c(x)
c(∞)

= exp

(

−∆µ◦(x)+ze∆φ(x)
kBT

)

(2.24)

This relates the concentration of defects to the potential difference∆φ(x) = φ(x)−
φ(∞) and the difference in standard chemical potential∆µ◦(x) = µ◦(x)− µ◦(∞).
However, the potential must necessarily also depend on the charge densityρ(x) =

∑i zici(x) according to Poisson’s equation

d2φ
dx2 = −ρ(x)

ε0εr
(2.25)

Combining equations 2.24 and 2.25 we obtain the Poisson-Boltzmann equation

d2∆φ
dx2 = − 1

ε0εr
∑
i

ci(∞)zi exp

(

−∆µ◦i (x)+zie∆φ(x)
kBT

)

(2.26)

where the sum runs over all defect types.
Within the space charge model, the structure of the materialin the space charge

layers is considered to be undisturbed. Therefore,∆µ◦(x) is expected to be zero
and the defect concentration depends only on the electrostatic potential. In fully
hydrated BaZrO3 only protons can respond to the electrochemical potential,while
the dopant ions are immobile and fairly evenly distributed.We may then assume that
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2.2 Grain boundaries

the dopant concentration is constant throughout the material. If we also use semi-
infinite boundary conditions and neglect the depleted defects in the space charge
layers it is possible to obtain an analytical expression forthe proton concentration in
terms of the potential barrier at the boundary,∆φ(x = 0),

cH+(x) = cH+(∞)exp

(

−1
4

(

x−λ∗

LD

)2
)

(2.27)

WherecH+ is the proton concentration,

LD =

√

kBTεrε0

2e2cA
(2.28)

is the Debye length (withcA the dopant concentration) and

λ∗ = 2LD

(

e∆φ(x = 0)

kBT

)1/2

(2.29)

is the space charge layer width. This is termed the Mott-Schottky case, in contrast to
the Gouy-Chapman case in which all charged defects are mobile. By making use of
the relationship between conductivity and concentration (equation 2.21) and assum-
ing that the mobility is independent ofx it is possible to relate the grain boundary
conductivity to the potential barrier height and thereby obtain an estimate of the
potential barrier from experimental data, as has been done in Refs. [25,29,31,32].

In the grain boundary core, on the other hand, a nonzero∆µ◦ for certain defects
is the driving force behind accumulation of charge in the grain boundary. Assuming
a value of∆µ◦ it is possible to calculate both barrier height and concentration profiles
of all defects numerically [48].

Using atomistic simulations one may also calculate the difference in formation
energy for defects in the bulk and grain boundary, a difference that constitutes the
dominant term in∆µ◦(x). In the papers included in this thesis, such calculations
have been performed for a number of grain boundaries in BaZrO3 using both den-
sity functional theory and an interatomic potential. The results have been used in
numerical calculations of space charge barrier heights anddefect concentrations.
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Chapter 3

Method

The aim of atomistic simulation is to build understanding ofmaterials from the bot-
tom up. By modeling the interactions of the electrons and atomic nuclei that a ma-
terial consists of we hope to reproduce and understand its properties. In this thesis
two main theoretical approaches are used to this end, density functional theory and
interatomic model potentials. This chapter contains a brief overview of each of these
approaches, highlighting some of the more important concepts. However, it is not
intended to be a detailed introduction. For a more thorough treatment of density
functional theory readers are referred to Refs [49–51], andsome uses of model po-
tentials are described in Refs. [52] and [53].

The system of interacting electrons and nuclei that constitute a material can
be fully described by a quantum-mechanical wavefunctionΨ(r1,r2...,R1,R2...; t),
whereri denotes the position of electroni andRI denotes the position of nucleusI .
This wavefunction is the solution to the time-dependent Shrödinger equation

HΨ(r1,r2...,R1,R2...; t) = EΨ(r1,r2...,R1,R2...; t) (3.1)

whereE is the total energy corresponding toΨ and H is the system Hamiltonian:

H = −1
2∑

i
∇2

i +
1
2 ∑

i 6= j

1
|ri − r j |

−∑
i,I

ZI

|ri −RI |
(3.2)

−1
2∑

I

∇2
I

MI
+

1
2 ∑

I 6=J

ZIZJ

|RI −RJ|

In the above equation atomic units are used, so that~ = me = e= 1 andZI andMI

are the ionic charge and mass. This Shrödinger equation can be solved with relative
ease for small systems such as hydrogen molecules (two electrons and two nuclei),
but for larger systems containing more electrons and nucleiit becomes increasingly
difficult due to the rising number of degrees of freedom. As anexample, a unit cell
of BaZrO3 contains five nuclei and 120 electrons, which considering the position of
each particle in three dimensions gives 375 degrees of freedom. Macroscopic sys-
tems, on the other hand, contain on the order of 1023 atoms. As a first step towards
making the problem more tractable one can note that electrons have a much lower
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mass than nuclei. Even the hydrogen nucleus, which consistsof a single proton, is
about 1800 times heavier than an electron. We can therefore assume that the nuclei
move much more slowly than the electrons. The movements of electrons and nuclei
are thus only weakly coupled and the state of the electrons can be calculated with re-
spect to unmoving nuclei. This is called the Born-Oppenheimer approximation [54].

The problem of the system of electrons must obviously be solved using quan-
tum mechanics. For the more massive nuclei, however, quantum mechanical effects
are quite small. It is therefore common to treat the nuclei asclassical particles re-
sponding to forces caused by the electrons and other nuclei.Since the total energy
of the system depends on the ionic positions the force on ionI can be found as the
derivative of the total energy with respect to the position of the ion:

FI = −∂Etot

∂RI
(3.3)

according to the Hellman-Feynman theorem [55]. With knowledge of these forces
one can for example integrate the equations of motion to obtain the dynamics of the
system or use a minimization procedure to find the ground-state ionic configuration.

The two approaches to atomistic simulations used in this thesis both employ the
above approximations. Density functional theory is a first-principles method that
replaces the problem of interacting electrons with one of noninteracting electrons
in an effective potential. With interatomic model potentials on the other hand, the
electronic problem is circumvented by choosing a potentialshape and fitting pa-
rameters for specific materials to experimental data or results from first-principles
calculations.

3.1 Density functional theory

With the Born-Oppenheimer approximation in use, the effectof the fixed nuclei on
the electrons can be expressed as an external potentialVext. The system Hamiltonian
is then simplified to

H = −1
2∑

i
∇2

i + ∑
i 6= j

1
|ri − r j |

+Vext (3.4)

Even with the nuclear degrees of freedom removed, solution of the Shr̈odinger equa-
tion is a formidable task. Considering again our BaZrO3 unit cell we see that we have
removed 15 out of 375 degrees of freedom, meaning that a substantial complexity
still remains. Moreover, the electrons interact with each other as described by the
second term of the Hamiltonian. This means that one cannot solve the equation for
one electron without considering the solutions for all other electrons simultaneously.
It is possible to solve this problem for small systems with a few tens of electrons,
as well as for a homogeneous electron gas, but for larger molecules and solids the
computational demands are too high [49].

22



3.1 Density functional theory

3.1.1 The Hohenberg-Kohn theorems

Modern density functional theory builds on two theorems proved by Hohenberg
and Kohn in 1964 [56]. According to the first theorem, each ground state density
n0(r) can only result from one specific external potentialVext, so that the potential
is uniquely determined by the ground state density up to an additive constant. If the
ground state density determinesVext it must also give the HamiltonianH, so that
all information about the system can be obtained fromn0(r). The second theorem
concerns the relation between the ground state density and energy. The energy of a
system with densityn(r) can be expressed as a functional

E[n(r)] = F [n(r)]+
Z

n(r)Vext[n(r)]dr (3.5)

whereF [n(r)] represents the contribution from kinetic energy and electron-electron
interactions. The ground state density is the density that minimizes this functional
and yields the ground state energyE0:

E0 = E[n0(r)] = min
n(r)

E[n(r)] (3.6)

This means that minimization of the energy functional yields the ground state elec-
tron density. The ground state density is just a function of position, so this reduces
the number or degrees of freedom to three, regardless of how many electrons are in-
cluded in the system. On the other hand it requires an explicit form of the functional
F [n(r)], which represents kinetic and interaction energy. Due to the complexity
added by the interaction term this functional is unknown.

3.1.2 The Kohn-Sham equations

In 1965, Kohn and Sham [57] suggested the following form for the functionalF :

F [n(r)] = Ts[n(r)]+EH[n(r)]+Exc[n(r)] (3.7)

whereTs[n(r)] is the kinetic energy of a system of noninteracting electrons and
EH[n(r)] is the Hartree energy

EH[n(r)] =
1
2

Z

n(r)n(r′)
|r− r′| drdr′ (3.8)

which is a mean-field approximation of the electrostatic interaction between elec-
trons. A distinct advantage of this functional form is that the expressions for these
two terms are known exactly. The exchange and correlation term Exc[n(r)] then in-
cludes the many-body contributions to the kinetic energy aswell as exchange effects
from the Pauli principle and correlation effects due to electrostatic repulsion. Us-
ing this expression forF it is possible to rewite the problem as one of a system of
noninteracting electrons moving in an effective potentialVeff:

Veff = VH(r)+Vxc(r)+Vext(r) (3.9)
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whereVH(r) =
R

(n(r′)/|r−r′|)dr′ andVxc(r) = δExc[n(r)]/δn(r). Using this effec-
tive potential one can solve the Kohn-Sham equations

[

−1
2

∇2 +Veff

]

φi(r) = Eiφi(r) (3.10)

and obtain the electron density asn(r) = ∑i fi |φi|2, where fi is the occupation num-
ber of the independent-electron state described byφi . Since the Hartree potential
depends onn(r), the Kohn-Sham equations have to be solved by guessing an initial
density and solving the equations to obtain a new density, which is used to solve the
equations again. The process has to be repeated until the solution is self-consistent,
i.e. the calculation returns the same density as was used to solveit. This will yield
the ground state densityn0(r) and the ground state energy

E0 = ∑
i

fiEi −EH[n0(r)]+Exc[n0(r)]−
Z

n0(r)Vxc(r)dr (3.11)

The Hohenberg-Kohn theorems tell us that it is possible to replace the many-
electron wave function by the electron density as the basic variable, and that the
ground state can be found by minimizing the energy functional. The Kohn-Sham
equations provide a practical way of accomplishing this by transforming the prob-
lem of interacting particles into one of noninteracting particles in an effective po-
tential. However, this is done by gathering the many-body effects into the exchange
and correlation term. The functional form of this term is still unknown, and in order
to perform density functional calculations we therefore have to resort to approxima-
tions. The next section will describe the two most common exchange and correlation
functionals, the local density approximation and the generalized gradient approxi-
mation.

3.1.3 Exchange-correlation functionals

In their original paper on density functional theory, Kohn and Sham [57] suggested
that the exchange-correlation functional could be approximated using results for a
homogeneous electron gas. At each pointr, an exchange-correlation energy density
εxc is defined as that of a homogeneous electron gas with densityn(r). For the
homogeneous electron gas, the exchange energy densityεx is known exactly and
the correlation energy densityεc can be obtained from Monte Carlo simulations
[58]. Taking the total exchange-correlation energy density to beεxc = εx + εc the
functional can be written

Exc[n(r)] =
Z

n(r)εxc(n(r))dr (3.12)

This is called the local density approximation or LDA. It hasthe advantage of be-
ing quite simple and has also been successful in reproducinge.g. bond lengths and
vibrational frequencies, especially for systems with a slowly varying electron den-
sity [49]. However, the LDA frequently overestimates binding energies between
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atoms [59]. This may be attributable to that LDA produces electronic densities that
are too homogeneous compared to those obtained with more exact methods in cases
where this is possible. Moreover, systems with strongly correlated electrons may be
poorly reproduced [49].

While the LDA uses the exchange and correlation energy for a homogeneous
system, all real systems will have an inhomogeneous electron density. It is possible
to take these inhomogenieties into account by including thegradients of the particle
density in the exchange-correlation functional:

Exc[n(r)] =
Z

n(r)εxc(n(r, |∇n(r)|)dr (3.13)

However, a direct expansion of the energy density in terms ofthe gradient of the
electron density will not lead to any improvement over the LDA. This is due to that
the expansion is valid for slowly varying electron densities, so the large fluctuations
in density in a real material causes them to break down. Gradient expansions that
have been modified to counter this effect are termed generalized gradient approxi-
mations (GGA), and they typically yield more accurate binding energies and bond
lengths than LDA [49, 51]. As there are many different ways todo the expansion
in terms of the gradients, there are also many different kinds of GGAs. Some of
these are parametrized using experimental data on bond lengths or binding energies,
while others rest on theoretical results and formal requirements such as sum rules or
cancellation of self-interaction [49]. The GGA functionalused for most of the cal-
culations in this thesis is called the Perdew-Burke-Ernzerhof (PBE) functional [60]
and it is an example of the second category.

A problem common to both LDA and GGA functionals is a severe underesti-
mation of the band gap in semiconductors and insulators. Within density functional
theory, the band gap can be seen as a sum of two contributions.One is the differ-
ence between the Kohn-Sham energy eigenvalues of states just above and just below
the gap. The other contribution comes from the exchange-correlation functional. It
has been shown that the exact exchange-correlation functional must display a dis-
continuity as a function of the number of electrons in the system at the band gap,
as a consequence of the addition of an electron to the conduction band [61–64]. In
LDA and GGA the discontinuity is not included, leading to an underestimation of
the bandgap. This may also give rise to errors in calculations of defect formation
energies as the creation of defects may involve placing electrons in states that would
be unoccupied in the pure material.

3.1.4 Practical implementation

As mentioned in section 3.1.2, solving the Kohn-Sham equations requires an iter-
ative procedure due to the presence of the electron density in the Hartree potential
and the exchange-correlation term. The initial value ofn(r) will be a guess, some-
times based on the electron densities of noninteracting atoms. This electron density
is used to construct the effective potential and to solve theKohn-Sham equations.

25



3 Method

The obtained Kohn-Sham wavefunctions are used to calculatea new electron den-
sity, which is compared to the old one. If they differ the process must be repeated
until the electron density is self-consistent. When a self-consistent energy density
has been reached the ground state energy can be calculated. It is possible to use
the obtained density as input density in the following step,but in practice the output
density is mixed with the old input density as this leads to quicker convergence. It
is also common to use the energy rather than the electron density to determine if
the calculation is converged, so that the iterations are stopped when the change in
energy between successive iterations is lower than a specified limit.

To solve the Kohn-Sham equations it is also necessary to construct a mathemat-
ical representation of the one-electron wavefunctionsφi . One way to do so is to
expand the wavefunctions in a basis set, which transforms the Shr̈odinger equation
into a linear eigenvalue problem. There are many possible basis sets which are suit-
able for different systems. Solid materials like the ones considered in this thesis can
often be represented by a periodically repeated unit cell, which makes it natural to
use a basis set of plane waves along with periodic boundary conditions. According
to Bloch’s theorem [65] the wavefunctions in the basis set can then be written as

Φn,k(r) = un,k(r)eik·r (3.14)

wheren is the band index,k is a reciprocal space vector in the first Brillouin zone of
the unit cell andun,k(r) is a function with the same periodicity as the system. This
function can in turn be expanded in terms of the reciprocal lattice vectorsG

un,k(r) = ∑
G

cn,k+GeiG·r (3.15)

wherecn,k+G are expansion coefficients. The basis set wave functions canthus be
written as a sum over all reciprocal lattice vectors

Φn,k(r) = ∑
G

cn,k+Gei(k+G)·r. (3.16)

In principle the number of reciprocal lattice vectors is infinite, so for practical im-
plementations this sum must be truncated. It is customary toset a cutoff energyEcut

so that for eachk, only reciprocal lattice vectors such that1
2|k + G|2 ≤ Ecut are in-

cluded in the summation. The value ofEcut must be determined for each system by
gradually increasing the cutoff energy until sufficient convergence is observed.

The above approach is excellent for perfect crystalline solids, which can be com-
pletely described by a small unit cell. However, many interesting systems contain
defects that destroy the periodicity. To study such a systemone can construct a
supercell, which is larger than the ordinary unit cell and contains the desired defect.

A disadvantage of the plane wave basis is that the sum over reciprocal lattice
vectors converges slowly for rapidly varying functions. Electronic wave functions
tend to oscillate considerably close to the atomic nuclei, so that to get an accurate
description a very high cutoff energy is required. However,the electrons that are
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localized near the core are rarely important in chemical bonding, whereas the va-
lence electrons that do contribute to bonds reside further away from the nucleus. It
is possible to take advantage of this by treating the core andvalence electrons dif-
ferently, in a way that reduces the cutoff energy and the demand on computational
resources. A very common approach is to replace the potential arising from the
nucleus and core electrons by a pseudopotential. At points further away from the
nucleus than a specific cutoff radius, the pseudopotential should produce wavefunc-
tions that coincide with those that would be obtained if all electrons were included
in the calculation. Closer to the nucleus, however, the wavefunctions are consider-
ably smoother than in the all-electron case, enabling the use of lower cutoff energies.
Another, related approach is that of projected augmented waves (PAW). Here, use is
made of the fact that the wavefunctions are almost spherically symmetric close to the
nucleus, regardless of the surroundings. The core can therefore be more appropri-
ately treated with spherically symmetric basis functions,while the valence electrons
are still described with the plane waves appropriate for thesupercell structure [51].

3.2 Interatomic potentials

Density functional theory provides a way of making accuratepredictions about ma-
terials based on the quantum mechanical principles that govern their properties.
However, density functional theory is a computationally intensive method and as
such it is limited to systems containing up to 1000 atoms. It may sometimes be nec-
essary to study larger systems in order to capture essentialfeatures. For such systems
it is common to use interatomic model potentials that are fitted either to experimental
results or to data from first-principles calculations. Thishas the advantage of reduc-
ing the computational effort considerably and enables study of systems containing
hundreds of thousands of atoms and dynamics on the time scaleof nanoseconds. On
the other hand, model potentials give a less accurate description of the interactions
within the system.

Interatomic model potentials exist in many different forms, and the choice of
which form to use depends on what type of interaction one wishes to describe. If
the atoms involved do not share electrons but interact through van der Waals or
ionic forces, the total potential energy may be quite well described as a sum of the
interactions of all atom pairs. In these cases one may use fairly simple pair-wise
potentials. On the other hand, description of covalent or metallic bonds require
more than two atoms to be considered simultaneously in what is called many-body
potentials. In the case of covalent bonding it is also commonto assign all bonds
prior to running the simulation, which may give a good description of directionality
and bond angles but does not allow for chemical reactions to be modelled in the
simulation. For an element which can form many types of bondsthere will also be
many types of potentials, and it is generally not possible touse the same potential to
describee.g. the interaction between oxygen ions in an oxide and oxygen ions in an
O2 dimer. This lack of transferability makes it difficult to calculate such things as
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formation energies of materials.
The material studied in this thesis, BaZrO3, is characterized mainly by ionic

bonding. We have therefore chosen to use a pair potential of the Buckingham type

Ui j (r i j ) = Ai j exp

(

− r i j

ρi j

)

−Ci j

r6
i j

+
qiq j

r i j
(3.17)

wherer i j is the distance between atomsi and j, qi andq j are the charges of the atoms
andAi j ,ρi j andCi j are constants. The first term in this equation describes the Pauli
repulsion between atoms at short distances. The second represents the van der Waals
interactions and the third the long-range Coulombic interaction. This potential form
thus seems to capture the essential features of ion-ion interaction, which dominates
the bonding in BaZrO3. It is also possible to incorporate the polarizability of the
ions into the model by treating every ion as consisting of twoparts, a massive core
and a massless shell. The charge of the ion is distributed over the two components
which are connected by a spring, allowing for a certain degree of polarization [66].

One important aspect of doped, protonated BaZrO3 which is not well described
by this potential is the hydroxide group which contains a covalent bond. The com-
mon approach is to model this interaction with a separate potential and describe
the oxygen to which the hydrogen is connected differently than the other oxygen
ions. This is straightforward for static simulations [43] but if one wishes to study
the dynamics of proton motion it requires a method for breaking and forming of the
covalent bond during the simulation. Such methods have beenconsidered by for
example van Duin et al. [67] and Raiteri et al. [68]. This approach has not been used
in the present thesis as we have elected to study only unprotonated materials with
the model potential.

3.3 Defects in periodic supercells

When conducting a simulation using density functional theory we are limited to sys-
tems of less than 103 atoms. If such a small system is treated as an isolated sample,
the number of atoms positioned on the surface becomes large (about 600 in a system
of 103 atoms) which causes unwanted surface effects. With interatomic potentials,
the maximal system size of 106 atoms leads to about 6· 104 surface atoms, still a
significant portion of the system. The preferred solution tothis problem is to use
periodic boundary conditions, constructing a computational supercell of a manage-
able size and allowing it to repeat endlessly in space. This rids the simulation of
all surfaces and instead provides an approximation of an infinite material. However,
it introduces new issues in simulations of nonperiodic structures such as surfaces,
interfaces and point defects. In general, density-functional calculations are more
affected by these problems due to the smaller system sizes.

The introduction of a defect in a material will cause the surrounding atoms to
be displaced from their original positions (see Chapter 2). In a simulation with
periodic boundary conditions, this elastic distortion of the lattice will extend beyond
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3.3 Defects in periodic supercells

the simulation supercell. In this case the defect will interact elastically with the
images of itself that are created by the periodic boundary conditions, which will
lead to a discrepancy between the calculated defect energy and that of an isolated
defect. The discrepancy will become smaller the larger the supercell is, and it has
been shown from calculations on isotropic elastic media that the error depends on
the supercell size asL−3, whereL is the length of the supercell [69].

In the case of a charged defect there will also be an electrostatic interaction be-
tween the defect and its periodic images. If the supercell were allowed to carry
a net charge the electrostatic energy would become infinite,so to avoid this a ho-
mogeneous background charge with the same magnitude as the defect charge but
opposite sign is added. With this addition, it has been shownthat the leading term
in the error from electrostatic interactions is proportional to L−1 [70, 71]. The elec-
trostatic interaction is thus more long-ranged than the elastic interaction. However,
the correction formula suggested in Refs. [70] and [71] doesnot improve conver-
gence of the energy with respect to cell size for all types of systems and supercell
geometries. Therefore, a number of extensions and improvements of this formula
have been suggested [72–78]. Some studies also suggest thatmaking calculations
for several different supercell sizes and extrapolating tothe value for an infinite cell
is a more reliable method [79]. A review of some of these correction schemes can
be found in Ref. [80].

In the present study, calculations have been made with different supercell sizes
to provide an estimate of the possible error in defect energy. In addition, many of the
calculations of charged point defects are made to obtain a segregation energy, which
is the difference between the formation energies of two defects of the same kind
but in different environments. As long as the supercells used are of approximately
the same size and shape, many of the errors arising from the periodic boundary
conditions should be the same in the two calculations. Therefore, the errors will
largely cancel in the segregation energy.

29



3 Method

30



Chapter 4

Results

As was mentioned in Chapter 2, the predominant explaination for the low grain
boundary conductivity in BaZrO3 is that positively charged defects in the grain
boundary core create a potential barrier that causes depletion of protons from the
surrounding space charge zones, preventing transport across the boundary. Using
density functional theory, we have studied segregation of oxygen vacancies and pro-
tons to a number of tilt grain boundaries. In two of these grain boundaries the grains
are tilted with respect to each other around the[110] direction. The first has a (111)
plane as grain boundary plane and is therefore referred to asthe (111)[110] grain
boundary, while the second has a (112) plane as grain boundary plane and is re-
ferred to as the (112)[110] grain boundary. Analogously, the third is referred to as
the (210)[001] grain boundary. For the (112)[110] and (210)[001] boundaries we
have also considered different translations of the grains relative to one another. The
translations are expressed in units of the lattice period inthe direction of the dis-
placements. Thus, if the (112)[110] grain boundary is displaced byb

√
2a0 in the

[110] direction and byc
√

3a0 in the[111] direction this is written as (112)[110](b,c)
(a0 is the lattice constant). Typically, the displacement (0,0) refers to a symmetric
grain boundary (see Figure 4.1).

We find that both vacancies and protons segregate to these grain boundaries, but
with differing strength. The segregation energy of a defectis defined as the differ-
ence in total energy between a supercell with a defect in the position under consider-
ation and a supercell with a defect in a reference state. A negative segregation energy
therefore signifies that the defect is more stable in the grain boundary than in bulk.
The reference state is taken to be as far away from both grain boundaries in the super-
cell as possible. As is first reported in Paper I, vacancies segregate quite strongly to
the symmetric (112)[̄110] grain boundary, with the most favourable segregation en-
ergy being about -1.5 eV. In Paper IV, the (210)[001](0,1/2)grain boundary shows
a a similarly low segregation energy, while the other considered grain boundaries
have segregation energies around -0.5 eV (Paper III). Protons segregate to the grain
boundaries with segregation energies near -0.8 eV, except for the (210)[001](0,1/2)
grain boundary where the proton segregation energy is -1.32eV (Papers III and IV).

Due to the limitations of density functional theory with regard to supercell size

31



4 Results

(a)

(b)

(c)

Figure 4.1: Creating the (112)[110] grain boundary. The block in 4.1(a) is cut perpendicular
to the [112] and [1̄12] directions. The shaded area is removed. Tilting around the[1̄10] di-
rection produdes the symmetric configuration in 4.1(b). Displacement by 2/3 lattice periods
in the [111] direction creates 4.1(c). Dashed lines indicate the grain boundary plane.
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that are described in Chapter 3 the grain boundaries that can be studied with this
method have a small repeating unit and are fairly well ordered. In Paper II, the in-
teratomic potential has been used to extend the investigations to more complicated
grain boundary structures. The model potential predicts vacancy segregation en-
ergies similar to those given by density functional theory for the (111)[̄110] and
(112)[1̄10](0,2/3) grain boundaries. For a set of larger grain boundaries with the
[1̄10] direction as tilt axis it predicts vacancy segregationenergies between -1 and
-2 eV. Proton segregation has not been studied with the modelpotential.

Although the above results indicate that positive defects segregate to the grain
boundaries, the effect on the conductivity is still unclear. To facilitate comparison
with experimental results we use a one-dimensional thermodynamic space charge
model. From the space charge model it is possible to obtain both the potential bar-
rier height and the defect concentrations, given a set of defect segregation energies.
The segregation energies used here are results of the atomistic simulations, corre-
sponding to ground state properties. At nonzero temperatures there should also be
an entropic contribution to the defect energy, arising fromlattice vibrations. Here,
this effect is assumed to be similar in bulk and the grain boundary, so that it cancels
in the segregation energy.

In the first two papers, only segregation of vacancies is considered. The space
charge model used in Paper I treats only segregation to the sites with the most
favourable segregation energy in the core, while in Paper IIa slightly more com-
plex model is used. Here, the core is modeled as a stack of atomic layers, so that
the segregation energy of each site and its position in the core is taken into ac-
count. Both segregation energies obtained from density functional theory (Paper I)
and model potential calculations (Paper II) result in potential barriers comparable
to those obtained from conductivity measurements. Additionally, the results show
that even under wet conditions a substantial fraction of thecore sites are still va-
cant rather than hydrated. In Paper II we also consider the influence of the dopant
concentration. Contrary to experimental results, neither increased total dopant con-
centration nor aggregation of dopants in the grain boundarycore are found to lower
the potential barrier.

In Papers III and IV, we consider segregation of both vacancies and protons with
the same type of space charge model that is used in Paper II. Protons are seen to ac-
cumulate in the grain boundaries and are in fact more abundant than vacancies in all
grain boundaries at low temperatures. At higher tempertures, protons still dominate
in grain boundaries such as the (111)[1̄10] or (210)[001], where the proton segrega-
tion energy is similar to or more negative than the vacancy segregation energy. In the
(112)[1̄10](0,0) grain boundary, however, the vacancy segregation energy is almost
twice as large as the proton segregation energy and vacancies dominate in the grain
boundary core above 700 K. In this grain boundary and in the (210)[001](0,1/2)
boundary protonation does not affect the height of the potential barrier, while in the
other boundaries protonation increases the barrier. It mayappear surprising that pro-
tons, which have a charge of +1, can generate the same potential as vacancies with
a charge of +2. However, the lower charge of protons also means that they repel
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each other less strongly. The proton concentration can therefore be higher than the
vacancy concentration unless all sites in the boundary are occupied by defects.

In summary, it is clear that both oxygen vacancies and protons segregate to sev-
eral grain boundaries in BaZrO3. When introduced into the space charge model,
the segregation energies obtained from density functionaland model potential cal-
culations give high enough charge in the core to produce substantial potential bar-
riers. At temperatures relevant to experimental measurements (400-900 K) barri-
ers between 0.5 to 0.7 V are obtained, which is consistent with experimental re-
sults [29,31,32,81]. This confirms the applicability of thespace charge model as an
explaination for the low grain boundary conductivity in BaZrO3.
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Chapter 5

Outlook

Although it would seem clear that segregation of vacancies and protons causes for-
mation of space charge layers in grain boundaries of BaZrO3, there are some issues
in need of clarification. The first is the relation between thedopant content and the
potential barrier height. Experimental evidence suggeststhat an increased dopant
content should decrease the potential barrier and that thiseffect should be especially
pronounced if the dopants are able to segregate to the grain boundary [25, 29–34].
Simulation results presented here cannot explain this effect. Rather, it appears that
an increased dopant concentration in the core also leads to an increase in the con-
centration of positive defects. This is related to the fact that in the models used here,
positive defects are found not to occupy all available low-energy sites in the bound-
ary core. The core concentration is instead limited by the electrostatic potential,
which is given by the total core charge. An increase in the number of negative de-
fects is therefore followed by an increase in the number of positive defects, keeping
the total core charge constant. Other studies have shown that if the low-energy sites
in the core are saturated with positive defects, an increasein the dopant concentra-
tion does lower the potential barrier [48].

Another closely related issue is the high defect concentrations in the core pre-
dicted by the space charge model. The calculations of defectsegregation energies are
done for the dilute limit, assuming no interaction with other defects. This approxi-
mation is likely not valid in grain boundaries where 30 % of the sites are occupied by
defects, as has been seen in e.g. Paper 3. Therefore, defect-defect interactions con-
stitute an important subject of further study. Recent results suggest that interactions
among oxygen vacancies may effectively reduce the number ofavailable sites in the
grain boundary core by as much as 75 % [82]. This would have consequences for
the effects of dopant segregation discussed above, since itmeans that the core can
become effectively saturated with positive defects at a lower concentration. Segrega-
tion of dopant ions may then actually decrease the core charge, as no more positive
defects can enter the core. However, to fully elucidate thisissue it is necessary to
consider also interactions between vacancies and dopants and between hydroxide
ions and other defects.

Lastly, the present work is silent on the mechanism behind segregation of both
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oxygen vacancies and protons. While in some cases it is tempting to explain the
low segregation energy of vacancies as an effect of the smalloxygen-oxygen dis-
tances occuring in boundaries (e.g. the (112)[1̄10] boundary, paper I), in other cases
this explaination seems less applicable as the oxygen-oxygen distances are practi-
cally unchanged (e.g. the (111)[1̄10] boundary). In addition, the relation between
the oxygen vacancy and proton segregation energy should be clarified, as the pro-
ton segregation energy has been found to be sometimes more and sometimes less
negative than the vacancy segregation energy.

In conclusion, BaZrO3 is one of the most promising solid oxide proton conduc-
tors for fuel cell applications due to its chemical stability and high grain interior
conductivity. However, BaZrO3 is also quite difficult to sinter and therefore often
displays small grain sizes, which results in a relatively large amount of grain bound-
aries. Additionally, the grain boundaries are shown to havea high resistance which
reduces the total conductivity substantially. The presentwork shows that the segre-
gation of positive defects to the grain boundary and subsequent depletion of protons
from the surrounding region can provide an explaination forthe low grain boundary
conductivity. However, several interesting research problems remain to be solved
before a complete understanding of the phenomenon is reached.
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