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Two theoretical one-dimensional models are developed for reverse currents through Schottky gate

contacts on AlGaN-GaN high-electron-mobility-transistors (HEMTs) and compared with

measurement data. One model covers ideal triangular and square junction barriers and contains

current contributions of thermionic emission, thermionic field emission, and tunneling of electrons

from the contact metal towards the two dimensional electron gas (2-DEG) at the AlGaN-GaN

interface. The second model describes the contribution of trap assisted tunneling through a

Schottky barrier. Both models are compared with measurements done on AlGaN-GaN diodes at

reverse voltages between threshold voltage and zero volt, which is the regime in which the current

flow can be described by one-dimensional models. The trap assisted tunneling model cannot

explain the data. The first model agrees with the measurements only if it is assumed that the barrier

is triangular and that the current only flows through a fraction (2� 10�4) of the junction area,

probably through defect patches. The triangular barrier in the defects has a barrier height of

0.58 eV. This result is consistent with previously reported findings of defect patches at the AlGaN

surface. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4764866]

I. INTRODUCTION

Several models have been proposed to explain reverse

leakage currents in Schottky gates on AlGaN-GaN high-elec-

tron-mobility-transistor (HEMT) structures. Essentially, two

different groups can be distinguished: direct current models

that are based on a combination of tunneling, thermionic

field emission (TFE), and thermionic emission (TE)1 and

models that next to the direct current also include a current

contribution from trap assisted tunneling (TAT).2 All models

depend strongly on the Schottky barrier shape, i.e., the

energy of the conduction band in the AlGaN as function of

depth beneath the metal-AlGaN interface.

Direct and TAT current models have been published

before in AlGaN-GaN Schottky structures1,3 in MOS struc-

tures4 and capacitors.5 There are, however, several problems

with the published models that justify a new approach. The

direct current models are conflicting with each other in the

electron energy that is used in calculating the probability of

transmission through the barrier. Some authors only take the

kinetic energy directed transversal to the Schottky interface,6

while others take the total electron energy.1 We will show

that both approaches are incorrect and that an energy some-

where in between these values has to be used, depending on

the ratio of the effective masses of the electron in the

Schottky metal and in the AlGaN. In many TAT models, fit-

ting parameters are used in the expressions for the trapping

and de-trapping rates.3,5,7 These models only consider the

TAT current component. In this paper, however, we are

treating both the direct current and the TAT current in the

same Schottky junction. Therefore, we need a unified theory

that treats direct and TAT currents on equal footing deriving

both from the same first principles.

In this paper, we study a model for the direct current

based on tunneling, TFE, and TE reverse leakage through tri-

angular and square barriers in Sec. II. In Sec. III, we derive a

model for the TAT current in a triangular barrier. As will be

shown in Sec. IV, none of these models agree well with

experiments if it is assumed that the total Schottky surface

area contributes to the current. Some authors have suggested

that the current is concentrated in numerous very small

defect patches, sometimes associated with screw dislocations

in the AlGaN, that have a low barrier height and carry almost

all current.8–11 The rest of the surface area would have a

high barrier height such that its contribution to the current

can be ignored. We can use the ideal barrier model to calcu-

late the current in these patches if we assume that there is an

effective total patch area and an effective barrier height. This

patch model therefore introduces one extra parameter: the

effective surface area. Since we do not know how the poten-

tial and the electric field are shaped inside these patches, we

have to consider various possibilities and compare the results

with the measurements. In Sec. II, we describe a few possi-

ble field distributions in the patches.

The calculations of the equations that are derived in the

theoretical models are performed numerically (MATHCAD).

II. DIRECT REVERSE CURRENT THROUGH
TRIANGULAR AND SQUARE SCHOTTKY BARRIERS

A. Triangular barrier

Fig. 1 shows the triangular Schottky barrier between

gate metal and AlGaN-GaN 2-DEG in case of a negative

applied voltage Vr. The gate current due to tunneling anda)Email: rik.jos@nxp.com.
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thermionic field emission can be derived using the Tsu-Esaki

model.12,13 We follow the approach given by Gehring.6 The

current going from metal to semiconductor carried by elec-

trons that have a wave vector component in the x-direction

perpendicular to the interface between kx and kxþdkx is

dJm!s ¼ qCð/tunÞvxgðkxÞfFDmð1� fFDsÞdkx: (1)

The velocity in the x-direction: vx ¼ �hkx

mm
, where mm is the

electron mass in the metal.

The density of states in the metal in k-space is

gðkxÞ ¼ 2
Ð1
0

Ð1
0

1
4p3 dkydkz. The factor 2 arises from spin

degeneracy.

We use the notations: /x ¼
�h2k2

x

2mm
and u== ¼

�h2k2
==

2mm
¼ �h2

2mm

ðk2
y þ k2

z Þ for the energies in the x-direction and parallel to

the gate metal surface, respectively.

The Fermi-Dirac distribution functions for the metal and

the AlGaN semiconductor are fFDm and fFDs, respectively,

fFDm ¼
1

1þ exp
qð/xþ/==�uFÞ

kT

n o : (2)

For the AlGaN semiconductor region, we assume that 1-fFDs

� 1.

The quantum mechanical tunneling probability through

the barrier can be calculated in the case of a triangular barrier

as14

Cð/tunÞ ¼ exp � as

E
ðuF þ uB � /tunÞ3=2

n o
; (3)

where as ¼ 4
ffiffiffiffiffiffiffi
2msq
p

3�h and ms is the electron mass in the semi-

conductor. E is the electric field. The metal Fermi level is

given by uF and the barrier height, i.e., the distance between

top of the barrier and the metal Fermi level, is given by uB.

Very often, a wrong expression is used for the electron

energy /tun in Eq. (3). Some authors take /tun ¼ /x, while

others take /tun ¼ /x þ ///.
1,6 However, it is easy to see that

the electron wave function in the metal can be described by

wm ¼ fAexpðikxxÞ þ Bexpð�ikxxÞgexpðikyyþ ikzzÞ:

Note that this equation contains a wave in the negative x-

direction, which is the reflected wave at the metal-

semiconductor interface. The electron wave in the

semiconductor is given by

ws ¼ Cexpð�jxxÞexpðikyyþ ikzzÞ;

where jx described the damping of the wave in the

semiconductor.

This is only valid very close to the metal interface, such

that we may approximate the barrier potential by a fixed

value uFþuB and we can ignore the triangular nature of the

barrier shape. Using the appropriate boundary conditions and

Schr€odinger equation, we can calculate

j2
x ¼

2ms

�h2
ðuF þ uB � /Þ þ k2

y þ k2
z

¼ 2ms

�h2
uF þ uB � /x �

ms � mm

ms
/==

� �
;

where / is the total electron energy / ¼ /x þ ///.

Therefore, energy /tun is

/tun ¼ /x þ
ms � mm

ms
/==: (4)

Inserting Eq. (4) into Eq. (2) and changing the integral of Eq.

(1) over kx into an integral over /x gives

Jm!s ¼
4pmmq3

h3

ðuFþuB

0

ðuFþuB�/x

0

�
exp � as

E ðuF þ uB � /tunÞ3=2
n o
1þ exp

qð/xþ/==�uFÞ
kT

n o d/==d/x:

(5)

In deriving Eq. (5), we have transformed the integral over

dkydkz using dkydkz ¼ 2pmm

�h2 du==.

The thermionic emission can be found from Eq. (5) by

taking the integral boundaries for /// from 0 to infinity and

those for /x from uF þ uB to infinity and approximating the

Fermi-Dirac distribution by the Boltzmann distribution.

Then Eq. (5) can be calculated analytically

Jm!s ¼
4pmmqk2T2

h3
exp

�quB

kT

n o
; (6)

which is the standard expression for thermionic emission.

Note that we did not take barrier lowering effects, e.g., due

to image charge, into account, which is allowable since

the barrier height will in practice be used as a fitting

parameter.4

B. Square barrier

In case of a square barrier, i.e., a barrier with a constant

potential uF þ uB, irrespective of position x, the expression

for the current changes by using a modified equation for Eq.

(2). In this case,14

Thermionic emission (TE)

Thermionic field emission (TFE)

Tunneling

+
+
+

-
-

Vr

Barrier height ϕB

Metal Fermi level ϕF

Gate
metal

AlGaN
barrier

GaN
bulk

FIG. 1. Leakage current mechanisms for triangular Schottky barrier under

reverse bias. Reverse bias voltage is Vr. The three current contributions, tun-

neling, TFE, and TE are indicated. The main contribution by tunneling takes

place at the metal Fermi level.
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Csqð/tunÞ ¼ exp �2d
½2msðuF þ uB � /tunÞ�1=2

�h

( )
: (7)

We will use the summation of Eqs. (5) and (6) to

describe the direct current through an ideal barrier. There

is also an electron flow Js!m from the semiconductor to

the metal. This current is, however, so low that it is only

of importance at very low bias voltages that we will not

consider.

C. Patch models

Patch models assume that the junction is for the larger

part ideal and has a high barrier height uB. A barrier height

in the order of 1.5–2 eV would fit to the material parameters

and the measured threshold voltage. Such a barrier would

hardly conduct any current. Numerous very small defect

patches carry almost all current. We can use the ideal barrier

model to calculate the current if we assume that there is an

effective total patch area and an effective barrier height.

However, since we do not know how the potential or the

electric field is shaped inside such patch, we have to consider

various possibilities and compare the results of these with

the measurements.

1. Patch model 1 (the constant field patch model)

This model assumes that the electric field in the patch is

constant between the metal and the 2-DEG. See Fig. 2(a) where

the potential inside the patch is displayed by the thick line. This

is the simplest approximation for the field that can be made.

2. Patch model 2 (the zero field patch model)

This model assumes that the patches have a reduced bar-

rier height but constant potential (zero electric field) in the

patch up to a depth dpatch where the patch potential equals

the potential of the surrounding ideal barrier. See Fig. 2(b)

where the potential inside the patch is displayed by the thick

line. The current can be calculated by multiplying the trans-

mission of the constant potential part of the barrier (0 < x <
dpatch) with that of the triangular barrier (x > dpatch). This

can be done by using Eq. (7) and modifying Eq. (5) to

Jm!s ¼
4pmmq3

h3

ðuFþuB

0

ðuFþuB�/x

0

Csqð/tunÞCð/tunÞ
fFDmð/xÞ

d/==d/x:

3. Patch model 3 (the zero potential patch model)

This model looks much like the zero field model with

the modification that the flat potential is taken to be zero. In

fact, it assumes that the patch acts as an extension of the

metal up to the point x ¼ dpatch. This gives the electrons a

free ride up to a certain depth inside the barrier. This means

that we can calculate the current by assuming an ideal

triangular barrier with reduced barrier height but with an

electric field equal to the electric field in the surrounding

area.

III. TRAP ASSISTED TUNNELING

We will first give an expression for trapping of an elec-

tron from the metal by a trap in the AlGaN semiconductor

when the barrier has a square potential. This has been described

by Lundstr€om and Svensson15 in a way fully consistent with

the theory in Sec. II. We will extend the theory from the square

potential case to that of a triangular potential barrier. If the bar-

rier has a square potential, the total capture probability for elec-

trons with an energy equal to the trap energy is15

} ¼
ðk0

0

pdk== ¼
4�hms

m2
m

a

a2 þ k2
0

�
ðk0

0

exp
n
�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ k2

==

q
W
o ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2
0 � k2

==

q
k==dk==: (8)

In this expression, W is the distance of the trap from the gate

metal and a2 ¼ 2mrut

�h2 where ut is the trap potential measured

from the bottom of the conduction band. The electron energy

equals the trap potential. This assumption is justified because

zero phonon transitions are dominating the capture process.16

Hence,

k2
x þ k2

y þ k2
z ¼ k2

x þ k2
== ¼ k2

0 ¼
2mmðuF þ uB � utÞ

�h2
:

In the case of a triangular barrier, the trap assisted tunneling

model, in its simplest form, assumes that there are traps uni-

formly distributed throughout the AlGaN layer that have an

energy level ut below the conduction band. Electrons from

the metal may tunnel to the traps with a probability P1 and

from there tunnel to the semiconductor with a probability P2.

An illustration of this process is shown in Fig. 3.

The Schr€odinger equation for the triangular barrier is

r2w ¼ 2ms

�h2
fuF þ uB � E:x� /gw:

There is no analytical solution to the Schr€odinger equation

of a triangular barrier, but we can get an approximate

solution by splitting the variables (for simplicity, only the x-

+
+ 

+
+ 

ϕB

ϕB,patch

ϕB

ϕB,patch

dpatch

(a) (b)

FIG. 2. (a) The constant field patch model with triangular potential barrier.

(b) Zero field patch model. The potential is constant to a depth dpatch and

equal to the surrounding potential for x > dpatch. In both models, the poten-

tial inside the patch is indicated by the thick lines.
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and y-components are taken into account. It is straightfor-

ward to extend the final result also to the z-direction)

wðx; yÞ ¼ nðxÞvðyÞ;

1

n
@2n
@x2
þ 1

v
@2v
@y2
¼ 2ms

�h2
fuF þ uB � E:x� /g:

We now assume that v¼ exp(ikyy), so the Schr€odinger equa-

tion reduces to:

1

n
@2n
@x2
¼ 2ms

�h2
uF þ uB � E:x� /f g þ k2

y

¼ 2ms

�h2
uF þ uB � /tun � E:xf g: (9)

This is an equation of the shape: 1
n
@2n
@x2 ¼ A� Bx with A ¼

2msðuFþuB�/tunÞ
�h2 and B ¼ 2msE

�h2 .

Although there is no general analytical solution, we can

try a function like

n ¼ exp

(
�
ðx
0

ðA� Bx0Þdx0

)
: (10)

Then,

1

n
@2n
@x2
¼ A� Bxþ B

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A� Bx
p : (11)

This is a Schr€odinger equation of a barrier that is deviating

from a triangular shape by the last term on the right hand

side. If we normalize Eq. (11), we get

1

A� Bx

1

n
@2n
@x2
¼ 1þ B

2ðA� BxÞ1:5

¼ 1þ E

2
ffiffiffiffiffiffi
2ms

�h2

q
fuF þ uB � /tun � E:xg1:5

¼ gðx; parÞ: (12)

The right hand side deviates most from 1 when uF þ uB

� /tun is minimal and Ex is high. From Fig. 3, it is clear that

Ex ¼ uF þ uB � ut � / � uF þ uB � ut � /tun ) uFþ

uB � /tun � Ex � ut. So the right hand side of Eq. (12) is

always finite and the largest deviation from a triangular bar-

rier occurs for low values of ut. Let us assume that ut

� 0.1 eV. The electric field is at maximum 3 V over 20 nm

before complete depletion of the 2-DEG takes place and the

vertical field cannot be further increased, so Emax

� 1.5� 108 V/m. In Fig. 4, we have plotted the right hand

side of Eq. (12) g(x, par) as function of depth for several val-

ues of par ¼ uF þ uB � /tun: 0.1, 0.2, 0.5, 1.0, and 3.0 eV,

with E ¼ Emax. We can make the following observations.

The curves tend to infinity when Emaxx approaches uF

þ uB � /tun. As said, this will never occur. The curve for the

case of 0.1 eV rises already considerably above 1 for low values

of x, so in this case Eq. (10) is not a good wave function to use.

For values of uF þ uB � /tun � 0.2 eV, the deviation of

Eq. (12) from unity at low values of x is minimal. Therefore,

we can conclude that Eq. (10) is a good approximation for

the wave function for traps deeper than 0.2 eV below the

conduction band. This solution can also be used for slightly

shallower traps without significant error, especially at lower

values of E.

This leads to a modified version of Eq. (8) for the trian-

gular barrier

}1 ¼
4�hmm

m2
s

a

a2 þ k2
0

�
ðk0

0

exp �2

ðW
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ms

�h2
fuFþ uB� /tun� Exg

r
dx

8<
:

9=
;kxk==dk==:

(13)

If we replace kx by kx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

0 � k2
==

q
and /tun by

/tun ¼ /� mm

ms
/== ¼ /� �h2k2

==

2ms
, we can integrate Eq. (13) over

k// and calculate }1.

An equation for the de-trapping probability can be

derived analogous to the derivation of }1. Referring to Fig. 3

at reverse bias voltage Vr, the electron Fermi level in the

semiconductor is Vr below uF. We can calculate the proba-

bility }2 of a trap located at W for capturing an electron from

FIG. 3. Tunneling by electrons having energy / assisted by traps at energy

level ut below the conduction band in AlGaN.

4

2

10-11 10-10 10-9 10-8

x [m]

g(x, 0.1)

g(x, 0.2)

g(x, 0.5)

g(x, 1)

g(x, 3)

0

10-7

FIG. 4. Deviation of triangular barrier as function of depth for different trap

energy levels ut.
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the semiconductor that has the right energy, i.e., an energy

uB � ut � EW þ Vr above the conduction band minimum in

the semiconductor. Using detailed balance considerations,

this probability equals the de-trapping probability of an elec-

tron from the trap into the semiconductor. Assuming that the

conduction band minimum is very close to the Fermi level,

this means

k2
0 ¼

2msðuB � ut � EW þ VrÞ
�h2

:

We can calculate }2 simply by using Eq. (13), taking ut as

barrier height and replacing W by ut/E. This gives

}2 ¼
ðk0

0

pdk== ¼
4�h

ms

a

a2 þ k2
0

�
ðk0

0

exp �2

ðut=E

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ms

�h2
fut � Exg þ k2

==

r
dx

8<
:

9=
;kxk==dk==:

(14)

The term with k// in the exponent arises because there are

multiple orbits available for de-trapping into the semicon-

ductor with different k// levels. The argument is completely

analog to the reverse case in which free electrons from the

semiconductor are trapped into the barrier.

The next step is to calculate the gate current from }1

and }2. Suppose at a certain depth W, there is a trap concen-

tration Nt. Suppose further that a fraction n of these traps are

occupied by electrons and therefore do not trap more elec-

trons. The concentration of empty traps that are capable of

capturing electrons is Nt – n. The capture rate of the traps is

given by fFDm}1(Nt-n), while the de-trapping rate is }2 n. In

equilibrium, these rates must be equal, so

}2

fFDm}1

¼ Nt � n

n
:

The capture rate therefore is: R ¼ NtfFDm}1}2

fFDm}1þ}2
¼ Nt

ð 1
fFDm}1

þ 1
}2
Þ�1:

The current contribution of these traps is DJTAT ¼ qR.

The total TAT current is the integral of DJTAT over all traps,

so over all values of W running from zero for energies equal

to uF þ uB � ut to very large values for very low energies.

In practice, energies below the Fermi level will hardly con-

tribute anymore. So we can write for the total TAT current

JTAT ¼ qNt

ð1
0

1

fFDm}1

þ 1

}2

� ��1

dW: (15)

The only variables depending on W in this expression are }1

and fFDm. Integration has to be done numerically after substi-

tuting Eqs. (13) and (14) into Eq. (15).

The expression (15) describes the current contribution

caused by one trap level with an energy ut below the con-

duction band that is uniformly distributed throughout the

semiconductor barrier. If there are several trap levels avail-

able, each of them will contribute according to Eq. (15) and

all contributions have to be summed.

IV. MEASUREMENTS

Measurements were done of the gate to source current in

a Schottky diode with a square gate area minimizing the

influence of the gate edge. Voltages are applied between the

negative threshold voltage and zero volt. In that case, the

electric field at the gate edge is low because the 2-DEG is

only (partly) depleted underneath the gate and not next to the

gate. The current flow as well as the electric field can essen-

tially be treated as one-dimensional and be compared to the

models developed above. The diodes were processed by United

Monolithic Semiconductors (UMS: www.ums-gaas.com) in

Germany.17 The process technology has been described

before, including TEM pictures of the layer structure.18 The

HEMT structure is grown on SI-SiC substrate by MOVPE.

Device isolation was done by ion implantation. The ohmic

contact was made by evaporating Ti/Al/Ni/Au, which was

annealed at 870 �C by RTA. A SiN layer was deposited on

the AlGaN and a gate opening was etched in the SiN layer

using a CF4 based ICP process. After that a NiPtAu layer

was deposited as Schottky contact and annealed at 400 �C.

The resulting sheet resistance of the 2-DEG was 550 X/

square. We used the following material parameter settings: er

¼ 9.5 for the AlGaN, mm ¼ 0.1m0, ms ¼ 0.23m0 with m0 the

vacuum electron mass.19 Since the calculated results are not

very sensitive to the metal Fermi level, we take uF ¼ 5 eV

more or less arbitrarily, which is a suitable value for most

gate metals. The parameters describing the diode structure

are deff ¼ 25 nm as effective barrier thickness, A ¼ 10�8 m2

as gate area, and DV ¼ 0.4 V as the sum of the conduction

band offset between AlGaN and GaN and the GaN flatband

voltage, see Fig. 5. The factor DV contributes to the total

electric field across the barrier. From Fig. 5, the electric field

in the barrier is

E¼
VrþuB�uf latband�DuC

def f
and DV¼uf latbandþDuC:

In practice, DV is used as a fitting parameter that shifts the

I-V characteristics along the voltage axis.

Vr

ϕF

ϕFn

ϕB

ΔϕC

ϕflat band

deff

FIG. 5. The influence of the flatband voltage uflat band and conduction band

offset DuC between AlGaN and GaN on the total electric field in the barrier.

ufn is the electron Fermi level in the semiconductor.
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A comparison is made between the various theoretical

models and the measured data in the following sections.

A. The trap assisted tunneling model

This model assumes that each type of trap is distributed

uniformly throughout the AlGaN region and can be charac-

terized by only two parameters: the concentration Nt and the

energy level ut. Each trap type will contribute a current JTAT

according to Eq. (15). Every trap contribution is added to the

direct current through the barrier given by the sum of Eqs.

(5) and (6). Having many traps and their contributions to the

total current raises the possibility that the model can become

Ptolemaeic, i.e., that we introduce so many traps and associ-

ated fitting parameters, that we can fit any data without

obtaining a model that makes physically sense. Therefore,

we limit the number of traps in the model to two, which

gives us four extra fitting parameters, next to the ones we al-

ready have for the direct current. Fig. 6 shows the measured

and calculated data. Note that the threshold voltage of the de-

vice is �2.5 V. At lower voltages, the vertical field under-

neath the gate cannot increase any further because the

2-DEG is completely depleted. The measured data therefore

become independent of voltage below the threshold voltage

and the theories developed in this paper lose their validity.

At higher temperatures, the direct current dominates. This

allows us to accurately extract the barrier height from the

data at 175 �C. This results in uB ¼ 0.97 eV. The trap param-

eters are optimized to give the best fit to the data at 25 �C.

One trap is at an energy level ut1 ¼ 0.58 eV and at a concen-

tration of Nt1 ¼ 6� 1014 cm�3 and the other trap has ut2

¼ 0.35 eV at a concentration of Nt2 ¼ 1.5� 1015 cm�3.

As can be seen in Fig. 6, the traps add very distinct

humps in the current curves, especially at lower temperatures

where TAT dominates the total current. However, the meas-

ured data at 25 �C do not show these typical trap signatures,

suggesting that TAT does not occur in our samples. Of

course, it is possible to add enough trap types in the theory,

each with its own energy level and concentration, to obtain

also a smooth I-V curve at 25 �C, but it is very unlikely that

such a model would represent reality.

B. The ideal barrier

In this model, we only use the direct current through the

defect-free barrier given by the sum of Eqs. (5) and (6). We

treat the barrier height uB as a fitting parameter that we fit to

the high temperature measurements at 175 �C, which results

in a barrier height value of 0.95 eV. The comparison between

measured and calculated values is shown in Fig. 7.

From Fig. 7, we conclude that, although the high tem-

perature data can be reproduced, the model clearly fails at

the lower temperatures. Therefore, we will evaluate the patch

models as described in Sec. II.

C. The constant field patch model

In Fig. 8, the calculations are compared with the meas-

ured data for a patch area that is 2� 10�4 times the total area

with an effective patch barrier height of 0.58 eV (see Sec. II

C 1). Note that the calculated current includes the thermionic

emission current. This gives a good fit with the measured

data, indicating that indeed this patch model may explain the

data.

D. The zero field patch model

Calculations show that if uB,patch is low, the current is

dominated by thermionic emission and does not depend on

voltage (see Sec. II C 2). If, on the other hand, uB,patch is

taken high enough such that thermionic emission does not

FIG. 6. Measured current-voltage data (solid lines) at 25, 75, 125, and

175 �C and calculations (striped lines) using a TAT model with two distinct

traps at 0.35 and 0.58 eV and a barrier height of 0.97 eV.

FIG. 7. Comparison between measurements and calculations for the case of

an ideal barrier with a height of 0.95 eV.

FIG. 8. Measured data and calculations using a defect patch model with tri-

angular barrier, i.e., constant electric field throughout the patch.
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dominate, the total current is far too low to account for the

observations. Therefore, the zero field patch model cannot

explain the data.

E. The zero potential patch model

We can calculate the current by assuming an ideal trian-

gular barrier with reduced barrier height and reduced thick-

ness but with an electric field equal to the electric field in the

surrounding area (see Sec. II C 3). We can obtain a perfect fit

at the highest temperature by setting the patch area to the

total area ratio at 10�5 and the patch barrier height to

0.60 eV. The calculations, however, deviate dramatically

from the data at lower temperature (see Fig. 9). It is clear

that the zero potential patch model also cannot explain the

measured data.

V. CONCLUSIONS

We have developed theoretical models for currents in

triangular and square Schottky barriers caused by tunneling,

thermionic field emission, thermionic emission, and trap

assisted tunneling. The models are compared with measure-

ments on a large area Schottky diode on an AlGaN-GaN

structure as used in high electron mobility transistors. Com-

parison was done over a voltage range between the negative

threshold voltage and zero volt and over a temperature range

from 25 �C to 175 �C. The measured data can be understood

best by assuming that the current flows through only a very

small fraction of the diode area, possibly through defect

patches caused by epitaxial growth or gate processing. These

defect patches have a low Schottky barrier height. Best

agreement with measurements was obtained assuming that

the defect area is only a fraction of 2� 10�4 of the total

diode area and the defect barrier height is 0.58 eV in the sam-

ples. A constant electric field in the defect patches is

assumed to obtain the best fit with the data. Future research

is needed to identify the nature and cause of the defects in

order to reduce the Schottky current.
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