
Analysis of Vortex-Induced Vibrations of Risers
Master’s thesis in Applied Mechanics

ANTON GUSTAFSSON

Department of Applied Mechanics
Division of Material and Computational Mechanics
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2012
Master’s thesis 2012:60





MASTER’S THESIS IN APPLIED MECHANICS

Analysis of Vortex-Induced Vibrations of Risers

ANTON GUSTAFSSON

Department of Applied Mechanics
Division of Material and Computational Mechanics
CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden 2012



Analysis of Vortex-Induced Vibrations of Risers
ANTON GUSTAFSSON

c© ANTON GUSTAFSSON, 2012

Master’s thesis 2012:60
ISSN 1652-8557
Department of Applied Mechanics
Division of Material and Computational Mechanics
Chalmers University of Technology
SE-412 96 Gothenburg
Sweden
Telephone: +46 (0)31-772 1000

Cover:
Velocity field and deformation of a short riser in VIV flow

Chalmers Reproservice
Gothenburg, Sweden 2012



Analysis of Vortex-Induced Vibrations of Risers
Master’s thesis in Applied Mechanics
ANTON GUSTAFSSON
Department of Applied Mechanics
Division of Material and Computational Mechanics
Chalmers University of Technology

Abstract

Fluid-structure interaction (FSI) is a challenging field in engineering analysis and many aspects must be taken
into account. Large deformations are particular critical in FSI problems and one component related to the off-
shore industry that can be subjected to large deformations is the riser. The large deformations of risers are caused
by Vortex induced vibration (VIV) and the purpose of this thesis is to develop a method to simulate riser VIV.
Only a short section of the riser is evaluated and the model is based on experience from three preparatory studies.

Simulating riser VIV with FSI is very time-consuming and strongly mesh dependent. Different mesh qualities
and turbulence models have been evaluated to find an economic model. Many parameters have been found to
be important to obtain a stable FSI coupling and an iterative FSI approach with small time steps are necessary
to apply in order to obtain a stable solution. The fluid mesh used for the fully coupled analysis is very coarse
and the results should be verified before further evaluations are made.
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1 INTRODUCTION

1 Introduction

1.1 Background

The offshore industry is a huge industry that is very important from an economical perspective.
It is very important that the offshore platforms produce as much as possible and unexpected
stoppages are very expensive. More important, is to ensure prevailing environmental and avoid
disasters as in the Gulf of Mexico 2010 [1]. Failures in drilling and pumping equipment can be
fateful or at least expensive. One of the most critical components concerning offshore industry
is the riser, which connect the platform with the well at the sea bed, see Figure 1. The riser is
used both for drilling and environmental protection and it is subjected to large forces, due to
waves and underwater currents. The design and operation of risers are complex processes, and
requirements for safety and reliability mean that an extensive amount of engineering analysis is
required. Production in deep sea fields gives rise to even higher loads and stresses and further
engineering analysis becomes more and more important.

Figure 1: Principle sketch of a riser system

Numerical methods play an important role in predicting hydrodynamic motion and forces on
the riser. The riser motion is initiated by VIV (Vortex Induced Vibrations) and if the riser
motion is equal to one of the natural frequencies the fatigue life decreases rapidly. Using em-
pirical methods are today the leading approach for simulating VIV of risers, but more general
methods based on Fluid-Structure Interaction (FSI) become more and more interesting, as the
computational resources improve. Prediction of riser VIV are complex and a combination of
several engineering problems must be considered. Unsteady conditions that occur in the ocean
makes it impossible to get totally correct predictions of the riser motion. The flow around the
riser is affected by vortices, which are complex and fully 3D in nature. As the current change
in direction and magnitude along the riser and over time, the flow field around the riser also
changes. The motion of the riser is large and strongly affects the flow field, and therefore need
to be fully coupled with the fluid motion, Two-way FSI must be implemented, see Section 2.1.
The platform at deep sea fields is floating and the vessel motion has also some influence on the
riser motion. Suppression devices, such as strakes and fairings are used to eliminate or reduce
VIV response and prevent fatigue damage.
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1.2 Purpose 1 INTRODUCTION

Risers are long and flexible structures and the critical ratio L/D tends to be very large. This is
particularly a problem in deep ocean areas, as in the Gulf of Mexico, where the world’s deepest
platform the Perdido spar is floating on 2,438 meters deep water [2]. Even in shallower water,
as the case is at the North Sea the ratio L/D is large, which makes it difficult to perform CFD
simulations since the required number of elements in the mesh tends to be enormous. One
oilfield in the Norwegian section of the North Sea is the Gjøa field, see Section 1.1.1, which has
been used as reference object in this thesis.

The riser investigated in this thesis is a top tensioned workover riser that is used in the installa-
tion procedure. The workover riser is a flexile riser and the use of flexible risers have increased
significantly in recent years since the drilling depths becomes deeper and deeper. The drilling
depth tends to increase as long as the price on oil is high and drilling techniques are improved.
The risers at deep sea oilfields are long and flexible and the eigenfrequencies are low. Low-order
eigenmodes are, therefore, expected to be excited even in shallow current. Another trend in
the offshore industry is to drill in regions with extreme weather conditions and high currents.
Extreme conditions are critical since higher eigenmodes can be excited which results in reduced
fatigue life.

1.1.1 Gjøa field

The reference object in this thesis is a riser in the Gjøa oil- and gas field. The field is located on
the Norwegian section of the North Sea 130 km northwest of Bergen at a water depth of 380m.
The Gjøa field was named after Roald Amundsens polar exploration vessel and was discovered
in 1989. The reserves are estimated to be 82 million barrels of oil and condensate and 40 billion
cubic meters of gas. The development of Gjøas floating platform started in 2007 and the produc-
tion in 2010. The export capacity for oil is 13.8kSm3/day and 17MSm3/day for gas. The Gjøa
platform is the first floating platform to receive electrical power from the mainland. This means
a reduction in emissions to the environment of 250,000 tonnes of carbon dioxide per year [3].
Together with the neighboring field Vega, the fields are the biggest development projects being
carried out in the North Sea at present. The fields are, based on current technology, estimated
to produce oil and gas for roughly 15 more years. The platform is designed to have a lifetime of
at least 30 years, to secure production if the technology improves so that more oil and gas can
be extracted.

1.2 Purpose

FS Dynamics has no experience of VIV analysis of risers and FMC Technologies desire a method
to solve these kinds of problems with Fluid-Structure Interaction. The purpose of this thesis
is to study VIV of risers and develop a method to simulate a full-scale riser exposed to VIV.
The method should be based on fully 3D CFD simulations. The study includes an evaluation
of AcuSolve and STAR-CCM+ ability to solve intractable FSI problems.

1.3 Previous work

The problems with VIV on risers have been known for a long time and countless of research has
been performed in the field. Large resources have been spent to predict and understand VIV.
The first studies regarding vortex shedding and VIV was connected to experiments on cylinders
submerged in water. The result from those studies gives understanding of how the fluid and
structural properties affect the flow and vice versa [4] and [5]. VIV can be predicted by both
empirical models and FSI simulations. Empirical models for VIV prediction of risers have been
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1.3 Previous work 1 INTRODUCTION

used since the early eighties and in later years, also CFD simulations have been performed.

Empirical models

One of the most important milestones of VIV research was presented in the late 80’s by Professor
J. Kim Vandiver and his research group at MIT. The research program was called SHEAR
which resulted in the software SHEAR7. SHEAR7 is based on empirical models and use mode-
superposition to calculate the structural motion of the riser. The program is simple and fast to
run and it is today, after several updates, possible to simulate cylinders without uniform cross
section, strakes and varying currents. Other popular software for VIV analysis on slender marine
structures are VIVANA, VIVA and ABAVIV. VIVANA and VIVA are together with SHEAR7
so-called frequency domain models, whereas ABAVIV is a so called time domain model. The
empirical models usually show good agreement with experiments and they are still the leading
method in practical engineering on long flexible systems, such as risers. The main limitation
with empirical models based on frequency domains, are that they cannot handle non-linearities.

CFD

In later years, several CFD studies on fixed and vibrating cylinders have been performed with
valuable results. Accurate results have been shown for analysis on very short risers by using
very fine mesh resolution. The limitation with CFD for this application is the computational
time. Hence, completed and accurate CFD-simulations on risers are not practicable. In fact, it
exists a couple of approaches that can solve VIV problems on long flexible risers with more or
less accurate results using CFD. These methods are based on very course 3D meshes [6] or on a
method called strip theory [7] and [8]. The strip theory assumes that the fluid flow solution can
be obtained on a series of two dimensional planes along the riser axis. These strips are connected
with a structural model of the riser to obtain a prediction of the fluid-structure response. This
idea results in a number of 2D problems instead of a full 3D problem. Strip theory has become
quite popular, but it has some serious shortcomings. Flow around bluff bodies is inherently three
dimensional so that although the 2D solutions predict the motion well in some circumstances,
they may not be good approximations for the full model. Risers exposed to VIV are inclined to
the flow over much of their length and these effects are not captured by CFD simulations. The
use of the strip theory also implies that some interpolation method is assumed to estimate the
forces between the strips and there is no general rule on how to make such interpolations.

3



2 THEORY

2 Theory

FSI problems can be very different in nature and they can be solved in a couple of various man-
ners. Depending on expected deformations, stability requirements and time limit, an appropriate
approach is decided. To solve FSI problems where VIV occur, a theoretical understanding of
both the structural and the fluid behavior, as well as the VIV phenomena itself, is necessary.
This theory chapter are divided into three parts and start with governing theory of FSI followed
by fluid and structural theory.

2.1 Coupled systems

In a coupled system, two or more physical systems interact. One example of a coupled system
is FSI, where a fluid and a structure are the physical systems. The structure can be movable
and/or deformable and the fluid flow can be internal and/or external. Forces due to a moving
fluid are applied as pressure on the structure, which then will be deformed. FSI problems can
be divided into two groups, One-way FSI and Two-way FSI. If no feedback from the structure
to the fluid is used, the system is called one-way FSI. If ongoing feedback between the systems
is used, it is called Two-way FSI. A couple of different methods are available for solving FSI
problems. The two most common solution methods are a partitioned approach and a monolithic
approach.

One-way FSI

One-way FSI is a weak coupling between a fluid and a structure. It is applicable when the
structural motions and deformations are small and not influence the fluid motion to a large ex-
tent. One example is when a fluid heat or cool a stiff and supported structure, which produces
thermal stress loads and deformations in the structure. The deformation of the structure is so
small that the flow field not will change. The other possible application of One-way FSI is when
the fluid motion do not affect the motion of the structure. This is the case when a piston moves
in a combustion chamber [9].

The general procedure of One-way FSI for a deformable structure starts with a CFD simulation
to compute a pressure acting on the structure. The next step is to run a structural simulation
with the calculated pressure as load and then determine the structural deformation and the
stresses.

Two-way FSI

Two-way FSI should be used when the interaction between the fluid and the structure is sig-
nificant. One example is when the structural deformations are large and the new shape of the
structure and its velocity affect the flow field in a way that will change the loads on the struc-
ture. For applications exposed to VIV, Two-way FSI is the only possible approach. Two-way
FSI is a transient problem and information about pressure, shear stresses and deformation are
continuously transferred between the fields. All FSI approaches described in this thesis utilize
a Two-way coupling.

Independent of solution method, two general conditions must be fulfilled. The interface condi-
tions of displacement continuity (motion transfer), Equation 1, and traction equilibrium (mo-
mentum transfer), Equation 2 must be satisfied along the fluid-structure boundary [10].

df = ds on Γfsi (1)

Pf = Ps on Γfsi (2)
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2.1 Coupled systems 2 THEORY

2.1.1 Monolithic approach

A monolithic approach (also called direct approach) solves both the structural and fluid equations
simultaneously in one single matrix system. The matrix system tends to be very large for large
models and the computational time increases a lot since the methods requires a lot of memory.
Improvements in the solution method has been performed to reduce the computational time,
but the approach is still impractical [11] and [12]. On the other hand, monolithic solvers as
ADINA and COMSOL appear to be unconditionally stable (possible to use larger time steps)
as compared to a partitioned scheme.

2.1.2 Partitioned approach

Partitioned approaches are rather popular for simulation of FSI problems, and the main reason
to this is that it allows using specifically designed codes on the different fields. For large systems,
this approach benefits in terms of efficiency, compared to monolithic solvers since smaller and
better conditioned subsystems are solved instead of one large problem.

Partitioned coupling schemes can either be loosely or strongly coupled. Both methods can be
applied on FSI-problems and which method that is preferable depend on stability requirement.
The stability of the FSI-coupling has been investigated in [13]. The solution method used for
each subsystem has nothing to with the coupling method. Implicit solvers for both fluid and
structural fields can be coupled in an explicit manner.

A typical partitioned method are based on the following sequential process [12]:

1. Transfer the motion of the structural boundary to the fluid,

2. Update the position of the moving fluid mesh,

3. Advance the fluid system in time and compute the new pressure,

4. Convert the new fluid pressure into a structural load,

5. Advance the structural system in time under the fluid-induced load.

Loose coupling

In a loosely coupled scheme, each field is solved only once per time step and is thus favorably in
terms of efficiency. The most usual algorithm for loosely coupled system is to solve the system
in a sequentially staggered manner, but both a Gauss-Seidel method and a Jacobi method are
applicable. Previous studies have observed that a loosely coupling between fluid and structural
fields for incompressible flow and slender structures using sequentially staggered schemes yields
unstable computations. The main reason for the instability depends on the density ratio of
fluid and structure and the geometry of the domain [14] and [15]. The instability is inherent in
the scheme itself and occurs due to lack of energy equilibrium, which increases the total energy
in the system. The increase of energy leads to high under- or over-prediction of pressure on
the interface surface. The fluid forces depend upon predicted structural interface displacements
rather than the correct ones and thus contain a portion of incorrect coupling forces. Even a
small error of the interface displacement gives a large error in the fluid pressure. The error can
be originated from the extra mass from the fluid that contributes to the structural mass. This
is called artificial added mass effect [14]. Reducing the time step has not a positive effect on the
stability, rather opposite effect. The loosely coupling is only recommended for weak interactions
such as aero elastic applications or where the effect of the structure on the fluid is much larger
than the effect of the fluid on the structure.

5



2.1 Coupled systems 2 THEORY

A number of explicit coupling methods have been developed to enhance the coupling stability
such as Generalized Sequential Staggered (GSS) [16] and Modified Combined-Interface Boundary
Conditions (M-CIBC) [17]. A variety of structural predictors and force correctors (artificial
added mass) are applied at each time step and give more stable solutions but it is in many cases
not sufficient.

Strong coupling

Strongly coupled systems, referred as Multi iterative couplings in AcuSolve [10], utilize an iter-
ation method to get convergence before further time-stepping. Data will be transferred between
the fluid and structural solver until the solution converges within each time step. The strong
coupling is much more stable than the explicit coupling, but also more time consuming. The
iteratively staggered partitioned scheme is energy conservative at the coupling interface and
hence more stable.

2.1.3 Mesh motion

For both the fluid motion and the structural motion, an appropriate kinematic description of
the continuum must be chosen. The governing equations of motion are generally described from
either an Eulerian or a Lagrangian point of view. Usually, Eulerian equations are used in fluid
mechanics and Lagrangian equations are used in structural mechanics.

Lagrangian formulation

Each node of the computational mesh follows the associated material point during the motion
in the Lagrangian formulation. The Lagrangian description makes it possible to track back
loading history of the material, and therefore, suitable when working with material with history
dependent behavior. Tracking of free surfaces and interfaces between different materials is eas-
ily performed in the Lagrangian formulation and the results, in form of material displacements
are accurate. The main drawback of this formulation is when the continuum undergoes large
deformations. Then, the mesh will be distorted which might cause problems with accuracy and
stability. Remeshing is possible to perform, but that is computational expensive, in particular
for a 3D case.

Eulerian formulation

Eulerian algorithms are widely used in fluid dynamics and in this formulation, the computational
mesh is fixed and the continuum moves with respect to the grid. In the Eulerian description,
large distortions in the continuum motion can be handled with relative ease, but generally at
the expense of precise interface definition and the resolution of flow details.

ALE formulation

When coming to multiphysics problems such as FSI-problems, both these classical approaches
have their drawbacks. A new method based on a combination of the Eulerian and Lagrangian
formulation has been developed, called Arbitrary Lagrangian-Eulerian formulation (ALE). The
ALE description offers freedom in moving the computational mesh and large distortions of the
continuum can be handled with high resolution and accuracy. Nodes either follow the continuum
as in the Lagrangian description, are fixed as in Eulerian description or move arbitrary to get
continuously rezoning capability. The result is a computational mesh that can avoid large mesh
distortion with good resolution. When choosing the ALE method to describe the motion of the

6



2.2 Fluid theory 2 THEORY

continuum new formulations of the governing equations must be introduced.

The conservation equations for mass, momentum and energy expressed in ALE formulation read:

Mass :
∂ρ

∂t

∣∣∣∣
χ

+ c ·∇ρ = −ρ∇ · v (3)

Momentum : ρ

(
∂v

∂t

∣∣∣∣
χ

+ (c ·∇)v

)
= ∇ · σ + ρb (4)

Totalenergy : ρ

(
∂E

∂t

∣∣∣∣
χ

+ c ·∇E

)
= ∇ · (σ · v) + v·ρb (5)

For further details see [18] and [19].

Morphing

Morphing is another method to move the grid in junction with the structural motion in FSI
problems. Morphing is sometimes referred as ALE, but ALE is associated with finite element
analysis (FEA) rather than finite volume analysis (FVA). STAR-CCM+ is based on FVA and
use morphing for grid updating. The mesh morpher uses control points and their associated
displacements to generate an interpolation field throughout the region, which can then be used
to displace the actual vertices of the mesh. Each control point has an associated distance vector
which specifies the displacement of the point within a single time-step. A reasonable qualitative
fluid grid is maintained, by moving these vertices in the fluid mesh. For further details see [9]

2.2 Fluid theory

The flow is fully described by the Navier-Stokes equations, see Equation 6 and the continuity
equation, see Equation 7.

∂ρ

∂t
+
∂(ρvi)

∂xi
= 0 (6)

ρ
∂vi
∂t

+ ρ
∂vivj
∂xj

=
∂p

∂xi
+ µ

∂2vi
∂xj∂xj

(7)

2.2.1 Flow around circular cylinders

The riser is often modelled as a cylinder and this section describes the physics of flow around
circular cylinders. Flow around circular cylinders is well documented for both fixed and vibrating
cylinders. The flow is characterized by the Reynolds number, defined as:

Re =
UD

νf
(8)

Where U is the free-stream velocity, D the cylinder diameter and νf the kinematic viscosity.

2.2.2 Boundary layers

One important aspect to get good prediction of the forces acting on the riser is related to cor-
rect modelling of the physics in the boundary layers. In the boundary layer, energy dissipates
due to viscous drag and the flow remains without sufficient kinetic energy and separation takes
place. Correct prediction of the separation point, which depends both on surface roughness and
Reynolds number, is a challenging difficulty. Separation take place when the adverse pressure
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gradient (APG) becomes critical [20].

Figure 2: Velocity profiles for flow over a curved surface [20]

This occur when

(
∂u

∂y

)
0

= 0 (9)

The boundary layer can either be laminar or turbulent. The flow properties are totally different
depending on which type of boundary layer it is. The transition from laminar to turbulent
boundary layer depends on a variety of properties, but experiments have shown that it occurs
at Re ≥ 103 for a smooth cylinder. However, for a cylinder with rough surface it occurs at a
lower Reynolds number.

A laminar boundary layer is very vulnerable to APG on the rear of the cylinder, and separation
occurs at a low value of θ, see Figure 3a. The resultant wake will be broad and the very low
pressure in the separated laminar region cause a large drag coefficient [21].

Turbulent boundary layers is not so sensitive to APG, due to the larger momentum transport,
and the separation are delayed to a larger value of θ, see Figure 3b. The more narrow wake
that are created give a much higher pressure on the rear of the cylinder and the drag coefficient
is reduced by 75% compared to a laminar boundary layer. By introducing roughness on the
surface such as the dimples on a golf ball, a turbulent boundary layer can be created, resulting
in a lower drag force.

(a) Separation in laminar flow (b) Separation in turbulent flow

Figure 3: Separation angle in laminar and turbulent boundary layer flow [21]

8
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2.2.3 Turbulence

In most of the industrial application where CFD is used, the flow is turbulent. Turbulence is
very hard to solve and it can be described by following properties [22].

• Irregularity. Turbulent flow is irregular and chaotic

• Diffusivity. In turbulent flow the diffusivity increases

• Large Reynolds Numbers. Turbulent flow occurs at high Reynolds number

• Three-Dimensional. Turbulent flow is always three-dimensional and unsteady

• Dissipation. Turbulent flow is dissipative

• Continuum. The flow can be treated as a continuum

Turbulence models are a time efficient method to model turbulent flows and three different
turbulence models, based on the Reynolds Average Navier Stoke (RANS) equations have been
investigated in this thesis.

Spalart-Allmaras

The Spalart-Allmaras turbulence model was originally developed for the aerospace industry
and are, therefore, designed for applications involving wall-bounded flows [23]. The model is a
one-equation model that solves a modelled transport equation to determine the kinematic eddy
(turbulent) viscosity. The method is much simpler than many other one-equation models and
is readily to implement in unstructed CFD solvers [24]. The model has become more and more
popular and is today widely used for aerospace applications. For flows past wings where mild
separations are expected to occur, the model is accurate as long as the flow not involves complex
recirculation and body forces. The model also has been shown to give good result for boundary
layers subjected to adverse pressure gradients [24].

Realisable k − ε

The k − ε model is a two equation model and one of the most common turbulence models for
industrial applications. The transport equations are solved for the turbulent kinetic energy k and
its dissipation rate ε. The main benefits with the model are the robustness and computational
efficiency with reasonable accuracy. The original model has been improved many times and
today there exist several different variations of the model [9]. One of these improved version
is the realizable k − ε model that exhibit accurate results for many applications, such as flows
involving rotation, boundary layers under strong adverse pressure gradients, separation and
recirculation [25]. In these cases, the standard k − ε model has large drawbacks. The main
drawback with the realizable k − ε model is that it produces non-physical turbulent viscosity.

9
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SST k − ω

The shear-stress transport (SST) k − ω model is an eddy-viscosity model developed by Menter
[26]. For applications where viscous flows need to be well resolved and turbulence models are
applied throughout the boundary layer has the SST k− ω model become very popular, such as
in the aerospace industry. One of the main novelties of the model is the limitation of the shear
stress in APG flows [22].

The model is a combination of a k−ω model and a k− ε model. The standard k−ω model has
benefits in the near wall region, but perform badly in the free stream and the opposite is true
for standard k−ε. A blending function ensures that the SST k−ω model behaves appropriately
in both near-wall regions where it uses the k − ω model, and in the free-stream where it uses
the k − ε model, by switching between the models.

2.2.4 Introduction to VIV

VIV is a common phenomenon in several industrial applications dealing with long flexible struc-
tures, such as chimneys, cables for bridges and risers. Several research attempts to predict and
suppress VIV have been made during the last decades and these attempts will continue. In the
offshore industry, VIV researches are of particular interest since the drilling depth increases.
VIV is probably the single most important design issue for steel catenary risers, particularly in
areas with high currents. The vortex shedding frequency depends on the current velocity and
will increase in high currents. This induces high frequency cyclic stresses in the riser, which can
result in fatigue damage [27]

Deepwater risers are especially susceptible to VIV because:

1. Currents are typically higher in deepwater areas than in shallower areas.

2. The increased length of the riser lowers its natural frequency and thereby lowering the
magnitude of current required to excite VIV.

3. Deepwater platforms are usually floating platforms so that the flexibility of the system is
further increased.

The currents in the ocean usually change magnitude and direction and the velocity profile are
never uniform. To predict a correct current is probably the most critical part in the model setup.
Measurements and experiments must be performed, but these are not sufficient to get accurate
current profiles. Multiple modes of the riser can be excited into VIV due to variations in the
current profile and diameter changes of the riser. This makes deepwater riser VIV prediction
much more complex than that for short risers in shallow water.

If the analysis shows damaging conditions somewhere along the riser, there are some main ap-
proaches to improve the design of the riser. A couple of these approaches are connected to
the eigenfrequencies of the structure such as changing the mass (e.g. subtracting buoyancy) or
increasing the tension. Another common approach is to add VIV suppression devices to reduce
the vibration, such as strakes that are used on chimneys. For further reading see [28] and [29].

There are some important parameters governing VIV in risers, these are:

• geometry (L/D)

• mass ratio (m∗)

• damping ratio (ζ)

10
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• Reynolds number (Re)

• reduced velocity (Vr)

• flow characteristics (flow profile, steady/oscillatory flow, turbulence intensity ets.)

The parameters will be explained further in the following section.

2.2.5 Vortex shedding

Vortex shedding is an unsteady oscillating flow that takes place at certain conditions when a fluid
flows around a body, especially around blunt cylindrical bodies. Vortices are created behind the
body and detach periodically from either side of the body and result in a Von Karman vortex
street. An asymmetrical flow pattern develops around the body due the periodic shedding and
change the pressure distribution behind the body. A low pressure region will follow the vortices
and create lift and drag forces on the body. The harmonically varying load that arises from
the alternatively shedding induces vibrations with the same frequency as the frequency of the
vortex shedding, fs. After separation, the regular pattern of vortices moves further downstream
and the energy of the vortices is consumed by viscosity and the regular pattern gets dissolved [30].

The vortex shedding process is defined by the Reynolds number and the shedding frequency by
the Strouhal number St = fsD/U where fs is the shedding frequency, D the diameter of the
cylinder and U the free stream velocity. The Reynolds number can be used to indicate a number
of flow regimes. Vortex shedding appears in all these regimes, but with different pattern. Figure
4 show approximately how the vortex pattern depends on the Reynolds number.
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Figure 4: Vortex shedding pattern for different Reynolds number [31]

Both the Reynolds number and Strouhal number depends on the cylinder diameter D and the
flow velocity U . Experiments have shown that there is a conjunction between the Reynolds num-
ber and Strouhal number [31]. These experiments show that the Strouhal number as a function
of Reynolds number becomes nearly constant in the sub-critical regime (2×102 < Re < 2×105).
The Strouhal number is also strongly dependent on surface roughness and rough surfaced cylin-
ders or vibrating cylinders is relatively insensitive to the Reynolds number. The surface rough-
ness affects where the separation occurs and thereby the regime of Reynolds number. This
means that a lower Reynolds number is needed to enter the critical regime if the surface is
rough. Reynolds numbers related to risers are in general in the sub-critical regime, which cor-
responds to St = 0.2.

2.2.6 Lock in

If the vortex shedding frequency is close to one of the natural frequency of a body, it causes
resonance and the body starts to vibrate with the same frequency as the shedding frequency,
this is called ”lock-in” [32] and [33]. Lock-in, sometimes referred as synchronization, is critical

12
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and large damaging vibrations take place when the body becomes ”lock-in”. It is not obvious
when the structure becomes ”lock in” and it can occur in a range of frequencies. The span of
frequencies is strongly dependent on the mass ratio m∗, see Equation 10. The lock-in region is
larger for smaller mass ratios and becomes critical as the mass ratio goes to unity [34].

m∗ =
ms

mf
(10)

Where ms is the mass of the structure and mf is the mass of the fluid. In the lock-in region,
the vortex shedding frequency is dictated by the eigenfrequency of the structure. As the shed-
ding frequency becomes ”lock in” to one of eigenfrequencies of the structure, the relation to the
Strouhal number disappears and a new parameter is, therefore, introduced, the reduced velocity
(Vr), see Equation 11. For velocities higher and lower than the critical lock-in velocity, the
shedding frequency follows the Strouhal relationship.

When the structure starts to oscillate, it can move pure In-Line (parallel to the incoming flow,
Cross-Flow (perpendicular to the incoming flow) and Cross flow induced In-Line. Pure In-Line
motion will occur at the lowest reduced velocities and will be the first response to occur. At
higher reduced velocities, the pure In-Line motion is not of particular interest longer, due to
low amplitudes, even if its oscillation frequency are twice as the CF frequency [35]. Instead of
pure In-Line motion a Cross flow induced In-Line motion becomes important for higher reduced
velocities. The dominated motion for higher reduced velocities are the CF motion followed by
the CF induced In-Line motion which has an amplitude of 30− 50% of the CF amplitude [36].

Reduced velocity

When a structure starts to vibrate due to VIV, the reduced velocity becomes useful. The reduced
velocity gives information in which velocity ranges VIV can occur. For each eigenfrequency of
the structure, the reduced velocity can be determined. Vortex shedding can appear for all re-
duced velocities, but it is often coupled to the amplitude of the vibration. It has been seen
that the vibration amplitude reaches maximum and becomes ”lock-in” for different values of the
reduced velocity. In [37] it was found that the maximal ratio of the non-dimensional response
amplitude A/D, see Section 2.2.7, was obtained in the range 5 < Vr < 7 for sub-critical flow
and in [38] that lock-in start at Vr > 5 and reach its maximum at Vr = 8.

Vr =
U

Dfo
(11)

Where U is the free-stream velocity, D the cylinder diameter and fo the natural frequencies for
the structure.

2.2.7 A/D

The non-dimensional response amplitude A/D is one of the most interesting results for VIV
analysis on risers. The response amplitude A can be measured in the flow direction, but is in
general measured in the cross-flow direction, as this amplitude is much larger. The cross-flow
response is of nature self limiting, meaning that the excitation breaks down for a limited ampli-
tude. The reason for the self limited response is that large vibrations will destroy the harmonic
Vortex shedding process and no additional energy from the fluid will be received.

For rigid cylinders with very low damping, the peak amplitude A is dependent on Reynolds num-
ber over a narrow range of reduced velocities. A variety of equations describing the relationship
between the ratio A/D and the Reynolds number has been derived. Equation 12 is derived by
[34] and show a linear response versus an logarithmic expression based on the Reynolds number.
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A

D
=
Amax −Amin

2D
≈ log(0.41Re0.36) (12)

Where Amax is the maximum response amplitude and Amin the minimum response amplitude.

2.2.8 Added mass

Added mass, ma, plays a significant role on structures submerged in water, particularly for low
mass ratios. For non vibrating cylinder, the added mass is clearly defined and equal to the mass
of the displaced liquid, see Equation 13. To define the added mass for structures exposed to VIV
is much more complex and its behavior is not easy to define. The added mass coefficient, Ca is a
function of the local flow condition, the oscillation frequency and the cross section geometry [29]
and it is equal to unity for non vibrating cylinders. For structures in motion, the acceleration
gives rise to changes of the added mass coefficient and it can both be negative and positive.

ma = ρfCaπr
2 (13)

2.2.9 Drag- and lift coefficient

The forces acting on the cylinder due to the flow can be divided into drag and lift forces. In
steady flow, the forces depend on the fluid density ρf , the fluid velocity U and the reference area
A⊥. The drag force is also depending on the drag coefficient CD and the lift force on the lift
coefficient CL. The periodicity of vortex shedding leads to fluctuations of the force coefficients
and these are denoted C ′D and C ′L respectively. By taking the root mean square (r.m.s) of the
fluctuations it is easy to compare the different flows.

In an ideal flow, the drag force is zero, but becomes non-zero in a real flow, due to pressure and
shear forces. Drag forces on a fixed cylinder can fairly easily be determined by Equation 14,
where the drag coefficient CD is measured in experiments for several of shapes and Reynolds
numbers.

FD = CD
1

2
ρfU

2A⊥ (14)

With the drag force FD, the fluid density ρf , the free stream velocity U and the projected area
A⊥. The drag coefficient on a smooth fixed cylinder in a laminar boundary layer flow are fairly
constant in the range 104 < Re < 5 × 105. For the ratio L/D = 20 is CD = 0.91 and for the
ratio L/D =∞ is CD = 1.2 [21].
.
When coming to VIV, these values are not longer valid and new expressions have been derived
in [39]. Several researches have tried to find an analytical expression on the drag amplification
factor in VIV flow. The drag amplification factor is multiplied with the local drag coefficient
for a stationary cylinder, see Equation 15 and can be as large as 2.31 for a ratio of A/D = 1

CD(z) = CDo ∗ CD,amp (15)

CD,amp = 1 + 1.043

(
2yrms

D

)0.65

(16)

The lift force, Equation 17 is one of the most important coefficients that affect VIV.

FL = CL
1

2
ρU2A⊥ (17)
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The r.m.s lift coefficient is defined as:

C ′L =
2L′

ρU2D`c
(18)

where L′ is the r.m.s of lift fluctuations acting on a spanwise segment of length `c. The total
lift fluctuations are given by letting `c = `, where ` is the total length of the cylinder.

2.3 Structural theory

The equation of motion for a pipe undergoing VIV can be written as [40]:

M(u)ü + C(u)u̇ + K(u)u = ftop + fdrag + fTLP (19)

Where M, K and C are the mass, stiffness and damping matrix; u, u̇ and ü the displacement,
the velocity and the acceleration. The forces ftop and fdrag are the top tension, drag force from
current and riser motion. The force fp is forces due motion of the platform.

2.3.1 Morison equation

In more than 50 years has the so-called Morison equation been used to calculate hydrodynamic
loads on small-diameter submerged objects, such as risers. The equation is widely used, even
though the equation has been considered to be controversial. The equation combines structural
motions with external fluid motion to calculate the resulting hydrodynamic forces.

f(x) =
1

2
ρCDφ(u− v)|u− v|+ ρAeu̇+ (CM − 1)ρAe(u̇− v̇) (20)

Where (CM − 1)ρAe is termed added mass and CM = (Ca + 1) the inertia coefficient. A value
of the inertia coefficient is typically close to two, which correspond to a value of the added mass
coefficient Ca = 1.

2.3.2 Mode-Superposition of an undamped structure

The equation of motion of a linear Multi Degree Of Freedom, MDOF, system with N unknowns
are

Mü + Cu̇ + Ku = f (21)

In general, the coefficient matrices (M, C and K) are large and have nonzero coupling terms,
then the required number of equations is large. The mode-superposition method is an effective
approach to reduce the number of unknowns in a dynamic response analysis. The basic idea
is to uncouple a set of equations by solving the eigenvalue problem. The uncoupled equations
can be solved independently, which reduces the complexity of the problem significantly. An
approximate solution can be found by solving the system for only a small amount of the total
number of modes. The general procedure in the mode-superposition approach using all numbers
of modes are described below [41]

The first step is to determine the natural eigenfrequencies and natural modes of the undamped
system. Solving equation 21 with the initial conditions

u(0) = u0, u̇(0) = u̇0 (22)

The following eigenvalue problem will be obtained.

[K− ω2
rM]φr = 0 (23)
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Where r =1, 2, ..., N and the modes φr are assumed to normalized. The modal masses Mr and
the modal stiffnesses Kr are given by

Mr = φT
r Mφr, Kr = φT

r Kφr (24)

For repeated frequencies it is assumed that the associated modes can be orthogonalized so that
the orthogonality equations

φT
r Mφs = φT

r Kφs = 0 (25)

are satisfied for all r 6= s. All modes can then be collected into a modal matrix

Φ = [φ1 φ2 · · · φN ] (26)

Then Equation 24 and 25 can be combined and written as

M = ΦTMΦ = diag(Mr) K = ΦTKΦ = diag(Kr) = diag(ω2
rMr) (27)

The most important step to convert the coupled equations to uncoupled equations is to introduce
a coordinate transformation. The coordinate transformation are given in Equation 28. These
new coordinates are defined as ηr(t) and called principal coordinates or modal coordinates.

u(t) = Φη(t) =
N∑
r=1

φrηr(t) (28)

By inserting this into Equation 21 and multiplying the resulting equation by ΦT, then the final
equation of motion expressed in modal coordinates is

M η̈ + C η̇ + Kη = f(t) (29)
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3 Benchmark

Two different methods to solve FSI problems have been studied in this thesis. The first method
applies mode-superposition and is performed in AcuSolve. The second method is a fully par-
titioned system applying an iterative coupling between Abaqus and STAR-CCM+. To investi-
gate if the evaluated methods are suitable for solving FSI-problems concerning flexible bodies, a
benchmark problem has been solved. The benchmark problem was originally defined by Turek
& Hron [42] and solved in a monolithic approach. This benchmark problem is widely used and
popular for investigation of crucial problems with low density ratios between the structure and
the fluid.

3.1 Software

The structural solver used in this benchmark is Abaqus and the fluid is solved by AcuSolve
and STAR-CCM+. The later analysis in Section 5 and in Section 6 are solved with a coupling
between Abaqus and STAR-CCM+.

3.1.1 Abaqus 6.12

All structural computations have been performed in Abaqus. Abaqus is a general purpose finite
element software and one of the most popular in the industry [43]. The fluid domains for both
the benchmark problem and the short riser, see Section 5.1.1 have been defined in Abaqus
and exported to both AcuSolve and STAR-CCM+. The frequency analysis used to perform
the mode-superposition in AcuSolve must be done in Abaqus 6.11 since AcuSolve 1.8b is not
compatible with the odb-file from Abaqus 6.12.

3.1.2 AcuSolve 1.8b

AcuSolve is a FEM based CFD solver developed by AcuSim. AcuSolve is based on the Galerkin/Least-
Squares formulation. AcuSolve uses a fully coupled pressure/velocity iterative solver plus a gen-
eralized alpha method as a semi-discrete time stepping algorithm. AcuSolve is a general purpose
incompressible flow solver that use unstructed meshes and apply ALE to move the mesh, see
[44] and [45]. AcuSolve is a popular code to solve VIV of risers and providing two methods to
solve FSI problems called Practical FSI (P-FSI) and Direct Coupled FSI (DC-FSI).

3.1.3 STAR-CCM+ 7.04.006

STAR stands for Simulation of Turbulent flow in Arbitrary Regions and it is developed by CD-
adapco. STAR-CCM+ is based on an object-oriented programming technology and specifically
designed to handle large models efficiently. The software uses a finite volume approach and it is
possible to solve problems involving flow of fluids, deformation and stress analysis of solids and
heat transfer [46]. STAR-CCM+ apply morphing to move the mesh.

3.2 Method benchmark

Three different parameters have been evaluated for the model in STAR-CCM+, the free end
displacement in y-direction, the drag force and the lift force. The evaluation also includes a
study of how the mesh size and the time step affect the results. Only one mesh with one time
step is studied in AcuSolve. A complete comparison between STAR-CCM+ and AcuSolve is
not possible. STAR-CCM+ and AcuSolve are based on two totally different solution techniques
and the same settings of the solvers are not available and different meshes with different element
types are used. A control point for the free end displacement is placed at the coordinate (0.6m,
0.2m, 0.0025m).
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3.2.1 Geometry

The geometry was originally constructed and used for a CFD benchmark, where flow around a
fixed circular cylinder was studied. Turek & Hron added an elastic flag behind the cylinder to
create this FSI benchmark. The height of the domain is HD = 0.41m and the length LD = 2.5m.
The circle has a radius of r = 0.05m and the dimensions of the flag are LF = 0.35m,HF = 0.02m.
The circle and the flag are not located in the center of the domain. The non-symmetric location
of the circle makes it possible to get the same oscillation conditions for all test cases. The center
of the circle are located at C = (0.2m, 0.2m) The domain has a thickness of tD = 0.005m

Figure 5: Domain for Benchmark problem

3.2.2 Structural mesh

Two different structural meshes have been created with purpose to investigate element types and
grid size. The first mesh, Mesh 1s, see Figure 6 is meshed with 560 linear hexahedral elements
of type C3D8I (The I stands for Incompatible modes). There are four elements in y-direction,
two elements in z-direction and 70 elements in x-direction. In the second mesh, Mesh 2s, see
Figure 7 the flag is meshed with 2240 linear hexahedral elements of type C3D8R (The R stands
for Reduced integration). There are eight elements in y-direction, two elements in z-direction
and 140 elements in x-direction. For further reading about structural elements, see [43].

Figure 6: Flag with coarse mesh, Mesh 1s

Figure 7: Flag with fine mesh, Mesh 2s

3.2.3 Material properties

The material for the flag is a combination of two rubber-like materials, polybutadiene and
polypropylene. These materials have very low stiffness, which makes it possible to obtain large
deformations of the flag, even if the forces acting on it, are relative small. Young modulus for the
resulting material is Es = 5.6MPa and the Poisson ratio νs = 0.4. The density of the flag, ρs is
set to 103Kg

m3 which give a mass ratio m∗ = 1. These properties make it possible to investigate
the stability in the coupling with low mass ratios. An additional damping β = 0.0002 has been
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introduced in the material to increase the stability.

The fluid properties are similar to glycerin that is an viscous liquid with relative high density.
For simplicity, small adjustments for the dynamic viscosity νf and the density ρf has been made

which results with νf = 0.001m2

s and ρf = 103Kg
m3 .

3.2.4 STAR-CCM+

Fluid mesh

Three different mesh configurations have been studied, and all configurations apply a refinement
block with the dimension 0.23m×1.02m×0.005m. The first mesh, Mesh1, is a coarse mesh with
27549 hexahedral cells and two boundary layer cells around the cylinder with equal thickness of
0.00125m. The cell sizes in the refinement block are 0.005m × 0.005m × 0.0025m. The second
mesh, Mesh 2, see Figure 8 has medium refinements in the domain and the block. Mesh 2
contains of 119500 hexahedral cells and two boundary layer cells around the cylinder with equal
thickness of 0.00125m. The cell sizes in the refinement block are 0.0025m× 0.0025m× 0.0025m.
The third mesh, Mesh3 contains of 552420 hexahedral cells and five boundary layer cells around
the cylinder. The thickness of first cell is 0.0004m and the total thickness of the prism layer is
0.003m. The cell sizes in the refinement block are 0.0015m× 0.0015m× 0.0015m

Figure 8: A zoom on the flag for Mesh 2

Set-up

An overview of the basic settings in the STAR-CCM+ model is shown in the following table.
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Table 1: Simulation settings for benchmark in STAR-CCM+

Settings Choice

Temporal discretization 2nd order
Convection scheme 2nd order upwind
Viscous regime Laminar
Flow Segregated
Time model Implicit unsteady
Solver algorithm SIMPLE
Default Time Step
Mesh1 0.004 s
Mesh2 0.001 s
Mesh3 0.001 s

One of the main assumptions in the model is that the liquid is compressible, which makes the
density dependent on the working pressure. By changing the speed of sound, influence of the
pressure is regulated. For more details on compressible liquids see [9]. Three different time steps
are evaluated for Mesh1, these are, 0.001s, 0.004s and 0.01s. For the case with a time step of
0.01s, both 20 and 30 inner iterations are evaluated.

Within each time step, a number of inner iterations are performed. The number of inner itera-
tions are used to ensure that both the flow and the imported displacement have converged. 20
inner iterations are used for Mesh 1 and 30 inner iterations are used for Mesh 2 and Mesh 3.
Increasing the number of inner iteration to 30 makes it possible to get convergence with a time
step of ∆t = 0.001

The Field Exchange Controls is automatically visible when a Co-simulation with iterative cou-
pling are defined. The Inner Iterations Per exchange controls the number of inner iterations
STAR-CCM+ performs for each field data exchange within one coupling time-step. How many
exchanges of data between STAR-CCM+ and Abaqus that are required within each time step
depends on how critical the problem is. Since this problem requires a strong coupling only one
inner iteration will be performed between each Co-Simulation coupling.

The flag is a very flexible structure and can easily be unstable if large forces are applied on the
surface at one moment. To get a smooth start of the coupling, the velocity and the pressure are
recommended to gradually increase. Only the pressure is ramped in this study and the ramp-up
time is 0.2s.

The under relaxation for velocity and pressure is another parameter that must be taken into
account. In the first iteration of a time step, the updated displacements that Abaqus export
are fairly accurate (amount the interface moves if the pressure had been constant). However,
using the default velocity under-relaxation of 0.7 forces an error into that first estimate Abaqus
export, tending to decelerate/accelerate the fluid with respect to the true solution, causing the
pressure to jump up/down accordingly in that first iteration. Increasing the under-relaxation
must be done with caution and monitoring the pressure at interesting point and the convective
Courant number in the entire domain is important. If the convective Courant number is much
greater than one anywhere in the fluid mesh may cause the solution to diverge [47].
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3.2.5 AcuSolve

Fluid mesh

A well constructed mesh has shown to be very important to get a working model in AcuSolve.
The mesh must be good enough so that vortex shedding start and not distort to much when the
flag start to move.

Figure 9: A zoom on the flag for Mesh−AcuSolve

Set-up

To find settings that makes it possible to solve the benchmark problems has not been easy and
suitable settings has not been found. The following settings has shown to give a fairly stable
solution.

Table 2: Simulation settings for benchmark in AcuSolve

Settings Choice

Temporal discretization 2nd order (Generalized Alpha)
Space discretization Galerkin/Least-Squares FEM
Viscous regime Laminar
Flow equation Navier Stoke
Time model Implicit
Time Step 0.00001-0.001 s

Two of the most important parameters to obtain a steady solution in AcuSolve are the number
of Krylov vectors and the number of stagger iterations. For this benchmark, 40 Krylov vectors
and 40 maximum stagger iterations are defined.

It has been shown that a very small time step together with several Krylov vectors and stagger
iterations is required to avoid mesh distortion. The computational time with these settings will
be very long and automatic time incrementing is applied. The automatic time incrementing
make it possible to use a small time step when in critical situations and a large time step oth-
erwise.
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3.2.6 Boundary condition

The problem is solved in 3D, but it can be described as a structure submerged in a 2D channel
flow, where the inlet is located and the left boundary and the outlet at the right boundary. The
upper and lower boundaries are walls and the surfaces with normal out of plane are a symmetry
surface. The displacement at the left end of the flag is fixed and the normal surface is fixed in
z-direction and unable to rotate around the x- and y-axis. The following settings are used for
all simulations.

Table 3: Boundary conditions for benchmark

Settings Choice

Boundary conditions fluid :

Inlet Velocity inlet
Outlet Pressure outlet
Upper wall No-slip wall
Lower wall No-slip wall
Symmetry Symmetry plane
Cylinder No-slip wall
Flag Co-Simulation/Flexible body

Boundary conditions structure:

Left end Pinned
Symmetry Z-symmetry(δz = URx = URy = 0)

The inlet velocity has a parabolic profile with a mean velocity Ū = 2m/s, defined as

vf (0, y) = 35.69Ūy(0.41− y) (30)

3.3 Results benchmark

The presented results are the y-displacement of the flags free end, drag forces and lift forces and
the free end displacement is compared with values from Turek&Hrons analysis. The free end
displacement is measured in y-direction and the drag- and lift force are computed by adding the
forces acting on both the cylinder and the flag. The coupling has shown to be more unstable
as long as the flow develops in the channel. The first part of this chapter has focus on the time
where the flow develops and the second part on a fully developed flow. The fine mesh, Mesh3 is
only used for analysis in the developing flow. No results from the AcuSolve analysis is presented
since no working model is found. Figure 10 illustrates the velocity field and the deformation of
the flag in a fully developed flow.
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Figure 10: A fully developed flow with Mesh 2

3.3.1 Developing flow

The developing part of the flow has shown to be unstable, due to numerical difficulties. The
instabilities is clearly depicted in Figure 11. Vortex shedding does not start directly and Figure
12 shows how the y-displacement is affected by the three meshes. The oscillations for Mesh1
begins later, but increase in the same manner as for Mesh2.
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Figure 11: Lift force for Mesh1, Mesh2 and Mesh3
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Figure 12: Free end y-displacement for Mesh1, Mesh2 and Mesh3

3.3.2 Fully developed flow

Simulating the initial part, where the flow develops with a fixed flag avoids problems related to
the instabilities in the initial part. The flag holds fixed until the flow is developed and vortex
shedding has started. After approximately 1.8s, the restriction with a fixed flag is removed and
it is free to move. All simulations in this section start from the moment where the flag start
to move and t = 0 in these simulations correspond to t ≈ 1.8s in the simulations where the
flow developed. The coupling procedure is time-consuming and starting to simulate with a fully
developed flow save much time.

Free end displacement

Turek&Hron found that the free end displacement uy converges at uyo = 1.48 ± 34.38mm
which gives a maximum displacement of uyo = 35.85mm. Figure 13 shows that the maximum
displacement for Mesh1 is uy1 = 35.37mm and for Mesh2 uy2 = 42.06mm. The shedding
frequency is not affected when the mesh is refined and not either when decreasing the time step.
An increase of the time step results on the other hand in a lower shedding frequency as one can
see in Figure 14. The y-displacement for the free end is also affected by the time step. A smaller
time step corresponds to a larger magnitude of the displacement a larger time step to a smaller
magnitude of the free end y-displacement.
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Figure 13: Free end y-displacement for Mesh1 and Mesh2
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Figure 14: Free end y-displacement with different time step for Mesh1
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Drag force

The drag forces behaves similar as the free end displacement, but the mesh dependency is more
pronounced for the drag force, see Figure 15. Much larger drag forces are obtained with Mesh2
than with Mesh 1 and larger drag forces are also related to a small time step.
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Figure 15: Drag force for Mesh1 and Mesh2
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Figure 16: Drag force for Mesh1 with different time steps
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Lift force

The lift force is not affected by the time step in same extend as the drag force.
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Figure 17: Lift force for Mesh1 and Mesh2
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Figure 18: Lift force for Mesh1 with different time steps

Decreasing the time step has shown to over predict the displacements and the forces. However,
with a small time step a more steady solution is obtained. The lift force for each iteration with
∆t = 0.004 is much more unsteady than with ∆t = 0.001.
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3.4 Discussion benchmark

This benchmark problem is rather complicated and it is difficult to get stability in the coupling,
even if an iterative coupling approach is applied in both AcuSolve and between Abaqus and
STAR-CCM+ Increasing the number of stagger iterations and Krylov vectors in AcuSolve and
coupling steps between Abaqus and STAR-CCM+ within each time step, are important param-
eters, but not the only ones.

The number of coupling iterations required to get convergence for the coupling procedure de-
pends on how much the flag deforms or moves in one time step. The most favorable is that the
flow and the coupling iteration converge at the same inner iteration. Each coupling iteration
is quite time-consuming and in general, the coupling procedure converges faster than the flow.
Hence, to couple every second or third flow iteration can be desirable. For this benchmark the
motion of the flag is large and it is necessary to couple at each flow iteration.

A comparison with the results in Turek&Hron study shows an over prediction of the dis-
placement and the forces, as the time step decreases and the mesh is refined, opposite to that
expected. However, a small time step provides a smoother and more steady solution. Increasing
the time step to ∆t = 0.01 is not to recommend, even if the number of inner iterations increases.
The forces are lower as well as the shedding frequency and this probably related to a too large
convective Courant number. However, deviations from Turek&Hron analysis has been shown
also in other comparisons analysis [48].

One important parameter for analysis of flexible bodies is the ability to follow the structural mo-
tion. The mesh motion in AcuSolve is based on ALE, see Section 2.1.3. The main problem with
AcuSolve is distortion of the mesh when the acceleration of the structure becomes large. This
occurs when the free end displacements is large and the oscillation frequency high. A proper
definition of the nodes that not deforms and only follow the motion of the structure is decisive.
The fluid mesh in AcuSolve must be created with high quality to avoid mesh distortion of the
fluid mesh. The mesh and the time step has shown to be the most critical parameters to obtain
stability in analysis performed in AcuSolve. In the analysis performed in STAR-CCM+, the
fluid mesh has very little to do with the stability. STAR-CCM+ apply a morphing technique to
move the fluid mesh, see Section 2.1.3. The morphing technique has been shown to be capable
to handle large motions of the structure.

It was much easier to create a working model in STAR-CCM+ than in AcuSolve. By making the
fluid slightly compressible, the most unrealistic deformations of the structure can be avoided.
When using the correct material properties it has been found that a slightly compressible fluid is
the only way to get convergence for the STAR-CCM+ model. Other parameters, such as mesh
quality, inner iterations and time steps does not affect the stability significant. The forces and
displacements are over predicted compared to Turek&Hron analysis and it can be related to
the compressible fluid. The effect of making the fluid compressible should be studied further.

Refining the structural mesh does not affect the accuracy in the result noticeable, but the
computational time increase significantly. A further study of structural elements and how the
computational time can be reduced is recommended.

28



4 RISER ANALYSIS

4 Riser analysis

To determine if the riser is expected to undergo VIV or not for a given condition, several difficult
aspects are involved. The guiding parameter for VIV is the reduced velocity, see Section 2.2.6.
The range of reduced velocities that VIV are expected to occur in is not definite, and depending
on prevailing conditions this range will change. However, the reduced velocity depends on both
velocity of the current and the eigenfrequencies of the structure. These parameters are not
easy to determine exactly and therefore, the reduced velocities only are approximations. The
purpose of this analysis is firstly, to determine if Abaqus and SHEAR7 give comparable results
in terms of the eigenfrequencies of the riser. Secondly, to investigate which velocity profiles
that may result in VIV and how many and which modes it applies to. The difference between
the eigenfrequencies is small, and in the reality it is expected that more than one mode will be
excited for long and flexible risers. Only small deviations of eigenfrequencies can result in large
errors in the VIV analysis.

4.1 Method preparation work

4.1.1 Geometry

A principal sketch of the modelled riser system is shown in Figure 19. The system contains sev-
eral different parts and consists mainly of pipe elements, except from the sections at the seabed
which are rigid and not of interest in VIV analysis. The main part of the riser system is the
Dual Bore and the total length of the Dual Bores is 90% of the total length of the riser below the
water surface. The Dual Bore is very long and slender and therefore critical in a VIV perspective.

Figure 19: Principal sketch of riser system and associated boundary conditions
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4.1.2 Modelling of riser

The riser is modelled in Abaqus with data from the workover riser at the Gjøa field, provided by
FMC Technologies. The given data is not sufficient to make an exact reproduction of the riser
at Gjøa, hence some assumptions are needed. The given inner and outer diameters are used to
model the strength of the pipe elements. In frequency analysis the mass is one of the crucial
parameters and the mass of this riser is m = 214.38 × 103Kg. To get the correct mass of each
section is the density determined, based on the inner and outer diameter and the length. Both
Young’s Modulus Es = 201GPa and Poisson’s ratio νs = 0.3 are the same for all sections. The
tension ring has been modelled as a point mass mt = 9000Kg. Added mass is applied on the
submerged parts with a value of the added mass coefficient Ca = 1. The riser is meshed with
214 linear pipe elements (PIPE31H). One assumption when modelling with pipe elements is
that each section must have the same diameter and the taper sections must be divided into 4-6
subsections with growing diameter. The bails has not been taken into account in this analysis.

4.1.3 Boundary conditions

The riser is fully fixed at the seabed and a pinned boundary condition is applied at the top end;
the riser is free to move in vertical direction. Vertical tension is applied at the bottom of the bails
and at the tension ring, see Figure 19. The tension at the bottom of the bails and the tension
ring are 420kN and 1173kN , respectively. One assumption is that horizontal spring supports
at the bottom of the bails and at the tension ring is omitted. These strings were inserted in the
original model to give a pendulum effect of the associated components.

4.1.4 Currents at Gjøa field

A detailed investigation of currents at the Gjøa field was provided by Statoil and RiserTec and
resulted in 22 different velocity profiles. Each velocity profile is given with an associated prob-
ability that they occur. High current levels are anticipated to dominate VIV fatigue, but the
highest current levels are also the most infrequently. One difficult task is to find the most critical
velocity profile which both has high probability to occur and high current velocity.

The current velocities are measured at eight different levels and the current profile is obtained by
linear interpolation between this measurement points. Four of the velocity profiles are shown in
Figure 20. Velocity profile number 1 is the most common with a probability to occur of 38.50%,
but it is also the least harmful. Velocity profile number 10 and 19 has a probability to occur of
0.2% and 0.00014%. The most critical velocity profile is number 22 which has a probability to
occur of 0.00003%, it corresponds to 9s/year.
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Figure 20: Velocity profiles

4.1.5 Frequency analysis

In RiserTecs report on the workover riser in the Gjøa field , a frequency analysis of the riser is
presented. RiserTec has used SHEAR7 for determination of the eigenfrequencies and if one can
assume that the analysis is correctly executed, good correlation with the Abaqus analysis should
be obtained. However, the details in RiserTecs report are not sufficient to expect a complete
agreement. For more details about SHEAR7, see [49].

4.1.6 VIV analysis

The input values for the CFD analysis on the short riser are given from the VIV analysis. In a
looping procedure all velocity profiles are compared with all possible eigenfrequencies that can
be excited and it results in reduced velocities for all diameters of the riser. The critical range of
the reduced velocity is 5 < Vr < 8 see, Section 2.2.6. By studying how many element and which
eigenmodes that are subjected to the critical reduced velocity, a critical diameter and a critical
velocity can be selected.

4.2 Results riser analysis

The eigenfrequencies from the Abaqus analysis are compared with those from SHEAR7 and
shown in Figure 21 and in Table 4. When computing the difference between the two approaches
the SHEAR7 analysis has been used as reference.
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Figure 21: Eigenfrequencies for the Abaqus and SHEAR7 analysis

Table 4: Comparison of eigenfrequencies

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode7

Abaqus 0.062 Hz 0.123 Hz 0.194 Hz 0.268 Hz 0.344 Hz 0.423 Hz 0.487 Hz

Shear7 0.073 Hz 0.139 Hz 0.205 Hz 0.27 Hz 0.33 Hz 0.37 Hz 0.43 Hz

Diff 15% 11% 5.4% 0.74% 4.2% 14% 13%

Mode 8 Mode 9 Mode 10 Mode 11 Mode 12 Mode 13 Mode 14

Abaqus 0.546 Hz 0.639 Hz 0.738 Hz 0.833 Hz 0.910 Hz 1.005 Hz 1.1033 Hz

Shear7 0.49 Hz 0.55 Hz 0.63 Hz 0.72 Hz 0.79 Hz 0.86 Hz 0.94 Hz

Diff 13% 16% 17% 15% 15% 17% 17%

As one can see in Table 4, there is a relatively large difference between the eigenfrequencies for
the majority of the modes. From the 5:th mode and later, the eigenfrequencies are higher for
the Abaqus model, which means that the VIV analysis based on the eigenfrequencies from the
SHEAR7 model are more conservative than the Abaqus model.

By using the reduced velocity, the number of modes that are into the critical interval of reduced
velocities can be determined. The analysis is performed for each velocity profile and it give
information which the critical modes are. Figure 22 and Figure 23 are related to each other
and Figure 22 show how many eigenmodes that excite more than 50% of the submerged riser
and which of these modes that are the highest. The 12:th mode is the highest mode to excite
more than 50% of the elements and it can be excited for the five highest velocity profiles. Four
modes are the maximum number of modes that one velocity profile can excite. Figure 23 show
almost the same thing, but shows more clearly that four modes (mode 9, 10, 11 and 12) are the
most critical for velocity profile 22 and three modes (mode 6, 7 and 8) are the most critical for
velocity profile 10.
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Figure 22: Highest possible mode and maximum number of modes to be excited
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Figure 23: Percent of the submerged riser in critical range of reduced velocity

It is not possible to simulate all velocities and all diameters in this thesis and therefore only one
interesting velocity with corresponding diameter will be selected and further evaluated. Velocity
profile number 22 may excite four modes, with mode number 12 as the highest. The probability
that the currents are so strong as they are for velocity profile 22 are on the other hand very
low. Velocity profile 19 may also excite four modes, where the highest mode is number 12. The
probability that velocity profile 19 will occur is almost five times higher than for velocity profile
number 22. The velocity profile that has been chosen for further evaluation and is expected to
be the most critical is number 19. Figure 24 show the reduced velocity for mode 5, 9 and 15
when velocity profile number 19 is applied. The critical velocities and diameters for mode 11
and velocity profile 19 are shown in Figure 25, where the critical reduced velocity is in the range
5 < Vr < 8. It should be noted that these assumptions only are arbitrary.
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Figure 24: Reduced velocity along the submerged riser for velocity profile number 19
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Figure 25: Diameters and velocities related to 5 < Vr < 8

4.3 Discussion riser analysis

The eigenfrequency analysis differ rather much from the SHEAR7 analysis and the 11:th eigen-
frequency in the Abaqus analysis correspond to the 12:th in the SHEAR7 analysis. Influence of
the spring supports and the extra mass from the bails will affect the result, but in which extent
is hard to say. All details used in RiserTecs analysis is not clearly defined for example how the
interior liquid is modelled. The frequencies are in a narrow span and the first 10 eigenfrequencies
are within 0.676Hz. However, the range 5 < Vr < 8 has been found to be the most critical
in several previous experiments, but not in all. A change in the range of reduced velocity will
also change the critical eigenfrequencies for the riser, and other modes and current velocities
will be the most devastating. For a cross section with D = 0.2191m and a free stream velocity
U = 1m/s the selected range for reduced velocities correspond to an eigenfrequency range for
the riser of 1.096Hz < fo < 1.753Hz. It is far from obvious under which conditions VIV is
expected to occur and as long as the results are approximately close to the experimental values
the analysis becomes valuable. Another possible reason for deviations in the frequency analysis
is that different beam models are used.

Figure 24 and Figure 25 show that the Dual Bore with D = 0.2191m is the most interesting
section and the velocity in this region is U = 1m/s. The Dual Bore is by far the largest part of
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the riser and it is very long and slender and of course the most vulnerable. This study is not
sufficiently for a complete analysis of the riser. More than one mode will probably be excited at
the same time, but it is difficult to anticipate when and for which conditions it would happen.

Based on Figure 22 and Figure 23 the 19:th velocity profile is founded to be the most critical,
but it cannot be verified without experiments. However, the 19:th are still a critical velocity
profile and even if worse condition can occur, it is relevant for VIV investigations.
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5 CFD on short riser

Analysis of full-scale risers requires tremendous models and the computational time becomes
very long. In this method study, analysis on a full-scale riser is not feasible and therefore a
shorter section of the riser has been evaluated. Before an FSI analysis on a short riser can be
performed, it is suitable to evaluate the flow around a fixed and rigid riser. The aim of a CFD
study on a short riser is to find a fine mesh and an appropriate turbulence model that predict
the physics of the flow.

5.1 Method CFD on short riser

Based on the recommendations from the riser analysis, see Section 4.3, the geometry for this
CFD analysis is created. Three different meshes are evaluated and compared. The purpose with
the different meshes is not to create the best possible mesh, rather to find an economical and
fairly accurate mesh. The Reynolds number over the riser is high and turbulence must be solved.
Three different methods to model the turbulence are evaluated and compared. The meshes and
all simulations are completely performed in STAR-CCM+ and the investigated parameters are
lift coefficient, drag coefficient and Strouhal number.

5.1.1 Geometry and mesh

A principle sketch of the domain is shown in Figure 26. The Dual Bore with a diameter
D = 0.2191m was found to be a good reference diameter for this short riser section, see Section
4.2. Based on the diameter of the riser section, a fluid domain has been created. The dimensions
of the domain are 9D upstream, 27D downstream and 7D in the directions perpendicular to
the flow. The second decisive parameter is the ratio L/D. A ratio L/D = 20 is chosen which
result in a length of the riser of L = 4.382m. This domain should be large enough to capture
3D effects, without very computational expensive simulations. With a ratio L/D = 20 it is also
easy to compare the drag coefficient with experimental values.

Figure 26: Fluid domain

One of the main tasks of this analysis is to study different meshes. From the knowledge that
full-scale riser are very long and require enormous domains, it is important to know how coarse a
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mesh can be, but still predict vortex shedding with sufficiently accuracy. Three meshes, all with
hexahedral element and different grid sizes has been created in STAR-CCM+. The cells are
isotropic and the cell sizes for the different blocks and meshes are given in Table 5. Each mesh is
divided into three blocks, see Figure 27, which give opportunities to make refinements in inter-
esting areas, such as the wake. Block 1 has the dimension 3.5D×6.5D and Block 2 8.5D×18.5D.

Table 5: Comparison of meshes

Block 1 Block 2 Block 3 Number of cells

Mesh 1 19.0 [mm] 38.0 [mm] 74.6 [mm] 1353622

Mesh 2 12.5 [mm] 25.0 [mm] 50.0 [mm] 4135303

Mesh 3 7.50 [mm] 15.0 [mm] 60.0 [mm] 16440906

Figure 27: Mesh 1

A fine mesh resolution in the boundary layer is important to capture the physics. The most ac-
curate approaches to model flows, such as Direct Numerical Simulation (DNS) and Large Eddy
Simulation (LES) are too time-consuming for this application and turbulence models are used
instead. The turbulence model and the wall treatment, see Section 5.1.1 govern how the near
wall cells in the boundary layer should be designed. The same boundary layer resolution and
wall treatment is used for all three meshes. 15 prism layers has been used and the height of the
first cell ∆x = 0.0001m

Wall treatment

One very important parameter in flows where the wall behavior must be well resolved, is the
non-dimensional wall distance y+ [9]. In general should y+ < 1, but reliable results can be
achieved even if the y+ criteria not is fulfilled. Wall treatments are used to model the near wall
behavior and STAR-CCM+ provide three types of wall treatments. The High y+ wall treatment
implies a wall function approach in which it is assumed that the first cell in the prism layer lies
in the logarithmic region of the boundary layer, y+ > 30. The Low y+ wall treatment is suitable
for low-Reynolds number turbulence models in which it is assumed that the viscous sublayer,
y+ < 5, is properly resolved. A third approach is a blended wall function called All y+ wall
treatment which behave as the Low y+ wall treatment in regions with fine mesh and as High y+

wall treatment in regions where the mesh is coarser. The three wall treatments is evaluated for
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model that use the coarse mesh, Mesh 1 and SST k − ω as turbulence model. By changing the
size of the boundary layer cells, the different criteria for wall treatments are satisfied.

Material properties

The purpose of this analysis is to model a riser section somewhere between 100m and 300m
below sea surface. The fluid properties are chosen to approximately represent water at deep sea
with density ρf = 1025Kg

m3 and dynamic viscosity µf = 0.0015Ns
m2 .

Boundary conditions and Solver set-up

The modelled riser section represents a part of the real riser that is located far away from
the seabed and the water surface. Except for the inlet- and the outlet boundary, all other
surrounding boundaries have been modelled with symmetry conditions. The properties of the
solver are:

Table 6: Simulation settings and boundary conditions for flow past short riser

Settings Choice

Temporal discretization 2nd order
Convection scheme 2nd order upwind
Turbulence model Standard Spalart-Allmaras
Flow Segregated
Time model Implicit unsteady
Solver algorithm SIMPLE
Time step 0.001s
Simulated time 20s

Boundary conditions:

Riser No-slip wall
Inlet Velocity inlet
Outlet Pressure outlet
Left boundary Symmetry plane
Right boundary Symmetry plane
Upper boundary Symmetry plane
Lower boundary Symmetry plane

A free stream velocity U = 1m/s and a diameter on the riser D = 0.2191m correspond to a
Reynolds number Re = 1.5 × 105. A Reynolds number of Re = 1.5 · 105 is fairly high and the
vortices are unsteady, see Figure 4. Flow around circular cylinders at high Reynolds number
is quite well documented and data from these experiments are compared with results from the
short riser analysis.

5.2 Results CFD on short riser

This result chapter is divided into three parts. The first section presents the lift coefficient
for the three different turbulence models and the three different meshes. The second part is
similar to the first section, but with focus on the drag coefficient. The last section is about wall
treatments and how these affect the drag- and lift coefficient.
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5.2.1 Lift coefficient

The lift coefficient for the coarse mesh, Mesh1 are presented in Figure 28. Figure 29 and Figure
30 show the results for the medium mesh, Mesh 2 and the fine mesh, Mesh 3 respectively.
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Figure 28: Lift coefficient for the coarse mesh, Mesh 1

When studying the shedding frequency for Mesh 1, one can see that the k − ε model and the
Spalart-Allmaras model are almost identical, whilst the SST k − ω model has a slightly lower
shedding frequency. The amplitude of the lift coefficient is fairly unsteady for the SST k − ω
model and a significant drop in the amplitude can be seen at t = 10s. Opposite to SST k − ω
model, the Spalart-Allmaras model exhibit an increase of the amplitude at t = 10s and reach
it maximum, CL = 0.55 at t = 13.8s. The k − ε model is very steady around an amplitude of
CL = ±0.4
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Figure 29: Lift coefficient for the medium mesh, Mesh 2

Figure 29 shows that the magnitude of the oscillations are fairly equal for the three models, but
only half of the magnitude compared to the coarse mesh. Notable is that the SST k − ω model
start to oscillate very late compare to the other models and the other mesh qualities.
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Figure 30: Lift coefficient for the fine mesh, Mesh 3

The finest mesh should be the most accurate, but in this case does at least the lift coefficient
for Mesh 3 not behave as expected. The k − ε model follow a clear pattern with decreasing
magnitude of the lift coefficient when the mesh is refined. The Spalart-Allmaras model and the
SST k−ω model for Mesh 3 are somewhere in between the coarse mesh and the medium mesh.

Figure 31 show the variation of the lift coefficient for the SST k − ω model for the different
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meshes. The amplitude for Mesh 1 are larger than for Mesh 2 and Mesh 3 until t = 10s.
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Figure 31: Lift coefficient for the SST k − ω model

5.2.2 Drag coefficient

The drag coefficient is presented in the same manner as the lift coefficient. According to [21] ,
a ratio L/D = 20, should correspond to a drag coefficient CD = 0.91.

0 2 4 6 8 10 12 14 16 18 20
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Time [s]

D
ra

g 
co

ef
fic

ie
nt

 

 

k-ǫ

Spalart-Allmaras

SST k-ω

Figure 32: Drag coefficient for the coarse mesh, Mesh 1

Independent of mesh, the largest value for the drag coefficient is obtained with the SST k − ω
model, followed by the Spalart-Allmaras model. In the time interval 5 < t < 12 and at t = 20
the drag coefficient for SST k − ω model with Mesh 1 is very close to 0.9.
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Figure 33: Drag coefficient for the medium mesh, Mesh 2
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Figure 34: Drag coefficient for the fine mesh, Mesh 3

The drag coefficient behave more as expected than the lift coefficient and no large deviations
between the meshes are shown. The largest values of the drag coefficient are obtained with
Mesh 1. The magnitude of the drag coefficient are lower for Mesh 2 and Mesh 3 but not in
large extent and it seems that it starts to converge.
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Figure 35: Drag coefficient for the SST k − ω model

The Strouhal number are correlated to the Reynolds number and Re ≈ 1.5× 105 correspond to
St ≈ 0.20. A summary of the results from the CFD simulations are presented in Table 7. The
r.m.s values of the lift coefficient and the drag coefficient are measured in the interval 4 < t < 20.

Table 7: Compilation of results

Mesh k − ε SST k − ω Spalart-Allmaras
C ′L,rms CD,rms St C ′L,rms CD,rms St C ′L,rms CD,rms St

Mesh 1 0.33 0.69 0.25 0.32 0.87 0.24 0.38 0.75 0.25

Mesh 2 0.11 0.67 0.27 0.13 0.79 0.24 0.15 0.70 0.25

Mesh 3 0.11 0.67 0.28 0.23 0.79 0.25 0.3 0.71 0.26

Except for Mesh 1 the drag coefficient is under predicted, particular for the k − ε model. The
Strouhal number for all meshes and turbulence models are in the interval 0.25 < St < 0.28,
which is slightly higher than the reference value. Notable is that the Strouhal number increase
with finer mesh and deviates more from the reference value. The SST k − ω model is closer
to this reference values both in terms of drag coefficient and Strouhal number. The shedding
frequency for Mesh 1 with the SST k − ω model is fs = 1.09Hz.

5.2.3 Near wall treatment

Three different wall treatment approaches is evaluated in this study. The reference value is
Mesh 1 with the SST k − ω model as turbulence model, see Figure 31 and Figure 35. With
a High y+ wall treatment is the resulting y+ > 30 at a major part of the riser, but locally
y+ ≈ 15. The y+ value when the Low y+ wall treatment is applied is y+ < 0.54. The lift and
drag forces are shown in Figure 36 and Figure 37 and the deviations from the model with All
y+ wall treatment where 3 < y+ < 63, are significant.
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Figure 36: Variation of lift coefficient with different wall treatments
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Figure 37: Variation of drag coefficient with different wall treatments

5.3 Discussion CFD on short riser

The mesh quality is probable the most decisive parameter in CFD simulations. The evaluated
meshes in this thesis are not appropriate for more detailed studies. However, the purpose of
the thesis is to find a method for simulating VIV in large scale risers. Hence, very good mesh
resolution are not applicable.

Using a block structure for this application is appropriate, but a more optimized design is
preferable. The size of the blocks is not investigated in detail and Block2 is probably larger
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than required. The shape of the block is not either optimized and a block with conical shape
should be more suitable. It is also desirable to have one block with slowly growing cell sizes
instead of a couple of blocks with different grid size.

Another critical issue is how the flow should be solved. In this thesis, turbulence models are
used to model the turbulent flow, but turbulence models are just only models of reality. How
accurate a model is for one specific flow case, depends on several parameters and the model
should be verified with experiments under same conditions. Assumptions according to the mesh
and turbulence model makes that it is not expected that the results in this analysis comply fully
with experiments.

The SST k − ω model is, not unexpected, closer to the experimental values for drag coefficient
and Strouhal number than the other turbulence models. The lift coefficient is more difficult to
compare since the experimental values are more difficult to interpret. The lift coefficient for the
SST k−ω model and the Spalart−Allmaras model is fairly unsteady and further refinements
of the mesh is necessary to obtain convergence. The k− ε model follow a more clear pattern for
all evaluated parameters, but it is also the model with worst the performance.

Three different types of wall treatments have been evaluated. Figure 36 and Figure 37 show
large differences between the models. The Low y+ wall treatment has very fine mesh resolution
in the near wall cells and a y+ well below 1. The y+ for the High y+ wall treatment is a bit too
small at a minor part of the riser surface but in general well above 30. Wall treatments have
shown to be tricky and All y+ wall treatment should be used in most cases.
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6 Fluid-Structure Interaction on riser

Solving FSI problems with structures undergoing large deformations, such as the flag in Turek&Hrons
benchmark, see Section 3, include several challenging issues. How to obtain a steady solution
for these kinds of problem is not obvious. A large part of this thesis has been related to stability
parameters in the coupling procedure. Before the coupling procedure can be studied, each field
must be analyzed separately to obtain stable solutions without any interaction. When starting
to interact between the fields, experience from the separate analysis can be useless since the
prevailing conditions for fields in motion may be totally different. Two risers, Model 1 and
Model 2 with different structural properties has been studied.

6.1 Method Fluid-Structure Interaction on short riser

6.1.1 Geometry and mesh

The fluid domain for this FSI analysis is the same as in Section 5.1.1 and the fluid mesh is, based
on recommendations in Section 5.3, the same as the coarse mesh, Mesh1. The riser is modelled
in Abaqus with 3975 quadratic, second-order, thick shell elements, S8R. For more details about
S8R, see [43]. The circumferential mesh density has shown to be important in FSI analysis,
although the solvers can handle a small gap between the interface surfaces. The riser has been
modelled with 25 elements in circumferential direction, but fewer elements may be preferable to
reduce the computational time. Since the coupling frequency is high, the structure will be solved
many times within each time step and a cheap structural mesh is important. Shell elements are
easy to implement in FSI analysis since the coupling surface is clearly defined. The structural
mesh is shown below.

Figure 38: The meshed riser

Material properties

The properties for the fluid is, as in Section 5.1.1 water with density ρf = 1025Kg
m3 and dynamic

viscosity µf = 0.0015Ns
m2 . The real riser is mainly made of steel and has low eigenfrequencies, see

Section 4.2 and the eigenfrequencies are related to the length and the stiffness of the riser. In
this analysis, only a short section is studied and the same stiffness cannot be used to obtain the
same eigenfrequencies as for the full scale riser. The span of eigenfrequency, interesting in a VIV
point of view is stated in Section 4.3 and based on these data, the short riser is modelled. The
density and Poisson’s ratio of the riser is the same as steel, namely ρs = 7800Kg

m3 and νs = 0.3.
The main assumption with this material model is Young’s modulus, which has been reduced
significant, more than thousand times smaller than steel to a value of Es = 120MPa for Model
1 and Es = 160MPa for Model 2. The first eigenfrequency for the short riser with Model 1 is
1.22Hz, which correspond to a reduced velocity of Vr = 5.56. The first eigenfrequency for the
short riser with Model 2 is 1.39Hz, which correspond to a reduced velocity of Vr = 6.36. A
Raleigh damping with α = 0.0028 and β = 0.0014 is introduced in the structure and the total
mass of the riser section is m = 485.82Kg
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Boundary conditions and Solver set-up

Many of the settings for this analysis is the same as used in previous sections, but the time step
has been reduced to get stability in the coupling.

Table 8: Simulation settings and boundary conditions for FSI on short riser

Settings Choice

Temporal discretization 2nd order
Convection scheme 2nd order upwind
Turbulence model SST k − ω
Flow Segregated
Time model Implicit unsteady
Solver algorithm SIMPLE
Time step 0.0007s

Boundary conditions:

Fluid domain:
Riser No-slip wall
Inlet Velocity inlet
Outlet Pressure outlet
Left boundary Symmetry plane
Right boundary Symmetry plane
Upper boundary Symmetry plane
Lower boundary Symmetry plane

Structure:
Lower end (z=-4.382m) Pinned
Upper end (z=0) δx = 0, δy = 0

To avoid buckling and stabilize the riser, tension at the upper end is applied. The magnitude
of the top tension is T = 400N for both Model 1 and Model 2. The tension has small effect on
the elongation of the riser, but give support so it not deform by its own weight.

The stability in the coupling depends on a number of parameters. Three important parameters
to obtain more stable solutions are described below.

• Large peaks of the pressure and the shear stress, which are exported to Abaqus, can be
devastating and lead to rapid divergence. A clipping parameter has been introduced to
reduce peaks of the exported values.

• The time step has been reduced to ∆t = 0.0007s, since larger time steps have shown to
give diverging solutions.

• Making the fluid slightly compressible has shown to be an effective method to obtain more
stable solutions, see Section 3.4.

The FSI simulation is performed in a fully developed flow. Hence, the first six seconds in the
analysis is simulated with fixed and rigid cylinder.
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6.2 Results Fluid-Structure Interaction on short riser

This model has not much lower stiffness and the ratio L/D is much smaller than for real risers.
Hence, comparison with existing models is not feasible and no clear conclusions can be drawn.
The most important with these results is to see if the physics behave in accordance with the
theory.

(a) Velocity field at t = 4.9s for Model 1 (b) Vorticity field at t = 4.9s for Model 1

Figure 39: Velocity and vorticity field at z = 0m, z = 2.5m and z = 4.382m

Figure 39a show the velocity field and the deformed riser at the last time step of the simulation
t ≈ 4.9s. The riser is free to move in vertical direction at the top end, see Table 8. Therefore,
the deformation of the riser is largest slightly above the z/2 and the control point at z = 2.5 is
chosen as reference point.

Figure 40: The In-line displacement for Model 1 and Model 2 at z = 2.5
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As one can see in Figure 40, the In-Line displacement for Model 2 is smaller than for Model 1.
Only a few oscillations has been simulated and no critical displacements has been developed yet.
In this early state, a smaller displacement is expected for Model 2, since the model is stiffer than
Model 1. However, the forces on Model 2 are larger and it may result in more critical conditions
after a while, see Figure 41.

(a) Force coefficients for Model 1 (b) Force coefficients for Model 2

Figure 41: Force coefficients for Model 1 and Model 2

A further analysis of Model 2 is not possible due to the time limit of the thesis. Hence, the fol-
lowing results are only from Model 1. The displacement in x-direction, the In-line displacement
is much smaller than the Cross-flow displacement. As described in Section 2.2.6, the Cross-flow
displacement should be much larger than the In-line displacement, but the difference in am-
plitude is larger than expected. The amplitude of the Cross-flow displacement increases in a
clear manner and the maximal displacement within the simulated time correspond to a value
of A/D = 0.62. However, the amplitude is still growing and the maximum value of A/D is
not obtained. The period of the oscillations is δt = 0.88s, which correspond to a frequency of
fv = 1.14Hz.
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Figure 42: The Cross-Flow displacement at z = 2.5m for Model 1
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Figure 43: The In-Line displacement at z = 1.5m, z = 2.5m and z = 3.5m for Model 1

The In-Line displacement is more unsteady than the Cross-Flow displacement and does not
follow a smooth curve. This is particular evident at 8.5 < t < 9.8 but similar behavior has
been obtained for other riser analysis, see [10]. The shifting In-Line displacement makes that
the motion of the riser becomes somewhat strange.
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Figure 44: The motion i the x-y plane at at z = 2.5m for Model 1

During the first two seconds after the FSI simulation started (6s < t < 8s), the drag coefficient
are unsteady. After t = 8s, both the drag and lift coefficient increase in a clear manner and the
oscillation frequency for the drag is two times the oscillation frequency for the lift, in accordance
with the theory.

Figure 45: Force coefficients for Model 1
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6.3 Discussion Fluid-Structure Interaction on Riser

The computational time, using 22 cpus for a fixed riser is δt = 28.8s for one time step with 20
inner iterations. The computational time for one iteration is approximately 1.4s. The coupling
procedure is very time-consuming and it is desirable to use as few coupling iterations as possible.
The computational time for one time step for the fully coupled riser section with 18 cpus for
STAR-CCM+ and 6 cpus for Abaqus, 20 inner iterations and 12 coupling iterations is 125s. The
time it takes for one coupling iteration is then approximately 8s, more than 5.5 times longer
than for a pure CFD iteration. The required time for each structural iteration varying as well
as the required coupling iterations. To make this method commercial for larger models, the
settings in the structural solver must be evaluated.

The short riser is much stiffer than the flag in the benchmark and the Co-simulation displace-
ment converges faster for the short riser. 20 inner iterations are definitely sufficient for both
these models, but for more flexible structures, a larger number of coupling iterations is required.
The fluid converges within 20 inner iterations so with a more flexible structure it is suitable to
introduce a new stopping criterion so that both the number of inner iterations and Co-simulation
convergence are satisfied.

The simulated time should be longer to ensure that the solution converge and nothing unex-
pected occurs. More analysis with different conditions of both the fluid and the structure should
be performed to make an overall analysis. It is interesting to see if it is possible to simulate
higher modes. Abaqus 6.12 does not support a Co-simulation coupling with STAR-CCM+ using
pipe elements in an easy way. Use of pipe elements are preferred in a time-consuming perspective
and it is appropriate to get this coupling to work so existing riser models based on pipe-elements
easy can be implemented.

The mesh used for the FSI simulation is the coarsest of the three evaluated meshes, Mesh 1.
However, since no convergence is obtained from the mesh study and no turbulence model pre-
dict the reference value very well, Mesh 1 is a reasonable choice. The FSI simulation in this
thesis should be compared with one that uses a mesh that predicts the reference values better.
Comparison with experimental values and results from a simulation based on empirical models,
such as SHEAR7 is necessary to verify the model.
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7 Concluding remarks

A method to simulate VIV on risers has been developed and the model behaves in a reasonable
way. The solution of the model is stable and somewhat conservative, hence not very efficient and
reduction of computational time is important. The method must be verified before any proper
conclusions can be drawn. Flows with different Reynolds number should be evaluated to get a
more clear view of the method. The most interesting test case is to reduce the stiffness of the
structure and see if the method is able to simulate higher-order eigenmodes.

Two-way FSI is a very challenging field in engineering analysis and a carefully selected time
step is one of the most important parameter regarding FSI. In pure CFD simulations, the time
step must be sufficiently low to predict the flow accurate. In FSI simulations, especially in cases
with significant motion of the structure, the solution tends to diverge if the time step is too
large. The time step equal to the one used in pure CFD simulation is in general sufficient for an
FSI simulation, but slightly smaller time step is preferable to avoid failures. A small time step
smooths out large oscillations and the results become more accurate.

The computational time is a crucial parameter when planning FSI analysis related to risers since
the computational domain is very large. Optimization of the fluid mesh is particularly important
and refinements in the mesh should be used with afterthought. Refining the mesh very much
is not realizable since only small refinements of the mesh in the block structure increase the
total number of cells dramatically. The results from the mesh study in Section 5 is difficult to
interpret since the results not converge clearly. Hence, further evaluations of the fluid mesh are
recommended.

In the FSI analysis of the riser, the coarsest mesh, Mesh 1 has been used. However, the
most time-consuming part of the FSI analysis performed in this thesis is solving the structural
equations in Abaqus and the coupling procedure itself. The computational time for the FSI
simulation is significantly larger compared to pure the CFD simulations with same mesh. The
largest focus in this thesis has been related to CFD, but it has been shown that the cheap
structural solution is very important and this should be studied further. An iterative coupling
algorithm is necessary. Therefore, optimization of the required number of coupling iterations
within each time step is very important. The optimization should be time dependent since the
prevailing conditions change a lot during a complete simulation, as well as the required number
of coupling iterations. One way to do this is to exchange data at every second time step and
introduce a stopping parameter that require convergence in the Co-simulation before advancing
in time.

Shell elements are used for modelling the riser and only one grid is studied. A coarser mesh will
surely not affect the solution in a negative sense. Shell elements is rather computationally ex-
pensive and use of pipe elements will reduce the computational time significant. Unfortunately,
Abaqus 6.12 does not support this coupling with STAR-CCM+ but this approach should be
studied further for later versions of Abaqus.
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