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Bandlimited Intensity Modulation

Mehrnaz TavanSudent Member, |IEEE, Erik Agrell,
Member,

Abstract—In this paper, the design and analysis of a new
bandwidth-efficient signaling method over the bandlimited
intensity-modulated direct-detection (IM/DD) channel is pre-
sented. The channel can be modeled as a bandlimited chan-
nel with nonnegative input and additive white Gaussian noig
(AWGN). Due to the nonnegativity constraint, standard mettods
for coherent bandlimited channels cannot be applied here.
Previously established techniques for the IM/DD channel rguire
bandwidth twice the required bandwidth over the conventioral
coherent channel. We propose a method to transmit without
intersymbol interference in a bandwidth no larger than the hit
rate. This is done by combining Nyquist or root-Nyquist pules
with a constant bias and using higher-order modulation fornats.
In fact, we can transmit with a bandwidth equal to that of
coherent transmission. A trade-off between the required asrage
optical power and the bandwidth is investigated. Dependingn
the bandwidth required, the most power-efficient transmisgon
is obtained by the parametric linear pulse, the so-called “ptter
than Nyquist” pulse, or the root-raised cosine pulse.

Index Terms—Intensity-modulated direct-detection (IM/DD),
optical communications, strictly bandlimited signaling.
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I. INTRODUCTION

HE GROWING demand for high-speed data transmi
sion systems has introduced new design paradigms

optical communications. The need for low-complexity an

Senior Member, IEEE, and Johnny KaroutQtudent
|EEE

present in the devices [7], [8]. In conventional channalshs
constraints are usually imposed on the peak and average of
the squared electrical signal. Third, the bandwidth is tkahi
due to the impairments in the optoelectronic devices [9], [9
and other limitations (e.g., modal dispersion in shortthau
optical fiber links [10] and multipath distortion in diffuse
indoor wireless optical links [4]). Consequently, the o
modulation formats and pulse shaping methods designed for
conventional electrical channels (i.e., with no nonnefati
constraint on the transmitted signal) cannot be directplieg

to IM/DD channels.

Pulse shaping for the purpose of reducing intersymbol
interference (I1SI) in conventional channels has been presly
investigated in [6, Sec. 9], [11]-[16]. Much research hasrbe
conducted on determining upper and lower bounds on the
capacity of IM/DD channels considering power and bandwidth
limitations [17]-[22]. In [4], [23]-[29], the performancef
various modulation formats in IM/DD channels were stud-
ied using rectangular or other time-disjoint (i.e., infnit
bandwidth) pulses.

Hranilovic in [30] pioneered in investigating the problem

Yt designing strictly bandlimited pulses for IM/DD chansel

{okn nonnegative pulse-amplitude modulation (PAM) scheme
fle showed the existence of nonnegative bandlimited Nyquist

cost-effective systems has motivated the usage of afftgdapises which can be used for ISI-free transmission over

optical hardware (e.qg., incoherent transmitters, opiitahsity
modulators, multimode fibers, direct-detection receivecs

design short-haul optical fiber links (e.g., fiber to the ho"ﬁjlse must be time limited (i.e.

and optical interconnects) [1], [2] and diffuse indoor s

IM/DD channels, and evaluated the performance of such
pulses. He also showed that any nonnegative root-Nyquist
infinite bandwidth). Hence

receivers with matched filters are not suitable for Hrandisv

optical links [3]-[5]. These devices impose three impartagignaling method. He concluded that transmission is plessib

constraints on the signaling design. First, the transmétgy

with a bandwidth twice the required bandwidth over the

modulates information on the instantaneous intensity of @B responding conventional electrical channels. Thiskweas
optical carrier, contrary to conventional coherent ch#ng,yiended to other Nyquist pulses that can introduce a todfde-
where the amplitude and phase of the carrier can be used,{9\\een bandwidth and average optical power in [9], [31].

send information [6, Sec. 4.3]. In the receiver, only thdaaht

In this paper, we present a new signaling method for

intensity of the incoming signal will be detected [4]. Due tQanqlimited IM/DD channels, in which the transmitted signa

these limitations, the transmitted signal must be nonmegat
Such transmission is called intensity modulation with clire

detection (IM/DD). Second, the peak and average optir@

becomes nonnegative by the addition of a constant direct-
current (DC) bias. This method provides us with two benefits:
We can transmit ISI-free with a bandwidth equal to that

power (i.e., the peak and average of the transmitted signalgt coherent conventional channels, while benefiting from th
the electrical domain) must be below a certain threshold fpfy ,ceq complexity and cost of IM/DD system. (ii) We can im-

eye- and skin-safety concerns [4] and to avoid nonlinesriti
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plement the system using either Nyquist pulses with sargplin
receiver or root-Nyquist pulses with matched filter receive
By being able to use a larger variety of pulses, the tranenhitt
power can be reduced compared with known methods, which
is advantageous in power-sensitive optical interconnants
indoor wireless optical links. We also evaluate the spéctra
efficiency and optical power efficiency of binary and 4-PAM
formats with Nyquist and root-Nyquist pulses for achievang
specific noise-free eye opening or a specific symbol-ewata-r



(SER). sufficiently large, see Sec. V. This DC bias is added equally
The remainder of the paper is organized as follows. Sectitmeach symbol to maintain a strictly bandlimited signé),

Il presents the system model. In Section IIl, we define the contrast to works like [25], [27], [28] in which the bias is

Nyquist pulses that have been used extensively for convelowed to vary with time. The bandwidth constraint is fufd

tional bandlimited channels, as well as the ones that hase béy choosing the pulse(t) such that

suggested for nonnegative bandlimited channels. In Sectio o
IV, the root-Nyquist pulses used in this study are introdlice / —jwt

: . ) . = t)e 7Nt = > 2B 2
Section V discusses a method of computing the required DC Q) alt)e 0, |w] 2 27B, 2)

— 00

bias for a general pulse. Section VI introduces the perfocea
measures and analyzes the performance of the system unvdegre Q(w) denotes the Fourier transform gft). The con-
different scenarios. Finally, conclusions are drawn inti®ac dition of ISI-free transmission, finally, is fulfilled by &ier

VIl on the performance of the system. choosingg(t) as a Nyquist pulse, see Sec. lll, when using a
sampling receiver, or choosingt) as a root-Nyquist pulse
II. SYSTEM MODEL (also known ags-orthogonal pulse), see Sec. IV, when using

In applications such as diffuse indoor wireless opticadin afThatihed f'lt_ftr (ljn_tf:e rgtcew_er. Flig. iﬂluiﬁtes 3”1 exzmpl
and short-haul optical fiber communications, where inexpe?l € transmitied Intensity given .y( ).W e={ N .}'.
h Depending on the application, it is desirable to minimize th

sive hardware is used, IM/DD is often employed. In suc ical h K optical 41 17109
systems, the data is modulated on the optical intensity ®f t verage optical power or the peak optical power (4], [71-19]
18], [20]. The average optical power is

transmitted light using an optical intensity modulatorisas a

laser diode or a light-emitting diode. This optical intepss ) T
proportional to the transmitted electrical signal. As aules Popt = =— /E{x(t)}dt,
the transmitted electrical signal must be nonnegatives Thi T

o . . 0
is in contrast to conventional electrical channels, whée t

data is modulated on the amplitude and phase of the carfdiereE {-} denotes expectation, which for the definition of
[6, Sec. 4.3]. In the receiver, the direct-detection metrod #(t) in (1) yields
used in which the photodetector generates an output which is T, o

proportior_1a|_ to _the incit_jent_ receiV(_ed instantaneous p¢2a&i Pope = 1 / JA (M +E{ag} Z qlt — kTS)> dt
Another limitation, which is considered for safety purpgse T

is a constraint on the peak and average optical power, or 0
equivalently, a constraint on the peak and average of the
signal in the electrical domain [4], [9], [17], [18], [20]n] \where

k=—o00

=JA(u+E{ax}7q), )

this study, we consider the IM/DD transmission system with 1 i Q(0)

a strict bandwidth limitation and gener&l-level modulation. q= T / q(t)dt = T (4)
Fig. 1 represents the system model for an IM/DD op- " e °

tical transmission system. It can be modeled as an elek:triqahe peak optical power is

baseband transmission system with additive white Gaussian

noise (AWGN) and a nonnegativity constraint on the channel >

input [3], [4], [9], [32]. We consider an ergodic source with £max = maxz(t) = JA <“ + max Z arq(t — k1)

independent and identically distributed information syisb h=eo (5)

ap € C, wherek € Z is the discrete time instant, atlis \yhere the maximum is taken over all symbol sequences
a finite set of constellation points. Based on these symbols, 4_1.a0.a1,as. ... and all timest.
an electrical signal/(¢) is generated. The optical intensity 1o optical signal then propagates through the channel and

modulator converts the electrical signal to an optical 8lgnig getected and converted to the electrical signal [4], [18]
with optical carrier frequency. and random phase, given

by O(t) = \/2x(t)cos (2w f.t + 6), wherex(t) is the intensity y(t) = Rh(t) ® z(t) + n(t),
F‘I]thge;v(;?]ugil signal. This intensity is a linear functionft) where R is the responsivity of the photodetectay, is the

convolution operatori(t) is the channel impulse response,

andn(t) is the noise. In this study, the channel is considered
) (1) to be flat in the bandwidth of interest, i.éu(t) = H(0)d(t).

Without loss of generality, we assume that= J = 1 [4] and
where/J is the laser conversion factot, is a scaling factor that H(0) = 1. Since the thermal noise of the receiver and the shot
can be adjusted depending on the desired transmitted powise induced by ambient light are two major noise sources
w is the required DC biagy(t) is an arbitrary pulse, an@; in this setup, which are independent from the signét) can
is the symbol duration. be modeled as a zero-mean AWGN with double-sided power

Three requirements are placedoft): it should be nonneg- spectral densityV, /2 [4], [6], [20], [33]. Although the input

ative, bandlimited, and ISI-free. The nonnegativity comisit, signal to the channel(¢) must be nonnegative, there is no
x(t) > 0 for all ¢ € R, is fulfilled by choosingu in (1) such constraint on the received signét) [17].

x(t)=JI(t)=JA (u—i— i arq(t — kTs)

k=—o0



ar 1) x(t) v(®) 0 >§
»| Modulator | 3| n(t) |y Detector 9(t) =
KT

Electrical domain | Optical domain | Electrical domain

Fig. 1. Baseband system model, wheig is the k-th input symbol,g(t) is an arbitrary pulsey is the DC bias,/(t) is the transmitted electrical signal,
x(t) is the optical intensityh(t) is the channel impulse responsg(t) is the Gaussian noisgt) is the impulse response of the receiver filteft) is the
input to the sampling unit, and,, is an estimate of;,.

. . . . . TABLE |
The received signal passes through a filter with impulseseenitions of THE STUDIEDNYQUIST AND ROOTNYQUIST PULSES

responsg(t), resulting in

| Pulse | Definition q(t)
T(t) - y(t) ® g(t)7 (6) Z sinc (Ti) ) t= i%v
RC )

which is then sampled at the symbol rate. In this paper, two
scenarios are considered for the receiver filter:

(1) Similarly to [9], [30], y(¢) can enter a sampling receiver| gTN | sinc (L) 223 sin
which in this paper is assumed to have a rectangular frequenc (
response to limit the power of the noise in the receiver, andPL | sinc (%) sinc (‘%—t)

sinc (i) Cos(;f;), otherwise
qut)+2cos(7r,19;t)fl

P)
at
T, ln2) +1

is given by N o
Pol sinc( &t z—sinc at )
G(w) _ G(O) |LU| < 2B . (7) oly 3 sine (TLS) (2nggt)2 (TS)7 otherwise
0 |wl>27B o | e (l) ;

(i) According to our proposed methody(t) can enter | SRC | ¢i.(t), wheregrc is the RC pulse defined above
a matched filter receiver with frequency resporsgs) = 1—ay) oo ((1—a)t 1tay o [ Qra)t)]?
¢Q*(w) where (-)* is the complex conjugate and is an sbJ [( 2 )Smia( T )+( 2 )Smc( Ts )}
arbitrary scaling factor. This type of filter will limit thequwer 1—a+ 5, o ) - £=0, T~
of the noise, and can also result in ISI-free transmissidhef | rrc | / V2 )Slf i) :Sa; Feos(fR)], t=4g,
pulses are root-Nyquist (see Sec. IV). )+ 4t cos (£t )

The system model introduced in this section is a genera :
ization of the one in [9], which is obtained by considering yis | sine (L> cos(38)
C c R* and settingu = 0 in (1). If x = 0, the pulseq(t) T
should be nonnegative to guarantee a nonnegative signgl
In our proposed system model, by introducing the hiathe

nonnegativity condition can be fulfilled for a wider selecti ) o .
of pulsesq(t) and constellatior® C R. exponential pulse, the parametric linear (PL) pulse of first

order [14], and one of the polynomial (Poly) pulses in [15].
Their bandwidth can be adjusted via the parametsra < 1
o _ ~ such that their lowpass bandwidthis= (1+«)/(21%). Since

In order to have ISI-free transmission with a samplinghese pulses may be negative, they must be used in a system
receiver, the pulse(t) must satisfy the Nyquist criterion [11]. with ,, > 0. We denote these four pulses gular Nyquist

otherwise

.—
S
N
-
I
—~
o |
o
~—
V)

IIl. BANDLIMITED NYQUIST PULSES

In other words, for any: € Z [6, Eq. (9.2-11)], pulses.
q(0), k=0, Another option is to useonnc_agative Nyquis.t pulses, which
q(KT5) = 0 k0 (8) satisfy all the three aforementioned constraints. As altigsu

(1), n = 0andgq(t) > 0forall t € R. In[9], it has been shown
The most popular Nyquist pulses are the classical “sincdgul that pulses that satisfy these requirements must be theesqua
defined assinc(z) = sin(wz)/(mx), and the raised-cosineof a general Nyquist pulse. This will result in having pulses
(RC) pulse [6, Sec. 9.2]. Many other Nyquist pulses have beeiith bandwidth twice that of the original Nyquist pulsesré&é
proposed recently for the conventional channel; see [34] [ pulses that satisfy these constraints were introduced Jin [9
and references therein. and we use them in our study for compatibility with previous
In this paper, we evaluate some of these pulses, defingdrks: squared sinc (S2), squared RC (SRC), and squared

in Table I, for IM/DD transmission. Our selected pulses amouble-jump (SDJ), also defined in Table I. Their low-pass
the RC pulse, the so-called “better than Nyquist” (BTNpandwidth isB = 1/T; for S2 andB = (1 + a)/T; for SRC
pulse [13], which in [14] was referred to as the parametrend SDJ, wher® < o < 1.



14 ‘ ‘ ‘ filter will be 1SI-free if for any integerk

RC [ee]
= = = Required DC FE k:O
: gt — kTy)dt = { 1 ; 9
[ atwate - i) {0 b0 ©)

whereE, = [*_¢*(t)dt. Tables | and Il also includes two
root-Nyquist pulses that have been previously used foreonv
tional coherent channels, where agéirc o < 1. These are
the root raised cosine (RRC) pulse and the first-order Xiagul
[36]. Both have the lowpass bandwidth= (1 + a)/(2T5).
Although the output of the matched filter for both the first
order Xia pulse and the RRC pulse are similaft) consists
of RC pulses in both cases), the RRC is symmetric in time,
5 ‘ 2 whereas the Xia pulse has more energy in the precursor (i.e.,
t/Ts the part of the pulse before the peak in Fig. 5 (d)) [37].
Moreover, the maximum of Xia pulse does not happen at the

Fig. 2. The normalized transmitted signalt)/A for ¢ = {0,1} and  °OMgIN- The important point with the Xia pulse is that it istho
using an RC pulse withx = 0.6 asq(t). It can be seen that without using @ Nyquist and a root-Nyquist pulse.

1

the bias;. = 0.184 (see Fig. 4), the RC pulse would create a sign) In contrast to Nyquist pulses, from which nonnegative
that can be negative. Nyquist pulses can be generated by squaring the original
1 ‘ ‘ : pulse (see Sec. lll), the square of a root-Nyquist pulse {s no
0ol ] root-Nyquist anymore. Moreover, [9] has proven that there
is no nonnegative root-Nyquist pulse with strictly limited
°er bandwidth.
0.7
< osf ] V. REQUIREDDC BIAS
3;0,5, ] Our goal is to find the lowest that guarantees the nonneg-
0al ativity of .ar(t). From (1) andx(t) > 0, the smallest required
DC bias is
0.3F [e’e}
Al - i t — kT, 10
o2 H Va,—glgt<oo Z akq( ) ( )
0.1 =—00
00 ° 1 t/Ts I’S\ 2 - Va,fIOIligt<OO ;OO [(ak - L) q(t - kTS) + LQ(t - kTS)]
(11)

Fig. 3.  The normalized transmitted signa{t)/A for C = {0,1} and where [, = (d + (z)/2, 4 = maxXgeca, anda = mingec a.

using an SRC pulse with = 0.6 asq(t). In this case, the required DC g notationiva in (10) and (11) means that the minimization
IS zero. .

a should be over alt;, € C wherek = ..., —1,0,1,2,...Going

from (10) to (11), we created a factos,(— L) which is a

f?ﬂnction ofaj, and symmetric with respect to zero. As a result,

Figs. 2. and 3 depict the normalized tran;mltted SI9N&e minimum of the first term in (11) occurs if, for &l) either
x(t)/A using the RC and SRC pulses, respectively, assum@g: & andq(t — kT.) < 0 of a, — a andg(t — kT%) > 0. In

C = {0,1}. The most important parameters of the pulses Lh cases. due to the fact that the fadtor I, — “a-1)
summarized in Table II. ' '

= [0 3 =i

IV. BANDLIMITED ROOT-NYQUIST PULSES o0

—L Y alt- k). (12)
ISI-free transmission is achieved with the pulses in Sdc. Il k=-o0

as long as the input of the sampling unit satisfies the Nyquibhe reason why (12) is minimized over< ¢t < T; is that

criterion given in (8). In addition to the method of using &2 _ q(t — kTy) and > - __|q(t — kTy)| are periodic

Nyquist pulse in the transmitter and a rectangular filter (Tdinctions with period equal t@;. Since for all pulses defined

in the receiver, other scenarios can be designed that genena Sec. Il and 1V,q(¢) rescales withl asq(t) = v(t/Ty) for

Nyquist pulses at the inpu(z) of the sampling unit. In one of some functionw(¢), theny is independent of’;.

these methods, the transmitted pulse is a root-Nyquisepuls To simplify (12), Lemma 1 and Corollary 2 will be helpful,

and the receiver contains a filter matched to the transmittsitdhce they prove that the second term in (12) does not change

pulse [6, Sec. 5.1]. Consequently, the output of the matcheder time.



TABLE Il
PARAMETERS OF ALL CONSIDERED PULSESTHE ENERGY )y IS RELEVANT FOR ROOFNYQUIST PULSES ONLY

[ Pulse| Nyquist root-Nyquist] q q(0) BT E /T; |
RC v 1 1 I+a)/2
BTN v 1 1 (1+a)/2
PL v 1 1 (1+a)/2
Poly v 1 1 (14 a)/2
S2 v 1 1 1
SRC v 1—a/4 1 1+a
SDJ v 1—a/2 1 1+«
RRC v 1 l—a+da/mr (1+a)/2 1
Xia v v 1 1 (14 a)/2 1
Lemma 1: For an arbitrary pulse(t), As a result of Corollary 2, (12) for the regular Nyquist
o | & 5 pulses and root-Nyquist pulses considered in Sec. Il and IV
_ - = LR but not SRC and SDJ) can be written as
k;mq(t kT, = T n;)oQ< T )e T ( ) oo
Proof: Since f(t) = Y27° __q(t — kTy) is a periodic n=(a- ogi)gr _2: lg(t = ¥T)| - L T (16)
function with periodTy, it can be expanded as a Fourier series.
Its Fourier series coefficients are where Q(0) = g7; for all pulses, see (4). It appears that
7.9 solving the summation in (16) is impossible analyticallgev
_izgnt for simple pulses.
/ f(t) Theorem 3: For bandlimited pulses wherB7; < 1, the
—TS/2 transmitted signal (1) is unchanged if all constellatiomnp
T2 in C are shifted by a constant offset.
_ 1 / Z gt — kT,)e™ " (13) Proof: Since the chosen pulse has limited bandwidth
1 2 )y oo given by (2), using (15) given in Corollary 2, the transndtte

signal (1) can be written as

Since bothn andk are integersg??™* = 1. As a result, (13)
can be written as z(t) = A (

M+ i (ak—L—i—L)q(t—kTS))

Ts/2 k=—oc0
. j27\'71 (t kT)
/ Z (t = kTx)e dt —A<M+ 3 (an—L)q(t kT + Qm)). (17)
7T /2 k=—o00 k—— oo Ts
—iggnt 1 21 Substituting the required bias given by (16), (17) can be
- T / - iQ ( T, ) : written as
Hence, z(t) = A((a ) max, [ Z lq(t —iTy)
= j2mnt 21mn i2nt
n;oo Cne ™= =7 n_X_:OO ( > - (14) + Z ar — t—kT)) (18)
k=—00

which proves the lemma. |
The usefulness of this lemma follows from the fact that fo
bandlimited pulseg(t), (14) is reduced to a finite number of?

. ; ffset. [ ]
terms. As a special case, we have the following corollary. 0 . .
Corollary 2: If g(t) is a bandlimited pulse defined in (2), Theorem 3 shows that for narrow-band pulses defined in

- (2), the constellation offset does not have an effect on the
where BT, < 1, then (14) can be written as performance. This result which holds for intensity modedit
channels (with nonnegative transmitted signal requirejrien
ft) = Z q(t = kTy) = iQ(O)' (15) in contrast to the standard result for conventional chamniar
h=roe instance, binary phase-shift keying (BPSK) and on-off kgyi
In other words, for sucly(t), this sum is not a function of (OOK) are equivalent in this IM/DD system, whereas BPSK is
time. 3 dB better over the conventional AWGN channel [6, Sec. 5].
Proof: Since BTy < 1, the sum in (14) has only
one nonzero term (i.e.Q(0) can be nonzero whereas Fig. 4 illustrates the required DC bias (16) for various
Q(27n/Tys) = 0 for all n £ 0 due to (2)). B pulses considering any nonnegativé-PAM constellation

} can be seen that (18) only depends on symbols thraugh
and a; — L. Both terms are independent of the constellation

oo



VI. ANALYSIS AND RESULTS

RC : . -
ool ‘: BT A. Received Sequence for Sampling Receiver
PR\ ;L'E;y Considering the assumptions mentioned in Sec. I, the
3 The required DC bias RRC H H H
o \* | for RC with foll-off = 0.6| | —m— xia received signal (6) is

r(t) = (x(t) + n(t)) @ g(t)

=A <u + i arq(t — k:TS)> ®g(t) + 2(t)

k=—o0

0.6

oo

= AG(0) |+ Z arq(t — kT)

0.1f Sk k=—o0

‘ ‘ s where (19) holds sincg(t) has a flat frequency response given

0 02 04, °® 08 ! by (7) over the bandwidth aof(t) given by_ (2); Therefore, the
convolution has no effect on(¢). The noise at the output of
the receiver filter, which is given by(t) = n(t)®g¢(t), is zero

Fig. 4. The normalized minimum DC bigs/a vs. roll-off factor a for mean additive white Gaussian with Variamé’e: G(O)QNOB_

iety of pul d1-PAM. The dotted i ts th ired : : . . .
gig’:rf'gmh% E”CSSSISae” 2 - 0.6, oo F?g.ez. i€ represents he require Applying the Nyquist criterion given in (8) to the sampled
version of (19), we can write théth filtered sample as

r(iTL) = AG(0) [+ aig(0)] + 2GT)).  (20)

for any constellationC. The received waveformr(t), for
several Nyquist pulses, is shown in Fig. 5, in the form of
(C ={0,1,..., M —1}). In case of Nyquist pulses, due to theeye diagrams in a noise-free setting#) = 0). As expected,
fact that by increasingy, the ripples of the pulses decreasdhe output samples(i7;) are ISl-free.
the required DC bias decreases as well. It can be seen that the
Poly and RC pulses always require more DC bias than otf@r Received Sequence for Matched Filter Receiver
Nyquist pulses. The PL and BTN pulses require approximately
the same DC bias. The BTN pulse requires slightly less DC
bias in 0.250 < o < 0.256, 0.333 < o < 0.363, and  7(t) = (z(t) + n(t)) @ g(t)
0.500 < o < 0.610, while the PL is better for all other roll-off (
=A

+z(t), (19)

Similar to Sec. VI-A, the received signal will be

factors in the rangé < o < 1.

pt > akCI(t_kTS)> ® Cq(=t) +u(t)

k=—o00

The RRC pulse has a different behavior. Bot o < 0.420, s
similar to Nyquist pulses, by increasing the roll-off fagto = AC(u / g(—t)dt
the required DC bias decreases, and is approximately equal 5
to the required DC bias for BTN and PL. However, when oo oo
0.420 < « < 1, the required DC bias starts to fluctuate slightly + Z ax / q(r — KT q(r — t)dT) + u(t)
aroundy = 0.25a and the minimum happens for = 0.715. ke oo
The reason for this behavior is that in RRC, the peak is a OO
function of o, see Table I. As a result, by increasing the roll- = AC (MQ(O)
off factor, there will be a compromise between the redudtion o 0o
the sidelobe amplitude and the increase in peak amplituzte. F + Z ay / (Mgl —t + kTS)dT) +u(t) (21)
small values ofw, the sidelobe reduction is more significant km—oo

than the peak increase, and as a result, the required DC bias . -~ _ _ _ _
decreases. The Xia pulse always requires the largest DC bi4gerew(t) is zero mean additive white Gaussian noise with
For 0 < a < 0.730, similar to other pulses, by increasing th&/ariancer; = (*NoE, /2. Applying the root-Nyquist criterion
roll-off factor, the required DC bias for Xia pulses deces diven in (9) to the sampled version of (21), tix¢h filtered
However, wher).730 < « < 1, the required DC bias starts toSample will be, for any constellatiaf,

E{uF\)cgJ.ate slightly and starts to approach the required DC for r(iTy) = AC (uQ(0) + a;E,) + u(iTy). (22)

The expression for given in (12) illustrates the reason whyC' Comparison Between Pulses

the double-jump and sinc pulses are not considered in Sec. Il AS mentioned in Sec. II, it may be desirable to minimize
These pulses decay ag|t|. As a result, the summation inthe average or peak optical power. The next theorem shows
(12) does not converge to a finite value. Hence, they requiftdt these two criteria are equivalent for narrow-band gails
an infinite amount of DC bias to be nonnegative. (BT < 1) and symmetric constellation&{ay} = L).
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Fig. 5. Noise-free eye diagrams for (a) RC, (b) PL, (c) BTNJ &) Xia pulses with OOK modulatiorC(= {0, 1}) and sampling receiver. All pulses have

« = 0.60 and are normalized to have the same optical pajver 1.

Theorem 4: If BTy < 1 andE{ax} = L, then Py.x =
2Pyt
Proof: From (5) and Corollary 2,

oo

Pmax - JA(,LL + Va.,jgoa<xt<oo Z |:(ak — L) q(t — /{TS)

+ Lq(t— kTS)D

- JA(u T, max [ ; (ar — L) q(t — kT)

LQ(O)D'

+=7

In analogy to (16), the maximum is

Prax = JA(/L +(@-1L) omax, k_z_ lq(t — kT

+ £90N

Ty
LQ(0)

=JA|(2 2———2
J(“ Ts>

which compared with (3) completes the proof. [ |

To compare the optical power of various pulses, a criterion
called optical power gain is used, which is defined as [9]

Pref
T = 10logy, <P0p2> ,
op

wherengﬁ is the average optical power for a reference system.
(According to Theorem 4Y would be the same if defined in
terms of P,.x, for all pulses in our study except SRC and
SDJ.) Similarly to [30], this reference is chosen to be the S2
pulse with OOK modulation and sampling receiver, for which

no bias is needed. Using (3¢ = A, et {ax} and

Arcf]Ercf {ak} )
A(p+E{ar}q)

whereA,.r andE,.¢ {ay } are the scaling factor and the symbol
average for the reference system, respectively. Defining

T = 10log;, < (23)

Aa= min |a—d| (24)
a,a’€C,a#a’
as the minimum distance between any two constellation point
a anda’, E.f {ar} = Aaer/2, whereAa,r is the minimum
distance for the reference system. The expressions in (B) a
(24) hold in general for all finite set of constellation paiGt
Initially, we compare the pulses in a noise-free setting. Fo
any Nyquist pulse with a sampling receiver, the minimum eye



the roll-off factor (see Fig. 4), whereas the required badtw

oL ] increases. The highest optical power gain for all pulsekheil
00K achieved when the roll-off factar is one. The reason is that
ok ] by increasing the roll-off factor, the required bias, whislthe
only parameter in (26) that depends@ndecreases. The BTN
__ -2} ['squaredsinc | - o | oaareasin | and the PL pulses have approximately similar optical power
g modaton. modulation gain, and the Poly and RC pulses have smaller gains, due to
—-af ] higher 1, which is also visible in the eye diagrams of Fig. 5.
— Comparing the binary and 4-PAM cases for the same
-6F e B and Aa, we can see in Fig. 6 that by using higher-order
;:z;y modulation fc_>rmat_s, the optical power gai_n for all pulses
8¢ e srel decreases, since in (2§]E{ak} and f will increase. For
—e—5DJ 0.5 < BT}, < 1, the optical power gain for the best 4-PAM
0% 05 1 2 system with nonnegative Nyquist pulses is up to 2.39 dB less
BTy than the gain of the best OOK system with regular Nyquist
pulses.

Fig. 6. The optical power gaiff' versus normalized bandwidtBTj, for For_a_ny rOOt'NquSt_pu'Se W|t_h a_matCh_ed filter r_ece!ver,
various Nyquist pulses with a sampling receiver. The nekye opening  the minimum eye opening after filtering, using (22), is given
for all pulses is equal. The curves @7}, > 1 agree with [9]. by

L min [AC(HQ(O) +aE,) — AC (1Q(0) + d'E)
= ACAaE,. (27)

Since the eye openings in (25) and (27) depend on the receiver
= AG(0)Aaq(0). (25) filter gainsG(0) or ¢, pulses should be compared using the
same receiver filter. In particular, it is not relevant to qare
ﬂ?@sampling receiver with matched filters in this conteixics

the outcome would depend on the rafig0) /¢, which can be
chosen arbitrarily. This is the reason why root-Nyquistsgsl

opening after filtering, using (20), is given by

L [AG(0) (1 + ag(0)) = AG(O) (1 + a'q(0)|

As a result, to have the same eye opening as with the refere
pulse, we requirel,.;/A = Aaq(0)/Aaye, which substituted

into (23) yields
B Aaq(0) are not included in Fig. 6.
T =10logy (2 (1 + E{ak}ﬁ)) : (26) It appears from Fig. 6 that the studied pulses become more

Fig. 6 demonstrates the comparison of the optical powgpwer-_efficient when the bandvyidth Is i.ncreased. A higher
gain for various pulses defined in Sec. Il for both OOK angandmdth, however, for sampling receiver means that the

4-PAM formats, where the signals are scaled to have equal &§&EVe" filter admits more noise, which reduces the receive

opening. The S2 pulse with OOK modulation, which is use@’e?orlmance. In_Flgf. N7 w_etthe(rjeforei ﬁomp_atre tlhe aver:age
as a baseline for comparison, is shown in the figure with prical power gain ot INyquist and root-iyquist pulses, When

arrow. The results for SRC and SDJ have been derived befajg POWer 1S adjusted to yleld a constant SER equal(ltoﬁ. .
in [9, Fig. 4], whereas the results for other pulses are nov ince the amount of noise after the matched filter receiver

whereT,, — T,/ log, M is the bit rate. OOK is chosen rather oes not depend on the bandwidth, we considered this fact
=T, ) )

than BPSK for compatibility with [9], although these binary’jls a pc_>tent|al adva_mtage, an_d th(_ergfore included rc_)ot—Nyqu
formats are entirely equivalent faBT,, < 1, as shown in pulses in the following analysis. Similarly to the previaase,

Theorem 3. In these examples, we use — Aa,.; however, the S2 pulse with OOK and sampling receiver is used as a

: : . baseline for comparison.
rescaling the considered constellat©nvould not change the . . .
gt g So far the analysis holds for a genefalTo find the optical
results, as it would affect the numerator and denominator of

(26) equall power gain as a function of SER for the sampling receiver, we
For ?he r)ll(.)nnegative pulses in Sec. il (i.e., SRC and SDf- st apply a maximum likelihood detector to (20), assuming
with OOK, where i = 0, by increésing. tHe bandwidth. & special case in whic is an M-PAM constellation, which

the optical power gain, which depends en through its yields the SER [6, Sec. 9.3]
dependence o, increases sincg decreases. The results M — 162 <AG(O)Aaq(O)>

in Fig. 6 are consistent with [9, Fig. 4], where the same Porr =2 M 2,/G(0)2N,B

nonnegative pulses were presented. It can be seen that when
the regular Nyquist pulses (RC, BTN, PL, and Poly) are useffhere o
and the nonnegativity constraint is satisfied by adding a DC Q(x) = 1 /exp (—_352) da
bias, transmission is possible over a much narrower baridwid NoT 2
However, since the DC bias consumes energy and does not _ T
carry information, the optical power gain will be reduced. IS the Gaussian Q-function. As a result,
There is a compromise between bandwidth and optical 2 Q‘l( M )\/ﬁ
power gain, due to the fact thatwill be reduced by increasing ~ Aaq(0) (M —1) 0



of the RC and Poly pulses are always smaller than the gain
of the other two pulses.

In case of the matched filter receiver, the noise variance doe
not depend on bandwidth. As a result, the ratigs /A in (29)
Squared sinc with | | is not a function of the roll-off factor and the optical power
Q0K modulation gain only depends on the roll-off factor through its deperuge

Squared sinc
with 4-PAM
modulation

S . ] on the required DC bias. In Fig. 7, the optical power gain
=l ros | of the RRC pulse increases for5 < BTi, < 0.71, and a
——BTNIS wide gap is maintained with respect to the Nyquist pulses. Fo
-5 T s | 0.71 < BT;, < 1, since the required DC is slightly fluctuating,
-6} —=—SRC/S || the same happens for the optical power gain of RRC, and the
o PR maximum optical power gain happensf}, = 0.86, where
—a— Xia/MF itis T = —0.22 dB.The Xia pulse has a similar behavior,
S5 05 1 2 though it is not better than all Nyquist pulses.

Fora — 1, the optical power gain of the Xia, RC, and RRC
pulses are approximately equal since the output of matched
Fig. 7. The optical power gain versus normalized bandwiBth, for filter will be equal to an RC pulse by either using RRC or
various pulses with a sampling receiver (S) or matched fiieeiver (MF). Xia pulse. However, the optical power of mentioned pulses
The SER for all pulses i80~°. will be different for other values of.

By increasing the modulation level from binary to 4-PAM,
for the samen and Aa, the optical power gain for all pulses
1 decreases, since the required DC bias and symbol average
Aret = Aag(0) Q" (Perr) B”f, (28) increase while the ratid,.; /A decreases. For5 < BT}, < 1,
4 Adret Q! (Pcrr%) B the optical power gain of the regular Nyquist pulses and-root
) _ Nyquist pulses with OOK modulation is significantly more
where B.s = 1/Ti, is the bandwidth of the reference pulsejhan the gain for the all nonnegative Nyquist pulses with 4-
The optical power gain now follows from (23). PAM.
_ For the matched filter receiver, by applying the maximum \ynen the roll-off factor is equal to zero (i.e., the normediz
likelihood detector to (22), the SER will be [6, Sec. 9.3]  pandwidthBT;, for the biased pulses with binary modulation
is equal to 0.5 and for the biased pulses with 4-PAM is equal

and

M—-1 AAaE,¢

P, =2 Q to 0.25), the regular Nyquist pulses discussed in Sec. l an
M 9,/ NoEg the root-Nyquist pulses in Sec. IV will become equal to a
’ sinc pulse with bandwidth /(27s). As discussed in Sec. V,
_ M- IQ (AAa ﬂ) _ the required DC will be infinite for the sinc pulse. Hence, the
M 2Ny gain Y will asymptotically go to—oo whena — 0.
As a result,
VII. CONCLUSIONS
A= LQfl <me> 2No In this work, a pulse shaping method for strictly bandlirdite
Aa 2(M—1) Ey IM/DD systems is presented, in which the transmitted ellectr
and cal signal must be nonnegative. The proposed approach adds

a constant DC bias to the transmitted signal, which allows
Avet _ Aa V2Q 7! (Pory) \/m (29) @ wider selection of transmitted pulses without violatihg t
A Adyrer Q1 (p L) a nonnegativity constraint. This allows us to use Nyquist or
err 2(]\1_1) . . . .
root-Nyquist pulses for ISI-free transmission, with naveo
In contrast to the case with equal eye openings (see Fig. Bandwidth compared to previous works. It is possible togran
Nyquist and root-Nyquist pulses can be compared with eagtit with a bandwidth equal to that of ISI-free transmissian i
other when the SER is kept constant, since neither (28) mmmnventional coherent channels.
(29) depend on the filter gaing(0) and(. To compare our proposed transmission schemes with pre-
By increasing the bandwidth, the gain for SRC decreasepusly designed schemes and to see the effect of increasing
slightly, whereas it increases for SDJ, where= 0 for both the modulation level, we evaluated analytically the averag
cases. The reason is that for these pulses by increasingoptical power versus bandwidth in two different scenaridse
both g and the ratioA,.;/A decreases. We observe that fooptimization of modulation formats means a tradeoff betwee
the regular Nyquist pulses in Sec. lll, the gain increases lye two components of the optical power: the constellation
increasing the bandwidth. The reason is that by increasiag power, which carries the data and is similar to the coherent
roll-off factor, the required bias decreases much fastee (scase, and the bias power, which is constant. We prove the
Fig. 4) than the speed of increase in bandwidth. The BTN asdmewhat unexpected results that for narrowband trangmiss
the PL pulses have approximately similar gain, and the gaiBT, < 1), the two powers balance each other perfectly, so




that OOK and BPSK have identical performance regardless[od]
the pulse.

In the first scenario, the Nyquist pulses are compared Whﬁg]
the noise-free eye opening is equal for all the pulses and
modulation formats. Of the studied pulses, the SDJ pulse
with OOK is the best known, as previously shown in [9
over BTy, > 1. At 0.5 < BTy, < 1, the PL and BTN
pulses with binary modulation have the best performand&sl
being up t02.39 dB better than SDJ with 4-PAM modulation.
Similarly, the 4-PAM BTN and PL pulses have highest gaineg]
over0.25 < BTy}, < 0.5.

In the second scenario, all pulses have equal SER. Of
studied pulses, the SDJ with OOK modulation and sampling
receiver has the highest gain B[}, > 1. At 0.869 < BT}, <
1, the binary PL pulse has the best performance, wherétd
for 0.5 < BT}, < 0.869, the RRC pulse with matched filter
receiver achieves the highest gain. The gain of RRC in this
scenario is up td).74 dB over the best Nyquist pulse and*®!
2.80 dB over the best known results with unbiased PAM.
It seems possible that further improvements can be achieved
by utilizing the most recently proposed Nyquist pulses f13]
[15], [34], [35], or their corresponding root-Nyquist pets
and carefully optimizing their parameters.

Extensions toM-PAM systems withM > 4 are straight- 2]
forward, in order to gain even more spectral efficiency at tﬁe
cost of reduced power efficiency. This might be important for
designing power- and bandwidth-efficient short-haul agtic
fiber links (e.g., fiber to the home and optical interconn)ectg3]
[1], [2] and diffuse indoor wireless optical links [3]—[5].
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