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Moment Estimation Using a Marginalized
Transform

Fredrik Sandblom, Lennart Svenss&@enior Member, IEEE

Abstract—We present a method for estimating mean and of the linear minimum mean square erramMMSE ) estimator,

covariance of a transformed Gaussian random variable. The which coincides with the well known Kalman filter for linear
method is based on evaluations of the transforming function systems [4]

and resembles the unscented transform and Gauss-Hermite A ety of G ian filt h b dt
integration in that respect. The information provided by the variety of aussian niters have been proposed to cope

evaluations is used in a Bayesian framework to form a posteor ~ With non-linear models [5], and the derivative-free filtgt4],
description of the parameters in a model of the transforming [6], [7], [8], [9] are particularly useful; with little or no
function. Estimates are then derived by marginalizing thes adjustment, they can be applied to a wide range of problems.
parameters from the analytical expression of the mean and Tpege filters use a transformed set of deterministicallyseho
covariance. An estimation algorithm, based on the assumpih int ft f dt . intst imate th
that the transforming function can be described using Hermie points, often re (?rre 0 asgma-pointsto approximate . e
polynomials, is presented and applied to the non-linear figring Mean and covariance. Arguably, the most well-known sigma-
problem. The resulting marginalized transform (vT) estimator ~ point method is the unscented transforar [7], [11], that
is compared to the cubature rule, the unscented transform ad  has been shown [12] to realize the fully symmetric integrati
the divided difference estimator. The evaluations show thiathe formula presented in [13], which is exact for integratioreov

h fi . . b .
presented method performs better than these methods, more third order polynomial functions. The (second order) dadd

specifically in estimating the covariance matrix. Contrary to . ! .
the unscented transform, the resulting approximation of tre difference filter 0D2) [6] calculates the mean and covariance

covariance matrix is guaranteed to be positive-semidefingt matrix jointly, and both estimates are exact for a certamiffia
Index Terms—Filtering theory, statistical linearization, recur- of sec_ond.order polynom|als._An extenswg an_aIyS|s_ of _the
sive estimation, Bayes methods, Kalman filter, Tracking. numerical integration perspective on Gaussian filters vergi
in [14].

Although easy to apply, derivative-free filters are not
problem-free. The)T covariance matrix estimate is sometimes

Calculating the mean and covariance of stochastic vasabi=lculated such that it is not necessarily positive-sefimde.
is central to many estimation tasks, including, e.g., $ieiitgi This behavior was overcome with the recent introduction
analysis, which can be applied to a variety of systems incluaf the cubature integration rule [9], a special case of the
ing antenna characterization [1], power system analy$iarjd UT, whose covariance matrix estimates are guaranteed to be
circuit design [3]. It is also frequently an essential com@at non-negative definite. It performs well compared to methods
in recursive state estimation where the posterior mean aofdsimilar complexity [9], [15], [16], but unfortunatelyhé
covariance often are used to characterize the distribfiyn robustness comes at the expense of using a less accurate
[5]. The importance of this task, with applications rangingntegration rule. Furthermore, similar to the, the mean and
from surveillance to medicine, have motivated a large part covariance are computed independently, which implies two
recent research within the area of moment estimation [$], [@lifferent assumptions on the underlying mapping within the
[71, [8], [9], [10]. same method.

The general Bayesian solution to the state estimation prob4n this paper the transforming function is approximated
lem involves integration of probability density functiors with a linear combination of Hermite polynomials, for which
integrals which are rarely mathematically tractable. Tamaify closed-form expressions for the mean and covariance ate wel
of Gaussian filterssolves the recursive estimation problenknown. The polynomial coefficients are given a hierarchi-
under the assumption that the concerned distributions aa prior, and the posterior distribution of these coeffitée
approximately Gaussian. The equations used to compute hecomputed conditioned on the transformed sigma-points.
posterior mean and covariance under this assumption ase thbhe desired mean and covariance can then be calculated

by marginalizing the influence of the coefficients from the

Copyright(©2012|EEE. Personal use of this material is permitted. Howeverana|ytica| expressions. The approximation of the functisn
permission to use this material for any other purposes muistbiteined from . L . . .
the IEEE by sending a request to pubs-permissions@ieee.org. a linear combination of Hermite polynomials, with unknown
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using Bayesian techniques. First, the mean and the coeariakxpressing the solutions to these integrals on a closed if®rm
matrix estimates are calculated jointly, based on anallticoften impossible for transformations encountered in jcact
expressions rather than a numerical approach. Hence, itSigma-point methods provide approximate solutions toghes
possible to guarantee a positive-semidefinite covarianae nmtegrals, and have demonstrated nice properties witheogsp
trix. Second, the model assumptions become clearly visilite performance and simplicity. The question at hand is there
through the prior distribution, making it easier to undanst fore how to use the sigma-points as efficiently as possible.
the algorithm. Third, Bayesian methods are generally well
pe_rformmg in the Sense that they are admissible _under rg\l_— Summary of the sigma-point approach to statistical mamen
atively loose assumptions [20] and that they are optimalnvhe .

. : : Calculations
the performance is averaged over the prior. Finally, we know
that the key to improve performance is the choice of the The family of sigma-point filters approximate integrals<1)
prior. Although the design of a prior can be difficult, we(2) using a weighted sum:
believe the choice is better made explicitly than implhciffo om
illustrate this, we present a family of priors_ that r_esulltﬁma /N(x s Pr)g(x)dx ~ Zwig(xi). 3)
cubature,uT, andDD2 estimators, for certain choices of the
prior. It is shown that the presented algorithm can provide
very good estimates of the mean and covariance, and tfi&e so-called sigma-point$x”, ..., x*"}, and the associated
the estimation error of the recursive filter is more accuyateweights,w;, are chosen according to a deterministic scheme.
described using the proposed method. More specifically, wer the unscented transform, they are:
appear to provide more robust covariance estimates, wleen th 0

Bn i=0

underlying polynomials are not completely linear. = Eix (4)
The paper is organized as follows. Section II_describ(_as the Efx] + ( = Px> 7 1<i<n

estimation task at hand and a summary of the sigma-point ap-i _ (1—wo) i )

proach. The proposed marginalization technique is inttedu E[x] ( " p ) n<i<om

in Section Ill, and is applied to Hermite polynomials in Seuwt (1mwo) = % 17—2n/2 h

IV. Closed-form expressions for mean and covariance are 1— wo

derived in Section V together with a summary of the algorithm Wi = —— = (6)

Analytical results and a clarification of the relationstother ) ) h
sigma-point methods are discussed in Section VI. Usage ‘Ypére¢ = 1,...,2n and (VPx), is thTeZ column of a
the technique in a Kalman filter framework is demonstratedatrix square root such thayP./Px = Px. When

in Section VII, and estimation and tracking performance is is Gaussian, the suggested setting for the[7] is to use
evaluated in Section VIII. Our conclusions are listed int®ec wo = 1—n/3, whereas the cubature rule is obtained by setting
IX. Finally, Appendices A-C provide results regarding then = 0, effectively removingk” from the set of sigma-points.
positive-definiteness of theT covariance matrix, properties This integral approximation strategy, applied to equafibn

of Hermite polynomials, and an interpretation of the sigmaields the estimator

point selection scheme.

(1>

y (7
Il. PROBLEM FORMULATION

Consider a stochastic variabte € R™ with probability
density function

Elgx)] = 3 wig(x’)
=0

The covariance matrix estimat?,y, is usually expressed in
terms of the weighted sum of squares, but we prefer to view
x ~ N(py, Px), it on the form (2) to clarify that the integral approximation

wherep, and Py are known. We wish to calculate the mearft'21€9Y 1S applied twice:

and covariance of the variabjee R™: 2n _ _
Covly) =Y _wilg(x") — yllg(x) — y]"

y = 9(x), i=0
whereg : R* — R™ is a known transformation. The desired 2n ,- - 2n L
moments are given by the integral expressions =3 wig(x)g(x")" = > wig(x')y
1=0 =0
Bly] = [N . Pr)g(x)x M mo o
) —y > wigh) 4 ) wiyy”
COV(y) . i=0 i=0
_ 7 T =T A& 1
Z/N(X; e, Px)[9(x) — Ely]] [9(x) — Ely]] " dx =2 wiglg(x)" ~ 39" £ Py. ®)
1=0
R’!L

Sinceg(x)g(x)? generally has higher polynomial order than
_ ) T T

—/N(X, Hx Px)g(x)g(x)" dx — E[y|E[y]".  (2) ;x), a strategy which calculates the mean (7) accurately need
R not be appropriate for the covariance matrix (8). In facthwi



L=
\
<
=
3]
&

negative weights it may not even be positive-semidefinge; s
proof in Appendix A.

The DD2 estimator uses the same sigma-point selection
scheme (5), but is parameterized using a scafae= Sprr
The sigma points and the weights used to calculate the
mean are identical to those of thig. The covariance matrix
approximation, however, employs a different set of weights

which are positive regardless of the dimensionality.

z ‘syujod
-ewbis pajebedosd

x

Fig. 1. An example of polynoﬁ%ﬁamﬁgﬁbhs that may have perfed the
Ill. PROPOSED IDEA transformation of the sigma-points. The mean and covagiaig = g(z) is

Even though the transforming functiop is known, we calculated by a weighted average of all such functions.
model it as a stochastic process with a prior distributidg).
Q\F/);Ltaigmpct)?ris;”:or, ;Qe Ong%%va;r?glfh'enISLTSISr?r\]/;uézepolynomiaIs are well known for their ability to approximate

; : .~ arbitrary continuous functions [21].
— 0 2n
at these po.mtsz = [9(x),....g(x*")]. Using estimation To illustrate some fundamental properties, we study a scala
terminology: x andz are our measurements, the functign

) ) . Jo T ransformation. Any functi for which E 2

is a nuisance parameter with posterior distributigg|z, x) transformatio y functiory, for whic [g(x.) | < oo, .
B . _ ) can be expressed in terms of a series of weighted Hermite

and our objective is to estimate the megn, and covariance,

polynomials [10]:

P, ., ofy.
The mean, expressed as a functional of the transformation, =1
g, is denoted by g(x) =) 7Bl (@) Hi ()| Hy (2), (13)
k=0
y(g) = /N(x § o, P )g(x)dx, (9) forz ~ N(0,1). To have a tractable solution, we assume that
the transforming function can be approximated using a finite
and the corresponding covariance matrix by series, fully described by a weight vec®r= [0y, ..., 0] :
_ _ p
Rylo) 2 [ Ny Polax) - ¥()lla(x) - 59)]"dx. o) ~ 3 O Hy(x). (14)
(20) k=0
The expressions for the desired mean and covariangg, of The ™ order hermite polynomialHy, is given by (86) in
givenz and X, are given by margina”zation over Appendix B, which contains a summary of useful properties of
Hermite polynomials. For instance, using Hermite polyrami
y= = Ely|z, x| leads to very simple expressions for the megfy), and
_ covariance , or as they now can be expressg@) and
~ [ stttz n)dg ay et Y presss(6)
2(0):
PY,?T =E [Py(g) ZvX] g(@) — 90
= [ Py(9)p(9]z, x)dg. (12) a
/ v{a)plglex) o2(0) = > 62k!.
k=1

The idea is to use a priofr(g) for which the integrals
in (11) and (12) have closed-form solutions. Although it isor example, ify = = + 22 andz ~ N(0,1), theny =
possible to find solutions for infinite-dimensional intdgra m,+ i, + H,, (i.e.,8 = [111]T). Consequently, the expected
it is more practical to consider a finite parameterization @&lue is§, = 1 and the variance i87 + 632! = 3.

g. In this paper we focus on one such prior, presented in

Section IV, whereg is assumed to belong to the family of - . .
Hermite polynomials. An interpretation of using this prier A. Multidimensional transformation

that the mean (11) and covariance (12) are averaged oveA transformationg : R" — R™, performed by a linear
polynomials that pass through the poirfts’, g(x?)), for all combination of base functions can be written as

integersi € [0, 2n], as illustrated in Fig. 1.

9(x;0) = 0" h(x), (15)
IV. USING A HERMITE POLYNOMIAL TO MODEL THE where the base functions enter the equation through
TRANSFORMING FUNCTION
) ) ) h(X) = [H(), Hl(xl),...,Hp(:cl), Hl(l'g),
Hermite polynomials are used to modglfor three main VHy(22), ..., Hy(z), . 7Hp(mn)]T (16)

reasons. First, usingolynomialsfacilitate comparisons with

other sigma-point methods, which calculate (7) exactly fon the following sections we assumse~ N(0,1,,x,), & Sim-
certain polynomials. Seconéiermite polynomialgield par- plification justified in Section IV-D. We construct the wetgh
ticularly simple expressions wheriz) is Gaussian, and third, matrix from the p-dimensional vector®®’, each describing
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the transformation frome; to y;, and the scalar®?, for The covariance matrix C49’) = «,; P} is therefore block-

i=1...nandj=1...m: diagonal, with:
) ; N op Jay O ... 0
3 2 J L, y . .
o 0 .. 0 .. 0 an P)= ] .9 . ) (24)
o : : : ' : ' ' 0
en,l L en,j N 0 - 0 Pg’J
Consequentlyp’, the j™ column of @, defines the mapping Note that the hyperparametex;, is common for all the
from x € R™ to " over the base fun(’:tions ih(x): parameterg’7 ... 6™7, in order to share information about
Yi ' the scale of the problem across dimensions. Techniques for
y; = (67)"h(x). (18) estimatinga; are discussed in Section V-B.

The functiong is completely described b§ through equa- . ]
tion (15), and we turn our attention to the expressiongfer) C- EStimates of mean and covariance

and P (0). For a given polynomial, i.e., one realization®f  Expressions (19) and (21) are derived for a given weight

y has the mean matrix, 8. However, since® is modeled as a stochastic
7 variable, the marginalization in (11) and (12) gives thelfina
y(6) =E[6"h(x)|6] estimators:
—T6t, ... om", 19
L 1) yr = E[07 |2, x]w (25)
whereE[h(x)] is given by equation (84). To simplify notation, _ N9T| W

we introduce the vector
=E [[95, s 007 |2, X]

w 2 Eh(x)] = [1, 0,...,0]", (20)
and write the covariance matrix for. Py =E[6"C0lzx] (26)
Py(6) = & [[670x) — 67w][6™h(x) — 07w 6] = 15,,C g1z + E |10~ 11g1,]" IO — pg]|2.x]
— 07E [h(x) - w]lh(x) - w]"] 8 eaTr{P}.C} 0
— 67 Ce. (21) = 141,C tgps + :

All off-diagonal elements oC £ E[[h(x) — w][h(x) — w]7] 0 O‘mTr{PgILzC}

are zero, and then + 1 diagonal elements are: where we introduce the notatiop,, for the conditional

diag[C) = [0, 11, 2!, ... pl,..., 11, 2l .. pl|”, (22) meanE[0”|z x|, and P}, (j =1...m) for the conditional
posterior covariance. Expressions fpp, and Pélz given

see equations (84) and (85) in Appendix B. The relatioébservationsz,x are derived in Section V.

between the mean (19) and covariance (21)yofand the
parameter vecto®, is now clear. Before we attempt to
marginalized from these expressions, we attend to the prioD. Stochastic decoupling

The simple forms fosw in (20) andC in (22) are expressed
B. Designing the prior distribution for vector argumentss, whose elements are uncorrelated with
unit variance. Rather than expressiwgand C for any mean
and covariance of, a stochastic decoupling procedure similar
to the approach in [6] is proposed, such tkatand C are
constant. Instead of studying

Using Hermitian polynomials, designing the priofg) is
now equivalent to designing (@), and there is an intuitive
interpretation: the number of elements éhdetermines the
maximum order of the transforming polynomial. Similarlyet
variance determines which coefficients are updated with the y =9(x), x~N(py, Py) (27)
information provided in the propagated sigma points.

The proposed prior assumes the vec#rs to be indepen- we introducex ~ AN(0,I,x,), whereL,,,, is then xn
dently generated from a hierarchical model: identity matrix, and set

0" ~ N(0,a,;Py). (23) y = 3(%) £ g(py + V/Px %), (28)

It is shown in Section VI-B that the sigma-points can behich has the same distribution as the origigalin (27).
selected such that the prior 8g does not affect the posterior Therefore, rather than recalculatingg and C, we assume the
distribution,p(8|z, x), but for completeness let it be assumettansformation is performed by in (28). This adaptation is
that all scalarg! are independently drawn froov (0, ogo). built in to the algorithm described in Section V-C.



V. CALCULATING THE POSTERIOR DISTRIBUTION B. The hyperparametex

Our objective is now to calculate the posterior distribntio EStimates ofy;, which were assumed known in the previous
p(6|z,x) and its first two moments, which are needed iﬁecthp, are preferably derived fr_om the posterlor digtidn
the expressions for the mean and covariance ,ofiven by conditioned on the propagated sigma-poats
gquatiqns (25)—(26)._ An 9xact expression of the distrdwuti pla|z) o p(zo;)p(es). (36)
is obtained by marginalizing the hyperparameterfrom the
hierarchical model: The posterior, on the other hand, relies on expressionséor t

likelihood p(z|;) and the priomp(a;).

p(07]z,x) = /p(0J|O‘J"Z’X)p(o‘j|z’x>d0‘j' (29) 1) The likelihood function:In our setting,0’ is a zero-
mean Gaussian random variable, conditionedagnand so
is the linearly dependent observatiazis However, from the
results in Appendix C it follows that the mean is known for
the cases we study and, consequently, is independent of the
j ~ (0714 . hyperparameter prior. The observation vector of inteégstis

P&l x) ~ p(6]8, 2, X) (30) therefore thej™™ column in [g(x%) — B, ..., g(x2") — 6] ",
In the following section, the first two moments ofand the likelihood function takes the following simple form
p(67|a;,2,x) are calculated for a given estimat;, which 1 L ZTHPIHTY

g

is then derived in Section V-B. p(# |ay)= : :
(2m)% (a;) %/ [HP;HT|
(37)
in which p is the number of observations, in this case+ 1.

Finding a closed-form solution to (29) is usually difficuk.
simple yet useful substitute is to use a point estimate of
In other words, we set

A. Mean and covariance &
The linear relation between observatiaong@nd parameter

vector® was established in equation (15): 2) The prior: In the absence of prior knowledge af, we
want the prior to be noninformative to ensure a weak influence
z=60"H"(y), (31) on the posterior distribution. It is argued in [23] that
where the observation matrix is given by: ploy) o 1/ay, (38)
hT (x°) is a sensibly vague prior with respect to the likelihood (37)
H(y) = : ) (32) 3) The posterior distribution:The expression for the pos-
hT(.XQ") terior distribution, using the likelihood (37) and prior8)3
is:
For notational convenience, we omit the reference tisom - — sl
now on. Given a zero-mean Gaussian prior distribution on p(&'oj) play) o o g ¢ o (39)
0’, with Cov(¢’) = «a; P, the posterior distribution is also ' _ ]_
Gaussian with mean and covariance [22]: where d*> = z/T(HP,H")~'z/. The above expression is
o proportional to the scaled inverse chi-square distriloytsn
i _ pigT i T j
wy, = PJH [HPGH } 7 (33) i ~ IV, 5%), (40)

. . . —1 .
a;j Py, = (I - p)H" {HP@HT} H> o; P}, (34) with parameters’ = p and s> = d*/p. The mean and mode
of the scaled inverse chi-square distribution are:

Wherezj is the 5 column ih zl. The conditional mean of E(a;) = v s2, (41)

0is pg), = [“élz’“glz’ .. -vﬂgfz]- Estimatesy. and Py, . in v—2

(25) and (26) can thus readily be calculated. modda;) = %327 (42)
v+

If all transformations are treated the same way a priori, i.e . . _ _
if the covariance matrice®”;” in (23) do not depend opi, and can be used as point estimatesagfin the posterior
the elements TrP)C} are also independent gf Hence, the Covariance matrix expression (35). Note that the condition

superscripy can be dropped and the expression Ry , can Mean (33) is unaffected by the hyperparameter. The algorith
be simplified to presented in Section V-C employs the mode (42) as a point

estimate ofc;.
(5] 0
Py« = pg,Chg), + Tr{Py,C}.

0 (35) C. The marginalized transformv() estimator
Qo

We have now reached the point where the estimation
To simplify notation in the remaining part of the paper, ialgorithm can be summarized, and somewhat simplified, in
is assumed thaPy and P; can be used interchangeablya few easy steps. There are two design decisions that can be
Furthermore, according to equation (34){ P, C} does not made independently: the order of the transforming polyrbmi
depend ore and can therefore be calculated in advance. p, and the sigma-point selection scheme. Using p < 3 for
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the cubature points anl < p < 5 for the UT points assures py,. The cross-covariance matrix is:
a fully known mean (further explained in Section VI-B).

_ T
Poy(8) = [N x:0.1,)[x - Elx] [o(x:6) - (6)] " ax
Forx e R, y = g(x) € R™, x ~ N(py, Px) B
= Ex[8"h(x) — 6" w]"]
1) Select a prior covariance matriX, a diagonalp x p = E[x[h(x) — w]"]0
matrix, p < 5, with at least two nonzero elements. See, — Do (43)

e.g., the priors used in Section VIII.

A e ey 1T
2) Generate sigma-points using — 1 — 2 The sparse matriD = E[x[h(x) — w]"] is constant and can

be written:
X' = 0,1 0 [1,0,...,0] oF
+( (IT—ZUU)I’!LX") ’ 1<k§n D=0 OT ’ (44)
x" = k : : [1,0,...,0]
_( /ﬁlnxn ,n<k<2n i ) ]
© ken which follows from the orthogonality property (83) of Hertei
Y = [X07 x .. ,xQ”} ) polynomials described in Appendix B (recall that= H; (z)).

In other words,Py () is then x m matrix of all first order
(althoughwy = 0 canbe used ifp < 3, and forp = 2, weights:
any 2n + 1 points can be used).

o) ... 6bm(1)
3) SetP}’ = X in equation (24) to fornP,. The value for (0 0>r(1) ... 0*™m(1) 45
o2 /a; will not matter. Calculatev, C,H(x) and Py, xy(0) = : : - (45)
using equations (20), (22), (32) and (34) respectively. ol(1) ... (1)
4) Propagate the sigma-points: The above cross-covariance matrix describes the relation t
x ~ N(0,1,«,), whereas the relation to a correlated state is
z = [Q(Nx + VP, g+ PxXQ”)} : established by multiplication wit/ P Including the square-
) _ root matrix and carrying out the marginalization &fin (43)
5) Compute the meary;,, using equation (25) and (33): yields
-1
po, = PoH" [HPgH"| 2" Pyy .~ =\/Px DE [0z, ]
Yr = “’0|zw =V PX D“G\z) (46)
6) Estimate the modes of the hyperparameters: which is the estimate of the cross covariance matrix.
Q= ;ijT [HPGHT]_l Z 7, VI. ANALYSIS AND COMPARISON
2n+1)+2

In this section, we further explain the behavior of the
wherez’ T is the j! row in the observation matrix with proposed estimator, and clarify the relationship with othe
subtracted meang(x°) — yx,...,g(x*") — yx]. sigma-point estimators.

7) Calculate the covariance matri®y, ., using equation . T .
(35). A. Posterior uncertainties in mean and covariance
First, we analyze our estimates in terms of their distribu-
Stepsl — 3 can be done in advance, as well as computifpns. Conditioned ow, the meany (0), is a Gaussian random
P,HT [HPeHTrl, [HPGHT}*I and T P,,C}, in that Vvariable with covariance
way simplifying the algorithm significantly. For examplaet _ _ e _ T T
calculatisn of the mean can be identical to tbe, cubgture E[[7(8) -~ 3l[¥(6) ~ ¥xI"lo] = InxmwPoaw".  (47)
rule or to thepp2, for which also the covariance matrixThe distribution of the elements in the covariance matrix,
estimator can be the same — all depending on the desiffy (), is less trivial; diagonal elements are weighted sums
of the prior, see the discussion in Section VI. of chi-square distributed variables, whereas the off-ciie
elements are created from products between independent
] ) _ ] Gaussian random variables. This could be looked upon as a
D. Calculating the posterior cross-covariance matrix weighted sum of Wishart distributed matrices created frioen t
It is sometimes required to know the cross-covariané@Ws, :, of 6:
between the state, and the transformed state,= ¢g(x). In pn
the filtering algorithm that will be presented in Section 7} Py(0) = ZOfOkckH, (48)
it is a necessity, and is in fact already known from estintatin k=0



wherec;, is thek™ diagonal element itC, defined in equation with the implicit assumptions in the sigma-point filter, ahe

(22). actual values in the prior covariance matri®y, no longer
Equation (47) illustrates how uncertaintiesdraffecty (6), affect the result.

and it is desirable to design an estimator such that thismae  The integration rule used by ther and the cubature rule

equals zero. Inserting the expression 1y, from equation have precision 3, which can be quite limiting. A simple

(34), into (47), we see that the covarianceyd®) is example serves as illustration:
_ —1
COV(Y(O)) =W (I - PGHT [HPOHT] H) PGWT- Yy =T1T2, €T ~ N(O,ngg). (52)
(49) , : . .
The variance ofy is E[z2x3] = 1, but the sigma-point

One of the arguments for sigma-point approaches has been fiathods discussed in this paper all fail to calculate the
it is easier to approximate the probability distributiomththe 5riance correctly. However, the prior used in the presknte
transforming function [7], [24]. However, it is not requite method explicitly excludes cross-terms in the model, so the
for 6 to be fully known (P, = 0) in order for the estimate yegy|t should come as no surprise. Moreover, the solution is
to be exact; we see from equation (49) that it is enough &grajghtforward: modify the model to include also crossre
project the uncertainties iél onto the plane orthogonal to theang add sigma-points to observe them. It should be mentioned
vectorw. In Appendix C it is shown that the selection schemggre that thewt and theuT, with wy = 1 — n/3, would
(4)-(5) attains this projection, which means tlyat = y(6) have precision 5 if it weren't for these cross-terms, i.iagle-
with prot_)ability one. In other wordg;(e) is i.dentical for all glement monomials;”, are correctly integrated up o= 5.
polynomials passing through the sigma-points. Contrary to theuT, the MT can be tuned without moving
The result follows from using an integration rule, wellyhe sigma-points. The cubature rule, on the other hand,atann
known from the literature, [12], [14], which integrates $B€ e tyned at all, and the position of the sigma-points varies
functipns correctly. quever, the new derivation. prpyideg] a predetermined manner with the dimensionality, For
here is conceptually different and may be morellntumve ‘i‘?gstance, in a tracking system where targets are tracked usi
some readers. Furthermore, the type of uncertainty asalygijoint state vector, the performance of the cubature etima
performed in this paper can provide an important t0ol ffepends on the number of targets, even if the targets are
designing new sigma-point selection schemes in the futureye|| separated with independent measurements (with respec
to other targets).
B. Comparison with the UT and the cubature rule

Contrary to theuT and the cubature rule, the presenteg
method suggests to calculate the covariance matrix using a
model of the transformation, and the estimates are thexefor TheDD2 is based on a second-order polynomial approxima-
conceptually different. The estimates of the mean, howevtion of the transforming function, with cross-terms exedd
are easier to compare; ther and the cubature rule employThe MT assumes that the underlying distribution is Gaus-
known integration rules, and the proposed method can yielén, which corresponds to setting the2 design parameter
these rules under certain conditions. To show the sinidatit » = v/3. It is possible to design amT-prior to correspond
we write themT estimator of the mean (25) on the same forrtp this estimator. More specifically, assuming a secondrorde

Comparison with the divided difference filter

as theuT estimator (7): polynomial and using theT sigma-points yields equally many
T unknowns as observations. The second order polynomial is
Ve=12 [PQHT [HPyH"] } w. (50) therefore fully known, i.e. there are no posterior uncettas

in the parameter vectof, and the estimators are, for this

This is clearly a weighted suny;, = z\, of the evaluated particular prior, identical.

sigma-points, with a column weight vector
= [HPyHT] 'HPyw. 1 . . . . .
A= [HPoHT] ow SO Sigma-point selection and non-linear transformations
TheMT anduT estimators are the same when the elements of
A are identical to thesT weights.
The definition of the precision of an integration rule is [14]

‘Arule is said to have precisiop if it integrates monomials up
ki

The effects of employing a particular set of sigma points
with the mT can be evaluated in terms of the posterior
uncertainties of the estimates. However, our focus here is t
. - . evaluate theaT performance when using tf2&+1 UT points,

o degrgep exactly, that is, monomiali_, z;" with k; Z 0" and thezn cubature points, where the main difference between
and Zi=1dki < p, but not exactly for some monomials Of,eqe sets is that the cubature rule does not employ a weight
degreed ; ki =p+1. in the distribution mean.

For the presented method, this definition is equivalent tolt is foreseeable that there will be functions for which
having no uncertainties ig(6), when the prior includes all the integral of a polynomial passing through the evaluated
monomials up to degree It is shown in Appendix C that the sigma-points, may constitute a worse approximation of the
sigma-point selection scheme (4) — (5) satisfies exacty-thi actual integral, than the integral over a lower order pofygied
theMT anduT estimators for the mean are then identical. Thegassing through fewer points. For instance, in [9], it was
explicit model assumptions in the proposed method coincideown that the cubature rule performed better thanob2
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in estimating the mean of the function B. The one-step linear estimation algorithm
g(x) = 1 (53) An accustomed approach for calculating the posterior dis-
14+ xTx)9 ribution, used for example by thekr, UKF, CKF and DD
Vv Tx)a’ tribut d f ple by th dDpD2

when the integerg and the dimensionality ofk was in- filtgrs, is to a}pply theLMMSE estimato_r for each new obser-
creased. Under these circumstances, the function (53) d¥@tion. The filter performs two operations:

not resemble a polynomial, and including a sigma-point in 1) Prediction: Givenp(x;.1| Y1), calculate the first two

the meanE[x] degrades performance. It cannot, however, gaoments of the state distribution at the time of the next adus
argued that it is generally sound to exclude that particulgtéasurement:

sigma-point — it has to be judged depending on the function. . — Efxp[Ye_i]
Including the point provides information of the functiorhieh Xhlb—1 Xkl L k-1

obviously sometimes is helpful, especially when calcolati = E[f(xk—1,Wk-1)[Yi-1] (57)
the covariance matrix. For example, the covariance matix f  Pj,._; = Cov(xx| Y1)

functions symmetric over the covariance contour will beozer = Elf(xp1,Wi1) f(xne1,wi1)T[Yea]  (58)
when calculated using the cubature rule, e.qg.:

— Rpjh—1X4 1
y=a% x~N(0,1). (54)

If all propagated points have the same value this will also tgca
the estimate of the mean, i.g(x’) = y for all sigma-points.
The variance estimate is then:

2n

> wilgx) = yllg(x') —y]" = 0. _ |

=0 The estimator (59) requires knowledge of the megp;._1,
This would be the case also for (53),%f~ N (0,I). In real and covarianceSy,_1, of the measurement distribution, as

situations this is rarely the case, but neverthelessititess an Well as the cross-covariance matiy :
undesired behavior.
The transformation (53) also serves to illustrate that sigm

2) Update: Correct the predictionky i, using the mea-
rementy,. The best update that is linearyn, is given by
the LMMSE estimator [25]:

Xk = Xg|k—1 + nyS,Zﬁc,l (Ve — Yrpp—1) - (59)

Vie—1 = Elyr|Y_1]

point methods can perform well also for non-polynomial = E[h(xr, Vi) Yi-1] (60)
transformations, since a polynomial approximation neetl noSx—1 = Cov(yx|Yx_1) (61)
resemble the transforming function in order to approximate = E[h(xk, vi)h(xp, vie) T [ Y 1] _yk\kflyg\k—l-

its integral.
g ny = COV(kayk|Yk71)

VII. APPLICATION EXAMPLE: RECURSIVE FILTERING = Elxph(xp,vi)  [Yi_1] — ﬁk|k715’f\k,1 (62)

Robust recursive filters, e.g., for tracking a continuou]an

. T e matrix mean squared errangg) of the estimate (59) is
process measured at discrete time instances, are argutfly Yised as an approximation of the posterior covariance matrix
valuable. A famous solution is the Kalman filtekr) [4], bp P '

although thekF is applicable only when models are lingar! Hk- Te MAlXMSE is:

Several filters intended for usage with non-linear models E [[xx — Kiji) (x5 — Ziji) ] (63)

share a similar structure, differing only in how they estiena _p _p.s! p

moments, e.g., thaJKF, CkF, and EKF. By applying the = klk—1 XY klk—1" yX

marginalization technique presented in this paper in alaimiang js a reasonable approximation to a posterior covari-

fashion, the marginalized Kalman filter is created — M. ance matrix which does not depend on the observagipn
Expressed in terms of the so called gain matdg; =

A. System model P,yS; .+ the expressions for the state update are:
A discrete-time non-linear system, described by the state
vector, x;, is assumed to evolve according to the model: Xik = Xijh—1 + Kk (Ye — Trjp—1) (64)
T
Xp = f(Xp_1, Wr_1). (55) Py = Pyje—1 — KiSppe—1 K (65)

Observationsy;,, are provided at discrete time instances: To sum up, the filter approximates the first twvo moments of
the posterior distributionp(xx|Y), with the estimate of the

Yk = h(xk, Vi). (56)  mean (64) and the matrixsE (65), concluding the recursion.
The noise termsvy, v, are modeled as zero mean independent
white Gaussian noise. The goal is to calculate the posterior o i
distribution p(xx|Y(), where Y, is the collection of all C. The marginalized Kalman filtemkF)
available measurementgy,...,yx|. Estimates of the state The MKF is the recursive filter following the application of
vector are often denotes,;,, where the first subscript refersthne MT to steps 1-2 in the previous section. The state vector
to the time index of the state and the latter to the time indean be augmented to include noise terms, described, e.g., in
of the last measurement used to update the state. [7].



1) MKF prediction: Assume the state vector is Gaussiarh. Polar to Cartesian transformation

1.e., In this section theuT?, using two slightly different priors,
is compared to the cubature rule. Lgt = g(x) be the
transformation from a polar coordinate system defined imser
Use the algorithm in Section V-C to calculate the mean (5@f range,r, and azimuthj), to a Cartesian coordinate system:
and covariance (58) of the predictive distribution, )

=[0] v

P(Xk—1[Yro1) = N(Xp—1:Xp—1jk—1, Pr_1k—1)-

I1 COS T :| (68)

P(xk|Yr1) = N (% Xijk—1, Prjr—1)- T18in s

2) MKF update: Apply the algorithm a second time toBy modifying the prior, the presented method can be optithize

calculate the mean (60) and covariance (61) of the measuyield excellent results for a narrow family of transforma

ment distribution. The cross-covariance matrix (62) issgiby tlons.I.Ht(.)wever, th'rS] ISI n;)t ‘3 fair com%? rison and pftefn n:)ht
equation (46). Calculate the gain matri;, = Pa,S; . a realistic approach. Instead we use the same prior for the

. . . ) B k‘k—l’ oy . . e
and approximate the posterior distribution 1_1 posmon§ in Fig. 2, and for ea_ch pos_mon we evaluate 8
different azimuth measurement noise vanano@s,
p(xx[Yr) = N (X5 Xpgjs Phojio)»

02 = [5%,102, 15%, 202, 25%, 302, 35%, 40| (—-)* [racF].
using theLMMSE estimate (64) and the matrixsE (65). 180 (69)

The range measurement noise variance is constant throughou

_ _ all evaluationsg? = 0.5 [m?].
The cubature rule is a special case of the unscented trans-

form with the benefit that the estimated covariance matr

VIII. SIMULATION EXAMPLES

is always positive-definite — a property shared also by tt ‘ ‘ ‘ ‘

proposed method. Further, the results in [9] indicate that t 5y 1
cubature rule performs better than the divided differerterfi 20+ 1
Therefore, our main goal is to show how the presented meth 15t 1
performs compared to the cubature transform. Two exampl 10f \ \ 1
are examined: the transformation from polar to Cartesi¢ 5l \ |

coordinates, which is also commonly used to illustrate tt . | )
performance of the unscented transform, and the bearinlys-o / |
tracking problem [26]. 10l / |
In the first evaluation we use the Kullback-LeiblecL]
. - . L . -15¢ 1
discriminatiort to measure how much a distributiop(y) ) |
0 50 60

differs from a reference distribution(y) [28]:

dxi (p,q) = /p(y) log szcly. (66) -10 0 10 20 %
q(y) x
This measure was also used in [9] to evaluate the cubat@f@ 2. A sensor, situated in the origin, with uncertaintiasrange and
rule, which further motivates using the same approach hepggle measurements observes a target at eleven positidres.“bBnana-
he distributi d . d . f shaped” contours are measurement space covariance cntansformed
The distributiongy andg are approximated as Gaussians, fQf, the cartesian coordinate system.

which dx 1. (p, ¢) can be calculated analytically. The first two
moments of the reference distributign, are estimated using  To illustrate the influence of the prior, we present results

Monte Carlo integration: for two different priors, both assuming a zero-mean Gaussia
N distribution of 8. The first one is created using the simple

/p(:c)g(:c)d:c ~ Zg(xn)' (67) assumption that the function is229 order polynomial where
n=1 the higher order term is relatively small, whereas the sécon

. . . one has been numerically derived to perform well in this
Two slightly different versions, the1T® and themT?, of y P

the presented method are evaluated. Tié is implemented seenario.

according to the algorithm in Section V-C, with= 5, using 1 (1) 0 L0 0

the2n +1 UT sigma-points. However, in order to compare the =1 = [0 1o 0|, 2= 10 0036 0 . (70)
0 0 0 0 0 0.0007

method fairly to the cubature rule, tiver? is introduced, using

p = 3 and the2n cubature sigma-points. This is not the sam&he cubature evaluation points are used by all three methods

as settingwy = 0 in the second step of the algorithm, whichand, as argued in Section VI-B, the prior variance for thermea

in practice would exclude the point’ in the calculation of ¢,, does not influence the estimate.

the mean but not in the calculation of the covariance matrix. The average Kullback-Leibler discrimination is presented
lUsually referred to as the Kullback-Leibler divergencehaligh when in Table I and the mean for each position and noise variance

introduced in [27], the authors used the term “divergence”tfie symmetric is _disDIayed in Fig. 3. The reference denSity was calculated
measuredg, (p, q) + dk (g, p). using10® samples. The results show that, although all methods
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with process noisey; ~ N (0,0215y2). The state distribution
is assumed Gaussian, and the predicted distribution, wikich
] \ . ’ consequently also Gaussian, is correctly calculated bfpvall
. filters. Hence, the methods differ only in the calculation of
the measurement distribution and the cross-covariancexmat
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o
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where N is the length of a trajectory. The filter is initiated

=4

o

=
o
o
1=

ol — o : .
0 Angle \;‘arianceaindex 0 2 ngosilign indgx 10 USIng the SCheme n [26]1 at
Fig. 3. The left figure shows the average Kullback-Leiblescdmination 3000 50922 (8922 0 0
for the different azimuth noise variances, whereas thet fighre shows the 4000 6822 8162 0 0
average Kullback-Leibler discrimination for the posittoriThe dashed line Xo = Py~
illustrates the Cubature rule, the dotted line represdmasuse ofS1, and the —0.6|" 0 0 0.57 —0.35|"’
solid line the use of2s. —0.8 0 0 —0.35 0.34
TABLE |
AVERAGE KULLBACK -L EIBLER DISCRIMINATION which corresponds to a target at a ranges>dfm, traveling
— — towards the sensor at a speedlofm/s with uncertainties in
AverageKL-discrimination[x 10~ %]
Cubature Tule 278 ra}rnge ¢~ = 1000 m), speed €, = 0.3 m/s) and courseo(. =
MTB, > 45 \/ﬁ I‘ad).
MT3, 3o 29

4500

perform very well in absolute numbers, the marginalize
sigma-point estimator outperforms the Cubature rule usit
the same pointg. It can also be seen that; is the better
description for some noise models, and for positipbut that

¥, performs better on average.

4000

> 3500F ¢

30001

B. Bearings only tracking
The bearings only tracking problem is well-studied an =

arises in passive sensor applications such as sonar tgack
Five different filters are applied to the tracking e where a

Several filters have been designed for this particular taskg. 4.
such as the range-parameterized EKF [26], but since we &eerings-only sensor, situated in the origin, makes 30rvatens of a moving
target. In this particular example the target process nigisear-zero.

2500 I I I I
-5 0 500 1000 1500 2000
X

interested in comparing sigma-point filters, those filteesrat

included in the comparison. TwaKF versions, based on the

MT® and themT?, are compared to thekr, the ukF and the ~ Two performance measures are averaged vérsimula-
tions: TheMsE, £, and the average normalized estimation error

DD2-filter.
The scenario we consider here, tracking of a nosgquaredEES), ¢:

maneuvering submarine, is illustrated in Fig. 4. Most param

eter values are taken from [26]. The state vector contaias th 1
Cartesian position and velocity, = [z y 2 4]", and bearing E=5 S EL - <P RD - xP)] (73)
observations are non-linear transformations pWith additive k=1
Gaussian noise: 1 XN ) e\l
6 =tan~! (E) +w (71) ¢= N Z[Xk - (Pk) [Xi — - (74)
T ’ k=1
29, is .
= [z 9",

The variance of the measurement noigg, ~ N (0, o7,

known to the tracking algorithms, which are also given perfeBoth are calculated for th‘;" position states, .
knowledge of the prior distribution; for each simulatiohet @nd its covariance matrixP”. The results are summarized

initial position of the target is generated from the prioneT N Table 1. When the posterior covariance matrix correctly
describes the estimation error, theesis equal to the number

of dimensions of the evaluated state vector, i2in this

process model is linear:
example. Consequently,> 2 indicates that the covariance is

10T 0 Z 0
01 0 T i ; ;
k=10 0 1 ol®-1+ 0 F v, (72) undere_stlmated :_:md vice versa. _
00 0 1 r o In this evaluation, thesT mean weightuy, is 1 — 7, the
U DD2 parameterh, is v/3, and themkr? andMKkF® are based
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on themT? andMT?, respectively, with priors: of the latter is precisely what theiT gives; the family of
functions contributing to the estimates.

10 0 O 0
1 0 0 0 0 0 0
Spr= 0 & 0|, Zps=1|0 0 155 0 0 | APPENDIXA
0 0 1% 0 0 0 165 O UT COVARIANCE MATRIX ESTIMATES
00 0 0 155 The uT covariance matrix estimate (8) is on the form
TABLE Il o
D _ d.a7 H R AN
RMSE, NEES, AND CPU TIME REQUIRED TO PROCESS A TRAJECTORY P, = szdzdz‘ , with d; = [Q(X ) Y]- (75)
AVERAGED OVER 10* SIMULATIONS 1=0
rsE, \/E || Nees C || No. of o-points || crutime [ms] L_emma 1The covariance matrix estimate calculated by_ the
VKES 1074 197 o 58 UT is guaranteed to be positive-semidefinite when all weights
CKF 1083 2.46 2n 24 are positi\{e. K
DD2 1077 2.40 2n+1 23 Proof: P, is positive-semidefinite ik’ P,x > 0, and
MKF5 1064 2.01 2n + 1 29
UKF 1076 2.40 o+ 1 25 o 2n . .
x"Pyx =Y wi(x"d;)> >0, if w;>0Vi (76)
From Table Il we conclude that the choice of filters does i=0

not, on average, affect these in particular and that thekF,
UKF andDD2 underestimate the size of the error. ThrF,
however, performs very well in theees sense. Though the
NEES should be used with care [29], this indicates that ths%/
MKEF filters are better at self-assessing their accuraciess T
can be explained in terms of the posterior uncertaintie8, in a=g(x"),iec{l,...2n} (77)
which contribute to the covariance matrix estimate through b= g(x°). (78)
the additive diagonal matrix in equation (35). An accurate
approximation of the posterior covariance matrix is impott The uT weights sum to one ang is assumed zero,
e.g., in a Bayesian decision-making scheme.

A standard laptop with an Intel core 18PU, running at wob + 2nw;a = 0, (79)
2.4GHz, was used to run the filters MmATLAB. There is a
slight increase in processing time for thixF that originates

Lemma 2 Whenwy ¢ [0, 1], there are functions for which
P, is not positive-semidefinite.
Proof: For example, there exists a functign: R® — R!,
mmetric such that

leading to the following two relations:

. . 1_ B
from the cal_culatlon of th_e hyperparametat, which has no Wi — Wo o w, anda = b wo (80)
counterpart in the other filters. 2n — wy
The variance is negative if,
IX. CONCLUSIONS

We have presented a derivative-free method, the marginal- aj = wob® + 2nwa® < 0

ized transform ), for estimating the mean and covariance 5 5 (—wp)?
; P g < woeb” 4+ (1 — w)b* ———= < 0

of a transformed Gaussian-distributed random variabléghwh (1 — wp)?
has several beneficial properties. In summary, the method: & wo(1 — wo)? + (1 — wo)uw? < 0. (81)

o performs better than well-known sigma-point methods,
such as theyT, DD2, or cubature rule, in the evaluatedlhe left hand side on the last row is a second order polynomial
estimation task and the bearings-only tracking scenariwith rootsw, = 0 andw, = 1, and a maximum inug = 1/2.

« is easy to apply, as the simplicity of derivative-free fifterIn other words:
is maintained.

« has tuning-parameters that can be intuitively understood

in terms of the model of the transforming function. Each diagonal element in the: x m covariance matrix,
In a more general sense, we present a method for designi@@responding tay : R* — R™, is calculated analogous to

sigma-point estimators, based on explicit model assumptio,2. The proof is therefore valid for any dimensionality.
For example, it has been shown which assumptions lead to the

integration rules of the@p2, uT, and the cubature rule.
Sigma-point filters have previously been analyzed in terms

of the precision of the applied integral approximationll Sti

as the non-linear functions encountered in most applioatio The univariate Hermite polynomials are orthogonal under

are not polynomial, we argue that it is relevant to ask whattegration under the Gaussian pdf, i.e., for- N'(0,1),

the estimates represent when they mogexact. A description

0 i#J
2In other words, themkr?® and the MkF5 estimates of the mean are E[H;(z)H; (:c)]:/p(x)HZ(x)H](x)dﬂf: {Z'l S (83)
calculated using the same rules as thes and theukF/DD2, respectively. =

wo ¢ [0,1] = o, < 0. (82)

APPENDIXB
PROPERTIES OFHERMITE POLYNOMIALS
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It follows that the expected value is zero for all but tbi&
polynomial:

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. X, NO. X, 2012

When the dimensionality ok increases, no unique elements
are added td”. Whenx ~ N(0,1,,.,,):

0 i H” (x) =
1 ,i=0"

T N(OaIan)y

E[H;i(z)] = /p(w)Hi(w)Ho(I)dw = { (84)

Further, we conclude that, fd&1, ..., z,]

h(0)
B(H, () (o)) = | p0H: (w0 Hy 1) dx

0 ,i£jUk#Il
=1 ,i=j=0VkI,
il i=jnk=1

(85)

which follows from (83), (84). A simple formula expressing
the Hermite polynomials in terms of a random variable-
N(0,1) was given in [30]:

Hy(z) =E [(z + vvV—=1)"|z] .

The first six Hermite polynomials are

(86)

Ho(z) =1, Ha(x)=2%—1, Hy(z)=2"—62>+3
Hi(z) =z, Hz(x)=2%—3x, Hs(zx)=2"—102% + 15z.

Scaling the Hermite polynomials to achieve orthogonality
when o, # 1 is achieved by dividing the argument with
the standard deviatio;(x /o, ). Expressions for multivariate

Hermitian polynomials are described in [30], offering the
possibility to extend the framework to model also terms
not represented by the univariate Hermite polynomials, i.e
products on the formy = [, 7, for x; € {0,1,2,...}.

APPENDIXC
THE SIGMA-POINT SELECTION SCHEME

The uncertainties in the estimate of the mean are describe
by equation (49). It is zero IHHP,H" is invertible and there
exists a vecto\ such that

H ()X = w, (87)

with w = [1, 0,..., 0]7. As we shall see, the sigma-point
selection scheme (4) - (5) always attains the relation (87).

For z ~ N(0,1) the sigma-points arg = [0,v/3, —/3]
and the observation matrix for Hermite polynomials up to
order 5 is:

1 1 1
0 V3 -3
-1 2 2

“ |l o 0 0 (88)
3 —6 —6
0 —6vV3 6V3

For A = [A\o, A1, ..

1: SN =1 (from row one)
2: N =X, Vi,j#0 (from row two and six)
3: A=4X\,i>0 (from row three and five)

.]* to solve equation (87) we see that:

(89)

h(0) h(v3) h(-v3)
h(0)

h(0)  h(0)

h(0) h(v3) h(-V3)

The third requirement is therefore adjusted to suit the imult
dimensional case\y = (6 — 2n)\;. Substituting\; with w;,
these are exactly the criterions (4) - (5), wilh = 1 — n/3.

The observation matrix associated with the cubature sigma-
point selection scheme enjoys the same propertiep (fo3).
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