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Abstract: Industrial scale greenhouses have, during the last decade, reached a high level of
automation. However, lighting control is in general still controlled manually because of the type
of lamps (High Pressure Sodium) that are used. With High Brightness LEDs about to reach the
market today sufficiently high power for greenhouse grown crops can be achieved, and this opens
up for advanced lighting control. Optimized control will, however, be a difficult task because the
needs of the plants differ between individual plants, crops, time of the day, time of the growth
cycle, temperature, and of course the natural ambient light. In this approach to this problem we
distinguish four different control loops: growth control, ambient light compensation, light stress
detection and recovery, and spectrum optimization, where the focus of this work is on the latter
two. In particular it is shown here that light induced photoinhibition, decreasing photosynthetic
yield and potentially damaging the plants, can be remotely detected in a light environment.

1. INTRODUCTION

Contrary to most people’s belief, green house lighting is a
major energy consumer in Europe. The current electricity
consumption is estimated to be around 150 TWh per year,
which is about the same as the total electricity consump-
tion in Sweden. Modern Dutch green houses are built in
two storeys, 10ha in size, and with an electricity con-
sumption of 10 MW powered by gas turbines. A lowered
electricity consumption would clearly have a significant
environmental impact and also allow for crops grown closer
to the consumer.

Today, almost all full scale green houses use High Pressure
Sodium (HPS) lamps for their lighting. These lamps are
more or less of the same type as those used for highways.
They are highly efficient in the sense that they give a lot
of light for a given power. However, what has not been
commonly known is that the spectra they produce do not
fit well to the absorption spectrum of the photosynthesis.
In fact, the mismatch, with a lot of power in the far red,
implies that approximately one third of the emitted light
energy can never be used by the plants, and often the
wasted light is even higher (see Figure 1). Another problem
with the HPS lamps is that they are not adjustable
and slow to start, and therefore they are in general
not controlled even though most other processes in a
commercial green house are.

Today there are high power LEDs available on the market
and a company, Heliospectra AB in Göteborg, is devel-
oping LED-based lamps for green houses. These lamps
contain several different groups of LEDs having different
colors to better fit the absorption spectrum of the pho-
tosynthesis (Figure 1). In Figure 2 the first commercial
installation for one of Santa Marias (Swedeponics) green
house for basil is shown.

Since LEDs are easily adjustable in power this opens up
for feed forward as well as feedback control. This control
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Fig. 1. The action spectrum of the photosynthesis, HPS
lamps and the prototype LED-lamp.

Fig. 2. The first commercial installation of the Heliospectra
lamp in a basil house at Swedeponic, P̊aarp, Sweden.
(Photo: T. Pocock for Heliospectra).

possibility may cause potentially large energy savings
through at least the following mechanisms:

• Growth control. Today the growers have poor possi-
bilities to adjust the plant growth, which have the
effect that a significant part of the harvest has to
be thrown away because the demand does not match
the produce. For this reason Swedeponic, for example,
throw away 15% of their basil produced. Using vari-
able light intensities we can control the growth rate
within certain limits, hence minimizing this waste.
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system being developed.
Fig. 4. First order transfer functions with direct term fit• Photoinhibition. Excess light causes plant stress and closely to the up-steps with clear parameter changes

the induction of photo protective mechanisms that caused by the photo inhibition.
lower the yield. The plants may even become dam-
aged with a permanent decreased photosynthetic
yield. (Note that the human eye cannot see when
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energy saving mechanisms (see Figure 3).  F∆ 0.025

To determine the needs of the plant is a difficult task, but 0.02

their status affects the light emitted (fluorescence) and 0.015
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the light reflected from the plants. A key research task is time (min)

therefore how to use the measured emitted and reflected
light to diagnose the plants. Fig. 5. The ratio between the amplitude of the variation

at 60-1 Hz in the reflected light at 420 nm and the
2.1 Stress diagnosis amplitude of the variation in the emitted light at

420 nm (top). The corresponding ratio between the
Analysis of fluorescence, using fluorescence indices such variations in fluorescence at 685 nm and of the applied
as Fv/Fm, from plants is a well established method for light at 420 nm (bottom).
detecting plant stress. However, such standard methods

relatively close fit of the responses to first order transferrequire on leaf measures and a completely controlled
functions on the formenvironment. To be used in practice for automatic control,

θthe stress has to be sensed remotely. Takayama et al. [2011] (
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have remotely detected plant stress (draught) in tomato
−
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plants in a greenhouse using fluorescence. However, their to the measured responses could be achieved (Figure 4),
method requires dark adaption (complete darkness for at with clear changes in model parameters (Figure 6), im-
least 20 minutes), and can thus only be used at night plying that photo inhibition can in fact be remotely de-
and not in daylight, which is the normal situation for our tected in a light environment. In the next step, recursive
application. identification of models having direction dependent dy-

namics (Rosenqvist [2004]) using a superimposed suitable
In a series of experiments we have focused on diagnosing

binary excitation signal at 420 nm, for example, will be
the signaling response to different light excitations with

investigated as an approach to have a continuous online
the purpose of finding when the plants become stressed by

diagnosis.
excess light. We have then found that the fluorescent light
at 685 nm responded well to an excitation signal at 420 nm.
As a first step we have investigated the responses to steps
(Figure 4) and to slowly varying sinusoids (Figure 5). From
the step responses it can be concluded that the plants
exhibit different dynamics for increases in light intensity
than for decreases. In particular it was found that the dy-
namics of the up-steps were significantly changed by excess
light already at moderate (reversible) photoinhibition. A
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K. Takayama, H. Nishina, S. Iyoki, S. Arima, K. Hatou,
Y. Ueka, and Y. Miyoshi. Early detection of drought
stress in tomato plants with chlorophyll fluorescence
imaging-practical application of the speaking plant ap-
proach in a greenhouse. In 18th IFAC World Congress,
pages 1785–1790, Milano, Italy, Aug. 28 - Sep. 2 2011.

Proceedings of the 17th Nordic Process Control Workshop 
Technical University of Denmark, Kgs Lyngby, Denmark 
January 25-27, 2012

132


	Proceedings of the17th Nordic Process Control of Workshop
	Welcome letter
	Map of DTU
	List of registrants
	How to get to DTU
	Table of contents
	Presentations
	Oral Presentations.pdf
	Fuel moisture soft-sensor and its validation for the industrial BioGrate boiler
	Temperature Modelling of the Biomass Pretreatment Process
	Identification of Switching System
	ModelID, an Interactive Program forIdentification of MPC Relevant State-SpaceModels
	Data Mining for Process Identification
	MPC at Statoils Kalundborg Refinery
	Industrial Challenges from the Cement and Mining Industry
	Application and Development of Advanced Process Control Schemes inNovozymes Fermentation Pilot Plant
	Using computer models to save energy: An early warning model for tunnelpasteurizer energy consumption
	Optimal Controlled Variables for Parallel Process Units
	On Performance for Tracking MPC
	Single Shooting and ESDIRK Methods foradjoint-based optimization of an oilreservoir
	Optimization of lift gas allocation in a gas lifted oil field as non-linearoptimization problem
	Model-Based Optimization of EconomicalGrade Changes for the BorealisBorstarRF Polyethylene Plant
	Modeling Operating Modes during Plant Life Cycle
	Teaching Control Principles to IndustryPractitioners
	Industrial Applications Of Predictive Functional Control
	The SIMC method for smooth PID controllertuning
	Wannabe-MPC for Large Systems Based on Multiple Iterative PI Controllers
	Regulatory layer selection through partial control
	Fault detection and diagnosis system for the drying section of a board machine
	MPC techniques in fault tolerant controldesign
	Event-driven flow control of incompressible fluid
	Process Monitoring of Three Tank System
	Model-based analysis of control performance in sewer systems
	Dynamic Simulation of Oxy Combustion in a pilot scale CFB boiler
	Experimental Testing of Oxy Combustion in a Pilot Scale CFB boiler
	Greenhouse LED lighting control
	Control of Blood Glucose for People with Type 1 Diabetes: An in Vivo Study

	Poster Presentations
	A Dantzig-Wolfe Decomposition Algorithm for Linear Economic MPC of a Power Plant Portfolio
	A model-based FDD method of interacting control loopsand its application to a mixing tank process
	A New Static Estimator for Estimation of Primary Variables fromCombination of Secondary Measurements
	Design of Optimal Low-Order FeedforwardControllers for Disturbance Rejection
	Educational Toolkit for Teaching FDD Methods
	Experimental study of anti-slug control onsmall-scale test rig
	Fault Analysis as a Tool for Fault Detection and Diagnosis Development in Large- Scale Systems
	Application of shape-based stiction detection methodsto the critical valves of a board machine
	Heuristic Evolutionary Random Optimizer for Non-linear OptimizationIncluding Control and Identification Problems
	Industrial validation of the dynamic BioGrate boiler model
	Iterative Methods for MPC on GraphicalProcessing Units
	Minimum Backed-off Operating Point Selection
	Model Predictive Control of a Nonlinear System with Known Scheduling Variable
	Modelicalibraryforsimulationofbioprocesses
	Modeling and simulating an electrical gridsubsystem for power balance analysis
	Modeling of the freezing process for fish invertical plate freezers
	Modeling Smart Energy Systemsfor Model Predictive Control
	Modelling and control design for SHARON/Anammox reactorsequence
	Modelling Fungal Fermentations For Enzyme Production
	Operation and Control of Enzymatic Biodiesel Production
	Optimal Control of a Batch Reactor Usingthe Linearized Hamilton-Jacobi-BellmanEquation
	Optimal Input Design for Parameter Identification in Dynamic Systems Using Nonlinear Programming
	Optimisation of Oil Production in Two – Phase Flow Reservoir Using Simultaneous Method and Interior Point Optimiser 
	Data Analysis and Monitoring of Thickness Sensor Fouling Using Self-Organizing Maps
	Production Optimization for Two-Phase Flow inan Oil Reservoir
	Reducing Revenue Loss due to Utility Disturbances using Buffer Tanks– A Case Study at Perstorp
	Regulatory Control of 4-product Kaibel column
	Robust implementation of optimal controlpolicies for transient processes
	Simulation, Control and Optimization ofSingle Cell Protein Production in a U-LoopReactor
	State Estimation for the Automotive SCR Process
	State Estimators for a Pilot Anaerobic Digestion Reactor
	Stochastic Model Predictive Control withApplications in Smart Energy Systems
	On controllability of an integrated bioreactor and periodically operated membrane separation process
	Model Predictive Control for an Industrial SAG Mill 






