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We demonstrate a planar superconducting microwave resonator intended for use in applications

requiring strong magnetic fields and high quality factors. In perpendicular magnetic fields of

20 mT, the niobium resonators maintain a quality factor above 25 000 over a wide range of applied

powers, down to single photon population. In parallel field, the same quality factor is observed above

160 mT, the field required for coupling to free spins at a typical operating frequency of 5 GHz. We

attribute the increased performance to the current branching in the fractal design. We demonstrate

that our device can be used for spectroscopy by measuring the dissipation from a pico-mole of

molecular spins. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4769208]

I. INTRODUCTION

High quality (Q) factor superconducting resonators have

become instrumental in the interrogation of solid state

qubits, thanks to their ability to concentrate fields, reaching a

good coupling between a quantum system under study and

the resonator.1–3 Recently, an ensemble of spins embedded

in a crystal has become a subject of quantum manipulation

by interaction with a superconducting resonator.4,5 Spin sys-

tems are very promising quantum objects since their coher-

ence times can be very long. However, the magnetic field

required to bring free-electron spins into resonance with

microwave field exceeds many times the field a standard

coplanar waveguide (CPW) resonator can withstand. That is

why the first experiments with spins were done on systems

with large zero-field splitting from a crystalline field, making

them compatible with the readout using superconducting

resonators.

Obviously, there is a need for high quality resonators

capable of operation in high magnetic fields to widen the

choice of spin systems available for quantum measurements.

Much attention has been given to studies of coplanar resona-

tors at milliKelvin temperatures in order to pinpoint and

eliminate different types of dissipative processes limiting

the quality factor.6–8 Several methods have been developed

to improve the quality factors in magnetic fields, such as

antidots in ground planes and the central conductor of the

resonator9–13 as well as narrow slots in the center conduc-

tor14 to reduce the degrees of freedom for vortices in the

superconductor.

Generally speaking, strong enough magnetic field intro-

duces vortices in the superconductor and can cause depairing

of Cooper pairs. Both effects lead to additional dissipation

in the AC field of a superconducting resonator and can be

described as an extra effective resistance that the supercon-

ductor acquires when placed in the magnetic field.15 By

reducing the current in the resonator in regions where this

effective resistance is large, it should be possible to reduce

the losses caused by magnetic fields.

In this paper, we report design, fabrication, and measure-

ments on niobium fractal superconducting resonators operating

at a typical resonance frequency of f0 ¼ 5 GHz, preserving

high internal quality factors of more than 2:5� 104 in mag-

netic fields corresponding to the Zeeman splitting for free spins

hf0=2lB. We show experimentally and demonstrate theoreti-

cally that our fractal design, thanks to its specific current

branching and current distribution, works well by reducing

losses caused by magnetic fields.

The outline of this paper is the following. First, we

describe the design and general characteristics of the fractal

resonator. The experimental details are described in Sec. III.

In Sec. IV A, we describe the behavior of the resonators in

magnetic field and in Sec. IV B we give a theoretical descrip-

tion to why they show significantly reduced loss rates in this

regime. Next, in Sec. IV C, we investigate how the ground

planes influence the overall behavior in magnetic fields. We

find that also here a fractal-like topology is advantageous.

We then look into the power dependence (Sec. IV D) of the

resonators and find that they suffer more from zero-field loss

than conventional coplanar resonators, albeit in magnetic

fields this loss is not dominating. Finally, in Sec. IV E, we

use the fractal resonator for electron spin resonance (ESR)

spectrometry and we measure the dissipation from a micro-

scopic volume of organic molecules containing free radicals,

showing that these resonators indeed are useful for free spin

interaction.

II. RESONATOR DESIGN

In Fig. 1, we show a superconducting resonator made out

of a fractal network. At a first glance, it is difficult to get an

overview of its structure, but the idea behind it is clarified in

Fig. 2. Starting from a half-wavelength coplanar resonator,

we turn it into a U-shape and remove the ground plane

between the “prongs,” so that the mutual capacitance betweena)Electronic mail: degraaf@chalmers.se.
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the prongs becomes important (see Fig. 2(b)). Such a struc-

ture supports a resonance with a current distribution sketched

in Fig. 2(a), very similar to the traditional k=2 resonance. We

can increase the mutual capacitance per unit length between

the prongs by creating an interdigitated capacitor as shown in

Fig. 2(c). Extra capacitance per unit length allows us to

shorten the resonator length for a given resonance fre-

quency.16 We call the resonator shown in Fig. 2(c) the first

fractal iteration of the U- shaped resonator. Going further, we

can create the second fractal iteration of the resonator, shown

in Fig. 2(d). Obviously, it will be shorter for the same reso-

nance frequency. Finally, we can think about the third fractal

iteration of our resonator (shown in Fig. 1). All fractal itera-

tions of the U-shaped resonator support the same type of elec-

tromagnetic mode, similar to the traditional k=2 resonator,

while the third iteration fractal resonator is 10 times shorter

than its parent resonator in Fig. 2(b).

Importantly, the fractal structure is naturally compatible

with the technique of dividing the superconductor in narrow

strips, widely used to increase resilience of superconducting

resonators to magnetic fields.17 In our design, we use a width

of 2 lm for most features. This is readily achieved with

standard lithography techniques, but still large enough not to

be adversely affected by additional kinetic inductance and

nonlinearities due to length scales comparable to penetration

depth and coherence length in niobium, the material we use

for its high critical fields. The distributed capacitance and

inductance in this quasi-one-dimensional resonator are still

geometrically inseparable, and the resonators support an

electromagnetic resonance associated with a “slow” standing

electromagnetic wave. This is contrary to similar-looking

resonators studied earlier.18 There, the inductive coupling

and different cavity modes were investigated for their possi-

ble use in circuit quantum electrodynamics to improve the

coupling to qubits and reduce decoherence. In our case, the

same argumentation can be applied albeit with the important

distinction that our resonators are still distributed.

Our resonators retain an important and useful feature of

traditional CPW resonators: it allows concentration of cur-

rent at the antinode at x¼ 0 (see Fig. 2). This feature ensures

the possibility of a good coupling of spin systems to the

resonator, and we also use it to inductively couple to the

transmission line (see Fig. 1(b)). Despite their complex

geometry, these resonators have a single mode in the range

of 4-8 GHz. Due to the inductive coupling, only antisymmet-

ric modes are excited, with the second mode being 3k=2.

The coupling was designed to be relatively weak with Qc

ranging from 0:6� 105 up to 3� 105.

III. EXPERIMENT

The resonators in this study were fabricated on R-plane

sapphire and high resistivity silicon. After sputtering a

FIG. 1. Optical image of one of the resonators used in this study. Both

metalized areas (light grey) and gaps have a typical dimension of 2 lm. The

ground plane has the same structure as the resonator itself. The prongs are

terminated with a wide gap interdigital capacitor so that the resonance

frequency can be tuned by covering the terminal area with a dielectric plate.

Top right and bottom right panels are close ups on the two ends of the reso-

nator. Green square indicates the location of the inset in Fig. 9.

FIG. 2. (a) Current distribution along one branch in a balanced half wave

resonator sketched in (b). I(0) is the current where the two branches

meet, i.e., the voltage node. (c) First order distributed fractal resonator of

equal frequency loaded with N1 secondary branches each carrying a current

�Ið0Þ=N1. (d) 2nd order fractal resonator where the secondary branches are

split into N2 sub-branches. For the third order fractal, used in our design, the

main branch of length L0 will be 10 times shorter for the same resonance

frequency. For illustrative purposes, the relative length of the resonators is

not to scale.
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200 nm thick niobium film, the resonators were patterned

using electron beam lithography and subsequent etching in a

CF4 : O2 (20:1) plasma. Measurements were performed in a

helium flow cryostat and a dilution refrigerator using a vec-

tor network analyzer to measure the transmitted microwave

signal, S21. Low temperature, low power measurements were

done by feeding the excitation signal through heavily

damped and thermalized coaxial lines. We used a low noise

amplifier (TN ¼ 5 K and gain þ30 dB) isolated by two low

temperature circulators.

Analysis was done by fitting the measured data to a

skewed Lorentzian

S21 ¼
Smin þ 2iQdf

1þ 2iQdf
þ a; (1)

where Q ¼ QiQc=ðQi þ QcÞ is the total quality factor, df
is the normalized frequency around the center frequency,

Smin ¼ Qc=ðQi þ QcÞ is the transmission at resonance, and a
is a complex asymmetry parameter accounting for some of

the microwave signal by-passing the resonator. From this,

the internal ðQiÞ and external (Qc) quality factors were

extracted. Samples were zero-field cooled and all measure-

ments in magnetic field were performed over one single

sweep to avoid permanent flux trapping.

We have complemented the low temperature measure-

ments with additional measurements done at higher power

and temperature (1.7 K). As demonstrated and discussed in

Sec. IV, both these parameters have, within this range in

power and temperature, very small effect on the performance

of the resonators, and we can safely extend these results to

low powers and temperatures.

IV. RESULTS AND DISCUSSION

A. Magnetic field dependence of the Q-factor

In Fig. 3, we show a typical behavior of the microwave

transmission around the resonance feature as we increase the

magnetic field. There is good agreement between measured

data and the fit to Eq. (1) even at high magnetic fields and

relatively low power.

Following the terminology of several other groups,9,10,13

we define a quality factor QB, associated with losses induced

by magnetic field

1

QB
¼ 1

QiðBÞ
� 1

QiðB ¼ 0Þ : (2)

We define the magnetic field losses from the internal quality

factor since it gives an intuitive understanding of the losses

inside the resonator and we do not measure any noticeable

variations in the coupling as we change the magnetic field.

Fig. 4(a) shows the internal quality factor Qi versus

magnetic field applied parallel to the substrate. Fig. 4(b)

presents extracted plots for Q�1
B for the two resonators in

Fig. 4(a) taken at 20 mK and two additional measurements

taken at 1.7 K. Remarkably, all data collapse onto a single

curve. The measurements performed at 1.7 K (squares

Fig. 4(b)) follow almost the same curve as the measurements

performed at 20 mK, despite the large differences in temper-

ature and measurement power. Figs. 4(c) and 4(d) present

the field induced dissipation for resonators subjected to per-

pendicular magnetic field. At 20 mT, we maintain internal

quality factors above 25 000. In the case of parallel field, the

resonators can be subjected to 160 mT for the same quality

factors, sufficient for free spin ESR at 5 GHz.

From Figs. 4(b) and 4(d), it is also evident that QB is

power independent10,19 even down to the single photon

regime. This power independence is expected in the high

power regime for a narrow zero field cooled strip,19 and we

show that this also holds for extremely low powers. In fact, the

average number of photons in the cavities is around hnphoti
� 5� 10 when the resonators are excited with �143 dBm in

zero field. As we increase the magnetic field, we change Qi of

the resonators and the occupancy is reduced to hnphoti � 0:2.

B. Flux focusing, current distribution, and current
branching

A few factors contribute to the superior quality of fractal

resonators in high magnetic fields. First of all, in a standard

CPW design, the magnetic field expelled from the ground

plane is concentrated in narrow gaps between the ground plane

and the central strip—the effect known as flux focusing. For a

typical coplanar design, the flux focusing factor could be as

high as 500.12 For a fractal design, the flux focusing is dramat-

ically reduced, because the non-metalized area surrounding

the fractal resonator is 150 lm wide, which is�30 times wider

than a gap in a typical coplanar resonator. The flux focusing

can be reduced even further by replacing a solid ground plane

with fractal-like structure which allows all excess flux to

escape (a detailed discussion follows in Sec. IV C).

The flux focusing factor for our resonators can be esti-

mated as follows: by scaling the data in Fig. 4(d) by a factor

c � 8 in magnetic field, we recover qualitatively the same

curve as in Fig. 4(b). This number is to be compared against

the expected scaling for the most simple geometry: a single

strip of superconducting thin film. For a strip, the vortex

entry field for in-plane orientation can be estimated as20

B
jj
S � /0=2

ffiffiffi
2
p

pkLn; substituting typical values21 for the

London penetration depth kL � 90 nm and coherence length

n � 50 nm, we arrive at B
jj
S � 50 mT. This is close to the

observed onset (�40 mT) of vortex dissipation in Fig. 4(a),

where no flux focusing is expected. On the other hand, for

FIG. 3. Selected transmission amplitudes for one resonator measured at

�108 dBm and a perpendicular field going from 0 to 100 mT. Black lines

are fit to theory and grey dots are measured raw data.
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normal to plane orientation, the expected value for the entry

field is given by Ref. 17 B?S � /0=2pkLn�
ffiffiffiffiffiffiffiffiffiffiffiffi
2t=pL

p
¼ 17 mT for a film thickness t¼ 200 nm and strip width

L¼ 2 lm. If the normal to plane field is enhanced k times

due to flux focusing, the expected scaling factor is

c � kB
jj
S=B?S , and we therefore conclude that for our design

k � 3, more than 100 times smaller than for a conventional

coplanar design.12 Having such a small flux focusing factor

removes the need for a very precise alignment of a parallel

magnetic field.

Another common technique to minimize the vortex-

induced dissipation is to arrange antidots or narrow open

strips for trapping expelled vortices.11 The fractal structure

is, in essence, an implementation of this design idea taken to

extreme. All superconducting strips in fractal can easily be

made 2 lm wide. Moreover, while an antidot is a vortex trap

encircled by a superconductor, in a fractal design all non-

metallized areas are directly connected to a much larger

open space.

Finally, one can show that dissipation in the fractal reso-

nator only happens in the main branches, the losses in higher

order branches being negligible. Indeed, in the fractal design,

only the main branches carry the total current. The current is

then divided among the higher order branches, as illustrated

in Fig. 2. If we assume that the current density is homogene-

ous across the section of superconducting strips (which is

actually a very rough assumption that we will refine later),

then the total dissipation is

Pfractal � p0 L0 þ
L1

N1

þ L2

N1N2

þ L3

N1N2N3

þ…

� �
; (3)

where p0 is the dissipation per unit length of a fractal line

and Nk is the number of sub-branches of the k-th order. In

this particular design for a center frequency of 5 GHz,25 we

have Nk ¼ ½12; 6; 8�, and the length of the respective seg-

ments L0 � 1 mm� L1; L2; L3. It is evident that the major

contributions to dissipation come from the first term in

Eq. (3). Contributions from higher order terms are in our

case �5%.

This simple estimation is supported by our numeric sim-

ulation presented in Fig. 5. It shows that the current ampli-

tude in the 4th-order branches is at least 20 dB below the one

in the primary branches.

To estimate the vortex related dissipation in the main

branches, we shall consider the current density j(x) and flux

density B(x) distribution across the section of the primary

branch. The dissipation is proportional to13
Ð L=2

L=2
BðxÞj2ðxÞdx,

where L¼ 2 lm is the width of the strip.

To this end, we note first that for an ideal (r!1) con-

ductor, the simulated current density distribution in the main

branch is essentially the same as for a single strip (see

Fig. 5). Although we do not have a rigorous proof for this

statement, physically it is clear that for any n-order branch

carrying some current In there exists a neighboring branch

carrying an opposite current �In, next to which another

neighboring branch carrying again In and so on. On a large

scale, this means that the dipole momentum of the total mag-

netic field from high order branches is compensated. As a

result, the whole fractal structure filling the space between

the primary branches has essentially no effect on the current

distribution in the primary branches. This result, together

with Eq. (3), reduces the problem of dissipation in a fractal

FIG. 4. (a)–(d) Resonator response to external magnetic

field. Different colors indicate a different resonator.

The data in this figure come from a fractal resonator

with a ground configuration of type “B,” discussed later

in Sec. IV C. (a) Internal quality factor for in-plane

magnetic field. (b) Extracted field induced energy loss

1=QB for the same measurement. In both (a) and (b),

circles indicate measurement performed at low power

(�143 dBm) and crosses at high power (�108 dBm).

(W) and (�) indicate measurements performed at

T¼ 1.8 K and �70 dBm for two resonators identical to

the ones measured at 20 mK, but from a different wafer.

(c) Internal quality factor for normal-to-plane orienta-

tion of the magnetic field. (d) Q�1
B for normal-to-plane

orientation of the magnetic field. In both (c) and (d),

applied powers are �105 dBm (�) and �70 dBm (�).
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resonator to the much easier case of dissipation in a single

superconducting strip.

The current density in a single strip of an ideal conduc-

tor is obtained through conformal mapping

jðxÞ ¼ 2I

pL

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð2x=LÞ2

q ; (4)

where I is the total current. As our final goal is to compare

dissipation in our resonators to a standard CPW design, we

shall compare Eq. (4) to the current density in the central

strip of a coplanar resonator19

jðxÞ ¼ I

LKðL=aÞ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ð2x=LÞ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ð2x=aÞ2
q ; (5)

where K is the complete elliptic integral and a¼L þ 2 W
and W is the gap between central strip and the ground plane.

The first square-root in Eq. (5) is divergent at the strip edge,

while the second is not. This means that asymptotically

(close to the edge) the current distribution in a single strip is

the same as in slightly wider coplanar resonator. For a strip

2 lm wide, the edge current in a remote strip is the same as

in a coplanar resonator of width 2.3 lm (assuming a line

impedance of 50 X), see inset in Fig. 5.

However, the edge current divergency in Eq. (5) stems

from the fact that an ideal conductor completely expels the

microwave field, while for a superconductor the magnetic

field penetrates into the material on the scale of the London

penetration depth kL. This smears the magnetic field and

eliminates the current divergency. The simplest model for a

superconducting strip thus simply presumes the edge current

density je to be constant up to the depth kL (see Fig. 5):22

jeðxÞ ¼
I

LKðL=aÞ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kL

L 1� ðL=aÞ2
� �r : (6)

Given the current distribution (5)–(6) and a known flux

density in a superconducting strip (considered by Norris23

and later refined by Brandt and Indenbom,24 and together

referred to as the NBI model), we can, in principle, write

explicit formulas for the dissipation. But to make a compari-

son to a standard CPW design, it is sufficient to establish how

the dissipation scales when we move from a CPW with a cen-

tral strip 2.3 lm wide (which, as discussed, is equivalent to

our fractal design) to a common dimension of 10 lm. We

note first that the NBI model predicts that the flux density is

some universal function of the dimensionless coordinate x/L:

B¼B(x/L). For a given wave impedance of a CPW line, the

dissipation in the edge (kL) region does not depend on L

Pe ¼
ðkL

0

Bðx=LÞj2edx � I2

ðkL

0

Bðx=LÞdðx=LÞ: (7)

And dissipation in the bulk scales as L�1

Pb �
I2

L

ðL=2�kL

�L=2þkL

Bðx=LÞ 1

1� ð2x=LÞ2
dðx=LÞ: (8)

This implies that if the edge dissipation dominates (i.e., for

B! 0), the dissipation per unit length for a fractal structure

is the same as for a CPW resonator (assuming a hypothetic

case of no flux focusing for the latter). As our fractal resona-

tor is 12 times shorter than a CPW with the same resonance

frequency, we see that for a fractal design the low field dissi-

pation is reduced by an order of magnitude.

In a strong magnetic field, when vortices penetrate

the superconductor deeper than by kL, the per unit length

dissipation in a fractal line is �4 times higher than for a tradi-

tional 10 lm wide CPW, but the total dissipation is still

12/4¼ 3 times lower.

Using similar argumentation, we can qualitatively explain

the behavior of the loss rate observed in Fig. 4(d). At low

fields, the flux density (and also the dissipation) scales linearly

with field just at the edge; however, the flux penetration

depth is also increasing with magnetic field so that the total

FIG. 5. Numerically calculated current distribution in a segment of the frac-

tal resonator. Simulations were done using AWR Microwave Office and the

EMsight simulator. Bottom: Current density along the cross-section of the

fractal main branch (points A to B in the top panel). Points are extracted

from simulation and solid line is calculated using Eq. (4). Inset: Current den-

sity at a distance d from the edge of a single strip (blue) and an equivalent

coplanar strip (purple) for an ideal conductor. Dashed line indicates the sim-

plest model for a superconductor with a constant density up to the penetra-

tion depth kL.
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dissipation scales with a higher power of B. The exact scaling

power depends on the microscopic edge profile of the strip.24

Once the flux has penetrated deep inside the strip we recover

a linear dependence of the dissipation with magnetic field, in

accordance with the previous studies of type II resonators.11,13

The only difference being that for a narrow strip the initial

region with a strong magnetic field dependence becomes

more pronounced.

C. Ground plane optimization

In a conventional coplanar design, nearly half of the total

power dissipation takes place in the ground planes. In this

sense, the geometry of our resonators also serves to reduce the

magnitude of the induced current, since the “prong-to-prong”

capacitance Cp�p is much larger than the “prong-to-ground”

capacitance Cp�g. In fact, Cp�p=Cp�g � 103 for our particular

design. This means that the currents in the ground plane

become very small and the energy dissipated here becomes

negligible. The ground plane will, however, affect the flux

focusing and the local magnetic field experienced by the reso-

nator. Additionally, the ground planes are needed to localize

the electric field from the resonator and cannot be completely

removed without introducing significant zero-field losses. To

find the optimal trade-off between these two extremes and

to maximize the performance of the resonators in magnetic

field, we have investigated how various types of ground plane

designs influence the magnetic field associated losses of the

resonator.

Conceptually, these variations are shown in Fig. 6.

We will hereafter refer to these different designs by their

corresponding labeling in Fig. 6(b). All designs have the

same fractal resonator structure, and are made on the same

wafer under the same conditions. Design A has most of the

ground plane removed, but there is still a continuous path of

superconductor around the resonator. That is, it is not possi-

ble to connect points pA and p0 in Fig. 6(b) without crossing

a segment of superconductor. Design B has the empty area

in A filled with a fractal-like structure, such that the electro-

magnetic screening of the resonator is improved. In design C

(the design shown in Fig. 1), the ground loop is broken so

that excess flux can easily escape. Here, there is a path con-

necting any non-metalized point qC inside the fractal ground

and the point p0. In design D, the ground plane is completely

removed, except for a thin strip around the resonator used to

localize electric fields. The feeding line has also been

removed, the resonator is directly coupled by placing the sili-

con chip on a copper PCB with a transmission-line.

We measured the field induced loss rates for these

ground plane designs. The result is shown in Fig. 7 and we

have extracted the magnetic fields for which QB ¼ 105 and

2� 104 in Table I for an easier comparison.

As expected, removing the ground planes serves to

increase the resilience of the resonators to magnetic field.

However, removing all ground will spread out the electric

fields outside the resonator, and obviously Qi will drop due

to radiation losses and interaction with a large portion of the

substrate. We find that a fractal-like geometry of the ground

plane (C) provides a good trade-off. It will make sure there

is no trapped flux around the resonator and at the same time

it provides good screening such that the electric fields and

radiation losses are kept relatively small. Additionally, any

currents induced in these ground planes will lead to less

dissipation based on the same arguments as for the resonator

itself.

In the best performing design (C), the ground plane

around the resonator is similar to the structure of the

FIG. 6. (a) Left: The topology of the fractal resonator. For any point p inside

the fractal there exists a path to the point p0 outside the structure such that no

superconducting segment needs to be crossed. Right: Graphical representa-

tion of the same topology as in the left figure, used in (b). The grey area rep-

resents the fractal structure. (b) Designs of various resonator/ground

configurations discussed in the text. Hatched areas indicate larger unpatterned

ground planes and solid lines indicate a continuous path of superconductor.

There exists a path pC=D � p0 for topologies C and D. In topology C, there is

also a path qC � p0 for any point qC in the ground plane, whereas in design D

the ground plane is reduced to a small segment just around the resonator. The

designs are sorted alphabetically in order of their performance (Q) in parallel

magnetic fields above 100 mT, such that Q increases from A to D.

FIG. 7. Magnetic field associated loss rates in parallel field for the four

different topologies shown in Fig. 6. (�)¼Topology A, (�)¼B, (D)¼C,

(w)¼D. We also show the hysteretic behavior observed when returning the

field to zero.
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resonator itself. We deem this design to be the best one for

our target application despite that in Fig. 7 design D shows

even lower values for Q�1
B . The reason is that design D has a

much lower internal zero field Q, and for the relevant mag-

netic fields measured, this internal loss rate is always domi-

nating. However, in the end, the optimal design depends on

the target field for the specific application.

For all designs in Fig. 7, we also show the hysteretic

behavior as we return the magnetic field to zero. We observe

that there is almost no hysteresis at all for the fractal design

up to some specific magnetic field Ba. This is shown in

Fig. 7 for design D. We see the same behavior for the other

designs as well, but at slightly lower threshold fields Ba.

When B > Ba, the resonator enters a dissipative state. It will

remain in this state even for fields B < Ba until some other

threshold occurs at Bb < Ba. At this point, the original Q is

almost immediately recovered. In accordance with Ref. 13,

there is hysteresis at high fields, but as we return to zero field

we recover the same loss rates as in the initial state (Fig. 7).

In fact, in most of our samples, the resonators returned to

exactly the same state. Typical variations are on the order

of a few percent, which, at least to some extent, can be attrib-

uted to noise in the measurement, fitting errors, and tempera-

ture drift. The difference compared to Ref. 13 most likely

originates in the fractal geometry, and in perpendicular field

our observed hysteretic behavior cannot be fully explained

by the model given in Ref. 13. This suggests more compli-

cated vortex dynamics in the fractal design. However, this

will be a topic for further research.

D. Power dependence

One potential drawback of the fractal design is an

increased perimeter. This could potentially lead to coupling

to a larger number of defects and two-level fluctuators

(TLFs) in the materials involved. For this reason, we meas-

ured the power dependence of two resonators, plotted in

Fig. 8, to verify that the increased surface area of the fractal

design does not significantly affect the behavior of the reso-

nator. We observe a typical reduction in the quality factor

with excitation powers. The lowest measured power in our

case corresponds to �0:1 photons on average in the cavity.

As we approach single photon numbers, we observe a satura-

tion in the quality factor. This can be explained by assuming

that the cavity is coupled to an ensemble of weakly coupled

TLFs. As we increase the excitation power, we saturate these

TLFs and the Q-factor increases. In general, the power

dependence in the linear regime can be described as6,7

QðPresÞ ¼ 1þ Pres

P0

� �a

; Pres ¼
2

p
Z0

Zr

Q2

Qc
Pexc; (9)

where Pres is the equivalent power of the voltage standing

wave inside the resonator, P0 is a characteristic power below

which the TLFs remain in the ground state; a is material and

geometry dependent and describes the interaction of the pho-

ton field with the TLFs. In our case, we find a ¼ 0:10 and

0.13 for two resonators on the same substrate. These are rela-

tively large numbers, an indication of large variations of

electric field distribution across the resonant structure and

interaction with many differently coupled TLFs.7,26 The rela-

tively low saturation quality factor also indicates that a large

number of TLFs are involved, as expected from the fractal

geometry. However, the magnetic field induced loss rates

will still be dominating in this structure at the magnetic fields

required for free spin interaction. But for further improve-

ments and operation in the single photon regime, this is an

issue that may need to be addressed.

E. ESR spectrometry

Fig. 9 shows the measured dissipation for a resonator

on which we have placed a small flake of a 2,2-diphenyl-

1-picrylhydrazyl (DPPH) crystal. DPPH is an organic mole-

cule that is commonly used in ESR as a reference for its

simple spectrum. We estimate this flake to contain 1011

�1012 molecules, each having a free radical. The measure-

ment was performed at high temperature (1.7 K). When the

Zeeman splitting of the free spins is equal to the frequency

of our resonator (here, 3.73 GHz), we observe a large

increase in the dissipation.

This measurement proves that the resonator described in

this paper is suitable for ESR spectroscopy; it maintains all

important properties of a distributed resonator and it is still

possible to achieve a strong coupling with the spin system.

While improving the magnetic field properties of our super-

conducting resonator, we have also addressed several other

FIG. 8. Internal quality factor for two resonators (same as in Fig. 4) as a

function of equivalent internal power in the resonator measured at 20 mK at

zero magnetic field. Black lines are fits to TLF theory according to Eq. (9).

TABLE I. Summary of resonator performance in magnetic field for the

different ground plane designs in Fig. 6. Numbers are the mean values taken

over several devices. In most cases, 2–4 resonators have been measured

from each sample, and for several cases we have also measured more than

one sample. All samples come from the same wafer. In all cases, the devia-

tion from these values between devices is essentially the same. For internal

Q, the deviation is about 610%, and for magnetic fields around 65%.

Topology QiðB ¼ 0Þ
B-field where

QB ¼ 1� 105 (mT)

B-field where

QB ¼ 2� 104 (mT)

A 34 200 93 145

B 103 500 137 173

C 83 300 148 177

D 37 100 157 201
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issues important for this type of measurement. The narrow

width of the superconducting strips naturally increases the

coupling, although at the same time this also limits to a vol-

ume set by the extension of the rf-magnetic field around

the strips. Furthermore, since all ground planes close to the

resonator are removed, the static magnetic field will be much

more homogeneous, resulting in a reduced line-width of the

spin ensemble.

V. CONCLUSIONS

In summary, we have demonstrated a universal approach

to reducing magnetic field induced loss in superconducting

thin film resonators. Using a fractal network in conjunction

with several previously known methods to increase resilience

to magnetic fields, we observe a large increase in the quality

factors. We measure internal quality factors above 25 000 in

magnetic fields corresponding to the Zeeman splitting equiv-

alent to the operating frequency of these resonators. We at-

tribute the increased quality factors mainly to the current

branching in the fractal geometry of our resonators.

We expect it to be possible to increase the tolerance to

magnetic fields even further by increasing the order of the

fractal, reducing the length of the dissipative branch even

more. Reducing the thickness of the Nb has also been shown

to yield improved magnetic field properties.27

As also demonstrated, we maintain all important proper-

ties of a distributed resonator when it comes to the coupling

of a spin ensemble to the resonator, and we are able to mea-

sure an ESR signal from a microscopic volume of free spins.

This significant improvement opens up for the detection

and interaction with a very small number of free spins. We

believe that our results are important for a broad range of

applications involving superconducting resonators, including

applications in high magnetic fields.
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