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Moment Estimation Using a Marginalized
Transform

Fredrik Sandblom, Lennart Svensson,Senior Member, IEEE

Abstract—We present a method for estimating mean and
covariance of a transformed Gaussian random variable. The
method is based on evaluations of the transforming function
and resembles the unscented transform and Gauss-Hermite
integration in that respect. The information provided by the
evaluations is used in a Bayesian framework to form a posterior
description of the parameters in a model of the transforming
function. Estimates are then derived by marginalizing these
parameters from the analytical expression of the mean and
covariance. An estimation algorithm, based on the assumption
that the transforming function can be described using Hermite
polynomials, is presented and applied to the non-linear filtering
problem. The resulting marginalized transform (MT) estimator
is compared to the cubature rule, the unscented transform and
the divided difference estimator. The evaluations show that the
presented method performs better than these methods, more
specifically in estimating the covariance matrix. Contrary to
the unscented transform, the resulting approximation of the
covariance matrix is guaranteed to be positive-semidefinite.

Index Terms—Filtering theory, statistical linearization, recur-
sive estimation, Bayes methods, Kalman filter, Tracking.

I. I NTRODUCTION

Calculating the mean and covariance of stochastic variables
is central to many estimation tasks, including, e.g., sensitivity
analysis, which can be applied to a variety of systems includ-
ing antenna characterization [1], power system analysis [2] and
circuit design [3]. It is also frequently an essential component
in recursive state estimation where the posterior mean and
covariance often are used to characterize the distribution[4],
[5]. The importance of this task, with applications ranging
from surveillance to medicine, have motivated a large part of
recent research within the area of moment estimation [5], [6],
[7], [8], [9], [10].

The general Bayesian solution to the state estimation prob-
lem involves integration of probability density functions—
integrals which are rarely mathematically tractable. The family
of Gaussian filterssolves the recursive estimation problem
under the assumption that the concerned distributions are
approximately Gaussian. The equations used to compute the
posterior mean and covariance under this assumption are those
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of the linear minimum mean square error (LMMSE ) estimator,
which coincides with the well known Kalman filter for linear
systems [4].

A variety of Gaussian filters have been proposed to cope
with non-linear models [5], and the derivative-free filters[11],
[6], [7], [8], [9] are particularly useful; with little or no
adjustment, they can be applied to a wide range of problems.
These filters use a transformed set of deterministically chosen
points, often referred to assigma-points, to approximate the
mean and covariance. Arguably, the most well-known sigma-
point method is the unscented transform (UT) [7], [11], that
has been shown [12] to realize the fully symmetric integration
formula presented in [13], which is exact for integration over
third order polynomial functions. The (second order) divided
difference filter (DD2) [6] calculates the mean and covariance
matrix jointly, and both estimates are exact for a certain family
of second order polynomials. An extensive analysis of the
numerical integration perspective on Gaussian filters is given
in [14].

Although easy to apply, derivative-free filters are not
problem-free. TheUT covariance matrix estimate is sometimes
calculated such that it is not necessarily positive-semidefinite.
This behavior was overcome with the recent introduction
of the cubature integration rule [9], a special case of the
UT, whose covariance matrix estimates are guaranteed to be
non-negative definite. It performs well compared to methods
of similar complexity [9], [15], [16], but unfortunately, the
robustness comes at the expense of using a less accurate
integration rule. Furthermore, similar to theUT, the mean and
covariance are computed independently, which implies two
different assumptions on the underlying mapping within the
same method.

In this paper the transforming function is approximated
with a linear combination of Hermite polynomials, for which
closed-form expressions for the mean and covariance are well
known. The polynomial coefficients are given a hierarchi-
cal prior, and the posterior distribution of these coefficients
is computed conditioned on the transformed sigma-points.
The desired mean and covariance can then be calculated
by marginalizing the influence of the coefficients from the
analytical expressions. The approximation of the functionas
a linear combination of Hermite polynomials, with unknown
parameters, is the only approximate step in these calculations.
Similar approaches have been suggested in [17] and [18],
albeit using a non-parametric Gaussian process as a model
of the transformation. A Bayesian approach towards learning
such a process through evaluations was presented already in
[19].

There are several reasons to derive sigma-point algorithms
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using Bayesian techniques. First, the mean and the covariance
matrix estimates are calculated jointly, based on analytical
expressions rather than a numerical approach. Hence, it is
possible to guarantee a positive-semidefinite covariance ma-
trix. Second, the model assumptions become clearly visible
through the prior distribution, making it easier to understand
the algorithm. Third, Bayesian methods are generally well
performing in the sense that they are admissible under rel-
atively loose assumptions [20] and that they are optimal when
the performance is averaged over the prior. Finally, we know
that the key to improve performance is the choice of the
prior. Although the design of a prior can be difficult, we
believe the choice is better made explicitly than implicitly. To
illustrate this, we present a family of priors that result inthe
cubature,UT, and DD2 estimators, for certain choices of the
prior. It is shown that the presented algorithm can provide
very good estimates of the mean and covariance, and that
the estimation error of the recursive filter is more accurately
described using the proposed method. More specifically, we
appear to provide more robust covariance estimates, when the
underlying polynomials are not completely linear.

The paper is organized as follows. Section II describes the
estimation task at hand and a summary of the sigma-point ap-
proach. The proposed marginalization technique is introduced
in Section III, and is applied to Hermite polynomials in Section
IV. Closed-form expressions for mean and covariance are
derived in Section V together with a summary of the algorithm.
Analytical results and a clarification of the relationship to other
sigma-point methods are discussed in Section VI. Usage of
the technique in a Kalman filter framework is demonstrated
in Section VII, and estimation and tracking performance is
evaluated in Section VIII. Our conclusions are listed in Section
IX. Finally, Appendices A–C provide results regarding the
positive-definiteness of theUT covariance matrix, properties
of Hermite polynomials, and an interpretation of the sigma-
point selection scheme.

II. PROBLEM FORMULATION

Consider a stochastic variablex ∈ R
n with probability

density function

x ∼ N (µx,P x),

whereµx andP x are known. We wish to calculate the mean
and covariance of the variabley ∈ R

m:

y = g(x),

whereg : R
n → R

m is a known transformation. The desired
moments are given by the integral expressions

E[y]=

∫

Rn

N (x ;µx,P x)g(x)dx (1)

Cov(y)

=

∫

Rn

N (x;µx,P x)
[

g(x)− E[y]
][

g(x)− E[y]
]T
dx

=

∫

Rn

N (x;µx,P x)g(x)g(x)
T dx− E[y]E[y]T . (2)

Expressing the solutions to these integrals on a closed formis
often impossible for transformations encountered in practice.
Sigma-point methods provide approximate solutions to these
integrals, and have demonstrated nice properties with respect
to performance and simplicity. The question at hand is there-
fore how to use the sigma-points as efficiently as possible.

A. Summary of the sigma-point approach to statistical moment
calculations

The family of sigma-point filters approximate integrals (1)–
(2) using a weighted sum:

∫

Rn

N (x ;µx,P x)g(x)dx ≈
2n
∑

i=0

wig(x
i). (3)

The so-called sigma-points,{x0, . . . ,x2n}, and the associated
weights,wi, are chosen according to a deterministic scheme.
For the unscented transform, they are:

x0 = E[x] (4)

xi =















E[x] +

(

√

n
(1−w0)

P x

)

i

, 1 ≤ i ≤ n

E[x] −
(

√

n
(1−w0)

P x

)

i−2n/2

, n < i ≤ 2n
(5)

wi =
1− w0

2n
, (6)

where i = 1, . . . , 2n and
(√

P x

)

i
is the ith column of a

matrix square root such that
√
P x

√
P x

T
= P x. When

x is Gaussian, the suggested setting for theUT [7] is to use
w0 = 1−n/3, whereas the cubature rule is obtained by setting
w0 = 0, effectively removingx0 from the set of sigma-points.
This integral approximation strategy, applied to equation(1),
yields the estimator

E[g(x)] ≈
2n
∑

i=0

wig(x
i) , ȳ. (7)

The covariance matrix estimate,̂P y, is usually expressed in
terms of the weighted sum of squares, but we prefer to view
it on the form (2) to clarify that the integral approximation
strategy is applied twice:

Cov(y) ≈
2n
∑

i=0

wi[g(x
i)− ȳ][g(xi)− ȳ]T

=

2n
∑

i=0

wig(x
i)g(xi)T −

2n
∑

i=0

wig(x
i)ȳT

− ȳ

2n
∑

i=0

wig(x
i)T +

2n
∑

i=0

wiȳȳ
T

=

2n
∑

i=0

wig(x
i)g(xi)T − ȳȳT , P̂ y. (8)

Sinceg(x)g(x)T generally has higher polynomial order than
g(x), a strategy which calculates the mean (7) accurately need
not be appropriate for the covariance matrix (8). In fact, with



3

negative weights it may not even be positive-semidefinite; see
proof in Appendix A.

The DD2 estimator uses the same sigma-point selection
scheme (5), but is parameterized using a scalarh2 = n

1−w0

.
The sigma points and the weights used to calculate the
mean are identical to those of theUT. The covariance matrix
approximation, however, employs a different set of weights
which are positive regardless of the dimensionality.

III. PROPOSED IDEA

Even though the transforming functiong is known, we
model it as a stochastic process with a prior distributionπ(g).
Apart from the prior, the only available information is the
evaluated points,χ =

[

x0, . . . ,x2n
]

, and the function values
at these points,z =

[

g(x0), . . . , g(x2n)
]

. Using estimation
terminology:χ and z are our measurements, the functiong
is a nuisance parameter with posterior distributionp(g|z, χ)
and our objective is to estimate the mean,ȳπ , and covariance,
P y,π, of y.

The mean, expressed as a functional of the transformation,
g, is denoted by

ȳ(g) ,

∫

N (x ;µx,P x)g(x)dx, (9)

and the corresponding covariance matrix by

Py(g) ,

∫

N (x ;µx,P x)[g(x) − ȳ(g)][g(x) − ȳ(g)]T dx.

(10)

The expressions for the desired mean and covariance ofy,
given z andχ, are given by marginalization overg:

ȳπ = E[y|z, χ]

=

∫

ȳ(g)p(g|z, χ)dg (11)

P y,π = E
[

P y(g)
∣

∣z, χ
]

=

∫

P y(g)p(g|z, χ)dg. (12)

The idea is to use a priorπ(g) for which the integrals
in (11) and (12) have closed-form solutions. Although it is
possible to find solutions for infinite-dimensional integrals,
it is more practical to consider a finite parameterization of
g. In this paper we focus on one such prior, presented in
Section IV, whereg is assumed to belong to the family of
Hermite polynomials. An interpretation of using this prioris
that the mean (11) and covariance (12) are averaged over
polynomials that pass through the points(xi, g(xi)), for all
integersi ∈ [0, 2n], as illustrated in Fig. 1.

IV. U SING A HERMITE POLYNOMIAL TO MODEL THE

TRANSFORMING FUNCTION

Hermite polynomials are used to modelg for three main
reasons. First, usingpolynomialsfacilitate comparisons with
other sigma-point methods, which calculate (7) exactly for
certain polynomials. Second,Hermite polynomialsyield par-
ticularly simple expressions whenp(x) is Gaussian, and third,

Fig. 1. An example of polynomial functions that may have performed the
transformation of the sigma-points. The mean and covariance of y = g(x) is
calculated by a weighted average of all such functions.

polynomials are well known for their ability to approximate
arbitrary continuous functions [21].

To illustrate some fundamental properties, we study a scalar
transformation. Any functiong, for which E[g(x)2] < ∞,
can be expressed in terms of a series of weighted Hermite
polynomials [10]:

g(x) =
∞
∑

k=0

1

k!
E[g(x)Hk(x)]Hk(x), (13)

for x ∼ N (0, 1). To have a tractable solution, we assume that
the transforming function can be approximated using a finite
series, fully described by a weight vectorθ = [θ0, . . . , θp]

T :

g(x) ≈
p

∑

k=0

θkHk(x). (14)

The kth order hermite polynomial,Hk, is given by (86) in
Appendix B, which contains a summary of useful properties of
Hermite polynomials. For instance, using Hermite polynomials
leads to very simple expressions for the mean,ȳ(g), and
covariance,Py(g), or as they now can be expressed,ȳ(θ) and
σ2
y(θ):

ȳ(θ) = θ0

σ2
y(θ) =

p
∑

k=1

θ2kk! .

For example, ify = x + x2 and x ∼ N (0, 1), then y =
H0+H1+H2, (i.e.,θ = [111]T ). Consequently, the expected
value isθ0 = 1 and the variance isθ21 + θ222! = 3.

A. Multidimensional transformation

A transformationg : R
n → R

m, performed by a linear
combination of base functions can be written as

g(x; θ) = θTh(x), (15)

where the base functions enter the equation through

h(x) = [H0, H1(x1), . . . ,Hp(x1), H1(x2),

. . . , Hp(x2), . . . , H1(xn), . . . , Hp(xn)]
T . (16)

In the following sections we assumex ∼ N (0, In×n), a sim-
plification justified in Section IV-D. We construct the weight
matrix from thep-dimensional vectorsθi,j , each describing
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the transformation fromxi to yj , and the scalarsθj0, for
i = 1 . . . n andj = 1 . . .m:

θ =











θ10 . . . θj0 . . . θm0
θ1,1 . . . θ1,j . . . θ1,m

...
. . .

...
. . .

...
θn,1 . . . θn,j . . . θn,m











. (17)

Consequently,θj , the j th column of θ, defines the mapping
from x ∈ R

n to yj over the base functions inh(x):

yj = (θj)Th(x). (18)

The functiong is completely described byθ through equa-
tion (15), and we turn our attention to the expressions forȳ(θ)
andP y(θ). For a given polynomial, i.e., one realization ofθ,
y has the mean

ȳ(θ) = E[θTh(x)|θ]
=

[

θ10, . . . , θ
m
0

]T
, (19)

whereE[h(x)] is given by equation (84). To simplify notation,
we introduce the vector

w , E[h(x)] = [1, 0, . . . , 0]T , (20)

and write the covariance matrix fory:

P y(θ) = E

[

[θTh(x) − θTw][θTh(x) − θTw]T |θ
]

= θTE
[

[h(x)−w][h(x) −w]T
]

θ

= θTCθ. (21)

All off-diagonal elements ofC , E[[h(x)−w][h(x)−w]T ]
are zero, and thepn+ 1 diagonal elements are:

diag(C) = [0, 1!, 2!, . . . , p!, . . . , 1!, 2!, . . . , p!]T , (22)

see equations (84) and (85) in Appendix B. The relation
between the mean (19) and covariance (21) ofy, and the
parameter vectorθ, is now clear. Before we attempt to
marginalizeθ from these expressions, we attend to the prior.

B. Designing the prior distribution

Using Hermitian polynomials, designing the priorπ(g) is
now equivalent to designingπ(θ), and there is an intuitive
interpretation: the number of elements inθ determines the
maximum order of the transforming polynomial. Similarly, the
variance determines which coefficients are updated with the
information provided in the propagated sigma points.

The proposed prior assumes the vectorsθ
i,j to be indepen-

dently generated from a hierarchical model:

θi,j ∼ N (0, αjP
i,j
θ ). (23)

It is shown in Section VI-B that the sigma-points can be
selected such that the prior onθ0 does not affect the posterior
distribution,p(θ|z, χ), but for completeness let it be assumed
that all scalarsθj0 are independently drawn fromN (0, σ2

θ0
).

The covariance matrix Cov(θj) = αjP
j
θ is therefore block-

diagonal, with:

P
j
θ =













σ2
θ0

/

αj 0 . . . 0

0 P
1,j
θ

. . .
...

...
. . .

. . . 0

0 . . . 0 P
n,j
θ













. (24)

Note that the hyperparameter,αj , is common for all the
parametersθ1,j , . . . , θn,j , in order to share information about
the scale of the problem across dimensions. Techniques for
estimatingαj are discussed in Section V-B.

C. Estimates of mean and covariance

Expressions (19) and (21) are derived for a given weight
matrix, θ. However, sinceθ is modeled as a stochastic
variable, the marginalization in (11) and (12) gives the final
estimators:

ȳπ = E[θT |z, χ]w (25)

= µTθ|zw

= E
[

[θ10 , . . . , θ
m
0 ]T |z, χ

]

P y,π = E[θTC θ|z, χ] (26)

= µTθ|zC µθ|z + E

[

[θ − µθ|z]
TC[θ − µθ|z]|z, χ

]

= µTθ|zC µθ|z +











α1Tr
{

P 1
θ|zC

}

0

. . .

0 αmTr
{

Pm
θ|zC

}











,

where we introduce the notationµθ|z for the conditional
mean,E[θT |z, χ], andP j

θ|z (j = 1 . . .m) for the conditional

posterior covariance. Expressions forµθ|z and P
j
θ|z given

observationsz, χ are derived in Section V.

D. Stochastic decoupling

The simple forms forw in (20) andC in (22) are expressed
for vector arguments,x, whose elements are uncorrelated with
unit variance. Rather than expressingw andC for any mean
and covariance ofx, a stochastic decoupling procedure similar
to the approach in [6] is proposed, such thatw and C are
constant. Instead of studying

y = g(x), x ∼ N (µx,P x), (27)

we introducex̃ ∼ N (0, In×n), where In×n is the n× n
identity matrix, and set

y = g̃(x̃) , g(µx +
√

P x x̃), (28)

which has the same distribution as the originaly in (27).
Therefore, rather than recalculatingw andC, we assume the
transformation is performed bỹg in (28). This adaptation is
built in to the algorithm described in Section V-C.
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V. CALCULATING THE POSTERIOR DISTRIBUTION

Our objective is now to calculate the posterior distribution
p(θ|z, χ) and its first two moments, which are needed in
the expressions for the mean and covariance ofy, given by
equations (25)–(26). An exact expression of the distribution
is obtained by marginalizing the hyperparameter,α, from the
hierarchical model:

p(θj |z, χ) =
∫

p(θj |αj , z, χ)p(αj |z, χ)dαj . (29)

Finding a closed-form solution to (29) is usually difficult.A
simple yet useful substitute is to use a point estimate ofαj .
In other words, we set

p(θj |z, χ) ≈ p(θj |α̂j , z, χ). (30)

In the following section, the first two moments of
p(θj |α̂j , z, χ) are calculated for a given estimate,α̂j , which
is then derived in Section V-B.

A. Mean and covariance ofθ

The linear relation between observationsz and parameter
vectorθ was established in equation (15):

z = θTHT (χ), (31)

where the observation matrix is given by:

H(χ) =







hT (x0)
...

hT (x2n)






. (32)

For notational convenience, we omit the reference toχ from
now on. Given a zero-mean Gaussian prior distribution on
θj , with Cov(θj) = αjP

j
θ, the posterior distribution is also

Gaussian with mean and covariance [22]:

µ
j
θ|z = P

j
θH

T
[

HP
j
θH

T
]−1

zj (33)

αjP
j
θ|z =

(

I− P
j
θH

T
[

HP
j
θH

T
]−1

H

)

αjP
j
θ, (34)

wherezj is the j th column in zT . The conditional mean of
θ is µθ|z = [µ1

θ|z,µ
2
θ|z, . . . ,µ

m
θ|z]. Estimates̄yπ andP y,π in

(25) and (26) can thus readily be calculated.
If all transformations are treated the same way a priori, i.e.,

if the covariance matricesP i,j
θ in (23) do not depend onj,

the elements Tr{P j
θC} are also independent ofj. Hence, the

superscriptj can be dropped and the expression forP y,π can
be simplified to

P y,π = µTθ|zCµθ|z +





α1 0
. . .

0 αm



Tr
{

P θ|zC
}

. (35)

To simplify notation in the remaining part of the paper, it
is assumed thatP θ and P

j
θ can be used interchangeably.

Furthermore, according to equation (34), Tr{P θ|zC} does not
depend onz and can therefore be calculated in advance.

B. The hyperparameterα

Estimates ofαj , which were assumed known in the previous
section, are preferably derived from the posterior distribution
conditioned on the propagated sigma-pointsz:

p(αj |z) ∝ p(z|αj)p(αj). (36)

The posterior, on the other hand, relies on expressions for the
likelihood p(z

∣

∣αj) and the priorp(αj).

1) The likelihood function:In our setting,θj is a zero-
mean Gaussian random variable, conditioned onαj , and so
is the linearly dependent observationszj . However, from the
results in Appendix C it follows that the mean is known for
the cases we study and, consequently, is independent of the
hyperparameter prior. The observation vector of interest,z̃j , is
therefore thej th column in

[

g(x0)− θ0, . . . , g(x
2n)− θ0

]T
,

and the likelihood function takes the following simple form:

p(z̃j |αj)=
1

(2π)
ρ
2 (αj)

ρ
2

√

|HP
j
θH

T |
e
− 1

2αj
z̃jT(HP

j

θ
HT)−1z̃j

,

(37)

in which ρ is the number of observations, in this case2n+1.

2) The prior: In the absence of prior knowledge ofαj , we
want the prior to be noninformative to ensure a weak influence
on the posterior distribution. It is argued in [23] that

p(αj) ∝ 1/αj, (38)

is a sensibly vague prior with respect to the likelihood (37).

3) The posterior distribution:The expression for the pos-
terior distribution, using the likelihood (37) and prior (38),
is:

p(z̃j |αj) p(αj) ∝
1

αj
ρ
2
+1

e
− 1

2αj
d2

, (39)

where d2 = z̃j T (HP
j
θH

T )−1z̃j . The above expression is
proportional to the scaled inverse chi-square distribution, so

αj|z ∼ inv-χ2(ν, s2), (40)

with parametersν = ρ and s2 = d2/ρ. The mean and mode
of the scaled inverse chi-square distribution are:

E(αj) =
ν

ν − 2
s2, (41)

mode(αj) =
ν

ν + 2
s2, (42)

and can be used as point estimates ofαj in the posterior
covariance matrix expression (35). Note that the conditional
mean (33) is unaffected by the hyperparameter. The algorithm
presented in Section V-C employs the mode (42) as a point
estimate ofαj .

C. The marginalized transform (MT) estimator

We have now reached the point where theMT estimation
algorithm can be summarized, and somewhat simplified, in
a few easy steps. There are two design decisions that can be
made independently: the order of the transforming polynomial,
p, and the sigma-point selection scheme. Using2 ≤ p ≤ 3 for
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the cubature points and2 ≤ p ≤ 5 for the UT points assures
a fully known mean (further explained in Section VI-B).

For x ∈ R
n, y = g(x) ∈ R

m, x ∼ N (µx,P x)

1) Select a prior covariance matrixΣ, a diagonalp × p
matrix, p ≤ 5, with at least two nonzero elements. See,
e.g., the priors used in Section VIII.

2) Generate sigma-points usingw0 = 1− n
3 :

x0 = 0n×1

xk =















+

(

√

n
(1−w0)

In×n

)

k

, 1 < k ≤ n

−
(

√

n
(1−w0)

In×n

)

k−n
, n < k ≤ 2n

χ =
[

x0,x1, . . . ,x2n
]

.

(althoughw0 = 0 can be used ifp ≤ 3, and forp = 2,
any 2n+ 1 points can be used).

3) SetP i,j
θ = Σ in equation (24) to formP θ. The value for

σ2
θ0
/αj will not matter. Calculatew,C,H(χ) andP θ|z

using equations (20), (22), (32) and (34) respectively.

4) Propagate the sigma-points:

z =
[

g(µx +
√

P xx
0), . . . , g(µx +

√

P xx
2n)

]

.

5) Compute the mean,̄yπ, using equation (25) and (33):

µθ|z = P θH
T
[

HP θH
T
]−1

zT

ȳπ = µθ|zw

6) Estimate the modes of the hyperparameters:

α̂j =
1

(2n+ 1) + 2
z̃j T

[

HP θH
T
]−1

z̃j T ,

wherez̃j T is thej th row in the observation matrix with
subtracted mean,

[

g(x0)− ȳπ, . . . , g(x
2n)− ȳπ

]

.

7) Calculate the covariance matrix,P y,π, using equation
(35).

Steps1− 3 can be done in advance, as well as computing
P θH

T
[

HP θH
T
]−1

,
[

HP θH
T
]−1

and Tr
{

P θ|zC
}

, in that
way simplifying the algorithm significantly. For example, the
calculation of the mean can be identical to theUT, cubature
rule or to the DD2, for which also the covariance matrix
estimator can be the same — all depending on the design
of the prior, see the discussion in Section VI.

D. Calculating the posterior cross-covariance matrix

It is sometimes required to know the cross-covariance
between the state,x, and the transformed state,y = g(x). In
the filtering algorithm that will be presented in Section VII-C,
it is a necessity, and is in fact already known from estimating

µθ|z. The cross-covariance matrix is:

P xy(θ) =

∫

Rn

N (x ;0, In)
[

x− E[x]
][

g(x; θ)− ȳ(θ)
]T
dx

= E[x[θTh(x̃)− θTw]T ]

= E[x[h(x) −w]T ]θ

= Dθ. (43)

The sparse matrixD , E[x̃[h(x̃)−w]T ] is constant and can
be written:

D =









0 [1, 0, . . . , 0] 0T . . .

0 0T
. . .

. . .
...

...
. . . [1, 0, . . . , 0]









, (44)

which follows from the orthogonality property (83) of Hermite
polynomials described in Appendix B (recall thatx = H1(x)).
In other words,P xy(θ) is then×m matrix of all first order
weights:

P xy(θ) =











θ1,1(1) . . . θ1,m(1)
θ2,1(1) . . . θ2,m(1)

...
...

θn,1(1) . . . θn,m(1)











. (45)

The above cross-covariance matrix describes the relation to
x ∼ N (0, In×n), whereas the relation to a correlated state is
established by multiplication with

√
P x. Including the square-

root matrix and carrying out the marginalization ofθ in (43)
yields

P xy,π =
√

P x DE
[

θ
∣

∣z, χ
]

=
√

P x Dµθ|z, (46)

which is the estimate of the cross covariance matrix.

VI. A NALYSIS AND COMPARISON

In this section, we further explain the behavior of the
proposed estimator, and clarify the relationship with other
sigma-point estimators.

A. Posterior uncertainties in mean and covariance

First, we analyze our estimates in terms of their distribu-
tions. Conditioned onα, the mean,̄y(θ), is a Gaussian random
variable with covariance

E
[

[ȳ(θ)− ȳπ][ȳ(θ)− ȳπ]
T |α

]

= Im×mwP θ|zw
T . (47)

The distribution of the elements in the covariance matrix,
P y(θ), is less trivial; diagonal elements are weighted sums
of chi-square distributed variables, whereas the off-diagonal
elements are created from products between independent
Gaussian random variables. This could be looked upon as a
weighted sum of Wishart distributed matrices created from the
rows,θi, of θ:

P y(θ) =

pn
∑

k=0

θTk θkck+1, (48)
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whereck is thekth diagonal element inC, defined in equation
(22).

Equation (47) illustrates how uncertainties inθ affect ȳ(θ),
and it is desirable to design an estimator such that this variance
equals zero. Inserting the expression forP θ|z, from equation
(34), into (47), we see that the covariance ofȳ(θ) is

Cov(ȳ(θ)) = w
(

I− P θH
T
[

HP θH
T
]−1

H
)

P θw
T .

(49)

One of the arguments for sigma-point approaches has been that
it is easier to approximate the probability distribution than the
transforming function [7], [24]. However, it is not required
for θ to be fully known (P θ|z = 0) in order for the estimate
to be exact; we see from equation (49) that it is enough to
project the uncertainties inθ onto the plane orthogonal to the
vectorw. In Appendix C it is shown that the selection scheme
(4)–(5) attains this projection, which means thatȳπ = ȳ(θ)
with probability one. In other words,̄y(θ) is identical for all
polynomials passing through the sigma-points.

The result follows from using an integration rule, well-
known from the literature, [12], [14], which integrates these
functions correctly. However, the new derivation provided
here is conceptually different and may be more intuitive to
some readers. Furthermore, the type of uncertainty analysis
performed in this paper can provide an important tool for
designing new sigma-point selection schemes in the future.

B. Comparison with the UT and the cubature rule

Contrary to theUT and the cubature rule, the presented
method suggests to calculate the covariance matrix using a
model of the transformation, and the estimates are therefore
conceptually different. The estimates of the mean, however,
are easier to compare; theUT and the cubature rule employ
known integration rules, and the proposed method can yield
these rules under certain conditions. To show the similarities,
we write theMT estimator of the mean (25) on the same form
as theUT estimator (7):

ȳπ = z
[

P θH
T
[

HP θH
T
]−1

]T

w. (50)

This is clearly a weighted sum,̄yπ = zλ, of the evaluated
sigma-points, with a column weight vector

λ =
[

HP θH
T
]−1

HP θw. (51)

The MT andUT estimators are the same when the elements of
λ are identical to theUT weights.

The definition of the precision of an integration rule is [14]:
‘A rule is said to have precisionp if it integrates monomials up
to degreep exactly, that is, monomialsΠdi=1x

ki
i with ki ≥ 0

and
∑d

i=1 ki ≤ p, but not exactly for some monomials of
degree

∑d
i=1 ki = p+ 1’ .

For the presented method, this definition is equivalent to
having no uncertainties in̄y(θ), when the prior includes all
monomials up to degreep. It is shown in Appendix C that the
sigma-point selection scheme (4) – (5) satisfies exactly this —
the MT andUT estimators for the mean are then identical. The
explicit model assumptions in the proposed method coincide

with the implicit assumptions in the sigma-point filter, andthe
actual values in the prior covariance matrix,P θ, no longer
affect the result.

The integration rule used by theUT and the cubature rule
have precision 3, which can be quite limiting. A simple
example serves as illustration:

y = x1x2, x ∼ N (0, I2×2). (52)

The variance ofy is E[x21x
2
2] = 1, but the sigma-point

methods discussed in this paper all fail to calculate the
variance correctly. However, the prior used in the presented
method explicitly excludes cross-terms in the model, so the
result should come as no surprise. Moreover, the solution is
straightforward: modify the model to include also cross-terms
and add sigma-points to observe them. It should be mentioned
here that theMT and theUT, with w0 = 1 − n/3, would
have precision 5 if it weren’t for these cross-terms, i.e., single-
element monomials,xpi , are correctly integrated up top = 5.

Contrary to theUT, the MT can be tuned without moving
the sigma-points. The cubature rule, on the other hand, cannot
be tuned at all, and the position of the sigma-points varies
in a predetermined manner with the dimensionality,n. For
instance, in a tracking system where targets are tracked using
a joint state vector, the performance of the cubature estimator
depends on the number of targets, even if the targets are
well separated with independent measurements (with respect
to other targets).

C. Comparison with the divided difference filter

TheDD2 is based on a second-order polynomial approxima-
tion of the transforming function, with cross-terms excluded.
The MT assumes that the underlying distribution is Gaus-
sian, which corresponds to setting theDD2 design parameter
h =

√
3. It is possible to design anMT-prior to correspond

to this estimator. More specifically, assuming a second order
polynomial and using theUT sigma-points yields equally many
unknowns as observations. The second order polynomial is
therefore fully known, i.e. there are no posterior uncertainties
in the parameter vectorθ, and the estimators are, for this
particular prior, identical.

D. Sigma-point selection and non-linear transformations

The effects of employing a particular set of sigma points
with the MT can be evaluated in terms of the posterior
uncertainties of the estimates. However, our focus here is to
evaluate theMT performance when using the2n+1 UT points,
and the2n cubature points, where the main difference between
these sets is that the cubature rule does not employ a weight
in the distribution mean.

It is foreseeable that there will be functions for which
the integral of a polynomial passing through the evaluated
sigma-points, may constitute a worse approximation of the
actual integral, than the integral over a lower order polynomial
passing through fewer points. For instance, in [9], it was
shown that the cubature rule performed better than theDD2
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in estimating the mean of the function

g(x) =
1

(
√
1 + xTx)q

, (53)

when the integerq and the dimensionality ofx was in-
creased. Under these circumstances, the function (53) does
not resemble a polynomial, and including a sigma-point in
the meanE[x] degrades performance. It cannot, however, be
argued that it is generally sound to exclude that particular
sigma-point — it has to be judged depending on the function.
Including the point provides information of the function, which
obviously sometimes is helpful, especially when calculating
the covariance matrix. For example, the covariance matrix for
functions symmetric over the covariance contour will be zero
when calculated using the cubature rule, e.g.:

y = x2, x ∼ N (0, 1). (54)

If all propagated points have the same value this will also be
the estimate of the mean, i.e.,g(xi) = ȳ for all sigma-points.
The variance estimate is then:

2n
∑

i=0

wi[g(x
i)− ȳ][g(xi)− ȳ]T = 0.

This would be the case also for (53), ifx ∼ N (0, I). In real
situations this is rarely the case, but nevertheless illustrates an
undesired behavior.

The transformation (53) also serves to illustrate that sigma-
point methods can perform well also for non-polynomial
transformations, since a polynomial approximation need not
resemble the transforming function in order to approximate
its integral.

VII. A PPLICATION EXAMPLE: RECURSIVE FILTERING

Robust recursive filters, e.g., for tracking a continuous
process measured at discrete time instances, are arguably very
valuable. A famous solution is the Kalman filter (KF) [4],
although theKF is applicable only when models are linear.
Several filters intended for usage with non-linear models
share a similar structure, differing only in how they estimate
moments, e.g., theUKF, CKF, and EKF. By applying the
marginalization technique presented in this paper in a similar
fashion, the marginalized Kalman filter is created — theMKF.

A. System model

A discrete-time non-linear system, described by the state
vector,xk, is assumed to evolve according to the model:

xk = f(xk−1,wk−1). (55)

Observations,yk, are provided at discrete time instances:

yk = h(xk,vk). (56)

The noise termswk,vk are modeled as zero mean independent
white Gaussian noise. The goal is to calculate the posterior
distribution p(xk|Yk), where Yk is the collection of all
available measurements,[y1, . . . ,yk]. Estimates of the state
vector are often denoted̂xk|k, where the first subscript refers
to the time index of the state and the latter to the time index
of the last measurement used to update the state.

B. The one-step linear estimation algorithm

An accustomed approach for calculating the posterior dis-
tribution, used for example by theEKF, UKF, CKF and DD2
filters, is to apply theLMMSE estimator for each new obser-
vation. The filter performs two operations:

1) Prediction: Givenp(xk−1|Yk−1), calculate the first two
moments of the state distribution at the time of the next unused
measurement:

x̂k|k−1 = E[xk|Yk−1]

= E[f(xk−1,wk−1)|Yk−1] (57)

P k|k−1 = Cov(xk|Yk−1)

= E[f(xk−1,wk−1)f(xk−1,wk−1)
T |Yk−1] (58)

− x̂k|k−1x̂
T
k|k−1

2) Update: Correct the prediction,̂xk|k−1, using the mea-
surement,yk. The best update that is linear inyk, is given by
the LMMSE estimator [25]:

x̂k|k = x̂k|k−1 + P xyS
−1
k|k−1

(

yk − ŷk|k−1

)

. (59)

The estimator (59) requires knowledge of the mean,ŷk|k−1,
and covariance,Sk|k−1, of the measurement distribution, as
well as the cross-covariance matrixP xy:

ŷk|k−1 = E[yk|Yk−1]

= E[h(xk,vk)|Yk−1] (60)

Sk|k−1 = Cov(yk|Yk−1) (61)

= E[h(xk,vk)h(xk,vk)
T |Yk−1]− ŷk|k−1ŷ

T
k|k−1.

P xy = Cov(xk,yk|Yk−1)

= E[xkh(xk,vk)
T |Yk−1]− x̂k|k−1ŷ

T
k|k−1 (62)

The matrix mean squared error (MSE) of the estimate (59) is
used as an approximation of the posterior covariance matrix,
P k|k. The matrixMSE is:

E
[

[xk − x̂k|k][xk − x̂k|k]
T |yk

]

(63)

= P k|k−1 − P xyS
−1
k|k−1P yx,

and is a reasonable approximation to a posterior covari-
ance matrix which does not depend on the observationyk.
Expressed in terms of the so called gain matrix,Kk =
P xyS

−1
k|k−1, the expressions for the state update are:

x̂k|k = x̂k|k−1 +Kk

(

yk − ŷk|k−1

)

(64)

P k|k = P k|k−1 −KkSk|k−1K
T
k . (65)

To sum up, the filter approximates the first two moments of
the posterior distribution,p(xk|Yk), with the estimate of the
mean (64) and the matrixMSE (65), concluding the recursion.

C. The marginalized Kalman filter (MKF)

The MKF is the recursive filter following the application of
the MT to steps 1–2 in the previous section. The state vector
can be augmented to include noise terms, described, e.g., in
[7].
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1) MKF prediction: Assume the state vector is Gaussian,
i.e.,

p(xk−1|Yk−1) = N (xk−1; x̂k−1|k−1,P k−1|k−1).

Use the algorithm in Section V-C to calculate the mean (57)
and covariance (58) of the predictive distribution,

p(xk|Yk−1) ≈ N (xk; x̂k|k−1,P k|k−1).

2) MKF update: Apply the algorithm a second time to
calculate the mean (60) and covariance (61) of the measure-
ment distribution. The cross-covariance matrix (62) is given by
equation (46). Calculate the gain matrix,Kk = P xyS

−1
k|k−1,

and approximate the posterior distribution

p(xk|Yk) ≈ N (xk; x̂k|k,P k|k),

using theLMMSE estimate (64) and the matrixMSE (65).

VIII. S IMULATION EXAMPLES

The cubature rule is a special case of the unscented trans-
form with the benefit that the estimated covariance matrix
is always positive-definite — a property shared also by the
proposed method. Further, the results in [9] indicate that the
cubature rule performs better than the divided difference filter.
Therefore, our main goal is to show how the presented method
performs compared to the cubature transform. Two examples
are examined: the transformation from polar to Cartesian
coordinates, which is also commonly used to illustrate the
performance of the unscented transform, and the bearings-only
tracking problem [26].

In the first evaluation we use the Kullback-Leibler (KL )
discrimination1 to measure how much a distributionq(y)
differs from a reference distributionp(y) [28]:

dKL (p, q) =

∫

p(y) log
p(y)

q(y)
dy. (66)

This measure was also used in [9] to evaluate the cubature
rule, which further motivates using the same approach here.
The distributionsp andq are approximated as Gaussians, for
which dKL(p, q) can be calculated analytically. The first two
moments of the reference distribution,p, are estimated using
Monte Carlo integration:

∫

p(x)g(x)dx ≈
N
∑

n=1

g(xn). (67)

Two slightly different versions, theMT5 and theMT3, of
the presented method are evaluated. TheMT5 is implemented
according to the algorithm in Section V-C, withp = 5, using
the2n+1 UT sigma-points. However, in order to compare the
method fairly to the cubature rule, theMT3 is introduced, using
p = 3 and the2n cubature sigma-points. This is not the same
as settingw0 = 0 in the second step of the algorithm, which
in practice would exclude the pointx0 in the calculation of
the mean but not in the calculation of the covariance matrix.

1Usually referred to as the Kullback-Leibler divergence, although when
introduced in [27], the authors used the term “divergence” for the symmetric
measuredKL (p, q) + dKL (q, p).

A. Polar to Cartesian transformation

In this section theMT3, using two slightly different priors,
is compared to the cubature rule. Lety = g(x) be the
transformation from a polar coordinate system defined in terms
of range,r, and azimuth,ψ, to a Cartesian coordinate system:

x =

[

r
ψ

]

, y =

[

x1 cosx2
x1 sinx2

]

. (68)

By modifying the prior, the presented method can be optimized
to yield excellent results for a narrow family of transforma-
tions. However, this is not a fair comparison and often not
a realistic approach. Instead we use the same prior for the
11 positions in Fig. 2, and for each position we evaluate 8
different azimuth measurement noise variances,σ2

ψ :

σ2
ψ = [52, 102, 152, 202, 252, 302, 352, 402](

π

180
)2 [rad2].

(69)

The range measurement noise variance is constant throughout
all evaluations,σ2

r = 0.5 [m2].
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Fig. 2. A sensor, situated in the origin, with uncertaintiesin range and
angle measurements observes a target at eleven positions. The “banana-
shaped” contours are measurement space covariance contours, transformed
to the Cartesian coordinate system.

To illustrate the influence of the prior, we present results
for two different priors, both assuming a zero-mean Gaussian
distribution of θ. The first one is created using the simple
assumption that the function is a2nd order polynomial where
the higher order term is relatively small, whereas the second
one has been numerically derived to perform well in this
scenario:

Σ1 =





1 0 0
0 1

100 0
0 0 0



 , Σ2 =





1 0 0
0 0.036 0
0 0 0.0007



. (70)

The cubature evaluation points are used by all three methods
and, as argued in Section VI-B, the prior variance for the mean,
θ0, does not influence the estimate.

The average Kullback-Leibler discrimination is presented
in Table I and the mean for each position and noise variance
is displayed in Fig. 3. The reference density was calculated
using105 samples. The results show that, although all methods
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Fig. 3. The left figure shows the average Kullback-Leibler discrimination
for the different azimuth noise variances, whereas the right figure shows the
average Kullback-Leibler discrimination for the positions. The dashed line
illustrates the Cubature rule, the dotted line represents the use ofΣ1, and the
solid line the use ofΣ2.

TABLE I
AVERAGE KULLBACK -LEIBLER DISCRIMINATION

AverageKL -discrimination[×10−4]

Cubature rule 478
MT3, Σ1 45
MT3, Σ2 29

perform very well in absolute numbers, the marginalized
sigma-point estimator outperforms the Cubature rule using
the same pointsχ. It can also be seen thatΣ1 is the better
description for some noise models, and for position6, but that
Σ2 performs better on average.

B. Bearings only tracking

The bearings only tracking problem is well-studied and
arises in passive sensor applications such as sonar tracking.
Several filters have been designed for this particular task,
such as the range-parameterized EKF [26], but since we are
interested in comparing sigma-point filters, those filters are not
included in the comparison. TwoMKF versions, based on the
MT5 and theMT3, are compared to theCKF, the UKF and the
DD2-filter.

The scenario we consider here, tracking of a non-
maneuvering submarine, is illustrated in Fig. 4. Most param-
eter values are taken from [26]. The state vector contains the
Cartesian position and velocity,x = [x y ẋ ẏ]T , and bearing
observations are non-linear transformations ofx, with additive
Gaussian noise:

θ = tan−1
( y

x

)

+ w. (71)

The variance of the measurement noise,wk ∼ N (0, σ2
w), is

known to the tracking algorithms, which are also given perfect
knowledge of the prior distribution; for each simulation, the
initial position of the target is generated from the prior. The
process model is linear:

xk =









1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1









xk−1 +









T 2

2 0

0 T 2

2
T 0
0 T









vk, (72)

with process noise,vk ∼ N (0, σ2
vI2×2). The state distribution

is assumed Gaussian, and the predicted distribution, whichis
consequently also Gaussian, is correctly calculated by allfive
filters. Hence, the methods differ only in the calculation of
the measurement distribution and the cross-covariance matrix.
The parameter values are:

σv =
√
10−5

m

s2
, σw = 1.5 ◦, T = 60 s, N = 30,

whereN is the length of a trajectory. The filter is initiated
using the scheme in [26], at

x0 =









3000
4000
−0.6
−0.8









, P 0 ≈









5922 6822 0 0
6822 8162 0 0
0 0 0.57 −0.35
0 0 −0.35 0.34









,

which corresponds to a target at a range of5 km, traveling
towards the sensor at a speed of1 m/s with uncertainties in
range (σr = 1000 m), speed (σs = 0.3 m/s) and course (σc =
π√
12

rad).
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Fig. 4. Five different filters are applied to the tracking problem where a
bearings-only sensor, situated in the origin, makes 30 observations of a moving
target. In this particular example the target process noiseis near-zero.

Two performance measures are averaged over104 simula-
tions: TheMSE, ξ, and the average normalized estimation error
squared (NEES), ζ:

ξ =
1

N

N
∑

k=1

[x̂pk − x
p
k]
T [x̂pk − x

p
k] (73)

ζ =
1

N

N
∑

k=1

[x̂pk − x
p
k]
T
(

P̂
p

k

)−1

[x̂pk − x
p
k]. (74)

Both are calculated for the position states,xp = [x y]T ,
and its covariance matrix,P p. The results are summarized
in Table II. When the posterior covariance matrix correctly
describes the estimation error, theNEES is equal to the number
of dimensions of the evaluated state vector, i.e.,2 in this
example. Consequently,ζ > 2 indicates that the covariance is
underestimated and vice versa.

In this evaluation, theUT mean weight,w0, is 1 − n
3 , the

DD2 parameter,h, is
√
3, and theMKF3 and MKF5 are based
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on theMT3 and MT5, respectively2, with priors:

ΣMT3 =





1 0 0
0 1

10 0
0 0 5

100



 , ΣMT5 =













1 0 0 0 0
0 1

10 0 0 0
0 0 5

100 0 0
0 0 0 1

1000 0
0 0 0 0 1

1000













.

TABLE II
RMSE, NEES, AND CPU TIME REQUIRED TO PROCESS A TRAJECTORY,

AVERAGED OVER104 SIMULATIONS

RMSE,
√

ξ̄ NEES, ζ̄ No. of σ-points CPU time [ms]
MKF3 1074 1.97 2n 28
CKF 1083 2.46 2n 24
DD2 1077 2.40 2n+ 1 23

MKF5 1064 2.01 2n+ 1 29
UKF 1076 2.40 2n+ 1 25

From Table II we conclude that the choice of filters does
not, on average, affect theMSE in particular and that theCKF,
UKF and DD2 underestimate the size of the error. TheMKF,
however, performs very well in theNEES sense. Though the
NEES should be used with care [29], this indicates that the
MKF filters are better at self-assessing their accuracies. This
can be explained in terms of the posterior uncertainties inθ,
which contribute to the covariance matrix estimate through
the additive diagonal matrix in equation (35). An accurate
approximation of the posterior covariance matrix is important,
e.g., in a Bayesian decision-making scheme.

A standard laptop with an Intel core I5CPU, running at
2.4GHz, was used to run the filters inMATLAB . There is a
slight increase in processing time for theMKF that originates
from the calculation of the hyperparameter,α, which has no
counterpart in the other filters.

IX. CONCLUSIONS

We have presented a derivative-free method, the marginal-
ized transform (MT), for estimating the mean and covariance
of a transformed Gaussian-distributed random variable, which
has several beneficial properties. In summary, the method:

• performs better than well-known sigma-point methods,
such as theUT, DD2, or cubature rule, in the evaluated
estimation task and the bearings-only tracking scenario.

• is easy to apply, as the simplicity of derivative-free filters
is maintained.

• has tuning-parameters that can be intuitively understood
in terms of the model of the transforming function.

In a more general sense, we present a method for designing
sigma-point estimators, based on explicit model assumptions.
For example, it has been shown which assumptions lead to the
integration rules of theDD2, UT, and the cubature rule.

Sigma-point filters have previously been analyzed in terms
of the precision of the applied integral approximation. Still,
as the non-linear functions encountered in most applications
are not polynomial, we argue that it is relevant to ask what
the estimates represent when they arenot exact. A description

2In other words, theMKF3 and the MKF5 estimates of the mean are
calculated using the same rules as theCKF and theUKF/DD2, respectively.

of the latter is precisely what theMT gives; the family of
functions contributing to the estimates.

APPENDIX A
UT COVARIANCE MATRIX ESTIMATES

The UT covariance matrix estimate (8) is on the form

P̂ y =

2n
∑

i=0

widid
T
i , with di = [g(xi)− ȳ]. (75)

Lemma 1: The covariance matrix estimate calculated by the
UT is guaranteed to be positive-semidefinite when all weights
are positive.

Proof: P̂ y is positive-semidefinite ifxT P̂ yx ≥ 0, and

xT P̂ yx =

2n
∑

i=0

wi(x
Tdi)

2 ≥ 0, if wi ≥ 0 ∀i (76)

Lemma 2: Whenw0 /∈ [0, 1], there are functions for which
P̂ y is not positive-semidefinite.

Proof: For example, there exists a functiong : Rn → R
1,

symmetric such that

a = g(xi) , i ∈ {1, . . .2n} (77)

b = g(x0). (78)

The UT weights sum to one and̄y is assumed zero,

w0b+ 2nwia = 0, (79)

leading to the following two relations:

wi =
1− w0

2n
, w, anda = b

−w0

1− w0
. (80)

The variance is negative if,

σ2
y = w0b

2 + 2nwa2 < 0

⇔ w0b
2 + (1− w0)b

2 (−w0)
2

(1− w0)2
< 0

⇔ w0(1− w0)
2 + (1− w0)w

2
0 < 0. (81)

The left hand side on the last row is a second order polynomial
with rootsw0 = 0 andw0 = 1, and a maximum inw0 = 1/2.
In other words:

w0 /∈ [0, 1] ⇒ σ2
y < 0. (82)

Each diagonal element in them × m covariance matrix,
corresponding tog : Rn → R

m, is calculated analogous to
σ2
y. The proof is therefore valid for any dimensionality.

APPENDIX B
PROPERTIES OFHERMITE POLYNOMIALS

The univariate Hermite polynomials are orthogonal under
integration under the Gaussian pdf, i.e., forx ∼ N (0, 1),

E[Hi(x)Hj(x)]=

∫

p(x)Hi(x)Hj(x)dx=

{

0 ,i 6= j

i! ,i = j
. (83)
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It follows that the expected value is zero for all but the0th

polynomial:

E[Hi(x)] =

∫

p(x)Hi(x)H0(x)dx =

{

0 , i 6= j

1 , i = 0
. (84)

Further, we conclude that, for[x1, . . . , xn]T ∼ N (0, In×n),

E[Hi(xk)Hj(xl)] =

∫

p(x)Hi(xk)Hj(xl)dx

=











0 , i 6= j ∪ k 6= l

1 , i = j = 0 ∀k, l
i! , i = j ∩ k = l

, (85)

which follows from (83), (84). A simple formula expressing
the Hermite polynomials in terms of a random variableν ∼
N (0, 1) was given in [30]:

Hn(x) = E
[

(x+ ν
√
−1)n|x

]

. (86)

The first six Hermite polynomials are

H0(x) = 1, H2(x) = x2 − 1, H4(x) = x4 − 6x2 + 3

H1(x) = x, H3(x) = x3 − 3x, H5(x) = x5 − 10x3 + 15x.

Scaling the Hermite polynomials to achieve orthogonality
when σx 6= 1 is achieved by dividing the argument with
the standard deviation:Hi(x/σx). Expressions for multivariate
Hermitian polynomials are described in [30], offering the
possibility to extend the framework to model also terms
not represented by the univariate Hermite polynomials, i.e.,
products on the formy =

∏n
i=1 x

κi

i , for κi ∈ {0, 1, 2, . . .}.

APPENDIX C
THE SIGMA-POINT SELECTION SCHEME

The uncertainties in the estimate of the mean are described
by equation (49). It is zero ifHP θH

T is invertible and there
exists a vectorλ such that

HT (χ)λ = w, (87)

with w = [1, 0, . . . , 0]T . As we shall see, the sigma-point
selection scheme (4) - (5) always attains the relation (87).

For x ∼ N (0, 1) the sigma-points areχ = [0,
√
3,−

√
3]

and the observation matrix for Hermite polynomials up to
order 5 is:

HT (χ) = [h(0), h(
√
3), h(−

√
3)]

=

















1 1 1

0
√
3 −

√
3

−1 2 2
0 0 0
3 −6 −6

0 −6
√
3 6

√
3

















. (88)

For λ = [λ0, λ1, . . . ]
T to solve equation (87) we see that:

1 :
∑2n
i=0 λi = 1 (from row one)

2 : λi = λj , ∀i, j 6= 0 (from row two and six)
3 : λ0 = 4λi, i > 0 (from row three and five)

(89)

When the dimensionality ofx increases, no unique elements
are added toHT . Whenx ∼ N (0, In×n):

HT (χ) =








h(0) h(
√
3) h(−

√
3) h(0) h(0) . . .

h(0) h(0) h(0) h(
√
3) h(−

√
3)

. . .
...

...
...

. . .
. . .

. . .









.

The third requirement is therefore adjusted to suit the multi-
dimensional case:λ0 = (6 − 2n)λi. Substitutingλi with wi,
these are exactly the criterions (4) - (5), withw0 = 1 − n/3.
The observation matrix associated with the cubature sigma-
point selection scheme enjoys the same properties (forp ≤ 3).

Fredrik Sandblom was born in Mölndal, Sweden in
1979. He received the M.Sc. and Ph.D. degrees from
Chalmers University of Technology in Gothenburg,
Sweden, in 2004 and 2011 respectively.

Since 2005 he has been with the Volvo group,
working with active safety systems, and now holds a
position as senior technology specialist. His interests
concern object tracking and sensor data fusion; par-
ticularly methods for estimating statistical moments
and their application to recursive filtering.

Lennart Svenssonwas born inÄlvängen, Sweden
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