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Towards Classification and Functional Description of Enzymes 
A case study of feruloyl esterases 

 
D.B.R.K. GUPTA UDATHA 
Industrial Biotechnology, Department of Chemical and Biological Engineering, Chalmers University of Technology 

 
Abstract 

The prediction of enzyme functionality from sequence or structure data remains a challenging task 
that can be best addressed by studying the structure-function relationships determined from 
previously available information. This thesis work was focused on developing a reliable 
classification and functional description for the feruloyl esterase (FAE) enzyme family, whose 
members’ possess both structural and catalytic promiscuity. To establish functional subgrouping of 
feruloyl esterases a combination of computational and experimental resources was used. The major 
challenge for FAEs, which often share little sequence similarity to each other and show varied 
substrate specificity catalyzing the conserved reaction involving an ester bond, is to represent the 
function in a computationally accessible format. For the analysis of FAEs with overlapping and 
unique specificity to individual substrates there is a need to capture the chemical function in terms 
of overall substrate specificity. To meet this requirements, the classification of FAEs was performed 
by incorporating the information of sequence properties, common-feature based pharmacophore 
models and the knowledge of active-residue constellations of the FAE binding pockets. Using 
machine learning techniques an automated descriptor-based classification system for FAEs was 
proposed that resulted into 12 FAE families.  Based on catalytic residue constellations these families 
were sub-grouped into 32 functionally distinct sub-families. The biological relevance of the 
descriptor based classification system was validated with experimental data obtained from 
biochemical and biophysical characterization of FAEs. Challenges in the selection of the 
appropriate docking algorithm and scoring function combination for the prediction of substrate 
specificity of FAEs were addressed using molecular docking approaches. The evaluation of 88 
docking algorithm-scoring function combinations from leading commercial docking programs for 
substrate specificity predictions revealed large differences in their performances that could be 
attributed to the differences in properties of the target proteins. Using the combination of in silico 
approaches and enzymology, structure-function relationships of FAEs were probed, especially in 
case of an exceptional Multiple Nucleophilic Elbowed Esterase (MNEE) from Sorangium 
cellulosum with four functionally distinct and catalytically promiscuous active-sites.  Finally, this 
thesis demonstrates the application of structure-function relationship studies to obtain insights on 
the promiscuity of enzymes in their evolutionary path and to explain their structure-activity changes 
in immobilization based biosynthetic reactions.  

 
Keywords:  feruloyl esterases, functional classification, enzyme promiscuity, molecular docking, 
descriptors, pharmacophore, catalytic triad, structure-function relationship, protein evolution, enzyme 
immobilization 
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INTRODUCTION 

 
The most difficult challenge in catalysis has been solved by living organisms through 

harnessing the specificity and reactivity of enzymes to build and degrade diverse 

molecules. Enzymes, the cell’s own catalysts, are challenging to understand in detail 

knowing that the efficiency of enzyme catalyzed reactions can reach ~109 M-1 sec-1 (i.e. 

kcat/KM) with the substrate in solution (Wolfenden & Snider, 2001). This catalytic 

ability of an enzyme is located in its binding pocket or cavity, called active site 

(Koshland, 1958) that varies among different enzymes in size, shape and the 

constellation of catalytically active group of amino acid residues. These structural 

differences in enzymes are the roots for variations in the reactions they catalyze.  

The presence of diverse substrates or nutrients in the habitat drives the evolution of 

species by imparting selection for new functions on enzymes to metabolize or recognize 

nutrients or toxic compounds in the environment, hence new enzyme activities arise in 

species that adapt to changing environments (Hegeman & Rosenberg, 1970). In fact, the 

plasticity of enzymes to attain new functions in the path of evolution has allowed living 

organisms to flourish in diverse environments (Zalatan & Herschlag, 2009). Even though 

a hypothesis that has been proposed back in 1976 (Jensen, 1976) indicate that enzymes 

can catalyze secondary reactions in addition to the one they are evolved to catalyze, still 

several biochemistry books define these macromolecules as being highly specific. Along 

with high substrate and reaction selectivity many enzymes are known today to be able to 

process several substrates, a property called enzyme promiscuity (Hult & Berglund, 

2007). Developments in enzymology, from an early focus on the catalytic mechanisms of 

individual enzymes to recent efforts to understand enzyme action in the context of 

dynamic and functional biological systems consisting of many interacting molecules, are 

continuously filling the gaps in our knowledge on the Darwinian assumption of ‘one 

enzyme-one function’ evolution under which every protein has evolved to perform a 
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unique function that ultimately benefits the host organism (Reymond et al., 2009; 

Simon & Cravatt, 2010).  

Enzymes are generally classified either based on function or sequence/structure 

similarity. Therefore, there are a few questions to be solved: does the functional 

promiscuity shown by enzymes correlates to sequence or structural promiscuity? How 

can enzymes with substrate promiscuity be classified to develop a toolbox for 

biocatalytic applications? Do promiscuous enzymes possess more than one active site or 

an active site with flexible catalytic residue constellations? 

The work described in this thesis demonstrates ways to deal with and understand 

enzymes with functional promiscuity1 (Carbonell & Faulon, 2010). I present how the 

combination of in silico approaches and protein biochemistry can be used to classify and 

explore enzyme families with functional promiscuity. Feruloyl esterases (FAEs) are taken 

as a case study in this thesis, as they are featured by broad substrate specificity, a property 

that has been exploited in biosynthetic applications (presented in CHAPTER I). The 

framework presented in Figure 1 was followed to study the sequence-structure-function 

relationships in the feruloyl esterase group of enzymes and can be applied to understand 

any promiscuous enzyme family. The information provided on the molecular signatures 

for functional sub-classification of enzymes might also be of value for enzyme engineers 

in designing novel biocatalysts.  

The specific aims of this work are:  

1) To develop novel classification schemes to group enzymes into clusters or families 

that reflect their substrate specificity and to develop an automated classification 

system for enzyme families (PAPER I). 

2) To develop substrate pharmacophores for the classified enzyme families and to 

further experimentally validate the developed pharmacophore features (PAPER I 

& III). 

                                                           
1 Enzymes often possess the capability of functional promiscuity, i.e. to catalyze more than one 
reaction (catalytic promiscuity) or to show broad substrate specificity (substrate promiscuity). 
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Figure 1. A combined approach of in silico biology and enzymology towards classification, 

structural and functional analysis of enzymes with catalytic promiscuity. The steps involve 

the classification of enzymes into functional groups based on primary amino acid sequences 

followed by the molecular understanding of enzyme and substrate structures for substrate 

specificity predictions to be used in biosynthetic applications. Brief summary of results is 

shown at the respective steps of the scheme. 
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3) To predict substrate specificity of enzymes using in silico approaches and 

selection of efficient molecular docking programs to explore overlapping substrate 

promiscuity in enzymes (PAPER II).  

4) To probe the relation between structural and functional promiscuity in enzymes 

(PAPER III & 1V). 

5) To probe the structure-function changes during enzyme immobilization process 

for biosynthetic applications (PAPER V). 

I have divided the first part of my thesis into four chapters, which are briefly 

introduced below. The second part of my thesis contains the articles (PAPER I-V), 

which have been published or submitted for publication. The articles cover the different 

steps illustrated in Figure 1.  

CHAPTER 1 gives an overview and describes limitations of the enzyme 

classification system introduced by the Nomenclature Committee of the International 

Union of Biochemistry and Molecular Biology. In the same chapter there is an 

introduction to the Carbohydrate Active Enzymes and feruloyl esterases are presented, 

which have been the focus of my PhD thesis work. 

CHAPTER 2 introduces the novel classification approaches for promiscuous 

enzyme families and has been written as a background for the work published in PAPER 

I. PAPER I reviews the literature regarding the hydrolytic and synthetic specificities of 

FAEs generated via a variety of enzymatic assays. In order to assay FAE activity, 

researchers have used different model substrates and the information available from 

recent works on hydrolytic specificity of FAEs have challenged the previously proposed 

(empirical) classification system that was based on the specificity for only four substrates 

(Crepin et al., 2004). I apply an array of computational tools and succeeded to develop a 

new classification scheme for FAEs, which can be selectively used in biocatalytic 

transformations. In addition, I demonstrate that amino acid sequence information can be 

used to develop models that are able to suggest the underlying structural characteristics 

that determine substrate specificities.  
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Virtual screening of compound libraries will suggest opportunities to use members 

of specific enzyme groups on completely novel substrates. There is a large number of 

docking programs available for virtual screening of compounds; while new programs are 

released by the molecular docking companies every year, many existing programs are 

upgraded with new technology (i.e. docking algorithms and scoring functions). A 

number of docking program evaluations in recent years has indicated that different 

docking algorithms and scoring functions showed performances that are target specific. 

This is an important issue that has not been well addressed so far in the literature. In this 

work, Different commercial docking programs-scoring function sets are evaluated for the 

selection of a best program-scoring function that can reproduce the experimental 

substrate specificity of FAE families. A novel framework and assessment measure for the 

evaluation and selection of molecular docking programs for a specific protein of interest 

is proposed in PAPER II. In the work published as PAPER III, I investigate the 

structure-function relationships of three recombinant enzymes by collecting experimental 

data determining the substrate specificity, enzyme activity and biophysical 

characterization using circular dichroism (CD) spectroscopy as a function of pH. By 

applying chemoinformatics tools, I succeeded to develop pharmacophore models for the 

respective FAE families and I further experimentally validated the pharmacophores 

proposed in PAPER I. In CHAPTER 3, I introduce the application of bio- and chemo-

informatics tools to elucidate the substrate recognition mechanisms for catalytically 

promiscuous enzyme systems like FAEs. The sub-chapters of this part of the thesis focus 

on PAPER II and PAPER III.  

Much has been described in literature about FAE enzymes; however, I strongly 

believe that PAPER I, PAPER II and PAPER III represent a significant contribution to 

the field in terms of actually demonstrating the structure-function complexity in this 

enzyme family.  

In CHAPTER 4, I present a novel enzyme with multiple active sites and discuss 

about its enzyme evolutionary trajectories. The subchapters deal with PAPER IV and 



Introduction 

6 
 

PAPER V. In PAPER IV, I present the integration of in silico biology and enzymology 

to elucidate the interplay of multiple binding pockets of this special enzyme and its 

catalytic promiscuity. PAPER V deals with the structural features involved in the 

successful reuse of enzymes through enzyme immobilization and further the relationship 

of enzymatic activity to material properties to aid in the development of improved 

biocatalysts. 

On the whole, this thesis comprises three themes. The first theme is the 

classification of enzymes into functional groups, where the sequence and the structural 

properties that reflect their function are explored. The second theme is the study of 

enzyme structure-function relationships with the integration of in silico approaches and 

protein biochemistry, in which a case study showed that multi-functional enzymes 

emerge in the path of enzyme evolution. The third theme is about the application of the 

tools to study the enzyme structure-function relationships to design biosynthetic 

processes. 
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CHAPTER 1  

Enzyme Classification 

 

Grouping enzymes in different classes based on the reaction/type of reaction they 

catalyze is a possible way to gain an understanding of the bonds they create or break. 

Ambiguities in the terms used for enzymes according to their function might cause a 

great deal of confusion. Generally, the suffix ‘ase’ has been added to the name of the 

substrate the enzyme acts on (e.g. Urease) or the name of the enzyme gives some 

indication of the reaction it catalyzes (e.g. glucose oxidase). Furthermore, names with no 

indication of the reaction catalyzed or the substrate involved still persist (e.g. rhodanase, 

barnase). There are about 20 different enzymes in the human liver that have been coined 

the same name ‘alcohol dehydrogenase’ but show specificity for primary aliphatic 

alcohols with different chain length. The need of universally accepted grouping for 

enzymes has given birth to the classification system by the Nomenclature Committee of 

the International Union of Biochemistry and Molecular Biology (NC-IUBMB) that gives 

each enzyme a four-digit Enzyme Commission (EC) number denoting the reaction type. 

The terms of EC, established by the IUBMB in 1956 were ‘To consider the 

classification and nomenclature of enzymes and coenzymes, their units of activity and 

standard methods of assay, together with the symbols used in the description of enzyme 

kinetics’ (IUBMB, 1965). In 1958, the EC reported the task of grouping enzymes to a 

satisfactorily accepted level into six enzyme classes, namely Oxidoreductases, 

Transferases, Hydrolases, Lyases, Isomerases and Ligases (Table 1).  Later, in 1964 the 

enzyme classification system has been published as a book (Dixon & Webb, 1964). To 

fit the enzymes under the EC classification scheme, several subclasses were made under 

each class of enzyme. With the increased research reports on substrate specificity of 

enzymes several sub-subclasses have been created under each sub-class. Enzyme 

classification is constantly developing and one current issue is that the recommendations 

for enzyme classification and nomenclature are inappropriate for several enzyme groups 
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(e.g. carbohydrate-active enzymes), especially in case of enzymes with multiple substrate 

specificity and for isoenzymes.  

The IUBMB enzyme classification system gives us a starting point of information, 

which is a tribute to the perseverance of recommendations set by the Enzyme 

Commission more than five decades ago. The enzyme classification system is being 

constantly updated with new enzymes or corrections to existing entries and the details of 

recommendations for enzyme classification are provided at the World Wide Web: 

http://www.chem.qmul.ac.uk/iubmb/enzyme/ <23 October. 2012> 

Efforts to understand the sequence-structure-function relationships in enzymes and 

their classification have given rise to online enzyme databases that use several 

bioinformatics approaches. For example, BRENDA (Schomburg et al., 2002) provides 

information on experimental results; whereas relational databases, like KEGG ENZYME 

(Kanehisa, 1997), depend on the combination of in silico approaches providing 

additional annotations from sequence data links. Sequence comparison is the most 

common method of assigning functions to novel proteins, however, it has been shown 

that more than 60% of global sequence identity is required to functionally annotate 

novel proteins with 90% accuracy (Tian & Skolnick, 2003). Nevertheless, there are 

several counterexamples that render the sequence identity thresholds inappropriate 

(Babbitt, 2003).  

Experimental structural biology efforts provide information of 3-dimensional (3D) 

structure for proteins with insights into the functional relationships that could not be 

found by primary structure analysis.  A 3D structure or an amino acid sequence alone is 

not enough to assign an EC number to a protein due to the fact that the EC 

classification system has been developed before the era of sequencing and 

crystallography. The EC nomenclature for enzymes is based on their substrate specificity 

and the type of reaction they catalyze.  For example, the EC number for feruloyl esterase 

is 3.1.1.73, where the first digit indicates that it belongs to the enzyme class hydrolases,
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the second digit denotes that it belong to the subclass of hydrolases that act on ester 

bonds, the third digit is for the sub-subclass of hydrolases that act on carboxylic esters, 

and the fourth digit defines its substrate specificity and indicates that feruloyl esterase 

catalyzes the hydrolysis of the feruloyl group from an esterified sugar or feruloyl-

polysaccharide. Even though the EC number is useful to avoid ambiguities, it is not 

appropriate for the enzymes with structural and functional divergence (Udatha et al., 

2012a). The EC system is based on qualitative description of the transformation 

catalyzed by the enzymes, and is too broad to consider the structure-function 

correlations. Therefore, a classification system that is solely based on substrates considers 

neither the evolutionary events nor the structural divergence of enzymes (Babbitt, 2003).  

Recent studies probing the enzyme structure-function relationships have shown 

two major points: (i) a common ancestor often generates superfamilies of enzymes 

catalyzing a diversity of reactions through divergent evolution; (ii) the convergent 

evolution generates unrelated enzymes that catalyze the same type of reaction (Gerlt & 

Babbitt, 2001; Glasner et al., 2006; Omelchenko et al., 2010b).  Several recently 

published case studies continue to provide evidences that all members of a superfamily 

possess at least one common mechanistic aspect linked to conserved features of their 

substrate binding pockets (Chiang et al., 2008; Linsky & Fast, 2010; Nowotny, 2009).  

For example, the carbohydrate esterases employ the conserved feature of Ser-His-Asp 

catalytic triad to catalyze the reactions, but the members within the enzyme family 

possess varied substrate specificity. For such enzyme groups that need sub-grouping 

beyond the EC four digit system of classification, it is worthwhile to adopt a combined 

system of sequence-structure-function, in which individual enzymes are assigned unique 

identifiers that reflects their substrate specificity. Such a database that follows the semi-

automatic modular assignment for classification of enzymes is CAZy (Carbohydrate-

Active EnZymes) database, where a module can be defined as a structural and functional 

unit (Cantarel et al., 2009).  
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1.1 Carbohydrate Active Enzymes 

Enzymes that act on the structurally diverse, complex carbohydrates and 

glycoconjugate substrates are collectively designated as Carbohydrate-Active enZymes or 

CAZymes (Cantarel et al., 2009). As the diversity of carbohydrates exceeds the number 

of known protein folds, CAZymes have evolved from a small pool of ancestors by 

acquiring novel structural features and thus novel substrate specificities (Henrissat, 1991; 

Henrissat & Bairoch, 1993; Laine, 1994). The information on CAZymes is available at 

CAZy database (www.cazy.org).  CAZymes are classified into four enzyme classes (Table 

2) and class has been sub-grouped into multiple families.  In addition to the four enzyme 

classes, CAZy database also contains the carbohydrate-binding module (CBM) family 

divided into 64 sub-families. A carbohydrate-binding module (CBM) is defined as a 

contiguous amino acid sequence within a carbohydrate-active enzyme with a discrete fold 

having carbohydrate-binding activity. So, a CBM can be an integral part of the enzymes 

present in the four CAZy classes.  

 

Table 2. Number of enzyme families, classified and unclassified modules in the four CAZy 

Enzyme classes as per 10th December 2012. 

CAZy Enzyme Class Reaction type Number of 
Families 

Modules in 
present families 

Non-Classified 
modules 

Glycoside Hydrolases (GHs) Hydrolysis and/or rearrangement 
of glycosidic bonds 

131 133637 1542 

GlycosylTransferases (GTs) Formation of glycosidic bonds 94 101926 2289 

Polysaccharide Lyases (PLs) Non-hydrolytic cleavage of 
glycosidic bonds 

22 3451 172 

Carbohydrate Esterases (CEs) Hydrolysis of carbohydrate esters 16 13891 1212 
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Figure 2. Overlapping and multiple enzyme activities among carbohydrate esterase families 

(CE-1, CE-2, CE-3….) according to the CAZy database; as presented in Supplementary File S1 

of PAPER IV. Several carbohydrate esterase families contain proteins with different 

substrate specificity, but have been grouped together based on the sequence similarity of 

the conserved modules.  
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The feature used to classify the enzymes in CAZy is protein sequence similarity to 

experimentally characterized enzymes, which serves as a seed for the family that is 

gradually extended with sequences that share statistically significant (>85%) sequence 

similarity. As more enzymes are catalogued through the genome projects, the number and 

diversity of the sequences grow at a rapid pace, which further poses a challenge to CAZy 

for structure-function mapping. As shown in Table 2, the carbohydrate esterase class has 

comparatively low number of families and modules, but a large number of non-classified 

modules. The fact that members of some carbohydrate esterase families in the CAZy 

database are able to hydrolyze the substrates specific for other carbohydrate esterase 

families raises questions on the accuracy of the automated classification of carbohydrate 

esterases. The conserved modules of carbohydrate esterase families also possess 

overlapping substrate specificities as shown in Figure 2. With the increase in the gap 

between the automatically annotated and biochemically characterized sequences, the 

number of non-classified sequences and complexity of overlapping substrate specificity 

among the CAZy families also multiplies. Sub-classification of CAZy families based on 

the functional motifs or structural properties and constellation of the active sites may 

provide a possibility for a better functional classification system. 

 

1.2 Feruloyl esterases 

Feruloyl esterases (FAEs) fall under the sub-subclass E.C. 3.1.1 of hydrolases that 

catalyze the hydrolysis of carboxylic ester linkages in plant cell wall materials, releasing 

ferulic acid (FA) and other hydroxycinnamic acids (Figure 3).  

IUBMB comments on FAEs: catalyze the hydrolysis of the 4-hydroxy-3-

methoxycinnamoyl (feruloyl) group from an esterified sugar, which is usually arabinose 

in natural substrates. They are sometimes called hemicellulase accessory enzymes, since 

they “help” xylanases and pectinases to break down plant cell wall hemicellulose 

(http://www.chem.qmul.ac.uk/iubmb/enzyme/EC3/1/1/73.html <23 October. 

2012>) 
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Figure 3. Hydrolysis of carboxylic ester linkage between a sugar polysaccharide and phenolic 

moiety by feruloyl esterase. 

 

According to the CAZy database, FAEs falls under the family CE-1 of 

Carbohydrate esterases. Since an ester = acid + alcohol, two classes of substrates for 

carbohydrate esterases exist: those in which the sugar plays the role of the "acid", such as 

pectin methyl esters and those in which the sugar behaves as the alcohol, such as in 

acetylated xylan. A number of possible reaction mechanisms may be involved: the most 

common is a Ser-His-Asp catalytic triad catalyzed deacetylation analogous to the action 

of classical lipase and serine proteases (Ekici et al., 2008a). 

As described in PAPER I, Feruloyl esterases (FAEs) have gained importance in 

biofuel, medicine and food industries due to their capability of hydrolyzing carbohydrate 

esters in wood polymers and synthesizing high added-value molecules through 

esterification and transesterification reactions (Benoit et al., 2008; Koseki et al., 2009; 

Wong, 2006a). An abstracted version of the feruloyl esterase applications is shown in 

Figure 4.  
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Figure 4. Applications of Feruloyl esterases. The hydrolytic and synthetic capacity of feruloyl 

esterases have been explored in various industries (Faulds, 2010; Fazary & Ju, 2007; Wong, 

2006b).  

 

Ferulic acid, one of the most abundant hydroxycinnamic acids liberated from the 

action of FAEs on agricultural by-products, has gained importance in food industry as it 

can be further transformed into vanillin, a flavouring food additive (Lesage-Meessen et 

al, 1996). Other types of hydroxycinnamic acids liberated from the action of FAEs have 

importance in cosmetic and pharmaceutical industries due to their antioxidant properties 

(Kikuzaki et al, 2002). During the last decade, FAEs have gained increased attention in 

the area of biocatalytic transformations for the synthesis of hydroxycinnamic acid esters 

with medicinal and nutritional applications. Feruloylation of D-arabinose by a FAE and 

its potential application as anti-mycobacterial agent has been demonstrated (Vafiadi et 

al, 2007b). Furthermore, the potential of a FAE as a synthetic tool of various phenolic 

esters and their inhibitory effect on LDL (Low-Density-Lipoproteins) oxidation has 

been investigated in vitro towards the prevention of atherosclerosis (Vafiadi et al, 2008). 
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Researchers have been generating data to determine the hydrolytic specificity of 

FAEs using several synthetic or model substrates such as substituted methyl cinnamate 

compounds. Different FAEs were able to catalyze the hydrolysis of model substrates 

with different specificities. For example, the three FAEs that fall under three different 

FAE sub-families of descriptor based classification system (PAPER I) possess both 

overlapping as well as unique specificity to the individual substrates shown in Figure 5.  

 

 
 

Figure 5. Overlapping substrate specificities among the three different FAEs viz.,Feruloyl 

esterase type-C from Talaromyces stipitatus (TsFAEC), Feruloyl esterase type-A from 

Aspergillus niger (AnFAEA) and Feruloyl esterase type-B from A. niger (AnFAEB) for the 15 

methyl cinnamate esters; as presented in Figure 1 of PAPER II. The substrate specificity 

information of the three enzymes was extracted from the experimental binding affinity data 

that has been published previously (Topakas et al., 2005; Vafiadi et al., 2006). 

 



Chapter 1: Enzyme Classification 
 

17 
 

The varied and overlapping substrate specificity profile of FAEs for the small 

compounds like substituted methyl cinnamates is a major challenge to understand the 

small structural differences of the FAE binding pockets and to propose a classification 

system that reflects their function. Enzyme reactions are enabled by the structural 

elements in the enzymes that catalyze them, so sub-grouping them based on the bound 

ligands seems a more functionally defined approach. Since the techniques for comparing 

the ligand similarities and algorithms for computing protein sequence descriptors are 

already mature, I envisage that these methods will help in generating sequence-structure-

function links and further sub-classification of enzyme families based on specificity as 

described in the following chapters. 
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CHAPTER 2  

Approaches for Classification of Enzymes beyond the EC system 

 

With the rapid increase of sequenced genomes in the post-genomic era, functional 

annotation of proteins has become both a necessity and a challenge. The first step in the 

functional annotation of proteins is to detect the homologous relationship between 

proteins through pairwise sequence similarity using sequence alignment algorithms. The 

second step is to infer the functional similarity from the homology (Altschul & Gish, 

1996; Altschul et al., 1997; Larkin et al., 2007; Pearson, 2000). Classification 

approaches designed based on sequence similarity rely on the assumption that similarities 

between the sequences of two proteins imply similarities between the structures and thus 

also the function of these proteins. Each protein sequence is assumed to fold into a 

unique three dimensional structure. However, when all proteins are considered, this one-

to-one correspondence is no longer valid (Koehl & Levitt, 2002). The size of the protein 

structure space is much smaller than the size of the protein sequence space: it is 

commonly assumed that there are 1000 different protein folds, covering 10,000 

different protein sequence families (Govindarajan et al., 1999; Orengo et al., 1994). 

Surprisingly, the average sequence identity between pairs of proteins with similar 

structures has been found to be in range of 8–10% (Rost, 1997) and thus most of the 

evolutionary related proteins or homologous proteins must have different function, 

which makes the functional annotation based on sequence similarity a challenging task 

(Brenner, 1999; Brenner et al., 1997; Chothia, 1992; Devos & Valencia, 2001).  

The substrate specificity of a reaction for an enzyme is represented by the last digit 

of the EC number, while the first three digits describe the type of the reaction. It has 

been shown that all the four digits of the EC number start to diverge quickly when the 

sequence identity is below 70% (Rost, 2002), which raised questions on the functional 

schemes based on sequence similarities. Hence, annotation errors could be easily spread 

among the enzyme classification system if the functional annotation is not done 
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carefully. This creates an urgent requirement to choose alternative methods to sub-group 

enzymes that reflects their function or substrate specificity. 

Researchers have tried to use enzyme structural information in the process of 

predicting enzyme specificity, where they infer a specificity-conferring code of the active 

site (Challis et al., 2000; Stachelhaus et al., 1999). Identification of the binding pocket 

residues and mapping of the binding pocket from the protein primary structure are not 

straight forward procedures and are non-practical for hundreds of sequences generated 

through genome sequencing projects. Later on, a significant improved prediction 

performance has been achieved for substrate specificity predictions using machine 

learning approaches (Rausch et al., 2005). For a dataset of functionally known protein 

sequences belonging to different enzyme groups, group-specific features can be extracted 

to build models using machine learning algorithms to predict the function of an 

unknown protein sequence or to assign a group label to it (Juncker et al., 2009; Ong et 

al., 2007).  

Three prominent approaches have been widely experimented for classification of 

enzymes based on the protein feature space. The first approach involves assigning a class 

to an enzyme based on sequence similarity between enzymes belonging to the same 

functional class (Shah & Hunter, 1997) and the second approach is based on protein 

structure comparison (Wang et al., 2003b). The inefficiency of the first two approaches 

gave birth to a third approach which involves representing enzymes using sequence and 

structure driven features that do not use sequence similarity as a classifier (Han et al., 

2004; Syed & Yona, 2009). As shown in Table 3, the classification accuracy is superior 

for schemes based on protein sequence driven features when compared to approaches 

based on sequence or structural similarity. 
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Table 3. List of enzyme classification attempts based on sequence similarity, structural 

similarity and protein descriptors. 

Method Feature Used Classification accuracy/Result References 

BLAST, FASTA Sequence information 40% of enzyme classes predicted correctly (Shah & Hunter, 1997) 

BLAST Sequence information 
Found putative analogy of 40.5% for all EC 
classes (Audit et al., 2007) 

Bayesian Structural information 45% of enzyme classes predicted correctly (Borro et al., 2006) 

Support Vector Machine Structural properties 
60% accuracy in functional annotation of 
enzymes 

(Dobson & Doig, 2005) 

Structure template 
matching Structural information 

87% accuracy in functional annotation of 
enzymes (Kristensen et al., 2008) 

Nearest neighbor algorithm 
Sequence Descriptor: 
Amino acid composition 

95% accuracy to the level of enzyme class  
(Nasibov & Kandemir-Cavas, 
2009)  

Nearest neighbor algorithm 
Domain composition 
and  pseudo amino acid 
composition 

98% accuracy to the level of enzyme class  (Cai et al., 2005)  

Self-organizing maps Reaction descriptors Accuracies up to 92, 80 and 70% for class, 
subclass and sub-subclass levels, respectively 

 

 Support Vector Machine 
Amino Acid 
Composition and 
Conjoint triad feature 

81% to 98% accuracy in predicting the first 
three EC digits 

(Wang et al., 2011) 

 

2.1 Sequence based classification of enzymes 

Sequence homology between a group of proteins or against a protein family 

database are done by sequence homology tools like BLAST (Altschul & Gish, 1996), 

PSI-BLAST (Altschul et al., 1997), FASTA (Pearson, 2000; Pearson, 1990) and 

HMMER (Finn et al., 2011; McClure et al., 1996). There are a few studies suggesting 

that sequence homology tools are able to determine the EC number for the query 

sequence, but the coverage is achieved only till the second digit of the EC number (Audit 

et al., 2007; Shah & Hunter, 1997).  

Shah and Hunter (1997) showed that ~60% of enzyme classes of the EC system 

could not be discriminated by sequence similarity at any threshold, and their work 

strongly suggests that functional assignment of enzymes should attempt to delimit 

functionally significant sub-regions, or domains, before matching to EC classes. 

Furthermore, Audit and his co-workers (2007) found that most classification errors 
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occur between closely related EC classes. An attempt to automate the identification of 

analogous2 and homologous enzymes based on sequence similarity has been made by 

Otto et al., (2008), which resulted in the identification of 986 EC classes with a putative 

analogy of 40.5% for all EC classes. In addition, enzymes without detectable sequence 

similarity to each other have been found for 105 EC numbers (Galperin et al., 1998a). 

Even though the percentage of sequence identity is helpful in detecting remote homology 

of proteins, there is no clear indication on the functional relationship among them. 

Furthermore, due to the lack of established sequence identity score thresholds (such as 

E-Value of BLAST and FASTA), classification of an enzyme class into sub-classes 

require human intervention (Hannenhalli & Russell, 2000).   

 

2.2 Structure based classification of enzymes 

Classification schemes based on structural similarity are assumed to be more 

tolerant to errors due to the belief that structural information is more conserved in 

evolution (Almonacid & Babbitt, 2011). Surprisingly, classification of enzymes based on 

protein structure alignments achieved an accuracy of 45% (Borro et al., 2006), not far to 

the accuracy obtained through sequence based classification schemes. Interestingly, the 

use of structural properties (secondary structure content, amino acid propensities, surface 

properties and ligands) instead of structural alignments pushed the level of accuracy for 

structure based enzyme classification to 60%, which shed light on the simple structural 

attributes in protein function prediction (Dobson & Doig, 2005).  

To deal with functionally analogous enzymes, a new idea of incorporating 

evolutionarily important amino acids in the structure based enzyme classification scheme 

has been employed by Kristensen et al., (2008). With the addition of the information on 

evolutionarily important amino acids in the template 3D structure, an accuracy of 87% 

has been achieved in the prediction of enzyme function.  

                                                            
2 Functionally analogous enzymes are those that catalyze similar reactions on similar substrates 
but do not share common ancestry 
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Even though the structure based enzyme classification schemes are better than 

sequence similarity schemes, the coverage of structure-based schemes is low due to the 

fact that the 3D structure data for all enzyme classes are not available in Protein Data 

Bank (PDB). This drives the necessity for alternative approaches that can utilize the vast 

amount of available primary sequence data. 

 

2.3 Descriptor based classification of enzymes 

Classification of enzymes based on the third approach captures the biochemical 

characteristics of an enzyme from its amino acid sequence and the enzyme properties or 

descriptors are represented in the form of vectors (Ong et al., 2007). Sequence-derived 

descriptor features can effectively represent and distinguish proteins with different 

functional and interaction profiles, irrespective of sequence similarity (Han et al., 2004). 

Every enzyme sequence can be represented by its respective descriptor vectors from 

encoded representations of twenty amino acid residues (Cai et al., 2004). Several types of 

descriptor sets can be extracted from protein sequences which serve to represent and 

distinguish proteins of different structural and functional profiles by exploring features 

in amino acid composition, physicochemical properties, correlations, di-peptide 

distributions etc. An attempt to measure the efficiency of just one sequence descriptor, 

the amino acid composition, on enzyme classification showed an accuracy of 95%, but 

was limited to the level of the Enzyme Class (Nasibov & Kandemir-Cavas, 2009). 

Accommodating additional sequence descriptors, such as pseudo-amino acid 

composition in the classification scheme, further increased the accuracy of annotation 

among the 6 enzyme family classes to 98% (Cai et al., 2005). A different approach in 

the descriptor based enzyme classification has been implemented by the use of enzyme 

reaction descriptors that resulted in the accuracies up to 92, 80 and 70% for enzyme 

class, subclass and sub-subclass levels, respectively (Latino et al., 2008). The 

combination of amino acid composition and amino acid neighbour relationship 
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descriptors proved promising, with an accuracy of 81% to 98% in predicting the first 

three EC digits of the Enzyme Commission’s classification scheme (Wang et al., 2011).  

Apart from enzyme classification, protein sequence based descriptors have been 

successfully exploited in the machine learning prediction of protein functional classes, 

protein-protein interactions, subcellular locations of proteins and secondary structure 

predictions. Furthermore, these descriptors sets and their combinations have shown 

varied degree of accuracy in the functional sub-grouping of protein families  (Ong et al., 

2007). Machine learning approaches help us to gain knowledge from complex patterns 

in data. One of the latest applications of machine learning is the successful use of 

physicochemical  properties and sequence derived descriptors for the classification of 

proteins, for example, G-protein coupled receptors (Karchin et al., 2002) and nuclear 

receptors (Bhasin & Raghava, 2004).  

Machine learning approaches for protein classification involve clustering of 

instances (in this case, the instances are individual proteins) followed by classification of 

instances. The goal of clustering is to group data based on common traits, whereas 

classification deals with the assignment of an unknown instance to a specific class among 

a predefined number of classes. Clustering is an unsupervised technique that reveals how 

instances are naturally grouped in the descriptor space. In the clustering process, the 

classes are unknown and are identified by the cluster analysis of the data.  

In simple terms, the overall idea of clustering is to group similar elements together. 

A problem with most of the clustering methods is that the input data are forced into 

clusters even though in reality they do not share any similarities. The solution to this 

problem is to carefully inspect the variance of instances within the cluster and the 

variance between the clusters. Clusters with low variance within the group and high 

variance between the groups can be considered ideal.  A simple illustration of the 

‘Variance’ concept is shown in Figure 6.  
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Figure 6. A schematic drawing of ideal clusters with quality variance. Instances (red spots) 

with similar properties (respectively coloured surrounding the instance spots) grouped 

together will have low variance between them. Variance within the cluster (Vw); Variance 

between clusters (Vb). 

 

The initial part of my PhD research work has been focused on functional 

classification of feruloyl esterases aiming to represent each enzyme group reflecting their 

substrate specificity.  As presented in PAPER I, the classification system of the putative 

and known FAEs involved unsupervised clustering of sequences based on a large number 

of amino acid sequence properties or descriptors. Later, support vector machine learning 

algorithm was trained to predict the class of new FAEs.  

With the intention to select the best descriptor set that clusters FAEs with low 

variance within clusters and high variance between clusters, I evaluated the effectiveness 

of different descriptor sets listed in Table 4, as well as combinations of the ones showing 

the highest performance. The evaluation of the formed clusters was based on inspection 

of the within and between clusters variance. As mentioned above, clusters with low 

within variance and high variance between them, is what characterizes a good clustering 

output.  
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Table 4. A summary of analysis on efficacy of different sequence derived descriptors. Based 
on the variance scores within and between clusters, descriptor set combination DS14 was 

chosen as the best set; as presented in PAPER I.  

Set 
code 

Descriptor sets* 
Descriptor 

Components 
Number of 

clusters 

Variance score 

Within 
Cluster 

Between 
Clusters  

DS1 Amino acid composition 20 12 0.001 6.62 

DS2 Dipeptide composition 400 12 0.001 0.07 

DS3 
Normalized Moreau-Broto autocorrelation 
descriptors 

240 17 8.92 0.005 

DS4 Moran autocorrelation descriptors 240 23 1.86 0.001 

DS5 Geary autocorrelation descriptors 240 13 2.91 0.001 

DS6 Composition, transition, distribution 147 13 2755 1024 

DS7 
Sequence order coupling numbers (Schneider-
Wrede physicochemical distance matrix)   

30 13 392027 14.4 

DS8 
Sequence order coupling numbers (Grantham 
chemical distance matrix) 

30 13 16499 8.52 

DS9 
Quasi sequence order descriptors (Schneider-Wrede 
physicochemical distance matrix)   

50 12 0.001 0.001 

DS10 
Quasi sequence order descriptors (Grantham 
chemical distance matrix) 

50 13 0.001 0.001 

DS11 Pseudo amino acid composition 50 10 0.001 0.001 

DS12 Physicochemical  composition 11 12 16.14 147.57 

DS13 Amino acid composition and dipeptide 
composition 

420 12 0.001 1.42 

DS14 
Amino acid composition and physicochemical  
composition 

31 13 14.15 157.44 

DS15 Dipeptide composition and physicochemical  
composition 

413 11 15.44 20.54 

DS16 
Amino acid composition, dipeptide composition 
and physicochemical  composition 433 12 13.13 20.53 

 
*Descriptors of amino acid composition (DS1), dipeptide composition (DS2) and physicochemical composition 

(DS12) showed satisfactory variance scores within and between clusters. On the other hand, the rest of the 

descriptor sets (DS3, DS4, DS5, DS6, DS7, DS8, DS9, DS10 and DS11) showed poor performance with low quality 

variance scores. It should be noted that the combined use of descriptor sets containing similar information 

adds redundancy without improving the performance of the model. For example, the three autocorrelation 

descriptor sets (Set codes: DS3, DS4, DS5) utilize the same physicochemical properties and differ only in the 

correlation algorithm that they are based upon. The combination of three autocorrelation descriptors 

generates noise in clustering and does not add information in relation to the individual descriptor sets. Even 

though descriptor sets DS1, DS2 and DS12 showed satisfactory variance scores within cluster and between 

clusters, the distribution of experimentally characterized FAEs among the clusters was better in DS14, which 

also showed good variance scores.  Combination of well-performing descriptors sets improved further the 

clustering of data, as evident from DS14. 
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After clustering, automated classification of FAEs was performed using support 

vector machines. Support vector machines (SVM) are supervised learning methods that 

learn by example to assign labels to objects (Noble, 2006) and perform the classification 

by constructing an N-dimensional hyperplane that optimally separates the data with 

different labels. The 10-fold cross validation of the SVM model using different ratios of 

training and test sets resulted in accuracies ranging from 96% to 100% (Table 5), which 

further shows efficiency of the FAE clustering based on selected protein sequence 

descriptor sets.    

 

Table 5. Performance of SVM model in the cross-validations for classification of FAEs. 

Ratio  
(Training set: Blind Test set) 

Correctly Classified Instances in 
blind set 

Incorrectly Classified Instances in 
blind set 

% Accuracy 

09:01 37 0 100% 

08:02 72 1 98.63% 

07:03 108 1 99.08% 

06:04 142 4 97.26% 

01:01 176 6 96.70% 

 

A bird’s eye view on the percent identities of sequences within respective FAE 

clusters given in Table 6 shows the reason for the failure in the attempts that have been 

made for functional classification of FAEs based on protein sequence similarity (Benoit 

et al., 2008; Crepin et al., 2004). 

The functional sub-grouping of the resulted FAE clusters requires the structural 

analysis of protein and ligand structures and their interactions.  So, the next step of the 

FAE classification scheme involved the sub-grouping of FAEs and prediction of their 

substrate specificities using common feature based pharmacophore models and molecular 

docking methods which are discussed in CHAPTER 3. 
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Table 6. Protein sequence identities within the FAEs clustered based on sequence derived 

descriptors. The use of protein sequence derived descriptors to group functionally similar 

FAEs overcomes the challenge of low sequence identity among them. 

FAE Clusters Mean percent identity within the cluster 

Cluster 1 26.30% 

Cluster 2 One sequence in this cluster 

Cluster 3 35.03% 

Cluster 4 29.82% 

Cluster 5 19.61% 

Cluster 6 32.32% 

Cluster 7 26.66% 

Cluster 8 20.10% 

Cluster 9 25.20% 

Cluster 10 14.49% 

Cluster 11 14.19% 

Cluster 12 29.37% 

Cluster 13 28.92% 
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CHAPTER 3  

Substrate Specificity Predictions  

 

Experimental screening to identify the substrate specificity profile of an enzyme often 

suffers from limitation with respect to the possible number of compounds that can be 

used in high-throughput assays, which are time consuming and costly. The 

understanding of key interactions between an enzyme and a substrate can ease the task of 

substrate selection. Within this context, in silico approaches like pharmacophore 

modeling3 (Stoll et al., 2002) and molecular docking are proven to be successful to 

understand the biological target structure and supramolecular interactions (Guner et al., 

2004; Kurogi & Guner, 2001; Langer & Krovat, 2003; Stoll et al., 2002). The way to 

determine a pharmacophore can be based on either the protein (protein structure-based 

pharmacophores) or on the compounds interacting with the binding pocket of the 

protein (ligand based pharmacophores).   

Keeping in view the macromolecular structure of a protein and the number of 

rotatable/flexible bonds in its binding pocket, a major challenge in the design of protein 

structure-based pharmacophores is the reduction of the high number of features to those 

features that are related to the biological activity. Ligand based pharmacophores can be 

modeled when the activity data of protein on a certain number of ligands are available 

and the key elements involved in their modeling might be a group of atoms or 

pharmacophoric features like H-bond acceptors, H-bond donors, hydrophobic groups, 

ionizable groups, aromatic rings and can also involve geometrical constraints (Wolber et 

al., 2008).  

Pharmacophore models can be used as a tool to identify novel compounds or 

substrates that have high probability of interacting with the protein target and thus are 

                                                            
3 A pharmacophore model can be defined as the ensemble of steric and electrostatic features of 
different compounds which are necessary to ensure optimal supramolecular interactions with a 
specific biological target structure. 
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biologically active based on the fulfilment of the pharmacophore feature requirements. In 

other words, pharmacophores can be considered as in silico filters in the search of novel 

substrates or ligands. Even though the relative performance of ligand versus structure 

based pharmacophore models in virtual screening can be target dependent, recent studies 

have revealed that ligand-based methods outperform protein structure based methods 

(Evers et al., 2005; Guner et al., 2004; Guner, 2011; Kitchen et al., 2004). As shown in 

Figure 7, building a pharmacophore involves the analysis of the training set compounds 

itself to identify the pharmacophore features and further alignment of known active 

compounds to determine the best overlay of corresponding features. 

 

 

Figure 7. Workflow of virtual screening to identify novel compounds using pharmacophore 

model. The pharmacophore model built on the basis of the chemical signatures of known 

active ligands can be used as 3D filter in the screening of compound libraries to identify the 

compounds that match the chemical features of the pharmacophore. 

Several players on the market like Accelrys Inc (USA), BioSolveIT GmbH 

(Germany), Chemical Computing Group (Canada), Tripos (USA), Molecular Networks 

GmbH (Germany), etc., offer software solutions for pharmacophore modeling and 

pharmacophore based database search algorithms. The software solution, Catalyst®, 
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available from Acceryls Inc, is by far the most used by researchers due to the flexibility it 

offers during pharmacophore modeling with integrated database search options. 

Comparison of pharmacophore solutions has shown that Catalyst and HipHop 

algorithm from Accelrys Inc outperform the other software packages (Sutter et al., 

2011). Catalyst checks the surface accessibility of molecules available for receptor 

interaction and further defines the position of pharmacophore features rather than by 

inter-feature distances in the training set compounds. The HipHop algorithm evaluates 

members of a training set based on the type of chemical features they contain, along with 

the ability to adopt a conformation that allows those features to be superimposed on a 

particular configuration (Barnum et al., 1996). 

Fuelled by the availability of the algorithms for extracting the enzyme-substrate 

interactions and mapping of substrate features, common feature ligand-based 

pharmacophore models were modeled for the five feruloyl esterase sub-groups (of the 

descriptor based classification system) based on the experimental substrate specificity 

data using the software solutions offered by Accelrys Inc (PAPER I & III). Both active 

and inactive substrates were given as input for pharmacophore model development with a 

constraint that the active substrates of respective enzyme must map completely or 

partially to the pharmacophore; while the features from inactive substrates (on which the 

respective enzyme has no observed activity) must be considered as “NOT” features. This 

option resulted into broader and more diverse pharmacophores as shown in Figure 8. 

The pharmacophore models can be further used in a virtual screening workflow to 

identify novel substrates for the use FAEs in biocatalytic applications.  

In the case of FAE sub-groups with no available experimental enzyme activity data, 

molecular docking approach was chosen to predict the substrate specificity. Molecular 

docking programs are used to position potential substrates within a three-dimensional 

structure of the enzyme. Careful choice of model ligand and protein structures, as well as 

the selection of appropriate docking program, is important for reliable substrate 

specificity predictions. 
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3.1 Challenges in selecting molecular docking programs in prediction of 

substrate specificities 

Even the experienced researchers in drug discovery and molecular docking agree 

upon the difficulties in choosing the best docking program. In the constantly shifting 

landscape of new molecular docking programs, several publications comparing their 

performance have been published, yet there is a question on how many of those 

evaluation studies can be considered free of bias or run using the ‘black box’ protocols 

provided by the software companies.  (Bissantz et al., 2000; Bursulaya et al., 2003; Chen 

et al., 2006; Cross et al., 2009a; Cummings et al., 2005; Ferrara et al., 2004; 

Kellenberger et al., 2008; Kellenberger et al., 2004; Kontoyianni et al., 2004; 

Kontoyianni et al., 2005; McGaughey et al., 2007; Onodera et al., 2007; Perola et al., 

2004; Schulz-Gasch & Stahl, 2003; Stahl & Rarey, 2001; Wang et al., 2003a; Warren et 

al., 2006; Xing et al., 2004; Yang et al., 2005). The intention it is not to criticize the 

authors of these studies, but to make clear the unintentional flaws in selecting the 

molecular docking programs as there are no universally accepted set of standards in 

designing the evaluation studies.   

Recent findings published by Cross et al., (2009) have put an end to the trend of 

evaluating molecular docking programs using mix of protein structures from all the 

families in standard datasets like Directory of Useful Decoys (Huang et al., 2006; Irwin, 

2008; von Korff et al., 2009). Their studies have indicated that the differences in 

performance of the molecular docking programs could be attributed to the composition 

of the training sets used while developing particular docking programs with different 

intended goals.  The molecular docking community has now realized that the evaluation 

of docking programs should be done against your protein or protein family of interest, 

not using a mix of structures that belong to different protein families (Hevener et al., 

2009; Udatha et al., 2012b; Zeragraf et al., 2007). 

A molecular docking evaluation study should carefully consider the following 

points:  
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i) Representative target protein structures 

ii)  Known active, inactive ligand molecules and their structures 

iii) Binding pocket information of the target protein 

iv) Flexible protocols to optimize the options in the algorithms 

v) Performance measures to evaluate the programs 

The quality of the protein structure needs to be assessed even for X-ray crystal 

structures, as the areas that might not be well-resolved may result in either multiple 

models, or data being absent altogether. The severity of missing data ranges from 

occasional missing atoms to entire sections of the structure being absent. In many cases 

the missing data need to be modeled and fixed before subsequent computational analyses 

can proceed. Few software packages like Accelrys Discovery Studio (Accelrys Inc, USA) 

and Schrödinger suite (Schrödinger LLC, USA) offer protocols for pre-processing of 

protein structures. The pre-processing resolves the missing hydrogen atoms, incorrect 

bond order assignments, charge states or orientations of various groups and generate the 

protein structures to a state in which they are properly prepared for molecular docking. 

The differences in the ligand-receptor interactions, as shown in Figure 9, potentially 

affect the molecular docking calculations and therefore pre-processing of structures 

should be considered as a critical step before starting the docking process. 

Misrepresentation of docking studies using a single conformation of the ligand 

structures has to be avoided by incorporating the step to generate multiple forms of a 

ligand like tautomers, ring conformers, ligands with different protonation states etc 

(Bursulaya et al., 2003; Cross et al., 2009a; Hevener et al., 2009; Wang et al., 2003a). 

As explained in PAPER II, it should be noted that different scoring functions in the 

docking programs may perform better on a certain protein target than on another, even if 

both belong to the same protein family.  Furthermore, the differences in performance of 

the molecular docking programs could be attributed to the composition of the training 

sets used while developing particular docking programs that have different intended goals 

(Cross et al., 2009b). 
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Figure 9. Comparison of ligand-receptor interactions in (a) unprocessed and (b) processed 

feruloyl esterase crystal structure (PDB ID: 1UWC), as shown in supplementary information 

of PAPER II. The polar and non-polar contacts between the ligand (stick model) and the 

amino acid residues of the protein binding pocket were depicted as magenta lines.  

 
It is often ignored or forgotten by docking program evaluators that the docking 

process consists of two steps: i) an algorithm that is used to place representations of 

ligands in the protein structure, which is referred to as ‘docking’, ii) estimation of 

binding enthalpies of the docked ligands by evaluating their complementarity to the 

target that finally leads to the prediction of the binding free energy or affinity, which is 

referred to as ‘scoring’. The two major technical challenges for a docking program 

consist of the correct prediction of the ligand binding mode (called as ‘pose prediction 

accuracy’) and the reliable rank-ordering of ligands that reflects the experimental binding 

affinity. It is unlikely to calculate a meaningful score for rank-ordering of ligands by the 

scoring function, if they are not properly docked into the target protein by the docking 

algorithm. Thus, the accuracy in the first step is prerequisite for the reliably processing 

the second step by the docking program. 

Most of the commercial software packages simply termed as ‘docking programs’ 

contains both the docking algorithms and scoring functions to carry out the two steps 

mentioned above in the docking process. The major difference in docking algorithms is 

(b)(a)
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the degree to which the respective algorithm implements the flexibility of ligand and 

receptor. A large variety of scoring schemes also exists to rank-order ligand poses. Ligand 

scoring is a method to rapidly estimate the binding affinity of a ligand, based on a 

candidate ligand pose geometry docked into a target receptor structure. Scoring methods 

typically use empirical functions developed by fitting various functional forms (described 

in the supplementary information of PAPER II), which characterize various aspects of 

the receptor-ligand interactions against binding affinity data. So, different combinations 

of docking algorithms and scoring functions should be evaluated: a procedure that we 

generally do not observe in the published evaluation studies. The software evaluation 

studies described in PAPER II address the problem of selecting an appropriate docking 

and scoring function combination among 88 docking algorithm-scoring function sets. 

The evaluation of the docking programs should be based on reliable performance 

measures. Measures like root mean square deviation (RMSD), enrichment factor, area 

under the received operating characteristic curve (ROC), exist for determining the pose 

prediction accuracy and identification of active ligands by the docking programs, while 

each measure has certain disadvantages. For example, it is assumed that the higher the 

RMSD of the docked pose, the most likely it is classified as inactive ligand or incorrect 

pose. As shown in PAPER II, having a low RMSD between the docked and the 

crystallographic pose does not necessarily mean that the ligand can actually form similar 

interactions or similar binding modes and that a high RMSD value does not indicate the 

opposite situation. Further, the enrichment factors are highly sensitive to the ratio of 

active and inactive ligands sets, which makes it difficult to compare the evaluation studies 

using different ligand sets. The ROC approach does not say anything about whether the 

docked poses make any interactions that are biologically meaningful.  For evaluating 

molecular docking programs, the combination of RMSD and Key Interaction Score 

System (KISS) was proposed as described in PAPER II, which paves the way towards 

providing a biological meaning to the docking program evaluation studies.  
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3.2 Validation of substrate specificity predictions  

The pharmacophore models for FAE sub-families and the combined RMSD & 

KISS for molecular docking predictions were validated using experimental substrate 

activity data. First, the reliability of the generated pharmacophore models (shown in 

Figure 8) was validated for the presence of the chemical features necessary to interact 

with the amino acid residues in the binding pocket of the respective enzyme that 

represents the corresponding FAE sub-family. The pharmacophore models generated for 

the FAE sub-families were ranked based on how well the known active substrates 

mapped on the proposed pharmacophores, as well as on the rarity or infrequency of the 

pharmacophore model. A pharmacophore model that is less likely to map to an inactive 

substrate will be given a higher rank. As a validation, each pharmacophore model was 

mapped against 25 compounds, which comprised of 15 training substrates on which the 

pharmacophore models were built and additional 10 substrates that were not involved in 

the pharmacophore modeling. For example, the heat map shown in Figure 10 indicates 

how well the active substrates map to the respective pharmacophore models generated for 

AnFAEA that belongs to FAE sub-family 12A of the descriptor based classification 

system (PAPER I).  

In PAPER I, it was assumed that the pharmacophore model developed for the 

substrate specificity of one enzyme of a particular FAE sub-family may represent the 

substrate specificity of all the members in that sub-family.  To validate this assumption, a 

predicted feruloyl esterase (A.O.2) from A. oryzae that belongs to FAE sub-family 4A of 

the descriptor based classification system was recombinantly expressed in Pichia pastoris 

strain SMD1168H and tested for its experimental substrate specificity (PAPER III). 

The experimental substrate specificity profile for the A.O.2 showed ~95% match with 

the substrate specificity profile of AnFAEB, based on which the pharmacophore model 

for FAE sub-family 4A was developed (Table 7). This also shows how the right 

combination of protein sequence descriptors and molecular signatures can be successfully 

used in the functional classification of enzymes. 
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Figure 10. Ligand pharmacophore mapping for AnFAEA belonging FAE sub-family 12A; as 

shown in PAPER I. The heat map values show how well compounds map to pharmacophore 

models; higher values indicate better mapping of compounds to pharmacophore model. The 

colour legend corresponds to the alignment score and is in the range between 0 and 1.0 with 

high values above 0.9 (red) indicating a good match. Substrates on which AnFAEA can act are 

highlighted in bold. The pharmacophore model 06 maps well against all of the known 

AnFAEA substrates and therefore selected as the best pharmacophore model that describes 

the enzyme’s substrate selectivity profile. The pharmacophoric features of this model are 

mapped to the features of the AnFAEA active substrates with an average alignment score of 

0.98.  

Substrates shown on Y-axis are [1] Methyl cinnamate; [2] Methyl 2-hydroxy cinnamate; [3] Methyl 3-hydroxy 

cinnamate; [4] Methyl 4-hydroxy cinnamate (or) Methyl p-coumarate; [5] Methyl 3,4-dihydroxy cinnamate (or) 

Methyl caffeate; [6] Methyl 2-methoxy cinnamate; [7] Methyl 3-methoxy cinnamate; [8] Methyl 4-methoxy 

cinnamate; [9] Methyl 3,4-dimethoxy cinnamate; [10] Methyl 3,5-dimethoxy cinnamate; [11] Methyl 3,4,5-

trimethoxy cinnamate; [12] Methyl 4-hydroxy-3-methoxy cinnamate (or) Methyl ferulate; [13] Methyl 3-

hydroxy-4-methoxy cinnamate; [14] Methyl 4-hydroxy-3,5-dimethoxy cinnamate (or) Methyl sinapate; [15] 

Methyl 4-hydroxy-3-methoxy phenyl propionate; [16] Methyl 3,4-dichloro phenyl propionate; [17] Methyl 4-

hydroxy phenyl acetate; [18] Methyl 4-hydroxy-3-methoxy phenyl acetate; [19] Methyl 4-hydroxy-3,5-

dimethoxy phenyl acetate; [20] Methyl 4-hydroxy benzoate; [21] Methyl 4-hydroxy-3-methoxy benzoate; [22] 

Methyl 5-phenylpenta-2,4-dienoate; [23] Methyl L-tyrosine; [24] Methyl 3,4-methylene dioxy phenyl 

propionate; [25] Methyl 3,4-methylene dioxy cinnamate. AnFAEA can hydrolyze the substrates highlighted in 

bold above.  
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Table 7. Comparison of substrate specificity profile of AnFAEB and A.O.2 that belong to FAE 

sub-family 4A. The values given are Km expressed as mM. 

Substrates  
FAE sub-family 4A 

AnFAEBa A.O.2b 

MFA 1.32 1.39 

MCA 0.22 2.36 

MPC 0.014 1.51 

MSA ND ND 

M2C ND 1.73 

M3C 0.55 2.55 

MC 0.79 3.14 

MTM ND ND 

M2M 0.72 0.73 

M3M ND ND 

M4M 0.31 0.55 

M34DC ND ND 

M35DC ND ND 

M34MC 0.85 1.47 

M43PP 3.17 8.64 
aValues taken from Topakas et al (2005). 
bValues taken from PAPER III. 

 
Evaluation of molecular docking programs to predict the substrate specificity of 

FAEs showed that the performance of each program varies for the three FAEs 

considered. The three FAEs studied in PAPER II are members of different FAE families 

and present high diversity in their binding sites (as shown in Figure 6 of PAPER II). It 

has been proposed that the differences in performance of the molecular docking 

programs could be attributed to the composition of the training sets used while 

developing particular docking programs that have different intended goals (Cross et al., 

2009b). Several factors like binding pocket environment, volume of the binding pocket 

and number of rotatable bonds that deal with the flexibility of the binding pocket play 

significant role on the performance of the docking algorithms/scoring functions.  

Can we use molecular docking programs to predict the substrate specificity of 

FAEs? The answer is ‘yes’, but only if the information of key enzyme-substrate 

interactions are included in docking studies as described in PAPER II. The reverse 

validation for  the combination of  the  key  interaction  system with  docking  score  was  
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Table 8. Comparison of docking score and the combination of key interaction information 

with docking score in the rank-ordering of active/inactive substrates. (a) Rank-ordering of 

the substrates based on docking score from Glide SP program. (b) Rank-ordering of the 

substrates based on the combination of Key Interaction System and docking score.  

 
(a) 

Rank Compound Docking score (kcal/mol) Km (mM) 

1 Methyl 4-hydroxy-3,5-dimethoxy cinnamate (Methyl sinapate) -6.15 0.45 

2 Methyl 4-hydroxy-3-methoxy cinnamate (Methyl ferulate) -6.11 0.72 

3 Methyl 3,4-dimethoxy cinnamate  -6.05 1.36 

4 Methyl 3-hydroxy cinnamate  -5.94 Inactive 

5 Methyl 3,5-dimethoxy cinnamate -5.89 0.92 

6 Methyl 3,4,5-trimethoxy cinnamate  -5.79 1.63 

7 Methyl 3-methoxy cinnamate  -5.74 1.99 

8 Methyl 3-hydroxy-4-methoxy cinnamate   -5.63 Inactive 

9 Methyl 4-methoxy cinnamate  -5.50 Inactive 

10 Methyl 2-hydroxy cinnamate  -5.39 Inactive 

11 Methyl 4-hydroxy cinnamate (Methyl p-coumarate) -5.33 Inactive 

12 Methyl 3,4-dihydroxy cinnamate (Methyl caffeate) -5.33 Inactive 

13 Methyl 4-hydroxy-3-methoxy phenyl propionate -5.29 2.08 

14 Methyl 2-methoxy cinnamate  -4.73 Inactive 

15 Methyl cinnamate -4.68 Inactive 

 

(b) 

Rank   

a HBI 
with Thr 
68 

a HBI 
with Leu 
134 

Glide SP 
score 
(kcal/mol) 

Km (mM) 

1 Methyl 4-hydroxy-3,5-dimethoxy cinnamate (Methyl sinapate) Yes Yes -6.15 0.45 

2 Methyl 4-hydroxy-3-methoxy cinnamate (Methyl ferulate) Yes Yes -6.11 0.72 

3 Methyl 3,4-dimethoxy cinnamate  Yes Yes -6.05 1.36 

4 Methyl 3,5-dimethoxy cinnamate Yes Yes -5.89 0.92 

5 Methyl 3,4,5-trimethoxy cinnamate  Yes Yes -5.79 1.63 

6 Methyl 3-methoxy cinnamate  Yes Yes -5.74 1.99 

7 Methyl 4-hydroxy-3-methoxy phenyl propionate Yes Yes -5.29 2.08 

8 Methyl 3-hydroxy-4-methoxy cinnamate   No No -5.63 Inactive 

9 Methyl 2-hydroxy cinnamate  No No -5.39 Inactive 

10 Methyl 3,4-dihydroxy cinnamate (Methyl caffeate) No No -5.33 Inactive 

11 Methyl 4-methoxy cinnamate  No No -5.50 Inactive 

12 Methyl 3-hydroxy cinnamate  No No -5.94 Inactive 

13 Methyl 2-methoxy cinnamate  No Yes -4.73 Inactive 

14 Methyl 4-hydroxy cinnamate (Methyl p-coumarate) No No -5.33 Inactive 

15 Methyl cinnamate No No -4.68 Inactive 
a HBI = Hydrogen Bond Interaction 
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performed using experimental substrate specificity data. For example, when the top 

scoring docked poses obtained for AnFAEA by the Glide SP algorithm were analyzed, it 

was observed that all the active substrates were able to form hydrogen bond interactions 

with Thr 68 and Leu 134 amino acid residues of the binding pocket; whereas the 

inactive substrates were not able to interact in the same way. As shown in Table 8b, it 

was observed that if the enzyme-substrate interaction information is applied as a 

constraint for docking, the accuracy in the identification of the actives from inactives, 

and thus the prediction of substrate specificity, improves. A limitation to this approach is 

the requirement of enzyme-substrate interaction information, which is not straight 

forward for all proteins due to the lack of 3D structures and experimental substrate 

specificity data.  

A reliable and universally applicable docking program is still far from reach in the 

near future and the work reported in PAPER II indicated that developing docking 

algorithms/scoring functions towards specific target classes may provide reliable 

substrate-specificity predictions using in silico approaches. 
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CHAPTER 4 

Enzyme structure-function relationships 

 

An important goal of exploring sequence-structure-function relation studies of enzymes 

in this thesis work is to predict without laboratory experimentation, the substrate 

specificity of a given sequence or structure. The strategy begins with seeking an 

understanding of how enzymes with identical protein fold can show different substrate 

specificity. In the beginning of the 20th century, studies on enzyme structure-function 

relationships have proposed that enzymes maintain the ability to bind a particular 

substrate although the structural regions involved in the catalytic process change 

throughout enzyme evolution (Bryson & Vogel, 1965; Horowitz, 1945). However, 

several recent case studies have shown that conserved structure of enzymes during the 

evolution of new functions is for maintaining the ability to perform a catalytic step in the 

chemical reaction but not to bind a specific substrate (Almonacid & Babbitt, 2011; 

Babbitt & Gerlt, 1997; Gerlt & Babbitt, 2009; Gerlt & Raushel, 2003; Todd et al., 

2001). This chemistry-constrained enzyme evolution has resulted into several enzyme 

families consisting of homologous enzymes that can act on a wide variety of substrates, 

while maintaining a key mechanistic step of the catalytic process guided by the conserved 

structural features in the active site (Gerlt & Babbitt, 2001; Udatha et al., 2012a).  

The feruloyl esterase family studied in this research work shows how the structural 

insights can lead to functional sub-grouping of enzymes (PAPER I & III). Fifteen 

methyl cinnamate substrates were assayed for FAEs belonging to different sub-families.  

Understanding the structure-function relationships requires mapping of protein 

structural features. This will help in identifying the less conserved structural features as 

well as in identifying the structural elements that are conserved for shared catalytic 

capabilities at the superfamily level. The preserved structural features in the path of 

evolution may be the basis for promiscuous activity shown by enzymes (Galperin & 

Koonin, 1999; Galperin et al., 1998b; James & Tawfik, 2003; Khersonsky & Tawfik, 
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2010; Nobeli et al., 2009; Omelchenko et al., 2010a). For example, the three-

dimensional structure alignments of thirteen feruloyl esterases from A. oryzae that are 

distributed among four different FAE sub-families, revealed the structural elements that 

are common within FAE families. The cross-structure statistics for structural alignment 

of the 13 FAEs are shown in Table 9. The proteins within a certain FAE family show 

significant structural similarity especially in the secondary structural elements 

surrounding the binding pocket. The FAEs A.O.1, A.O.2, A.O.3 and A.O.11 which 

were predicted (based on the descriptor based classification system) as members of the 

FAE family 4, showed structural similarity with an overall RMSD of 3.3 Å over 187 

structurally aligned residues. The FAEs A.O.4 and A.O.5, which were predicted as 

members of the FAE family 6, showed structural similarity with an overall RMSD of 2.7 

Å over 134 structurally aligned residues. The FAEs A.O.6, A.O.7, A.O.8 and A.O.9, 

which were predicted as members of the FAE family 7, showed structural similarity with 

an overall RMSD of 3.1 Å over 192 structurally aligned residues. In addition, the FAEs 

A.O.10 and A.O.13, predicted as FEF 12 members, showed structural homology with an 

overall RMSD of 2.9 Å over 262 structurally aligned residues. Taking into consideration 

the number of amino acid residues of each protein, approximately 50% of the residues 

were structurally aligned with its family member proteins, but it should not be 

overlooked that the sequence homology is still quite low even between the members of 

the same FAE family. The structural alignment of those 13 FAEs showed that an average 

of only 37 residues was structurally aligned. So, it is evident that despite of low sequence 

similarity, a certain extent of structural homology is preserved within each FAE family to 

catalyze the ester hydrolysis, as it is well known that enzymes with the same fold catalyze 

the same reaction even in absence of significant sequence similarity (Omelchenko et al., 

2010a). Analysis of the modeled structures of the 13 FAEs showed that, with a limited 

set of structural scaffold variations, FAEs evolved into different families with varied 

substrate specificities guided by topological variations of the binding pockets. 
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Table 9. Cross-structure statistics for protein structure alignments of 13 FAEs from A. oryzae 

(A.O.1, A.O.2, A.O.3… A.O.13) belonging to four different FAE sub-families; as presented in 

PAPER III. 

Cross-structure statistics: RMSDa 
  

Cross-structure statistics: Sequence Identityb 
  

FEF  Structure  A.O.1 A.O.2 A.O.3 A.O.11   FEF  Structure  A.O.1 A.O.2 A.O.3 A.O.11 

FEF 4 

A.O.1    1.862   3.755   3.893    

FEF 
4 

A.O.1    0.396   0.123   0.123  
A.O.2  1.862     3.548   3.694    A.O.2  0.396     0.160   0.144  
A.O.3  3.755   3.548     2.707    A.O.3  0.123   0.160     0.299  

A.O.11  3.893   3.694   2.707      A.O.11  0.123   0.144   0.299    
    A.O.4 A.O.5           A.O.4 A.O.5     

FEF 6 
A.O.4    3.380        FEF 

6 
A.O.4    0.142     

A.O.5  3.380          A.O.5 0.142       
    A.O.6 A.O.7 A.O.8 A.O.9       A.O.6 A.O.7 A.O.8 A.O.9 

FEF 7 

A.O.6    3.077   3.034   3.369    

FEF 
7 

A.O.6    0.229   0.193   0.188  
A.O.7  3.077     3.388   3.722    A.O.7  0.229     0.177   0.234  
A.O.8  3.034   3.388     1.887    A.O.8  0.193   0.177     0.323  
A.O.9  3.369   3.722   1.887      A.O.9  0.188   0.234   0.323    

    A.O.10 A.O.13           A.O.10 A.O.13     

FEF 
12 

A.O.10    3.583       FEF 
12 

A.O.10   0.191     
A.O.13 3.583         A.O.13 0.191       

                          
aRMSD stands for the Root Mean Square Deviation, calculated 
between Cα-atoms of matched residues at best 3D superposition of 
the query and target structures. RMSD is presented in angstroms. 
In simple words, RMSD gives you an idea how separated, at best 
3D superposition, a "typical" pair of matched Ca-atoms is. 

  

bSequence identity is a quality characteristic of Cα-alignment. It is 
calculated from structure (3D), rather than sequence alignment. 
Therefore, two almost identical sequences may be estimated at low 
sequence identity if they fold into slightly different structures. 

 

Furthermore, the binding pockets or active sites of FAEs seem to have evolved 

from a common ancestor with the classic constellation of the SER-HIS-ASP catalytic 

triad (McAuley et al., 2004). In the reactions catalyzed by FAEs, serine acts as 

nucleophile, histidine as the general acid-base, and the aspartic acid helps to orient the 

histidine residue and further neutralize the charge that forms on histidine during the 

catalytic process (Ekici et al., 2008b). However, the experimental data (PAPER III) on 

substrate specificity indicates that the presence of a common domain with the classic 

constellation of the SER-HIS-ASP catalytic triad among different FAEs does not imply 

that they have the same catalytic function or can act on the same substrates.  

Identification of catalytic residues and their constellation in FAE protein structures 

plays an important role in complementing the experimental characterization of the 

enzyme. Identification of the active site serine residue is relatively easy and can be done 

by analyzing the presence of the conserved nucleophilic elbow pattern ‘G-X-S-X-G’ 
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(where G is glycine; X denotes ‘any’ amino acid; S is for Serine) in the amino acid 

sequences of FAEs (Cygler et al., 1993; Dodson & Wlodawer, 1998; Ghosh et al., 2001; 

McAuley et al., 2004). As described in PAPER III, in silico approaches can be used in 

predicting the active site residues accurately using amino acid titration curves and further 

can provide insights into the binding pocket microenvironments of FAEs. As shown in 

Figure 5 of PAPER III, identification of active ASP and HIS residues in all FAEs was 

based on analyzing the residues possessing different predicted titration function from the 

amino acid titration curves obtained through molecular simulations.  Inspecting the 

structural framework of amino acids surrounding the catalytic triad residues provided a 

basis for understanding the factors responsible for different titration curves of the active 

site residues among different FAEs (PAPER III). Furthermore, it was observed that the 

position of each amino acid residue in the FAE binding pockets, in addition to their 

collective motions, determines their capability to accommodate different substrates, 

which dictates their substrate specificity (amino acid residue constellations in the binding 

pockets of three FAEs with different substrate specificity are shown in the 

Supplementary Figure S3 of PAPER III).  The substrate selectivity of an enzyme is 

dependent on the constellation of amino acid residues forming the active site and can be 

changed by the mutations that occur during the evolutionary trajectory. Even though the 

details remain unclear, at some point in the evolution of FAEs there should be a handful 

of peptides with esterase activity that diversified into enzymes with varied substrate 

specificity through acquisition of new variations in their binding pockets. Therefore, a 

protein with certain substrate specificity can evolve into any other protein with different 

substrate specificity through a series of functional intermediates.  

 
4.1 Enzyme classification vs Enzyme Evolution: a case study 

Why does a protein or enzyme need to acquire novel function or substrate 

specificity? The answer for this is often associated with the process of adaptive evolution, 

which in simple terms reflects the adaptation of an organism towards a phenotype that 

best fits its current environment. One such example is the adaptation of bacteria to novel 
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environmental conditions or carbon sources (Elena & Lenski, 2003). At the molecular 

level, this adaptation is driven by protein evolution to acquire novel functions guided by 

the adaptive amino acid substitutions in their sequences (Bull & Otto, 2005).  Novel 

substrate specifities can be acquired in a matter of few years, as the ability to degrade 

synthetic chemicals appeared in microorganisms during the 20th century (Wackett, 

2004).  

Another question that pops-up is how a protein can suddenly gain a novel function 

without sacrificing the old one. A novel function may not be mutationally adjacent to the 

ancestral function and only beneficial mutations result into additive substrate specificity 

(Lynch et al., 2001). Furthermore, it has been observed that several enzymes are 

promiscuous and can act on different substrates with varying efficiencies (Khersonsky et 

al., 2006; Khersonsky & Tawfik, 2010; Yang & Metcalf, 2004).   

In the case of FAEs, the promiscuous nature has led to the creation of 12 FAE 

families based on the differences in the protein properties acquired through evolution. As 

described before, the active serine residue in FAEs was identified based on the presence 

of the nucleophilic elbow pattern. I came across a total of 70 putative FAEs (out of 365 

FAE sequences used for the descriptor based classification system described in PAPER I) 

with more than one nucleophilic elbow, which potentially indicate gene recombination 

events in the evolution of the FAE proteins. This observation led to a major outstanding 

question whether the members of FAE sub-families are still functional intermediates in 

the evolutionary path. But, it is clear that evolution readily derives novel functions from 

existing proteins. 

One particular amino acid sequence of the descriptor based classification that drew 

my attention is a putative esterase from Sorangium cellulosum Soce56 that possesses five 

nucleophilic elbows, which I termed as ‘Multiple Nucleophilic Elbowed Esterase’ 

(MNEE) in PAPER IV. Biochemical characterization to probe the function of each 

binding pocket with a nucleophilic elbow in this enzyme revealed its ability to act on 

substrates of six different esterase activities (Figure 11). Does this particular enzyme of 



Chapter 4: Enzyme structure-function relationships 

48 
 

S. cellulosum Soce56 evolved (or still evolving?) to become a generalist4 instead of a 

specialist5? Can this evolutionary process show any positive effect for the organism? I can 

hypothesise that, being a soil-dwelling bacterium, to have promiscuous enzymes involved 

in plant polysaccharide degradation with broad substrate specificity can be an advantage 

to S. cellulosum. Such promiscuous enzymes help the microorganisms in adaptation to 

novel habitats with a myriad of substrates and altered environmental conditions. It has 

been shown that enzyme groups that act on plant biomass, that constitute a structural 

diverse set of substrates, can generally hydrolyze several alternative substrates and 

therefore possess the promiscuous behaviour of multiple substrate specificity (Cantarel et 

al., 2009; Turcot-Dubois et al., 2007). The results presented in PAPER IV indicate that 

broad substrate specificity acquired by MNEE comes at the price of low reaction 

turnover number for its original feruloyl esterase activity; whereas the nature of the 

reaction catalyzed is unchanged (MNEE was predicted as putative feruloyl esterase as 

part of descriptor based classification system). From the specific activity data (presented 

in Table 2 and Table 3 of PAPER IV), it can be speculated that MNEE subsequently 

sacrificed its efficiency of FAE activity with the emerging new additional binding 

pockets in its protein scaffold with non-FAE activities. Even though enzymes cannot be 

freely mutated for acquiring novel substrate specificities without interruption of their 

original or starting substrate specificity, it has been proposed that evolutionarily adapting 

enzymes have promiscuous activities (Khersonsky et al., 2006). Generally, enzyme 

evolution focuses on the acquisition of novel activities and during this process 

suppression of the original activity is important to be selective in their action. Being 

highly selective is an advantage for the enzymes involved in metabolic pathways, but for 

the enzymes that are involved in plant polysaccharide degradation, being promiscuous 

with broad substrate specificity can be an advantage.  

                                                            
4 Enzymes that can promiscouously catalyze reactions on a variety of substrates or display 
multifunctionality or with different active sites are termed as ‘generalists’. 
5 Enzymes that can specifically catalyze one reaction or display activity on a unique substrate are 
termed as ‘specialists’. 
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Figure 11. Structure of Multiple Nucleophilic Elbowed Esterase (MNEE) and its binding 

pockets. MNEE showed hydrolytic activity on the substrates of six different enzymes and 

mutational analysis (PAPER IV) revealed that each binding pocket possess both unique and 

overlapping substrate specificities. 

 
Does the protein evolution have bias between metabolic enzymes which are 

generally assumed as ‘specialists’ and secreted biomass degrading enzymes which are 

generally assumed as ‘generalists’ (Copley, 2012; Nam et al., 2012)? How common is the 

promiscuous behaviour in metabolic enzymes? A very recent study published few months 

ago showed that an estimated 37% of enzymes in Escherichia coli are generalists and 

exhibit substrate promiscuity (Nam et al., 2012). Why a fraction of generalist metabolic 

enzymes are maintained in the evolutionary path? It might be the flux of metabolites that 

renders selective pressure on the organism to carry out the different catalytic processes 

while maintaining the low levels of total enzyme concentration. The same assumption 

can be applied to the activities observed in the MNEE of S. cellulosum Soce56 (Table 2 

& 3 of PAPER IV). It is evident from the enzyme activity data, that MNEE has low 

feruloyl esterase activity. This might be due to the presence of low amount of feruloyl 
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groups compared to other ester bonds in the plant biomass (Caffall & Mohnen, 2009; 

Faulds, 2010; Heredia et al., 1995) present in the habitat of S. cellulosum Soce56. This 

might have provided selective pressure to retain low amount of the feruloyl esterase 

activity in MNEE. Furthermore, the classification of enzymes with multiple active sites 

arisen from the selective pressure remains challenging and it would be counterproductive 

to attempt a classification based on function or structure (Figure 12). 

Functional evolution can be inferred from the changes in protein structural 

dynamics (Lai et al., 2012). When the function is conserved, the structural dynamics 

relevant to enzyme function is also expected to be evolutionarily conserved. Mutations in 

the protein sequence in the process of evolution can have an effect on the catalytic 

activity through small changes in local structure of the active site. Few mutations in the 

evolutionary path of enzymes may affect the local structure, that does not change the 

catalytic activities, but may change the catalytic parameters of the enzyme and thus 

creating merely an enzyme variant with different substrate affinity (Kurtovic et al., 

2008). It is also worthwhile to mention here that, when FAEs from different sub-

families were studied in PAPER III, functional promiscuity in FAEs was found to be 

linked with conformational diversity of the active site for accommodating different 

substrates. Can a protein like MNEE with multiple active-sites be generated by 

mutations in the protein evolution? Such proteins must be the result of events like gene 

duplications, gene transfers and rearrangements of DNA sequences encoding different 

enzymes, resulting in redesigning of entire structure to form proteins with promiscuous 

activity or proteins with multiple active sites (Gerlt & Babbitt, 2009; Innan & 

Kondrashov, 2010; Voigt et al., 2001). Recombination between different genes or gene 

copies allows further exploration of combination of mutations leading to proteins like 

MNEE, in which each binding pocket is featured by promiscuous activity (PAPER IV).  

In addition, it is apparent from the FAEs shown in Figure 1 of PAPER III that 

proteins can undergo significant changes in sequence in the evolutionary path and can 

still inherit the structural folds that are responsible for maintaining the same or similar 
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substrate specificity. The evolutionary relationships in sequence-structure-function 

indeed exist between FAEs that were classified into sub-families by the combination of 

descriptor based classification system and catalytic triad constellations (PAPER I). It is 

unlikely that the FAE sub-families appeared independently, but they most probably 

evolved from a smaller set of generalist and less diverse ancestral proteins (PAPER III).  

The points discussed above regarding the evolutionary space of protein sequence-

structure-function is complex and in many ways defy classification systems based on only 

sequence or structural similarity (see CHAPTER 2). As shown in Figure 12, difficulties 

in defining the function or substrate specificity of an enzyme occur at all levels of 

classification hierarchy, due to the promiscuous nature of proteins in the evolutionary 

path. The research work described in this thesis suggests that strategies using structure-

function relationships may offer a more reliable classification and a robust approach for 

function annotation for the sequences within an enzyme family. 

Structure-function relationship studies are not only useful in understanding the 

substrate specificity or function of the enzymes and further their classification based on 

it, but are also useful in understanding how the functional efficiency of the enzymes 

changes according to reaction conditions. Two of such reaction condition cases were 

studied as part of the research work of this thesis: the first is the understanding of the 

effect of pH on the activity of enzyme (PAPER III) and the second is the understanding 

the pH dependent immobilization efficacy on mesoporous silica for biocatalytic 

synthesis (PAPER V). 
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CONCLUSIONS 

 

The work presented in this thesis integrates bioinformatics, cheminformatics and protein 

biochemistry tools to explore the sequence-structure-function relationships of enzymes, 

especially for the structurally and catalytically promiscuous enzyme group, FAEs. Based 

on the results, observations presented and the methodology developed, I strongly believe 

that advancement was made in classification and functional description of a promiscuous 

enzyme family. 

 

Establishment of a classification scheme reflecting the function/substrate specificity of 

FAEs 

The information on an enzyme’s functional specificity is necessarily contained in its 

protein sequence, but the classification schemes using sequence information alone are not 

successful in sub-grouping enzymes according to their functional specificity. Even the 

classification schemes based on structural information alone do not perform well in 

functional sub-grouping of enzymes. Building a predictive model for functional 

classification was performed by incorporation of information on enzyme properties 

through their protein sequence descriptors, along with the substrate pharmacophore 

features. This approach resulted in a reliable classification of FAEs (PAPER I). Even 

though FAEs possess common characteristics, such as the classic constellation of the Ser-

His-Asp triad, variations in amino acid sequences forming surface loops and additional 

domains allow them to accommodate diverse substrates. Using the properties of the 

whole protein sequence, a new classification system was proposed for FAEs resulting into 

12 distinct families, while by careful inspection of the catalytic residues constellation in 

the sequences of each FAE family they were divided into 32 sub-families reflecting 

substrate specificity. I should emphasize the fact that the classification system proposed 

in PAPER I, does not contradict, but rather significantly expands, the current knowledge 

in the area and allows a systematic sub-grouping of FAEs.  



Conclusions 

56 
 

Reliable prediction of substrate specificity in FAEs  

As the FAE enzymes show substrate promiscuity, it is important that a 

classification system can capture the great variety in substrate specificity these enzymes 

show. A molecular docking approach was used for the prediction of unique and 

overlapping substrate specificities in FAE families. The problem generally arises in the 

first step of molecular docking process i.e., choosing the right docking program among 

several commercial and academic softwares. Evaluation of 88 docking algorithm-scoring 

function sets was performed (PAPER II) with the aim to identify the docking program 

that can predict the substrate-activity maps of the members of the various FAE families. 

The ultimate challenge for a docking program is to correctly predict the overlapping and 

unique substrate specificity profiles of the FAE families, which will position it superior 

among the others. Comparison of molecular docking programs for pose prediction and 

enrichment showed that there is significant variability on the performance of docking 

programs based on the specific target protein. Studies on evaluation of docking programs 

are problematic by the fact that docked ligand poses are penalized and considered 

incorrect from 2Å to an infinitely poor RMSD. Such a crude RMSD cut-off cannot 

rescue correct ligand poses with high RMSD. Even though the traditional approach of 

evaluating the docking programs using the RMSD is commonly used, the main drawback 

is not taking into account the interactions between the ligand and the receptor. An 

assessment measure called Key Interaction Score System (KISS) was proposed to 

overcome the drawbacks mentioned above. The KISS has the ability to identify the 

beneficial docking poses irrespective of the RMSD value. RMSD is strictly a measure of 

fit based on the proportion of atoms aligned with the crystallographic pose, whereas the 

KISS also considers docked poses with badly aligned atoms if they were able to form the 

same hydrogen bond interactions observed in the crystallographic pose. The KISS thus 

reduces the problem of flexibility arising from the large number of poses or conformers. 

Though KISS may not solve all the issues with the current docking algorithms and 

scoring functions, combining with RMSD will avoid discarding realistic poses. The 
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approach of combining RMSD and KISS was able to predict the experimental substrate 

specificity of FAEs, when the best performing docking program was used.  

 
Understanding the structure-function relationships in FAEs   

PAPER III and PAPER IV deal with understanding the structure-function 

relationships of FAEs from Aspergillus niger and a promiscuous enzyme featured by 

multiple nucleophilic elbows previously predicted as a putative FAE, respectively. In this 

part of the work I have used the theoretical framework established in the first papers to 

gain insights of the selected enzymes. Furthermore, by combining the in silico work with 

the experimental investigations, the capabilities of the theoretical framework were 

confirmed. PAPER V was a starting point towards probing how structure-function 

relationships for biocatalytic reaction are influenced by an enzyme immobilization 

process.  

In PAPER III, through the structural analysis of 13 FAEs from A. oryzae, high 

similarity in the secondary structure elements (SSEs) was observed between the members 

that belong to the same FAE family. However, there was no consensus on the structural 

features that contribute to the substrate specificity between different FAE family 

members (PAPER III). The modeled FAE structures suggested that, with a limited set of 

structural scaffolds, FAEs evolved into different families and further analysis of binding 

pockets indicated the topological variations of FAEs that led to a wide spectrum of 

substrate specificities. The active site residues of FAEs were identified using amino acid 

titration curves obtained through molecular dynamics simulations.  Together with 3D 

mapping of the enzyme binding pockets the microenvironment of amino acid residues 

that dictates the enzyme activity were revealed.  

In PAPER IV, probing the function of each nucleophilic elbow of S. cellulosum 

MNEE revealed that each nucleophilic elbow forms a local active site with one or more 

enzyme activities. To the best of my knowledge, this is the first study in the literature 

that showed the presence of four binding pockets in a single protein domain and further 
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proves the interplay of multiple nucleophilic elbows and catalytic promiscuity of 

esterases. All the binding pockets of MNEE showed ester hydrolysis capability with 

different substrate specificities. My analysis also showed that broad substrate specificity 

acquired by MNEE comes at the price of low reaction turnover number for its assumed 

original feruloyl esterase activity; whereas the nature of the reaction catalyzed is 

unchanged. The work presented in PAPER IV indicates that substrate selectivity of an 

enzyme is dependent on the constellation of amino acid residues forming the active site 

and can be changed by the mutations that occur during the evolutionary trajectory. 

Protein domains are the evolutionary units of the enzyme structure; furthermore, their 

combinations gives rise to multi-domain enzymes (Vogel et al., 2004). In such a case, 

each domain can have an independent function or contribute to the common function of 

the enzyme (Teichmann et al., 1998). However, MNEE is a small protein comprised of 

a single domain and still possesses four distinct binding pockets. Investigation of MNEE 

protein 3D structure using Domain Reconstruction Algorithm (Gelly et al., 2006) 

showed that MNEE is comprised of ten small protein units. Further hierarchical 

splitting of protein units in MNEE 3D structure indicated the possibility of MNEE 

being an intermediate enzyme resulted from recombination of protein coding DNA 

sequences in the evolutionary process. Using the framework presented in PAPER IV, 

identification of multiple nucleophilic elbows that form distinct binding pockets in 

enzymes can help to identify new catalytic sites. Furthermore, it represents a starting 

point to understand the multi-dimensional nature of enzyme evolution. The strategy 

used by nature to evolve unique enzyme activities can be transferred as principles to be 

used in enzyme engineering.  

Understanding structure-function relationships can also help in optimizing the 

reaction conditions of enzyme based biocatalytic applications. For satisfactory stability 

and easy recovery of enzyme based biosynthetic reactions, it is often necessary to 

immobilize the enzymes to a solid support material. The work presented in PAPER V 

deals with combining experimental results with in silico modeling in order to analyse the 

environment of the enzyme binding pocket and protein surface factors involved in 
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immobilization process. In PAPER V, the modeled FAE structure enabled us to inspect 

the structural changes at different pH conditions and further understand its 

immobilization profile. Through molecular simulations, the pH dependent 

immobilization and activity profile of FAE was found to depend on the charged surface 

interactions and binding pocket microenvironment, respectively. 
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PERSPECTIVES 

 

Knowledge about the enzyme function is of utmost importance for taking full advantage 

of an enzyme’s full capacity in biocatalytic applications.  For a promiscuous enzyme 

group like FAEs, some of the challenges would be to identify the enzyme that has the 

best potential to perform a selected reaction. 

The framework (Figure 1) for functional grouping and description of FAEs that 

were put up in the thesis included implementation of novel classification approaches 

(PAPER I), computational prediction of substrate selectivity (PAPER II), experimental 

validation of the computational predictions (PAPER II & III), unravelling the structure-

function relationships of a putative FAE possessing multiple active sites (PAPER IV), 

and understanding the molecular effects of reaction conditions (PAPER III & V). I 

believe that the framework of integrating in silico biology and enzymology developed 

during my thesis work can be applied towards functional classification and 

understanding of the sequence-structure-function relationships within any promiscuous 

enzyme family.  

Several methods that are based on sequence and structural similarities for 

classification of proteins suffer from limitations in annotating promiscuous enzymes. As 

presented in PAPER I, machine learning methods work well only for certain 

combinations of protein sequence properties or descriptors. It seems that there is no 

preferred combination of descriptor sets that could be utilized for sub-grouping of 

enzymes that reflects their substrate specificity, as the clustering performance does not 

differ significantly for few descriptor combinations (Table 4). The selection of the best 

descriptor set was based on available experimental substrate specificity data. Even though 

the work presented in PAPER I shows that the choice of an optimal descriptor set and 

machine learning algorithm are critical for the classification, more accurate functional 

sub-grouping required integration of structural features involved in catalytic function, 

e.g. constellation of catalytic triad in FAEs and pharmacophore features of substrates. 
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However, we still have to elucidate the relationship between the sequence properties that 

guided clustering and the structural properties that guided the functional sub-grouping 

of FAEs. Such sequence to structure relationship information can be used for reliable 

classification and engineering the selected enzymes for a required substrate specifity. The 

use of common feature based pharmacophores to represent the substrate specificity of 

FAE sub-families in PAPER I indicated that the time has come for the utilization of 

established cheminformatics tools in enzymology. I envisage that the future development 

of algorithms for automated identification and extraction of features responsible for 

functional classification may provide opportunities for ensemble approaches in the 

classification and functional description of any poorly understood protein or enzyme 

family. The pharmacophore models developed for FAE sub-families could be applied for 

virtual screening of compound databases for the identification of potential substrates 

through molecular docking approach. Pharmacophores can also be used as 3D filters for 

post-processing the docked ligand poses to remove the false positives in the molecular 

docking process. 

In PAPER II, several molecular docking programs were evaluated for substrate 

specificity predictions of FAEs. A docking program that can predict the unique and 

overlapping substrate specificity profile of the FAE families, will position it superior 

among the others and more suitable for enzymes with promiscuous properties. The 

combination of RMSD and KISS proved to be more meaningful in measuring the 

docking accuracy for selection of an appropriate docking program. Generally, docking 

programs include both a docking algorithm for the analysis of different ligand 

confirmations and a scoring function that should ideally be able to rank the ligands 

according to the experimental binding affinity. The scoring functions evaluated in 

PAPER II still remain weak predictors of binding affinity and are not able to rank-order 

the substrates of FAEs according to experimental data. Assigning the lowest energy score 

to the correct binding pose proved to be a major challenging task for the scoring 

functions, which is the major reason for the inability to rank-order the compounds. The 

binding affinity of a ligand also depends upon the collective interactions with binding 
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pocket residues of the receptor, which makes the rank-ordering task more challenging for 

scoring functions. Unfortunately, the Km values (the measure of affinity) of the FAEs 

used in the evaluation study are quite close among different substrates: this poses a major 

challenge for the scoring schemes to rank-order the substrates. Development of target 

protein dependent scoring functions may help in reliable rank-ordering of the substrates 

that can be preferentially catalyzed by enzymes.  

The research work presented in PAPER III was focused on experimental validation 

of computational predictions and analysis of structure-function relationships in FAEs. 

Future structural studies with different cognate ligand-receptor complexes using X-ray 

crystallography/NMR complemented with analysis of cognate ligand-mutated receptor 

complexes will further extend our understanding of characteristic fingerprints that guide 

the varied substrate specificities among the members of different FAE families. 

Nevertheless, using the experimental data, the predicted 3D structures can be verified 

and the advancements can be made in the algorithms by knowing the regions that were 

modeled or predicted incorrectly. Protein structure modeling often involves human 

interventions for the selection of template protein structures and subsequent loop 

modeling process. Consequently, development of fully-automated algorithms for reliable 

protein structure predictions will remove the human bias for template structure or 

protein loops in the structure refinement process. Predicting high quality protein 

structures using in silico approaches has also the advantage of providing an ensemble of 

engineered enzyme structures for desired biosynthetic reactions in short time. 

Experimental analysis of substrate specificity of each binding pocket of MNEE 

described in PAPER IV indicates that the possible enzyme active sites in proteins have 

not yet been fully explored. Advances can be made with high-throughput screening 

methods of such multiple nucleophilic elbowed enzymes (or any other enzymes with 

multiple conserved catalytic signatures) that would have a major impact on the 

development of new biocatalysts. Such enzymes with multiple substrate specificity have 

potential industrial application for the development of ‘in-pot enzyme processes’ (Kim et 
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al., 2011; Yu et al., 2006). In general, in-pot enzyme processes are characterized by the 

mixture of enzymes that catalyze several reactions in a single pot. In-pot enzyme 

processes eliminate the need of purification steps of intermediate products and reduce 

the downstream processing and operating costs.  
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