
Chalmers Publication Library

High-Level Scheduling of Energy Optimal Trajectories

This document has been downloaded from Chalmers Publication Library (CPL). It is the author´s

version of a work that was accepted for publication in:

IEEE Transactions on Automation Science and Engineering (ISSN: 1545-5955)

Citation for the published paper:
Wigström, O. ; Lennartson, B. ; Vergnano, A. (2013) "High-Level Scheduling of Energy
Optimal Trajectories". IEEE Transactions on Automation Science and Engineering, vol.
10(1),  pp. 57-64.

http://dx.doi.org/10.1109/TASE.2012.2198816

Downloaded from: http://publications.lib.chalmers.se/publication/169009

Notice: Changes introduced as a result of publishing processes such as copy-editing and

formatting may not be reflected in this document. For a definitive version of this work, please refer

to the published source. Please note that access to the published version might require a

subscription.

Chalmers Publication Library (CPL) offers the possibility of retrieving research publications produced at Chalmers
University of Technology. It covers all types of publications: articles, dissertations, licentiate theses, masters theses,
conference papers, reports etc. Since 2006 it is the official tool for Chalmers official publication statistics. To ensure that
Chalmers research results are disseminated as widely as possible, an Open Access Policy has been adopted.
The CPL service is administrated and maintained by Chalmers Library.

(article starts on next page)

http://dx.doi.org/10.1109/TASE.2012.2198816
http://publications.lib.chalmers.se/publication/169009


High level scheduling of energy optimal trajectories

Oskar Wigström, Bengt Lennartson, Alberto Vergnano, Claes Breitholtz

Abstract— The reduction of energy consumption is today
addressed with great effort in manufacturing industry. A pre-
viously presented method for robotic system scheduling, which
exploits variable execution time for the individual robot opera-
tions, has shown promising results for energy optimization. The
method introduces linear time scaling of the trajectories to slow
down the manipulators movements. This paper improves the
scheduling method by generating energy optimal trajectories
using dynamic time scaling. Dynamic programming can be
applied to an existing trajectory and generate a new energy
optimal trajectory that follows the same path but in a different
execution time frame. With the new method, it is possible to
solve the optimization problem for a range of execution times
for the individual operations, based on one simulation only. A
case study of a cell comprised of four six-link manipulators
is presented, in which energy optimal dynamic time scaling
is compared to linear time scaling. The results show that a
significant decrease in energy consumption can be achieved for
any given cycle time.

Note to Practitioners— In robotic manufacturing systems,
much energy is wasted due to an adopted minimum time policy
for robot operations. This paper presents a method for produc-
ing energy efficient operations as well as an optimization model
for scheduling these operations in robot cell. Implementation
requires a flexible robot controller which allows manipulation of
speed and acceleration profiles. The results are also of interest
to industrial robot manufacturers, whom have full control over
the robot controller and would like to offer energy efficient
solutions to their customers.

Index Terms— Automation, Optimization methods

I. INTRODUCTION

Energy efficiency is a very important design driver for
robots and other moving devices in manufacturing systems.
In fact, oil and electricity prices are rapidly increasing, and
also companies will have to undergo new environmental
policies for a sustainable future. This can be accomplished
by research on new efficient equipment, with for instance
regenerative braking, energy storages and lightweight solu-
tions. As a short time strategy however, this paper focuses
on existing hardware solutions and presents a method for the
optimization of their usage.

The final performances of a robotic manufacturing system
result from the synergistic interaction between mechanics,
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control and software [1]. Thus, the optimization of such
systems should exploit different research fields. Energy op-
timization of mechatronic devices is well investigated in [2],
[3], [4], [5]. Energy optimal trajectories for robot applications
is a big research field itself, see e.g. [6], [7] and [8]. From a
system design perspective, a selection and matching of effi-
cient design solutions for pre-defined operations is studied in
[9], [10], [11]. The optimization of the scheduling supervisor
of the overall system is a promising area, although most
works are concerned with cycle time, as in [12], [13]. Two
approaches are presented in [14], where idle time between
the operations is used to reduce velocities and accelerations,
without concern to the energy consumption.

A method for decreasing the energy consumption in
production systems was presented [15]. Its assumption is
that a minimal cycle time for a manufacturing sequence
does not imply that every operation has to be performed
at maximum speed. This is the case when two robots work
in a shared zone for some operations, and one must wait
for the other to unbook the zone, or when a bottleneck
robot constrains the cycle time of others in series or parallel.
In these situations it is demonstrated that it might not be
convenient to run all operations at maximum speed, and
neither to slow down the operations to use all the available
waiting time. In fact, in general, there is an energy optimal
execution time which depends on the specific robot hardware
and the programmed operation. One of the building blocks
in the optimization method is the calculation of the energy
consumption E`(tf`) for each individual robot operation `
as a pseudo-polynomial function of its execution time tf`.
These local energy functions are then used to determine
the globally optimal execution times t∗f` for all operations,
such that the overall energy consumption of the system is
minimized. The energy functions in [15] are based on a
uniform time scaling of the robot trajectory, i.e. a linear
stretching of the position profile, providing promising results.
In this paper we improve the method in [15] introducing a
dynamic time scaling, in order to deliver an energy optimal
trajectory for the operations in a manufacturing sequence.

In [16] we extended the aforementioned method by using
dynamic programming in order to solve the trajectory plan-
ning problem for a range of execution times simultaneously.
Preliminary results for dynamically scaled operations were
also presented for a two-joint planar robot arm following a
simple trajectory. A comparison between dynamic and linear
scaling showed that if the operations execution time was ex-
tended by more than 5%, dynamic scaling would use at least
4% less energy than linear scaling. In this paper, dynamic
programming for generation of optimal energy functions



is combined with high-level scheduling. The scheduling
problem is, as in [15], modeled with mixed integer linear
constraits, with a nonlinear cost function expressing the
energy consumption of the system. A case study with four
industrial robots operating in the same cell is also reported.

The paper is structured as follows. Section II contains an
introduction to trajectory planning as well as the optimization
model and the algorithm used to solve it. Section III briefly
covers the scheduling problem. Section IV presents the
results from a four robot test case and finally in Section
V conclusions are drawn along with a brief discussion.

II. TRAJECTORY PLANNING

A trajectory planning problem can be described as gener-
ating the set of control inputs that will move a manipulator
along a predefined geometric path without violating any dy-
namic or kinematic constraints. Usually trajectory planning
problems are concerned with the optimization of some cost
function, most often comprised of time, torque, jerk or a
weighted combination of these.

Trajectory planning has been an area of research since the
early 1970s [17], but at that time neither variable torque-
nor path constraints were considered. Path constraints are a
necessity for collision avoidance, and not until the mid 1980s
[18], [19] the problem formulation was extended including
this property. These early works were mainly focused on
time optimal path planning. An excellent overview of the
last three decades can be found in [20]. In summary, af-
ter minimum time, focus shifted towards minimum energy,
which produced smoother trajectories and smaller tracking
errors.

There are a large number of approaches to the minimum
energy problem. Solutions include dynamic programming
[21], and later iterative dynamic programming [22], pa-
rameterized b-splines [23], Pontryagins maximum principle
[24], among others, were used. Some of the later methods
allow for constraints on the jerk and result in a continuous
acceleration. In some cases a simplified cost function is
proposed, for example only minimizing the squared join
acceleration. Minimizing and constraining jerk is also a topic
of interest as it reduces stress on the robot structure and gives
better tracking.

This paper uses dynamic programming in order to solve
the trajectory planning problem for a range of execution
times simultaneously. The grid required is as small as two
dimensions and yields an optimal trajectory with discontin-
uous acceleration. If the grid is extended to three dimen-
sions as suggested in [21], continuous acceleration and a
bounded jerk could be achieved. However, this would lead
to a significantly increased computational effort. If the two
dimensional grid is of high enough resolution and the size of
the acceleration discontinuities are constrained, taking jerk
into further consideration might not be necessary.

In contrast to [21], which employs a weighting between
cost and time, our method includes elapsed time in the
optimization model. This implies that, while [21] is based on
free final time in the optimization, our model can generate

solutions for specific final times. Note that, dynamic pro-
gramming, as opposed to other methods, puts no bounds on
the plant model complexity or objective function. The main
advantage of dynamic programming in this context however,
is that it yields optimal solutions for the entire grid. In our
method, the optimization model is formulated in such a way
that all execution (final) times are included in the grid, and
thus the dynamic programming optimization only needs to be
run once. Even though the complexity of [21] is somewhat
lower than ours, the dynamic programming optimization will
have to be run once for every execution time tf` of interest in
the energy function, E∗

` (tf`). This means that it is a viable
method if only a low resolution energy function with no
requirements on specific final times is sought, i.e. only a
limited number of weightings are evaluated. Also note that
since the optimization is based on a single scaling parameter,
the dimensionality will be unchanged for additional robot
joints as well as more intricate energy models.

A. Problem formulation

As previously established, for each operation, a trajectory
planning problem needs to be solved for a range of execution
times. Since this method is applied to one operation at a time,
the operation index i is now discarded. Solving a trajectory
planning problem entails finding the input torques required to
move a manipulator along a predefined geometric path, while
upholding its dynamical constraints. The joint torques of the
manipulator can be expressed by a Lagrange formulation, see
[25], pp. 131-140. Einstein summation convention is used,
as in [21], where an index appearing in both the subscript
and the superscript of a term constitutes a summation over
its elements. The torque, Ti acting on the i:th joint can be
expressed as

Ti = Jij q̈
j + Cijkq̇

j q̇k + Fij q̇
j +Gi (1)

where J is the inertia matrix, C the tensor of centrifugal
and Coriolis coefficients, F the viscous friction matrix, G
the gravitational vector and qi the angular position of joint i.
Note that J , C and G are all functions of q. Also, q̇i and q̈i

represent the 1:st and 2:nd time derivative of qi.
Let the geometric path be defined by a function q0(τ), a

parameterized curve dependent on one single variable τ(t).
In this paper, the time optimal trajectory is used to define q0
and its derivatives. This implies that τ is the time scale for
the time optimal trajectory, q0. For example, defining τ = t
would result in the time optimal trajectory. Modeling tools
such as ABB RobotStudio [26] can be used to generate q0.
The relationship between q and q0 can be expressed as

q(t) = q0(τ(t)), 0 ≤ τ ≤ τf , (2)

where τ(t) is a monotonically increasing function with a
starting value of 0 and final value τf , where τf in our case
corresponds to the time optimal execution time. If τ(tf ) =
τf , then tf is the new final execution time of the dynamically
scaled operation. The derivatives of q0 with respect to τ
is the same as those of the time optimal trajectory with
respect to time. Differentiating (2) with regard to time yields



expressions for speed and acceleration which are needed for
computing the cost function and upholding constraints,

q̇i(t) =
dqi0(τ)

dτ
τ̇ (3)

q̈i(t) =
dqi0(τ)

dτ
τ̈ +

d2qi0(τ)

dτ2
τ̇2 (4)

Further, combining (3) and (4) with (1) results in an expres-
sion for the torque as a function of τ and q0,

Ti = Jij
dqj0(τ)

dτ
τ̈ + Jij

d2qj0(τ)

dτ2
τ̇2 +

+ Cijk
dqj0(τ)

dτ

dqk0 (τ)

dτ
τ̇2 +

+ Fij
dqj0(τ)

dτ
τ̇ +Gi (5)

The optimization procedure is also subject to a number of
dynamic constraints, such as limits on torque, acceleration
and speed. This can be implemented using a barrier function,
or since the original trajectory is assumed to be time optimal,
by adding the constraint τ̇ <= 1.

Considering the operation execution times relevant to this
paper, as in [7] and [27] , the energy consumption of an AC
permanently excited synchronous motor can be expressed by
the following simplified voltage and current models

Vi(t) = RiIi(t) +KV,iKR,iq̇i(t)

Ii(t) = Ti(t)/(KT,iKR,i) (6)

where Ii(t) and Vi(t) are the equivalent DC current and
voltage of the i:th rotor, Ri is the stator resistance, KV,i is
the electrical (back emf) constant, KR,i is the transmission
gear ratio and KT,i is the equivalent torque constant. With
(6) defined, we can express the power of each motor as

Pi(t) = Vi(t)Ii(t) =
Ri

K2
T,iK

2
R,i

T 2
i (t)+

KV,i

KT,i
Ti(t)q̇i(t) (7)

An arbitrary cost function can be used, but in this paper
it is of interest to examine minimum energy trajectories
for specific execution times tf . Integrating (7) gives an
expression for the total energy consumption, the cost that
is to be minimized

E(tf ) =

∫ tf

0

(
n∑
i=1

Pi(t)

)
dt (8)

Here, n is the number of joints. With the power and torque
defined as in (7) and (5), the cost E is a functional of q0
and τ . Since the former is known, solving the optimization
problem is a matter of finding τ , while minimizing the cost
and upholding dynamic constraints. The optimal cost E∗(tf )
is the local energy function sought for each operation.

B. Optimization model

As mentioned, solving the trajectory planning problem
entails finding the τ that minimizes a given cost function.
Define the second derivative of τ as

τ̈(t) = u(t), (9)

where u(t) is a control input. Also, introduce a time-varying
sampling time hk that affects the time updates as

tk+1 = tk + hk (10)

and let the input variable be peicewise constant during the
sampling intervals, i.e.

u(t) = u(tk), tk ≤ t < tk+1, (11)

The decision to use a piece-wise constant τ̈ is an abstrac-
tion that will restrict the dimensionality of the problem to
two. Even though it will introduce small discontinuities in
the acceleration through (4), these minor artifacts can be
considered marginal. One could instead choose to define the
3:rd derivative of τ as constant, and instead achieve only
discontinuous jerk, but at the cost of dimensionality and
complexity. Discretization of (9), with a sampling period hk
and constant control input as in (10) and (11), gives the
discrete state space model

[
τk+1

νk+1

]
=

[
1 hk
0 1

] [
τk
νk

]
+

[
h2k/2
hk

]
u(tk) (12)

where ν = τ̇ and for simplicity, we introduce τk+1 =
τ(tk+1), τk = τ(tk) and νk+1 = ν(tk+1), νk = ν(tk). The
minimization of (8), including this discrete time model of the
time function τ(t) can be solved with dynamic programming,
but for computational reasons discussed later, it is convenient
to reformulate the problem. Since τ is monotonically increas-
ing it is possible, instead of taking steps along the t-axis in
each iteration, to take steps along the τ -axis and let (10) act
as a discrete state equation. Define

hkνk + h2ku(tk)/2 = ∆k, (13)

where ∆ can be regarded as a user defined sampling period
or gridding of τ . If (13) is inserted into (12), then in every
step k, τ will be updated as

τk+1 = τk + ∆k (14)

Equation (13) can also be manipulated into an expression
for the control signal, u(tk) = 2(∆k − hkνk)/h2k. Inserting
this expression for u(tk) into the bottom equation of (12)
gives a new state equation for ν. Regarding the sampling
time, hk as the new control signal and letting (10) act as
a state space equation leads us to the reformulated discrete
state space model

[
tk+1

νk+1

]
=

[
1 0
0 −1

] [
tk
νk

]
+

[
hk

2∆k/hk

]
(15)

From here, dynamic programming can be applied to solve
the discrete optimal control problem. The relation between
(14) and (10) can be seen as a mapping of τ onto t, which
is illustrated in Fig. 1.
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Fig. 1. Uniformly spaced τ mapped onto t.

C. Dynamic programming

Dynamic programming is an optimization method which
can be applied to problems where a series of decisions
need to be made and the dynamics of the system can be
determined from any location within a state space. The
objective is to determine how the state space can be traversed
in order to minimize a specified cost function. A discrete
gridding of the state space generally has to be performed, and
the choice of resolution is governed by requirements on the
quality of the solution as well as limitations on computational
power. Each decision in the process represents a movement
within this grid, either from point to point or, where this
type of formulation is inconvenient or not possible, from a
location in between grid points where a specific grid point
is reachable. For a detailed account of the theory behind the
dynamic programming algorithm applied to discrete optimal
control problems, see for example [28] or [29].

Solving the optimal control problem for the system (15)
and the cost (8), i.e. finding the optimal hk k = 1, ...Nτ and
ν0, requires the two variables t and ν to be represented by
a discrete grid. The number of elements along each axis in
the grid is defined by Nt and Nν . If the optimal cost for a
location in this grid for a specific k is denoted as J∗

k (tk, νk),
then the functional equation of dynamic programming in the
forward direction can be written as

J∗
k+1(tk+1, νk+1) = min

hk
[Vk(tk, νk, hk) + J∗

k (tk, νk)]

(16)
Here, V is the cost of moving from (tk, νk) to (tk+1, νk+1),
i.e. the cost in (8), but with the integration from tk to tk+1.
Then, for each (tk+1, νk+1) point in the grid, compute J∗

k+1.
Given the system described by (15), there is only one degree
of freedom in J∗

k+1 which is hk. Even though the possible
solutions may not coincide in specific (tk, νk) grid points, it
is still possible to interpolate values from J∗

k . Solving (16)
for all k will result in the optimal cost for all the points in
the grid. At the final iteration Nτ , the resulting matrix J∗

Nτ
will hold the minimum cost for every grid point. Since tk
represents elapsed time, tNτ = tf , and as such the minimum
cost for all execution times within the range of tNτ can be
found based on the matrix J∗

Nτ
.

Before starting the optimization, the first and second
derivative of q0 with respect to τ are required. As previously
mentioned, the velocity and acceleration of the time optimal

t

 

Fig. 2. The solid line denotes (tk, νk) and the two points show
(tk+1, νk+1). Note that the solid line has the same form for all k. The
dashed line represents a constant νk+1 = 0.6. The dotted lines illustrates
that the point (tk+1, νk+1) is reachable from (tk, νk).

trajectory can be used to define these. Since τ̈ is defined
as constant between the discrete time updates, this leads to
every point (tk+1, νk+1) in the grid having a corresponding
(tk, νk) curve from where that point can be accessed at step
k + 1. This movement in the grid is illustrated in Fig. 2.
The minimization part in (16) consists of sampling along
this curve and choosing the point where the combination of
J∗
k and Vk yields the lowest cost. Since the sampling of J∗

k

is not from specific grid points, be reminded that the cost
will have to be interpolated.

D. Algorithm

The algorithm works as follows, define a data structure
opt that can be used to store settings for the optimization
problem. This includes grid size, grid resolution, limits on
parameters, path parameters, constraints on dynamics and
various sampling resolutions etc. Note that tk, hk, νk and
c1 at lines 6, 7 and 9 in the routine OPTIMALSOURCE are
column vectors. The matrix multiplication will thus clone
the vectors into matrices. A Matlab like notation is used
where for example A(:, 1) corresponds to all elements in
the first column of a matrix A and A(1 : 2, 1) denotes the
first 2 row elements in the first column.

DP-ALGORITHM(opt)
1 J ← NaN
2 J(1 : 2, :, 1)← 0
3 for k ← 1 to Nτ
4 do J(:, :, k + 1)←
5 OPTIMALSOURCE(k, J(:, :, k), opt)
6 return J

In DP-ALGORITHM, the three-dimensional array J is
used to store the optimal cost to reach a point in the grid for
every time step. Its first two indices correspond to the values
of the grid (transformed to integers) and the third the time
step. Observe that since the sampling period hk is varying
the time step k is not generally the same as the integer
transformation of the grid value tk. Mark initial states with
zeros. For each time step k, call OPTIMALSOURCE and
save the results to J(:, :, k + 1). This function will return



the optimal value J∗
k+1 for all points (t, ν) in the grid. This

action is repeated Nτ number of times, i.e. the number
of steps that should be taken along τ . When execution
ends and J has been computed, the optimal cost for each
time instance along the t-axis of the grid can be found by
retrieving the smallest element in J(t, :, Nτ ). To find the
optimal trajectory for a specific execution time, J can be
used to trace the optimal path through the grid.

The OPTIMALSOURCE method works as follows. For each
νk+1 in the grid, Nν number of times, the following is
performed. Generate the possible relative grid points from
where νk+1 is reachable. Use these points to compute the
cost to go. At row 5, compute which time indices in the grid
that are relevant, i.e. discard values that cannot be reached.
On rows 6−7, two matrices are generated that contain the tk
and νk values from where each tk+1 is reachable. Interpolate
the values from J(:, :, k) based on these coordinates and store
in C2. Clone the values in c1 and store in C1 so that there
is one copy of c1 for each row in C2. Sum C1 and C2 into
C and use f to store the minimum element of the rows in C.
The summation on row 10 corresponds to that of Vk and J∗

k

in (16), and choosing the minimum element relates to the
minimization argument.These are the optimal costs for all
tk+1 along the current νk+1. All that needs to be done now
is to add NaN elements into f to correct for the time indices
that were discarded on row 5. This result is then saved to
J(:, e, k + 1).

OPTIMALSOURCE(k, J(:, :, k), opt)
1 for e← 1 to Nν
2 do
3 [νk, hk]← GRIDPOINTS(νk+1(e), opt)
4 c1← COSTFUNCTION(νk, hk, k, opt)
5 tk+1 ← GETTIMEINDICES(J(:, :, k), opt)
6 Tk ← tk+1 ∗ ones(1, Nν)− (hk ∗ ones(1, Nt))T
7 X2 ← (νk ∗ ones(1, Nt))T
8 C2← INTERPOLATE(J(:, :, k), X2, Tk, opt)
9 C1← (c1 ∗ ones(1, Nt))T

10 C ← C1 + C2
11 f ← MIN(C, row)
12 J(:, e, k + 1)← FILLUP(f, tk, opt)
13 return J(:, :, k + 1)

E. Complexity

The shape of the (tk, νk) curve, as shown in Fig. 2, does
not change for different tk+1 along a constant νk+1, because
(9) is time invariant. Since the scaling variable definition is
time invariant, the cost function (8) is also time invariant,
thus the cost function for a specific νk+1 is a function of hk
and νk. This implies that the cost function does not have to be
evaluated separately for each tk+1 where the value of νk+1 is
the same. Note how cost function in the OPTIMALSOURCE
function at row 4, only evaluates a vector with Nν elements.
At row 8 however, interpolation is performed for a matrix
of size Nt×Nν . If instead, the original discrete system (12)
had been used, each point in the τ/ν-grid would have to be

evaluated separately. Since each iteration k is time invariant,
the cost evaluations from previous iterations can be reused.

Using the reformulated method in (15), a total number of
(Nτ −1) iterations will be performed, and for each iteration,
Nν points are connected to another Nν points. As previously
mentioned, the number of cost function evaluations does not
increase with the size of Nt, while the number of interpo-
lations from the grid increases by a factor Nν . Thus, the
number of cost function evaluations is relative to (Nτ−1)N2

ν

while the number of interpolations from the grid is relative
to Nt(Nτ − 1)N2

ν . Note that cost function evaluations are
much more costly than interpolations.

For the original model (12), allowing reuse of cost function
computations, the same expressions for cost function eval-
uations and interpolations are derived. But the size of Nτ
and Nt are not the same as for the reformulated model (15).
In the (12) case, t is a discrete variable and τ is a discrete
approximation of a continuous variable. Thus the resolution
of τ must be higher than that of t. For (15) however, t is
a discrete approximation, τ is discrete and the resolution
of t needs to be finer than that of τ . From experience,
a reasonable accuracy is achieved by an at least 5 times
higher resolution for the discrete approximation. As such,
(12) requires a minimum of 5 times as many cost function
evaluations as (15).

Also, if one would like to minimize the computational
requirements, using a nonuniform grid is a good idea. For
long execution times, the value of hk for each iteration will
larger, thus the resolution of the t-axis can be lower for
its upper range. On the other hand, long execution times
imply small values and changes in ν, therefore a higher
resolution is preferable at the lower range of ν. But if a
variable resolution on t is used and one takes steps of varied
length along the t-axis for each iteration, as in the original
model (12), one cannot reuse cost function evaluations each
iteration. This means that the additional performance gained
from nonuniform gridding cannot be utilized by (12).

As previously mentioned, it would also be possible to use
the model from [21] and solve it multiple times iterating the
weighted cost function each time. What follows is a rough
comparison.

To solve ONE trajectory planning instance of [21], the
algorithm must check (Nτ − 1) times if each point in the
ν grid (Nν) is connected to any other ν points (Nν). Thus
it has a time dependency relative to that of (Nτ − 1)N2

ν .
Note that we want to solve multiple instances, the number
of instances is relative to that of the longest time scaling. The
computational requirement for generating a complete energy
function is therefore of order Ni(Nτ − 1)N2

ν , where Ni is
the number of executions needed to map the energy function.

It is reasonable to assume that the reformulated model (15)
compared to the original model [21] will use the same size
of Nτ while Nν is expected to be larger. The magnitude of
the latter is dependent on the range of final times that are
of interest. For our experiments, a time scaling of 5 times
the original execution time was well enough, most energy
functions would increase asymptotically with time at longer



execution times. We believe that for a 5 times scaling, Nν
does not need to be larger than twice the size of Nν for
[21], while producing results at the same resolution. This
suggests that the number of cost function evaluations for
the reformulated model (15) in this paper is about 4 times
as many compared to [21]. Also considering the additional
interpolations required for our algorithm adds approximately
30% computational time. In total this implies approximately
5 times longer computation time for our method, solving one
instance. However, 5 executions of [21] (Ni = 5) are not
enough to reach a sufficient resolution for the sought energy
functions, thus making the reformulated model (15) in this
paper more efficient for the generation of energy functions.

III. ENERGY OPTIMAL SCHEDULING

With the energy function for each operation generated,
an energy optimal schedule can be derived for the given
process. The constraints governing the scheduling problem
can be expressed with linear constraints consisting of real and
binary variables. For a thorough account on mixed integer
constraint modeling, see for example [30] or [31]. The
decision variables for the problem are the real valued starting
and stopping times for each robot operation as well as
binary variables representing mutual exclusion. The energy
function data from the dynamic programming algorithm
are approximated as polynomials. These polynomials are
checked for convexity and that the relative error related to the
original data is within appropriate bounds. The cost function
for the scheduling problem can now be formed using the
polynomials. These polynomials make it easy to specify an
analytical gradient and hessian for the solver. As such, the
problem class is that of a convex Mixed Integer Nonlinear
Linear Program (MINLP).

The MINLP master problem can be divided into a number
of subproblems, one for each ordering combination. These
are enumerated and each subproblem is treated as a linearly
constrained problem with a nonlinear cost function. Not all
of these choices are feasible, depending on the final time
specified for the model. After checking for feasibility, the
valid subproblems are solved using MATLAB’s optimization
toolbox. The algorithm employed uses an interior point
method combined with a barrier function for the constraints.
The interior point method is described in [32], [33] and
[34]. There are of course more efficient approaches to
the master problem than explicit enumeration. However, as
the primary focus of this paper is that of energy optimal
trajectories and their impact on the scheduling solution,
implementing advanced scheduling techniques has not been
our concern. There are of course many modern techniques for
solving convex MINLP including among others: Branch-and-
Bound, Outer-Approximation, LP/NLP-based branch and
bound [35], [36].

A. Constraint modeling

Let the global starting and finishing time for the j:th
operation executed by the i:th robot be denoted tsij and tfij . A
sequence of two operations is simply expressed by defining

the finishing time of the preceding operation as smaller than
the starting time of the following operation,

tsij ≥ t
f
lm + ε, (17)

where l and m is the robot and operation index of the first
operation, i and j that of the second and ε a significantly
small positive constant. It is also required to limit the
minimum execution time of operations. If an operation j
in robot i has a minimum execution time of T0,ij , then the
execution time can be constrained by

tfij ≥ t
s
ij + T0,ij (18)

Shared resources can be expressed in the following way. If
two operations, ij and lm share the same resource, then
define σij,lm as a boolean variable representing operation ij
being performed after lm. Also σlm,ij is a boolean variable
representing the negation of the previous statement, i.e.
operation lm is performed after ij. The resulting constraints
for this example are

tsij ≥ t
f
lm −M(1− σij,lm)

tslm ≥ t
f
ij −M(1− σlm,ij)
σij,lm + σlm,ij = 1 (19)

In other words, a boolean variable or expression is used to
negate constraints when false. As such, the constant M needs
to be sufficiently large for this negation to be valid. The same
principle can be used for one robot having an alternative
order of execution for its operations.

For constraining the cycle time, an additional variable is
added. This variable is constrained to be larger than the
stopping time of the last operation for each robot. Adding
an upper bound for the new variable will now constraint the
complete cycle time of the cell. With the scheduling problem
described by these mixed integer linear constraints and the
cost function by the convex polynomials, the optimization
model can no be solved using a any standard MINLP solver.

IV. CASE STUDY

For the case study, an example with four industrial robots
is considered. The four robots work together on a single
work piece located in between the robots. There is a total
number of 40 operations, all for which an energy function,
E(tf ), is computed. The cell includes three common zones
in which only one robot can work at a time. Each robot
has a three tasks to perform including between one and five
operations, most of which belong to common zones. Also,
one of the tasks for each robot requires the other two tasks to
be completed in order to be allowed to start. The scheduling
problem has 82 real and 32 binary variables, and in total
there are 1280 valid integer combinations. For a near time
optimal cycle time, only 44 combinations were feasible. Note
that if a robot is not performing any operation, there is still
a cost based on the gravity term in (1), this is called the
holding power. It can be added to the cost function just like
the energy functions. This time however only a first degree



expression is needed as the holding power increases linearly
with time.

The robot cell was modeled with ABB RobotStudio from
where trajectory information for each operation was ex-
tracted. All optimization was run on a Windows 7 64bit
system with a 2.66 [Ghz] Intel Core2 Quad CPU and 4
[GB] of RAM. The final time feasibility check for each
subproblem, which also generates a starting point, took < 0.1
[s] in 98% of the cases. Most subproblems were solved in
less than 10[s]. It should be noted that for a few instances
the initial barrier function weighting had to be varied in
order for MATLAB to produce an optimal solution. As for the
minimum energy trajectory planning problem, with Nτ = 30,
Nν = 50 and Nt = 186, each operation instance was solved
in close to 40 [s].

A. Results

A sample operation has been picked to illustrate the
properties of dynamic scaling on individual operations. Fig.
3 illustrates the energy consumption profiles for three various
execution times. The dotted curve belongs to the time optimal
trajectory with an execution time of roughly 10 [s], the solid
and dashed are the same trajectory but with the final time
extended by factor a 1.75 and 2.75. Note how the first part
of the curves has converged for the two scaled cases. This
reduces the time optimal trajectory’s characteristically initial
high acceleration. The dashed curve has an almost constant
power consumption between 5-15[s], this is because during
this segment of the path, the gravitational force affecting the
manipulator is the lowest. Because of this the optimization
results in a slow traversal of this segment, minimizing the
cost of gravity. In Fig. 4 the resulting energy function for
the sample operation is presented. The dashed line, which
increases linearly, shows the time optimal energy cost and the
holding power required to stay stationary for the remaining
time. The dotted and solid curves are the energy cost for
linear and dynamic scaling. Note that not all operations differ
that much between linear and dynamic scaling, the average
difference should be somewhat apparent from the overall
result in Fig. 5. All the operations scaled resulted in convex
functions. This was to be expected as regenerative breaking
was not considered.

In Fig. 5, the total energy consumption for all four robots
is shown, running an energy optimal schedule. The dashed
line shows the result of no scaling, i.e. minimum energy
scheduling is performed but no scaling is allowed. The dotted
and solid curves represent linear and dynamic scaling. While
upholding a time optimal cycle time, linear scaling reduces
the energy usage by 11%, and dynamic scaling a total of
18%. If the cycle time is allowed to be extended by 10%
(10[s]), linear scaling will reduce energy cost by 18%, and
dynamic scaling as much as 28%.

For the sample operation considered in Fig. 3, an anal-
ysis of the Root Mean Square Error (RMSE) for varying
parameter values can be found in Fig. 6. Top dotted curve
shows variations in Nν . For the solid, the resolution of τ
is varied. Note that this also changes the resolution of t,
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six DOF industrial robot with three various execution times. The dotted
curve belongs to the time optimal, the solid and dashed curves are the same
trajectory but with the final time extended by factor 1.75 and 2.75.
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Nt = 6.2/Nτ . The dashed curve shows a varying Nt. All
tests were performed for a 5 times longer execution time than
the time optimal. For all three parameters, higher resolution
decreases the RMSE. The error tends to zero for all but the
dotted curve which stabilizes in the range of 0.1% RMSE.
This can be contributed to numerical errors. We conclude that
it is possible to run the algorithm at low resolutions with only
relatively small errors. We estimate that the settings used
for the case study, mentioned eariler, should not produce an
error of more than 1% RMSE. In fact, Nν could actually be
lowered to about 20 without any significant impact.
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Fig. 6. The resulting normalized root mean square error for varied
parameter values compared to a benchmark. The dotted cruve is varied
Nν , with benchmark Nτ = 30, Nν = 119, Nt = 186. The solid curve
shows varied Nτ and Nt = 6.2Nτ , benchmark Nτ = 120, Nν = 96,
Nt = 744. Last, the dashed curve is varied Nt, benchmark Nτ = 30,
Nν = 50, Nt = 2961.

V. DISCUSSION AND CONCLUSION

This paper presents a dynamic programming method,
which can be used to find multiple energy optimal trajec-
tories with varying execution times that follow the same
path as a given trajectory. The minimum energy cost for
a given execution time can then be used for scheduling
of multiple robots working in the same environment. The
modification of the original trajectory is defined as a dynamic
scaling. Previously, linear scaling of operations has been
used for scheduling. A case study of four six-joint industrial
robots with booking of common zones is presented in order
to evaluate the possibility of energy reduction using this
method. Results show that linear scaling can decrease the
total energy cost by 10-20%. Employing the dynamic scaling,
as suggested in this paper, will reduce the energy cost by an
additional 10%. Even though energy consumption for smaller
robots can be considered marginal, larger industrial robots
carrying heavy loads and other automated robotic machinery
used for heavy lifting can benefit greatly from the suggested
scheduled energy optimal trajectories.
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