
Chalmers Publication Library

Scheduling model for systems with complex alternative behaviour

This document has been downloaded from Chalmers Publication Library (CPL). It is the author´s

version of a work that was accepted for publication in:

2012 IEEE Conference on Automation Science and Engineering, CASE 2012 (ISSN: 2161-

8070)

Citation for the published paper:
Wigström, O. ; Lennartson, B. (2012) "Scheduling model for systems with complex
alternative behaviour". 2012 IEEE Conference on Automation Science and Engineering,
CASE 2012 pp. 587-593.

http://dx.doi.org/10.1109/CoASE.2012.6386474

Downloaded from: http://publications.lib.chalmers.se/publication/169038

Notice: Changes introduced as a result of publishing processes such as copy-editing and

formatting may not be reflected in this document. For a definitive version of this work, please refer

to the published source. Please note that access to the published version might require a

subscription.

Chalmers Publication Library (CPL) offers the possibility of retrieving research publications produced at Chalmers
University of Technology. It covers all types of publications: articles, dissertations, licentiate theses, masters theses,
conference papers, reports etc. Since 2006 it is the official tool for Chalmers official publication statistics. To ensure that
Chalmers research results are disseminated as widely as possible, an Open Access Policy has been adopted.
The CPL service is administrated and maintained by Chalmers Library.

(article starts on next page)

http://dx.doi.org/10.1109/CoASE.2012.6386474
http://publications.lib.chalmers.se/publication/169038

Scheduling model for systems with complex alternative behaviour

Oskar Wigstrom and Bengt Lennartson

Abstract— In this paper we propose a flexible model for
scheduling problems, which allows the modeling of systems with
complex alternative behaviour. This model could for example
facilitate the step from process planning model to optimization
model. We show how automatic constraint generation can
be performed for both Constraint Programming and Mixed
Integer Linear Programming (MILP) models. Also, for the
MILP case, a new formulation for mutual exclusion of resources
is proposed. This new formulation works well for proving
optimality in systems with multiple capacity resources. Some
benchmarks for such job shop scheduling problems as well as
systems with a large number of alternatives are also presented.

I. INTRODUCTION

A number of variations of the Job Shop Scheduling Prob-
lem (JSSP) have been presented over the years. In its most
basic form, the JSSP entails finding the optimal schedule for
a plant with m machines and n jobs. Each job j consists of
nj operations, which are to be processed in a specific order in
specific machines; these jobs can have both release and due
dates. Most often a criterion such as the makespan, weighted
average or minimum tardiness is subject to minimization [1].

As computational power and the efficiency of algorithms
have increased over the years, so has the posibility for more
detailed models. One extension of the JSSP is the Flexible
Job Shop Scheduling Problem (FJSSP), where operations
may be processed in a set of machines. The FJSSP has been
further extended to include amongst others limited capacity
buffers [2], positive/negative time-lags [3] and time varying
resource availability [4].

The formal model formulation for many of these exten-
sions requires a unique sets of variables for each extension,
even though some properties are in essence only linear equal-
ities or inequalities. But most importantly, the alternatives
in a FJSSP consist of picking a machine among a set to
process an operations [5][6][7]. Because of this, it is not
possible to express multiple layers of alternatives with the
FJSSP model. Systems where one operation has a number
of alternatives, and one or more of these alternatives include
yet another layer of options, cannot be modeled by the FJSSP
framework.

These nested alternatives in a scheduling problem can in
a natural way be described by a tree-like structure. While
keeping the model as general as possible, we define a
node-tree structure with complementary sets of relations and

This work was carried out at the Wingquist Laboratory VINN Excellence
Center within the Area of Advance – Production at Chalmers, supported by
the Swedish Governmental Agency for Innovation Systems (VINNOVA) and
the Swedish Research Council. The support is gratefully acknowledged.

O. Wigström, B. Lennartson, Automation Research Group, Department
of Signals and Systems, Chalmers University of Technology, Gothenburg,
Sweden, oskar.wigstrom@chalmers.se

resources. We show how this new model is well suited for
generation of Constraint Programming (CP) as well as Mixed
Integer Linear Programming (MILP) constraints. The CP
model is good for quickly finding optimal or close to optimal
solutions of problems with linear cost functions. For proof
of optimality however, its performance degrades quickly in
some cases. The MILP constraints can be used either for
proof of optimality in linear problems or for problems with
a nonlinear cost function, as in [8].

So, to summarize, the contribution of this paper is a new
way of modeling nested alternatives, which is shown to
be efficient, especially for scheduling of multiple resource
systems. Also, corresponding CP and MILP optimization
models which can be used for automatic constraint gener-
ation are presented, considered and compared. The MILP
formulation in this paper is similar to [9][10], but applied
to the tree structure formed by the nodes, which allows
a more flexible modeling of alternatives. We present two
alternatives for modeling resources with multiple capacity.
The first models several identical machines with capacity one
and treats the allocation as an alternative. The other, which
to our knowledge is novel, abstracts the resources’ identities.

The paper is structured as follows. Section II contains the
scheduling model and definitions for its components. Section
III covers the corresponding Constraint Programming model
while the Mixed Interger Linear Programming model can be
found in Section IV. Some brief comments on computational
complexity as well as simulation results are presented in
Section V, and finally in Section VI conclusions are drawn
along with a brief discussion.

II. PRELIMINARIES

For a set S, |S| denotes cardinality, the number of elements
in S. Let A.y refer to element y in a tuple A = 〈x, y〉. Note
that in some cases where certain properties can be inferred,
some arguments are removed for notational simplicity. For
example the expression A.x = 2 ∀A ∈ A is equivalent to
x = 2 ∀A ∈ A, as it can easily be inferred in the latter that
x is a property of A, and let bn specify element n in a vector
b. Let 2S be all subsets of S. Also, Rn, Rn+, Nn, Nn+ are the
n-dimensional spaces of real numbers, positive real numbers,
natural numbers and positive natural numbers. Furthermore,
if N is a node in an ordered directed tree, the operator P[N]
is the set containing all upwards located nodes as well as N .
The operator S[N] indicates the set of all downwards located
nodes, in this case N itself is not included in the set. Finally,
a note on mappings: if we define for example α : A → B,
a ∈ A and b ∈ B. Then the function α(a) = b maps a to
the actuall element b, not its value.

A. Problem Formulation

As previously mentioned, in FJSSPs, the type of alterna-
tive behaviour available is expressed by a set of possible
resources which can be used to process an operation. If the
alternative represents more than just a choice of resources,
or contains even more altarnatives embedded within its child
nodes, a more flexible model is necessary. Therefore, we
consider a tree-structure of nodes, where each node can either
represent an operation or a collection of nodes in which all or
only a subset must execute. We define a Scheduling Problem
(SP) as the tuple

SP = 〈N , T ,R,A, C〉,

where N is a set of top level nodes, T is a set of temporal
orderings that defines relations between start and final times
for different nodes, R is a set of resources, A is a set of
resource allocations and C is a set of linear constraints. Each
node N ∈ N forms an ordered directed tree. That is, each
node contains zero or more child nodes. A node that has
a child is called a parent node, and a node may have at
most one parent. The allocations in A associate nodes with
resources.

An assignment to the SP entails setting start and end times
to each top level executing node N ∈ N as well as the child
nodes S[N]. We will define this set of all nodes contained
within the tree-structure as N̂ , more formally:

N̂ =
⋃
N∈N

N ∪ S[N]

The assignment to the SP is valid if all temporal orderings in
T as well as resources inR are satisfied. A temporal ordering
is a temporal relation between two nodes, for example node
N1 should have a starting time larger than the finishing time
of N2. Finding a valid assigment equates to solving the
satisfiability problem. It could also be the case that some
function is to be optimized. Then the solution that among
the set of valid assignments that yields an optimal value is
the solution to the optimization problem.

Definition 1 (Node). A node is an object that can for
example represent a classical JSSP operation or act as a
parent for a set of child nodes. The following five-tuple
describes a node N

N = 〈s, f, d,N , ν〉,

where s and f , both in R+, are start/end-times, s ≤ f , d ∈
R2

+ is the minimum and maximum duration of the node,
d1 ≤ e−f ≤ d2, N is a set possibly containing child nodes,
ν expresses the number of nodes in N that may execute, 0 ≤
ν ≤ |N |. A node is said to be executing in the time interval
[s...f], a node that should not execute due to alternatives,
does not require an assignment to neither s nor f .

Remark 1. (i) A fixed duration is a special case where d1 =
f − s = d2. (ii) For an open ended execution time, d2 =∞.
(iii) If N = ∅ it can be regarded as an operation.

Definition 2 (Allocation). An allocation A connects a node
N to a resource R. Also, it describes during which temporal
part, τ , of N the allocation occurs as well as the number of
units, m ∈ N, of R that are allocated. An allocation is given
by the tuple

A = 〈N,R, τ,m〉

The same tuple is also used for deallocation, in which case,
m is negative.

Assumption 1. The parameter τ is open for definition. In
Section III and IV we define the choice τ ∈ {pre, post}.
The values pre and post specify the allocation time instants
to be at the start or the end of a node. This implies that an
allocation could for example occur at the end of an operation,
if τ = post. An extension of this domain is however easy
to implement but is omitted for a clearer formulation. An
example of an extension is if one would like an allocation
could occur a specific number of time units after a node has
finished executing.

Definition 3 (Temporal ordering). A temporal ordering re-
lates the start/end times of two nodes. It is defined by

T = 〈N1, N2, At, bt, k〉,

where N1 and N2 are two nodes subject to the linear
constraint formed by At ∈ R1×4 and bt ∈ R. Also, k ∈
{eq, leq} determines whether the constraint is an equality
or inequality . A temporal relation is satisfied if the linear
constraint on x by At and bl holds, where x includes the
start and end times in N1 and N2.

Definition 4 (Allocation pair). This construction will relate
two allocations that act on the same resource but with
negated magnitude. That is, if a resource is booked, this
booking can also be related to an unbooking. The following
tuple represents an allocation pair

P = 〈A1, A2,m〉,

where A1.R = A2.R, A1.m > 0 and m = A1.m =
−A2.m. This means that A1 is an allocation and A2 a
deallocation, both acting on the same resource. The reason
for this construct is the MILP model’s implementation of
mutual exclusion is based the assumption that a resource is
booked during time intervals

Assumption 2. It is assumed that it is possible to form pairs
for all A ∈ SP.A. It is possible to formulate CP constraints
without this construct, but for the MILP model it is required.

Definition 5 (Resource). A resource R has two parameters,

R = 〈c,P〉,

where c ∈ N+ is the capacity of the resource and P is
a set of allocation pairs acting on the resource. The sum
of allocations acting upon R may at no time exceed its
capacity c. For a formal description, see the definition of
the cumulative constraint in Section III.

A

B C D E

F

Fig. 1. An example graphical scheduling model

Remark 2. (i) Variable resource availability can be mod-
eled using a job containing operations with predetermined
start/end times that allocate the unavailable resource. (ii)
negative/positive time-lags as well as release/due dates can
be added to C.

B. Modeling example
A simple example, illustrated in Figure 1 will demonstrate

how the node structure can be used for modeling alternatives.
The graphical representation used is from Sequence Planner
Language [11]. A single arc branching into two arcs repre-
sents an alternative, only one of the branches should execute.
A single arc leading to a double horizontal line represents
parallel execution, all arcs leading out from the double line
should execute. In this example, there are three posible cases:
A→ B → F , A→ (C+D)→ F and A→ (C+E)→ F .

Using our modeling formulation, we would add 3 nodes:
N1, N2 and ND|E . First, let ND|E represent the alternative
between D and E. That is, set D and E as child nodes of
ND|E and as only one may execute, ND|E .ν = 1. Next, the
parallell execution is now modeled by adding ND|E and C
as child nodes in N2. As N2 does not model an alternative,
N2.ν = 2. Last, the alternative between B and the other
nodes is implemented by setting N2 and B as child nodes
of N1, where N1.ν = 1. The temporal ordering of all the
nodes, A before N1, etc is implemented in L.

III. CONSTRAINT PROGRAMMING MODEL

Compared to the classical way of solving JSSPs by branch
and bound techniques based on mixed integer programming
[12], a number of competitive methods now exist. Modern
approaches are often based on advanced heuristics and local
search algorithms, e.g [13]. CP methods by themselves are
relatively competitive while providing a more flexible ap-
proach [14]. In combination with heuristics they outperform
even the best local search algorithms [15], see also for
example [16] [17].

A. Constraints
For the cumulative scheduling constraint, we use the

definition from [18]. The constraint is defined as

cumulative(s, d,m, c),

where s is a list of variables representing starting times, d and
m are lists of duration times and booked resource capacity.
Finally, c is the resource consumption limit, c ∈ N+. The
constraint is true given the following condition:∑

j|sj≤t≤sj+dj−1

mj ≤ c, for all times t

Since alternative behaviour is included in the model, some
nodes may not execute. Because of this, some sort of
implementation of optional variables must be present in the
CP solver. In [19] a number of methods are mentioned for
dealing with optional variables. In commercial optimization
software such as IBM ILOG CPLEX Optimization Studio
[20] this type of functionality is included. For our model,
we define three constrains which we expect have analogues
or are implementable in common CP modeling languages.
First we define the optional constraint, which applied to a
node allows its start and end time to take no value and still
fulfil any constraints it is a member of. For example

Optional(N),

expresses that N is an optional node. Also, we define the
implication constraint,

N1 ⇒ N2

which expresses that if one node N1 executes, so must N2.
Or in other words, if s and f in N1 are present, so should
the start and end time for N2 also be incorporated. Finally,
the constraint

Alternative(N,N , k),

implies that if N executes, then so should only k ∈ N+ of
the nodes in the set of nodes N , 0 < k <= |N |.

B. Model

The model corresponding to the scheduling problem SP
in Section II is now given by the following equations. Note
that in some CP languages, s and f can be represented
as an interval variable. Reformulating the problem with
interval variables should prove rather simple. Observe that
in most CP solvers, real valued variables are discretized.

Alternatives: First off, any parent nodes Np ∈ N̂ , for which
not all child nodes Nc ∈ Np.N may execute will have to be
flagged as alternatives.

Alternative(N,N.N , N.ν)
∀{N : N ∈ N̂ , N.ν < |N.N|} (1a)

This is however not enough, all child nodes as well as any
nodes in lower branches S[Np.N] must be set to optional.

Optional(Nc) ∀ {Nc : Nc ∈ S[Np.N] ∪Np.N},
{Np : Np ∈ N̂ , Np.ν < |Np.N|} (1b)

Also, since the lower branches have been set to optional,
we must make sure that any nodes in Np.N or even

lower branches which do not act as alternatives, imply the
execution of their child nodes.

N ⇒ Nc ∀ {Nc ∈ N.N}, {N : N ∈ N̂ ,
N is optional, 0 < N.ν = |N.N|} (1c)

Or in other words, suppose a parent node contains child
nodes which all should execute. Also, all these nodes are
optional because of an alternative higher up in the tree. Then
it must be made sure that if the parent node executes, so do
the child nodes.
Execution: The start and end time restrictions on each node
are formed by simple linear constraints, which could just as
well have been included in C.

s+ d1 ≤ f ∀{N : N ∈ N̂} (2a)

f − s ≤ d2 ∀{N : N ∈ N̂} (2b)

ensures that duration constraints of each node are upheld. If
the duration is fixed, this can be replaced with an equality
constraint.

Temporal relations: The set of temporal orderings are also
in principle a set of linear constraints.

Aty ≤ bt ∀{T : T ∈ T , k = leq} (3a)
Aty = bt ∀{T : T ∈ T , k = eq} (3b)

y = [N1.s,N1.f,N2.s,N2.f]
T

Resources: Let us define a function α(A) which maps an
allocation A to the specific time instance indicated by its N
and τ . With our previously defined domain of τ :

α(A) =

{
N.s if τ = pre

N.f if τ = post

With this, we can model the resource capacity by:

cumulative(s, d, n, c), ∀{R : R ∈ R} (4)

Here, s, d and m are lists of variables for which, for each
R ∈ R, Pj : J → P and j ∈ N. In other words, there is
an index set J for each resource, which maps to the pairs of
that resource.

sj = α(Pj .A1),

dj = α(Pj .A2)− α(Pj .A1)

mj = Pj .m

∀{j : j ∈ J}, {R : R ∈ R}

In other words, s, d and m are simply ordered sets with
start times, durations and allocation magnitudes for each
allocation pair for a resource R.

Linear constraints: Finally, the set of linear constraints in
C should be included. Provided the optional, implication and
alternative constraints work as specified, the implementation
of these should be trivial.

IV. MIXED INTEGER LINEAR MODEL

The first integer programming models for JSSPs fall into
three different categories [21], with the major difference
being the modeling of time. The start and end times of
operations can be treated as integers [22] or time can be given
implicitly by the order of operations [23]. As a third option,
the planning period could be discretized and an operation
starting in a specific time instance is modeled by a boolean
variable [24]. Since CP is very adept at solving scheduling
problems with linear constraints, we focus on the modeling
formalism in [22], where the integer decision variables,
representing start and end times, can just as well be real
valued variables. This makes it possible to use the constraints
for scheduling problems with nonlinear cost functions as
well, cf.[8]. Recent formulations for the FJSSP based on the
formalism in [22] can be found in for example [9][10].

The MILP formulation in this paper is similar to these,
but applied to the tree structure formed by the nodes, which
allows a more flexible modeling of alternatives. Also, the
model allows allocations with magnitude larger than one and
allocations that can span more than only one operation. Two
alternatives for modeling resources with multiple capacity is
presented. The first is based on modeling several identical
machines with capacity one and treating the allocation as an
alternative, while the other abstracts the resources’ identities.

A. Model

Alternatives: Define a set of boolean variables B, and a
bijective function β : N → B. This mapping links each
node, which may not be executed because of an alternative,
to a boolean representing if the node is to execute. A boolean
with value 1 implies execution.∑

b∈β(Np.N)

b = Np.ν

∀{Np : Np ∈ N̂ , Np.i < |Np.N|} (5)

These constraints will give the correct behaviour for all
parent nodes Np, where only a subset of its child nodes
Nc ∈ Np.N should execute. These booleans will be
present in other constraints to nullify constraints where non
executing nodes are present.

Execution: The duration constraints are now expressed:

s+ d1 ≤ f +
∑

b∈β(P[N])

M(1− b), ∀{N : N ∈ N̂} (6a)

f − s ≤ d2 +
∑

b∈β(P[N])

M(1− b), ∀{N : N ∈ N̂} (6b)

where M is a constant which is sufficiently large to force
the constraint to be satisfied (nullified) if b = 0. Note that,
in the case of a fixed duration operation, the two above
constraints can may very well be written differently, similar
to the equality case in the temporal relation constraints.
Recall the definition of P[N], the set of all upwards located
nodes including N itself. This means that equations (6a,b)
will only hold if N and all its upwards located nodes should

execute.

Temporal relations: The temporal orderings, which form
temporal relations between pairs of nodes (N1,N2), are
implemented by

Aty ≤ bt +
∑

b∈β(Q1)

M(1− b),

∀{T : T ∈ T , k = leq} (7a)


Aty = bt + s,

s ≤
∑
b∈β(Q1)

M(1− b),∑
b∈β(Q1)

M(b− 1) ≤ s,
∀{T : T ∈ T , k = eq} (7bcd)

Q1 = P[N1] ∪ P[N2]

y = [N1.s,N1.f,N2.s,N2.f]
T

In this case, the parent nodes for both N1 and N2 as well
as the nodes themselfs must be executing for the constraints
to be true. This is defined by the set of nodes Q1. For
inequality constraints, (7a) functions in the same way as
(6ab). In the equality case however, (7b) expresses the
equality constraint itself, while the variable s is either
constrained to 0 by (7cd) or set free.

Resources v1: In the first resource model, multi capacity
resources are split up into multiple single capacity resources.
First, we define a set of boolean vectors C, each element is
denoted c. Also, i ∈ N is an index representing each single
capacity resource, the i:th element in c is denoted ci. Also
define a bijective function γ : P → C. This means that each
pair executing in a resource has a corresponding boolean
vector which indicates which single capacity resource or
resources the pair uses.

R.c−1∑
i=0

γ(P)i = m ∀{P : P ∈ P}, {R ∈ R} (8a)

This first equation expresses the number of single capacity
resources which are used by the allocation pair. Next the
mutual exclusion for each posible combination of pairs in
each possible single capacity resource is generated. For each
pair, there must also be a boolean describing which one
executes first, we define a bijective mapping δ : P × P →
D, where D is a set of boolean variables. If the boolean
δ(P1, P2) is true, then this implies that P1 executes before
P2. Thus, δ(P1, P2) 6= δ(P2, P1).

α(P1.A2) ≤ α(P2.A1) +
∑

b∈β(Q2)

M(1− b)+

M(3− γ(P1)i − γ(P2)i − δ(P1, P2))

∀ {P2 : P2 ∈ P\P1},
{P1 : P1 ∈ P},
{i : i ∈ N+, i ≤ R.c},
{R : R ∈ R} (8b)

Q2 =
⋃

i,j∈{1,2}

P[Pi.Aj .N]

The boolean set Q2 includes all booleans related to the
nodes included in the two pairs P1 and P2. This ensures that
all intervals connected to the allocation pair are executed, if
not, there is no need for a mutual exclusion. The γ functions
ensure that both pairs are actually performed on the same
machine i, and the δ funtion models which pair should go
first. The definition of α(A) is the same as in the previous
section.

Resources v2: This formulation is based on checking the
number of executing nodes at the starting time of each node.
Use the previously defined δ function and also and define
another bijective function η : P × P → H , where H is a
set of boolean variables. The function δ(P1, P2) maps to a
boolean which is one if P2 is executing at the start time of
P1 and zero if not.∑

P2∈P\P1

δ(P1, P2) ≤ R.c− P1.m+
∑

b∈β(B)

M(1− b)

∀ {P1 : P1 ∈ P}, {R : R ∈ R} (9a)

This first equations makes sure that the sum of executing
pairs at the start of P1 does not exceed the resource capacity
minus the allocation magnitude of P1. This constraint must
hold only if both nodes in P1 as well as their upwards located
nodes are executing, that is B is defined as before.


M(1 + η(P1, P2)− δ(P1, P2)) ≤

α(P1.A1)− α(P2A2(x)) +
∑
b∈β(B̂)M(1− b)

−Mη(P1, P2) + 1 ≤
−α(P1.A1) + α(P2A1) +

∑
b∈β(B̂)M(1− b)

∀ {P2 : P2 ∈ P\P1},
{P1 : P1 ∈ P}, {R : R ∈ R} (9bc)

These two equations ensure the specified behaviour of D
using the set of booleans H .

Linear constraints: The linear constraints in C are applied
in the same style as (7abcd). The only difference is if more
nodes than two are included in the constraint then,

Q1 =
⋃
N∈Ñ

P[N], (10)

where Ñ is the set of nodes subject to a constraint.

V. BENCHMARKS

Three models are considered in this paper: (i) The CP
model in (1)-(4), (ii) MILPV 1 given by (5)-(7) and the first
resource model (8) and (iii) MILPV 2 given by (5)-(7) and the
second resource model (9). For these models we present two
benchmarks. The first will compare the performance of the
three models with regards to multi capacity resources. They
are based on the standard JSSP, but with additional resource
capacity. The second benchmark is geared towards systems
with a large amount of alternatives, where multiple opera-
tions in a job may visit the same resource. The execution
time for each operation is determined by a uniform random
distribution ranging from 1 to 20.

A. Multi Capacity JSSP

To benchmark the models concerning resource capacity,
we generated a number of problems. We have considered
problem of a size where in most cases, an optimality proof
can be found within 1800[s] (half an hour) using at least one
of the three models. Each data entry is a results from at least
20 random generated problem instances. The parameters for
these were number of jobs Nj , operations in a job No,
resources Nr, resource capacity C. As we consider the multi-
capacity case, the number of operations and resources will be
the same, Nr = No, while number of jobs will be scaled by
the capacity, CNr = Nj . The top most part of Table I shows
the results for the standard JSSP case, C = 1. The middle
and bottom part of Table I shows the compiled results for
C = [2, 3]. For each problem instance there are two rows,
the top most indicates the percentage of optimal solutions as
well as the mean value of the execution time. The second
row shows the same properties but for the optimality proof.

For the single resource capacity case, both MILP methods
perform quite well while the CP model struggles with
both finding an optimal solution as well as proving it.
The MILPV 2 method seems slightly faster for finding the
optimum while MILPV 1 manages to prove optimality faster.
It should be noted that the CP model results in a close
to optimal solution in the initial few seconds of the opti-
mization. It is usually the last percentage of optimailty gap
that takes most of its time. For some of the largest problem
instances (14), none of the algorithms could prove optimality.
Therefore we have specified an upper and lower bound
for optimal solution. The lower bound conciders the case
where none of the algorithms are concidered optimal for the
instances where optimality could not be proven. The upper
bound is based on the number of times a model achieved the
best (or as good as any other) solution.

In the two cases C = [2, 3], CP performs very well,
both for finding an optimal solution as well as proving
its optimality. For larger instances in the double capacity
resource case, we note that MILPV 2 outperforms CP when
it comes to optimality proof. But as in the previous case,
CP still outperforms both MILP methods in terms of finding
an optimal solution in the shortest time. In both double and
tripple resource capacity, the new resource model in MILPV 2

is more robust when it comes to optimality proof compared

to MILPV 1. For some cases it is slower finding an optimal
solution however.

B. Multi level alternatives

To generate challenging examples with several levels of
alternative behaviour we did the following. Each sheduling
problem will as before consist of Nj jobs and Nr resources
with capacity C. The operations No will however with
probability p1, include K subnodes. Also with probability p2,
only 1 of the subnodes may execute. Due to space limitations,
we will not provide an indepth complexity analysis of multi
level alternative system. This benchmark only compares the
three methods for two sets of paramters. Note that operations
in one job may now visit the same machine more than once.
For this benchmark the maxumum time was set to 300 [s].

For the following results, we chose Nj = Nr = No,
C = 1, p1 = 0.15, p2 = [0.3, 0.5] and K = 3. This
method creates a large number of embedded extra nodes as
p1 is fairly large. A total of 124 problem instances were
generated and the resulting problems had a total number of
nodes in the range of [52...126]. Figure 2 shows a scatter
plot and linear regression curves for the computational time
of the three models as a function of the total number of
nodes. Note that in 33% of the instances, neither MILPV 1 nor
MILPV 2 could find an optimal solution, these instances were
omitted from the figure. It can be seen that the CP model
(dashed) is robust for an increased number of alternatives.
Also, MILPV 1 (solid) outperforms MILPV 2 (dotted) when it
comes to alternatives.

VI. DISCUSSION AND CONCLUSION

This paper presents a flexible scheduling which model
allows the modeling of systems with complex alternative
behaviour. The scheduling model is based on a tree-strucutre

TABLE I
JOB SHOP SCHEDULING RESULTS

Model MILPV 1 MILPV 2 CP

Single resource capacity
10.10.10 100%, 7.47s 100% 6.02s 84%, 141s

100%, 8.76s 100% 7.78s 9%, 5.57s
12.12.12 100%, 172s 100% 97.5s 43%, 380s

93%, 151s 96%, 200s 4%, 282s
14.14.14 21-47% 21-63% 0-26%

20% 657s 5% 143s 0%

Double resource capacity
3.6.3 100%, 0.32s 100%, 0.29s 100%, 0.05s

100%, 0.44s 100%, 0.29s 100%, 0.71s
4.8.4 100%, 0.80s 100%, 2.74s 100%, 0.07s

93%, 22.6s 100%, 3.27s 89%, 0.09s
5.10.5 100%, 8.0s 100%, 16.4s 100%, 0.37s

33%, 146s 100%, 56s 56%, 0.42s

Triple resource capacity
3.9.3 100%, 1.34s 100%, 1.37s 100%, 0.07s

81%, 23.4s 100%, 4.64s 85%, 0.16s
4.12.4 100%, 39.5s 100%, 17.7s 100%, 0.09s

69%, 3.45s 95%, 44.1s 95%, 0.178s
5.15.5 57-67% 52-67% 76-100%

57%, 348.8s 52%, 236s 76%, 0.37s

of nodes and it is shown how this model can be used to
automatically generate both CP and MILP constraints. We
also present a new way to model resources using MILP. This
new resource model can be used for multicapacity resources
without increasing the number of boolean variables with
added capacity. We also present some benchmarks for the
optimization models for both the multi capacity JSSP case,
as well as for systems with many alternatives. Results show
that the new resource model finds optimality proofs faster
than the standard model for JSSPs, when resources have
capacity two or more. The CP model is shown to perform
well for systems with high resource capacity. The benchmark
on systems with many alternatives show the CP model to be
very robust.

50 75 100

0.1

1

10

Optimal solution time - Multi level alternatives

Fig. 2. Computational time for optimal solution [s] as a function of total
number of nodes in the problem for 124 instances. The dashed line and
+-symbols represents the CP model, solid line and circles show MILPV 1

and finally the dotted line and crosses are MILPV 2.

REFERENCES

[1] P. M. Pardalos and M. G. C. Resende, editors. Handbook of Applied
Optimization. Oxford University Press, USA, 1 edition, February 2002.

[2] P. Brucker, S. Heitmann, J.L. Hurink, and T. Nieberg. Job-shop
scheduling with limited capacity buffers. OR Spectrum, 28(2):151–
176, January 2006.

[3] P. Lacomme, N. Tchernev, and M.J. Huguet. Dedicated constraint
propagation for job-shop problem with generic time-lags. In Emerging
Technologies Factory Automation (ETFA), 2011 IEEE 16th Conference
on, pages 1 –7, sept. 2011.

[4] Chung-Yee Lee. Machine scheduling with an availability constraint.
Journal of Global Optimization, 9:395–416, 1996.

[5] A. Baykasoglu. Linguistic-based meta-heuristic optimization model
for flexible job shop scheduling. International Journal of Production
Research, 40(17):4523–4543, 2002.

[6] P Brandimarte. Routing and scheduling in a flexible job shop by
tabu search. Annals of Operations Research, 41:157–183, 1993.
10.1007/BF02023073.

[7] Y. Mati, N. Rezg, and Xiaolan Xie. An integrated greedy heuristic
for a flexible job shop scheduling problem. In Systems, Man, and
Cybernetics, 2001 IEEE International Conference on, volume 4, pages
2534 –2539 vol.4, 2001.

[8] O. Wigström, B. Lennartson, A. Vergnano, and C. Breitholtz. High
level scheduling of energy optimal trajectories. Accepted for pub-
liction, IEEE Transactions on Automation Science and Engineering
2012, 2012.

[9] P. Fattahi, M.S. Mehrabad, and F. Jolai. Mathematical modeling and
heuristic approaches to flexible job shop scheduling problems. Journal
of Intelligent Manufacturing, 18:331–342, 2007.

[10] Cemal ˙Mathematical models for job-shop scheduling problems with
routing and process plan flexibility. Applied Mathematical Modelling,
34(6):1539 – 1548, 2010.

[11] B. Lennartson, K. Bengtsson, Chengyin Yuan, K. Andersson,
M. Fabian, P. Falkman, and K. Akesson. Sequence planning for in-
tegrated product, process and automation design. Automation Science
and Engineering, IEEE Transactions on, 7(4):791 –802, oct. 2010.

[12] S.C. Graves. A review of production scheduling. Operations Research,
29(4), 1981.

[13] N. Eugeniusz and S. Czeslaw. An advanced tabu search algorithm for
the job shop problem. Journal of Scheduling, 8:145–159, 2005.

[14] Jianyang Zhou. A constraint program for solving the job-shop
problem. In In Second International Conference on Principles and
Practice of Constraint Programming (CP’96, page 150. Springer
Verlag, 1996.

[15] D. Grimes, E. Hebrard, and A. Malapert. Closing the open shop:
Contradicting conventional wisdom. In CP’09, pages 400–408, 2009.

[16] J-Pl Watson and C.J Beck. A hybrid constraint programming / local
search approach to the job-shop scheduling problem. Integration of
AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems, 5015:263–277, 2008.

[17] C. Gueret N. Jussien A. Langevin L.-M. Rousseau A. Malapert,
H. Cambazard. An optimal constraint programming approach to the
open-shop problem. Technical report, 2009.

[18] A. Aggoun and N. Beldiceanu. Extending chip in order to solve
complex scheduling and placement problems. Mathematical and
Computer Modelling, 17(7):57 – 73, 1993.

[19] Petr Vilı́m, Roman Barták, and Ondřej Čepek. Unary Resource
Constraint with Optional Activities. pages 62–76. 2004.

[20] IBM Corp. IBM ILOG CPLEX Optimization Studio V12.2, 2010.
[21] Thörnblad K. On the Optimization of Schedules of a Multitask

Production Cell. Licentiate thesis, Chalmers University of Technology,
2011.

[22] Alan S. Manne. On the job-shop scheduling problem. Operations
Research, 8(2):pp. 219–223, 1960.

[23] H.M. Wagner. An integer linear-programming model for machine
scheduling. Naval Research Logistics Quarterly, 6(2):131–140, 1959.

[24] E.H. Bowman. The schedule-sequencing problem. Operations Re-
search, 7(5):pp. 621–624, 1959.

