Developing control logic using aspect-oriented programming and sequence planning

This document has been downloaded from Chalmers Publication Library (CPL). It is the author’s
version of a work that was accepted for publication in:
Control Engineering Practice (ISSN: 0967-0661)

Citation for the published paper:

Bengtsson, K. ; Lennartson, B. ; Ljungkrantz, O. (2013) "Developing control logic using
aspect-oriented programming and segquence planning”. Control Engineering Practice, vol.
21(2), pp. 12-22.

http://dx.doi.org/10.1016/j.conengprac.2012.09.002

Downloaded from: http://publications.lib.chalmers.se/publication/168390

Notice: Changes introduced as a result of publishing processes such as copy-editing and
formatting may not be reflected in this document. For a definitive version of this work, please refer
to the published source. Please note that access to the published version might require a
subscription.

Chalmers Publication Library (CPL) offers the possibility of retrieving research publications produced at Chalmers
University of Technology. It covers all types of publications: articles, dissertations, licentiate theses, masters theses,
conference papers, reports etc. Since 2006 it is the official tool for Chalmers official publication statistics. To ensure that
Chalmers research results are disseminated as widely as possible, an Open Access Policy has been adopted.

The CPL service is administrated and maintained by Chalmers Library.

(article starts on next page)

http://dx.doi.org/10.1016/j.conengprac.2012.09.002
http://publications.lib.chalmers.se/publication/168390

Developing control logic using aspect-oriented prograngyand sequence planning

Kristofer Bengtssoh Bengt Lennartsdh Oscar Ljungkrantz Chengyin Yuah

aSekvensa AB, Goteborg, Sweden, e-mail: kristofer@sekgens
bAutomation Research Group, Department of Signals and gs@halmers University of Technology, Goteborg, Sweden
CFormerly, Research and Development, General Motors, Waivi, USA

Abstract

A fundamental functionality of a Programmable Logic Cotlieno(PLC) is to control and execute a set of operations. Batge
part of the program code is more involved in supporting thex ugth concerns like alarm, HMI, communication, safety amshual
control. Code related to these supporting concerns is tdirggied with operation execution code, the core concerhighamakes
it hard to reuse.

This paper describes a method to reuse code and functipndién developing PLC programs and code libraries. The ndetho
proposes that core concerns are planned with a softwareatietl Sequence Planner, and the supporting concernstageated
into the core concerns with a tool based on aspect-oriemtggamming.

Keywords: IEC 61131-3, Reusability, Aspect-oriented programming

1. Introduction then be implemented as a PLC program.
Support concerns are more complicated to handle since they

Programmable Logic Controllers (PLCs) have been used igre |ocated in many parts of the program and needs to be
industry for decades. They are used in various areas like Nigdopted to each operation. This paper therefore proposes au
clear power plants, farming, machinery, servo motion @intr - matic merging of supporting concerns into core concernsusi
safety control and sorting tasks. In this paper, the focuis 3 tgol based on aspect-oriented programming (AOP). AOP is
the usage of PLCs in discrete manufacturing, where theyfor e gp, emerging programming methodology (Filman et al., 2004)
ample are responsible for coordinating and executing rabdt i, computer science, and was proposed by Bengtsson et al.
machine operations, handling production sequences,d@ini (2009a) as a possible methodology to separate variousgence
information to machine operators, logging productiondat&l i 3 PLC program. That work is extended in this paper and a
communicating with other systems. A typical automated asgevelopment method is presented, including an aspect weave
sembly plant can have several hundred PLCs, controlling thgesigned for the international PLC programming standai IE
manufacturing process. 61131-3 (ISO/IEC, 2003), and a design method to plan and

An important programming task for a PLC programmer is t0specify the core concerns.
design the sequential behavior of the automation systeris Th Thjs paper contributes in two ways; the first is the method to
behavior can be specified as a set of operation sequences, Whieyse hoth core and support concerns in a structured andainifi
are unique for each program. The code that control these ORgay, which has not been fully accomplished in availablegool
eration sequences is calledre concernsn this paper. The and research. The other contribution is the introductioh@P
operation sequences will also influence other parts of tbe pr jn 61131-3 languages and the specification of an aspect weave
gram, ||ke alarm, HMI, Safety a.nd manual Contl’Ol. Theseq)art for anon Object_oriented and graphica' programming |aggua
are callecsupport concernsA challenge in industry is to reuse | the next section, related work are presented and disdusse
both core and support concerns. Aspect-oriented programming in computer science is intro-

This paper proposes a method to help PLC programmers t@yced in Section 3. In Section 4, the various concerns in a PLC
reuse code. Specifications and requirements related teonre rogram are explained based on a small example. In Section 5,
cerns are reused from earlier stages of the design process Elforototype AOP weaver for 61131-3 is described, and in Sec-

the tool Sequence Planner (Bengtsson, 2009). This tool-spegjon 6, the framework to develop a PLC program is presented.
fies operation sequences with a set of self-contained dpesat

which include necessary requirements, like interlockimdj ie-
source usage. The operation specifications are verifiechg-tr
lating them to finite state automata models extended with var The industrial practice when developing a PLC program has
ables (Lennartson et al., 2010). A supervisor can also bergen been studied by researchers, see for example Visser (1987),
ated and converted back as new requirements on the operatiotas & Tilbury (2003), Richardsson & Fabian (2006), and Hajar
(Miremadi et al., 2011). Both the verification and syntheses navis & Young (2008). These studies identify that the progra
accomplished by the solver Supremica. These operations caming activity is quite complex, where the programmer create

2. Related work

Preprint submitted to Control Engineering Practice August 30, 2012

the program based on various types of specifications and renents the detailed execution code. Sequence Planner that wi
quirements, often with differing content. The complexity t be presented later is actually influenced by these toolsstaut
create new programs makes it challenging to reuse infoamati generalization of them together with a formal operation eiod
and code from earlier stages of a development process and What is not handled by these tools is how to reuse the detailed
between various projects. implementation, which is unique for each installation.

Several companies use function blocks to reuse and struc- Object-oriented languages were developed to increase the
ture code (Ljungkrantz et al., 2010b). Function blocks @& p development efficiency with clear language syntax and well-
of the widely used international standard for PLC programsdefined structures and constructs, compared to procedu-
IEC 61131-3 (ISO/IEC, 2003). The standard also defines fiveal languages. The higher development efficiency results
inter-operable languages: Instruction List (IL), Laddédyam in better reusability, flexibility and expressiveness (Mey
(LD), Function Block Diagram (FBD), Structured Text (ST), 1997). Object-orientation has also been proposed for PLC-
and Sequential Function Chart (SFC) (Lewis, 1998). Even-comprogramming by for example Speck (2003), Werner (2009), in-
panies that do not use function blocks structures and deconatuding the use of Unified Modeling languages (UML) (Thram-
poses the code into reusalslemponentdor example by copy- boulidis, 2004).
ing from previous projects (Lucas & Tilbury, 2003) or by us- Industry has been slow to adopt other languages than IEC
ing templates. The components include functionality eelddb 61131-3. There are probably many reasons for this, but there
for example standardized control of specific hardware, camm are actually some benefits to use IEC 61131-3 languages. They
nication, production data, alarm or safety (Ljungkrantalet are specialized and designed to address specific issuebalnd c
2010Db). lenges faced in automation manufacturing, and are thexefor

Only using components as a mechanism for reuse is not reagood at expressing automation manufacturing concernst Mos
istic. Usually a componentis only possible to reuse effityen of the languages are easy to program and they give good com-
if it is highly specialized on one repeatedly occurring thin prehension for plant floor personals. It is also intuitiveewh
When trying to reuse a larger code base in one component, thperforming maintenance and online troubleshooting, aradi§in
componenttend to be harderto use in various places sinde it wthe standard defines a robust and simple execution model.
be hard to adopt for each a specific place. It can for example be Other methods to reuse code and to increase the code quality
complicated to reuse code thaesreusable components. are based on formal modeling, to verify code and to synthe-

To tackle this problem and to increase reusability of cdntrosize controllers for complex control issues. One exampte is
code, some PLC vendors have introduced development enviramework based on 61131-3, proposed by Ljungkrantz et al.
ronments with model and meta designing tools. Two example@010a), that defines reusable function blocks with a bilt-
are Aspect Objects technology from ABB (2001) and Simaticformal specification; to increase the quality of reused c&ie
Automation Designer from Siemens (2011). These tools try tqutions based on formal methods are not discussed in thisrpap
help the programmer and the end-user by allowing creatian of but a comprehensive review has been written by Frey & Litz
PLC program from high-level specifications and reusable tem(2000).
plates. Most of the published methods to increase code reuse for

Another problem to increase code reuse is that each PLE|C programming have not fully addressed the root cause
vendor has its own code standard. The organization PLCOpapis hard to reuse larger parts of the code. One root cause is
(PLCopen, 2011), tries to tackle this by developing an indethat various functionality or concerns are hard to sepaate
pendent standard based on IEC 61131-3 and XML. A vendofherefore complicated to reuse. Aspect-oriented progragm

neutral XML-format approach is also proposed by other re+ries to increase the code reusablity by enabling separafio
searchers, for example Estevez et al. (2008). the concerns.

Other approaches include improvements on current control
logic standards, like the OOONEIDA - Open Object-Oriented
kNowledge Economy in Intelligent inDustrial Automation, 3. Aspect-Oriented programming
(Vyatkin et al., 2005). This initiative aims at a highly igrated
development process with standard building blocks and com- Object-oriented programming increases program reusabili
plete vendor neutral code, based on the industrial contrals by providing design and language constructs with featurel s
dard IEC 61499 (Vyatkin, 2007). IEC 61499 is related to 61131as modularity, encapsulation, inheritance, and polymisrph
and is an event-driven distributed control architectursebleon (Meyer, 1997). Although object-orientation is widely used
function blocks. and very successful in modeling and implementing complex
Another IEC standard is IEC 61512-1 (1997), also known aglesigns, it has its problems. Practical experience withelar
ISA-S88, addressing batch process control. This standard dprojects has shown that programmers may face some problems
fines models and terminology and has various implementatiorwith maintaining their code, because it becomes increésing
like SattBatch from ABB and PackML from Organization for difficult to cleanly separate various issues or concermairdd-
Machine Automation and Control. Both these implementation ules (Kiczales et al., 1997). An attempt to do a minor change i
enable a higher degree of reuse by defining high-level modehe program design may require several updates to a large num
specifications in the form of operation recipes (the core- conber of unrelated modules. This problem is what aspect-taien
cerns). These are then executed by a control system thaimplprogramming tries to handle.

2

Aspect-oriented programming (AOP) is a methodology that The challenge addressed in this paper, compared to these
considers how to separate various aspects of the system, whetheer methods and tools, is that the 61131-3 languages are
developing a software program. One challenge is to handlquite different from high-level languages since PLC-peargs
crosscutting concerns, such as data logging, synchromizat are completely static. This demands an adopted AOP-
and diagnostics, which are located across the entire saftwvamethodology. Another challenge in this work is that the final
program. This is done in AOP by separating these crosscutveaved result needs to be understandable and changeable by
ting concerns into aspects, and then weave them into the bapé&ant-floor personnel.
code (the normal concerns) at deployment or at runtime. The It is hard to understand what a crosscutting concern is and
core functionality of AOP imbliviousnesswhich states that the how AOP can be used in real applications without an example,
base code is unaware of the aspects, guahtification which hence, an example on how an operation could be implemented
describes where and how the aspect code is weaved into tlepresented in the next section.
base code (Filman et al., 2004).

The most commonly used AOP tool is AspectJ, which is an]]

AOP framework for Java. In AspectJ, the code is divided into? |mplementing an operation

base code and aspects. The base code is a normal Java program . . .)

with the object-oriented structure and composition, ardats The main functionality of a PLC program is to execute and
pects represent the concerns that are hard to separat@/clear?oord'nate various tasks or operations in the automatign sy

The aspects are automatically integrated into the basetmpde €M @nd to manage the interaction among the resources. An
a process called weaving. The key parts of an aspect are: important design activity when developing the control syst
is therefore to plan when and how the operations are to be exe-
e Join point: A join point is a well-defined position in the _cuted_. One F__txample of an o_pergtion could be to close a clamp
structure of the program (in both the base code and in othdf @ fixture, like the clamps in F'gufe L. TO better understand
aspects) what type of concerns that are typically implemented to con-
’ trol this operation, the CloseClamp operation will be sbadi
e Pointcut: The pointcut quantifies (or specifies) a set of join! NiS €xample is based on a real programming standard from an
points. automotive company.

e Advice: An advice defines the behavior that is weaved at
the join points, which are picked out by a pointcut.

A join point defines a specific position in the program where
additional behavior can be added. Some join points defined in
AspectJ are: Method call, Method execution, Object inritial
ing, Field reference and Field set. These join points defame v
ious positions in the source code or events during the ekecut
of the program. The pointcut is used to pick out a set of join
points in the base code, based on an expression. The expressi
can for example statePick out every call to methods with the Figure 1: A product part is fixated by the two clamps A and B.
name foo*(where * is a wildcard), which targets every method
name that begins with foo. For each picked out join point, am.1. Close Clamp
advice defines the behavior (the code) that is weaved atitne jo . . .
point. The advice also defines if the code should be added be- 1€ concemsin Table 1, can be divided into two groups, core
fore (BEFORE), after (AFTER) or instead of (AROUND) each and support concerns. The core concerns on the left cawestitu
join point. the core behavior of the operation, i.e when and how to erecut

AOP has mainly been used for object-oriented software, buff'€ CPeration. The support concerns on the right, addsitmct
also for systems similar to PLC programming. For example"leIty to the operation for increased usability.
Tesanovic et al. (2005) have been studying the use of compo-
nents and AOP for real-time control systems. The use of AOP Table 1: Operation concerns
for graphical specification languages has been studiedein th

, Core Support
area of UML model weaving, see for example Atlas Model-
Weaver (Bezivin et al., 2004) and Motorola WEAVR (Cotte- Realizing resources = Manual control
nier, 2006). Especially, WEAVR tackles a similar problem as Precondition Diagnostics
in this paper. The tool introduces an adopted weaver seman- Postcondition Troubleshoot logics
tic to be able to weave advice models into state-based UML Action HMI

models, similar to the operation models used in this papet. B
WEAVR is still adopted for a high-level language and object- An operation must be executedrealizedby one or more re-
oriented constructs. sources. For example, an operation that closes a fixatiompcla

is realized by a clamp in a fixture, which is closed by an ac- The problems with existing PLC development approaches
tuator that drives a pneumatic cylinder. To execute theecloscan be divided into the two areastandards and upgradeabil-
action, the actuator’s physical I/O is mapped to an intevagt ity. A standardusually consists of a library of components and
able used in the code. a framework on how to use these components. The problem of

Before the signal to close the clamp can be sent, the predeveloping a standard for PLC programs is that each installa
condition must be satisfied. The precondition consists iifeth tion and program is unique and may require some special com-
parts: safety allocation andsequenceatatements. The safety ponents. As the size of a library grows, it is hard to manage an
statements include guard predicates, to prevent dangerous handle all the variants, since the software componentsatre n
unwanted situations, that must be fulfilled before the claayp general enough due to tangled concerns.
close. If the operation needs to use shared resources such as'he other problemypgradeability is related to the fact that
a common working area or shared tools, they are checked fa concern can be located in many places in the code, without
availability and booked by the allocation statement (idalg the possibility to encapsulate them cleanly. This will métet
availability guards and booking actions). The trigger fdrem concern hard to maintain and upgrade. To take a simple ex-
an operation should start its execution in automatic mode iample, if the interface that sends status information td-ii
controlled by the sequence statement. from an operation, must be updated, the same update must be

When the precondition is satisfied, the action command willapplied to every operation componentin the library andtime r
set the close output signal, which is mapped by the 1/0O mapnring systems. It is the same with most interfaces, e.g. ihafu
ping to the clamp actuator. To determine whether the omarati tion block adds or removes an input, it must be changed ayever
is completed, a sensor checks that the clamp is in the closadstance of the function block.
position. This is defined by the postcondition. These crosscutting and tangled concerns can be handled by

The above core concerns are always specific to each instadspect-oriented programming. In the next section, a 61131-
lation and constitute the processing functionality of tledl.c 3 aspect weaver is presented, and in Section 6, a framework
However, to have a functional manufacturing cell, other enor that uses aspect-oriented programming for control logiete
user-oriented functions are needed, i.e., support coacern opment is proposed.

The human—-machine interface (HMI) is the most important
tool for users, as it allows them to close the clamp manually
and presents status and diagnostic information. For ditipsp - | EC 61131-3 Aspect weaver
the opening and closing times for the clamp are monitored. If
the clamp cannot complete the close operation until thedirme
is reached, an alarm will be raised and reported to the eve
handler.

Another useful support concern is the troubleshootingdogi
When trying to solve a problem in the cell, it may, for exam-
ple, be important to execute an operation manually. In som
cases, however, the preconditions are not fulfilled and jtee-o
ation will not be executed, so it is useful to trace the candg

To use AOP when designing PLC-programs based on 61131-
r?’t in real industrial projects, AOP needs to be fully integdat
into the development environments of the vendors. But leefor
that is possible, it is important to identify and describevtam
aspect weaver for 61131-3 could work. This section specifies
éhe core functionality of such a weaver.

5.1. Aspects and base code

hindering the action. Another useful functionality is topags AspectJ has almost become a standard for AOP, which usu-
a sensor, to keep the production running until it is possible ally makes it the starting point when new AOP frameworks are
change the failed resource. created. The suggested 61131-3 aspect weaver also tries to

All of these concerns are highly interrelated; for example,adopt the foundation of AspectJ, but the dissimilarity esw
the postcondition influences the diagnostics, the trolloles 61131-3 and Java requires some differences in the weaver. On
ing logic uses the precondition and can change the I/O mgppindifference is that 61131-3 defines multiple languages that t
the manual condition is linked to the precondition and the acsome extent are interchangeable and combinable and some of
tion command, and the HMI interacts with most of the otherthem are graphical. Therefore the specification of the dspec
concerns. This makes the various concerns of the operation ewill be different.

tangled and difficult to separate cleanly. This is a probkntce As in AspectJ, the aspects consist of advices, join poirds an
these concerns cut across many operations and objectsignakipointcuts. The difference is that the behavior (the codehef
them more difficult to reuse completely. advice is located separated from the aspect code, sinoatitcsh

be possible to add code to all five 61131-3 languages. This
4.2. Crosscutting and tangled concerns separated code is called the advice code, and the main part of

If there is only a single operation or a single program develthe aspect is called the aspect descriptor.
oped, it is probably not efficient to separate the support con The structure of a program in 61131-3 is also different from
cerns that are crosscutting the program. But in the autemoti Java. The 61131-3 standard allows a project to be broken
industry, there are hundreds of PLCs using the same or similalown into functional elements, called program organizatio
program architecture. If the support concerns are not aggér units (POUs), and tasks. POUs include functions, function
from the rest of the code, it will be a tough challenge to depel blocks and programs. To allow full execution control, POUs
and manage the code architecture. are assigned to tasks to enable various scan-rates anteparal

execution. The base code used by the aspect weaver is strunto the base code. The final result is saved as a hew 61131-3

tured by multiple POUs, and each aspect is located in its owproject and stored in the XML-format. To better understand

POU. how the AOP weaver works, let us study part of the diagnostic
concern for the close clamp operation.

5.2. Aspect descriptor and advice code

The aspect descriptor consists of pointcuts and advices;loseClamp diagnostic example
which we;er(]jeﬂr:jeq n Sedctlc_)n 3. It dzf!nes vk\]/het:e and ZOW Epe The function block for the CloseClamp operation is shown
content of the advice code Is weaved into the base code. Wﬁ‘ Figure 2, where it is included in a ladder rung. This fuonti

aspect descriptor is written in Structured Text with somei-ad block controls the core behavior of the operation and isailfjt

'E!ona:_tfeaturgst. _‘I(;het_nev_v ;‘eaturte_:s rrf1anage tEe_fyr:gfyr_nm fungs the init state where only the Init output is enabled. The-Pr
lonaiily used to iden ify informa 1on from each identi i Cond input defines the operation precondition and is enabled
pomt, called COWteXt exposure, which is not possible todkan when both the sequence and the safety contacts are true. The
in a good way in Structured Text. There are also some NeWq. ence Condition defines when during the automatic execu-

language constructs to define pointcuts and advices. tion of the manufacturing system the clamp should close, and

Aspect weavers can pick out various types. of join points Nthe safety condition hinders the clamp to collide with otreer
the base code and in the aspects. However, since 61131-3 ha

statical and cycle-based execution model, it is only pdesdd
pick up statical join points. This is also a difference conepla
to AspectJ that has the possibility to pick out join points dy
namically when the program is executing. The following join
points can be identified in the base code and in the aspects:

When PreCond is enabled, the operation can start its ex-
ecution by setting the Action output and changing its state
to Execute (enabling Exec). The operation will be executing
until the postcondition is satisfied, which happens when the
Clamp.Closed sensor is active and the Clamp.Open sensor is
deactive. When the operation has completed, the Fin output,
i.e. the finished state, is enabled and the action outputistde
Write: A value is written to a variable. vated. The operation can return to its initial state whernréiset
condition is enabled.

e Call: When a call is made.

Read: A variable is read.

e Declaration: A variable is declared. CloseClamp
Sequence T
A Operation CloseClampCmd
P . . Condition Safety P
o Execution: A section is executed. | | precond Action—)
.. Ccl .0 Cl .CL d it—

These join points identify various locations in the code tha T T L cecond Init
fill ific criterion. Theall join point identifies wh . i Exec
ills a specific criterion. all join point identifies when a Clamp.Open
specific POU is called in the code, for example the call of a | | ResetCond Fin—

function block in a ladder rung. When a variable is used in the
code it is identified by th&Vrite andReadjoin points, and the
Declarationjoin point identifies when a variable is declared in Figure 2: Close Clamp example
the VAR section. The Execution join point identifies a contgle

section of the code, for example the code in a function block. A common method to monitor and diagnose an operation is

Join points are picked out by pointcuts defined in the Asg measure the time between the start of execution untikit-co
pect Descriptor. A pointcut identifies a set of join pointsely pletes. If the measured time exceeds a predefined time, the op
expression. The expression consists of pointcut and @atrib eration is assumed to be faulty and an alarm is raised. Most
functions separated by AND, OR and NOT. The pointcut func-gperations in the system will use this type of monitoringiakh
tions correspond to the possible join points and the atigibu makes this functionality located at many places. The ojmerat
functions defines attributes related to join points. alarm is therefore suitable to implement as an aspect.

In the weaver, three types of advice constructs are used: AF- | traditional PLC programming, the alarm concern is often
TER, BEFORE and AROUND. The advice defines what shouldmplemented for each individual operation. But when using
happen at the identified join points in the pointcut. The ARTE AOP, the concern will only be implemented once as an aspect
advice will insert extra code after a join point, the BEFORE a 514 then weaved into the code after each operation.
vice will insert the advice before and the AROUND advice will

The aspect descriptor for the alarm aspect can be seen in Fig-

replace the join point. ure 3. The first part of the aspect descriptor is the dectarati
_ section, where variables used in the aspect are declaread-An
5.3. Weaving vice code called Alarm_Advice is instantiated as AC, and wil

The input to the weaver is a base code and a list of aspect®e described later. After the VAR section, the pointcut is de
where the base code and the aspects are structured as 6113flrgd with thePO NTCUT pointcut_namdO construct, which
projectsstored in the PLCopen (2011) XML-format TC6. The is not standard ST syntax. The pointcut construct will berint
weaver loads each aspect, one at the time, and weaves tlo¢ aspgereted by the aspect weaver and a pointcut object, opCadill, wi

5

VAR

AC : Al arm Advi ce; sequence CLOSQCL.G’”P
END_VAR Condition safety Operation CloseClampCmd
I I I I PreCond Action——()
PO NTCUT Opcal I DO Clamp.Open Clamp.Closed Init—
CALL(TypeName =’ Qperation’) AND HF |} PostCond
HASOUTPUT(’ Exec’ + 'Fin'); Clamp.Open Exec
END_PO NTCUT,; 4| |——ResetCond Fin—
AFTER opCal | DO
AC(name: = opCal | . get | nst anceNane, CloseCLampAlarm
execCnd: =opCal | . Get Qut Put Name(’ Exec’), CloseClamp.Exec Alarm CloseClamp.alarm
fi nCmd: =opCal | . Get Qut Put Narme(* Fin')); | | Executing Alarm——()
END—AFTER; CloseClamp.Fin
I I Complete

Figure 3: Aspect Description for the alarm aspect

Figure 5: The alarm Weaved after the CloseClamp operatitimeitadder code
be created. opCall picks out each join point in the base code
that correspond to the pointcut expression.
In the given example, the pointcut opCall picks out eac
function block of type Operation, with the pointcut fungatio
CALL. The pointcut attribute HASOUTPUT identifies that the

pment Object Model. The Weaver then takes one aspect at the
time from the list of aspects and weaves the aspect into the do
ument. It is important that the aspects are weaved in a specifi
function block also has outputs called Exec and Fin, whidh wi order since a fundamental challeng_e in AQP is aspect imterfe
ence (Durr et al., 2005), where conflicts may occur when dspec

be used by the Advice. interact. There exist techni to resolv t fhot
The advice of the alarm aspect begins with the After advice eract.- There exist lechniques to resolve aspect cas)

construct. This advice defines that the after each join pnint '?r?(:renlpll:eg fé%veé'g\'/r;? %ﬁciggT,Crgerfl(fft't?,rsigfiéncﬁiz%cuobUtf
the pointcut opCall, the advice will insert the advice cotiee future weaver devek,)pmgnt this issue should be studieab'neh
advice code, Alarm_Advice can be seen in Figure 4, inCIUdin%eta'l '

its implementation in the box at the right. The three inpots t I

Alarm_Advice are string variables, which will be used iresid th;ﬁn an_azlpec(tj df(_esc(rjlptotrhls\l/c;;ded, :he vlvAef?vetrhﬁ;Et cre-
the advice code implementation. ates the variables defined in the section. After thatheac

The weaver will take the input strings, which are uniquepointcut is created. A pointcut consits of one of the poihtcu

for each operation function block, and construct the cmrrecggﬁrzt:é fsuer:/((:etlgln;ct:r?tl)tt\évzjtﬁctﬁzoenasd ﬁ?sd:rl?rtrll(i?[zgénlz?he;t;;n
variable or instance names. In this example the weaver re-" "~ T L .
places themame execCmaandfinCmd with the unique strings one pomtcgt_ function is a".OWe.d ina pomt.cu.t., but that was a
CloseClamp, CloseClamp.Exec and CloseClamp.Fin respe?—es'gn deC|S|or_1 taken to minimize the possibility to_geraeﬂa
tively. The CloseClamp example including the inserted eglvi ega_ll code. This .COUId probably b? more genergl m_the future
can be seenin Figure 5. The new rung includes a function blocpUt itwas not an issue for the studied examples in this paper.

called alarm that measures the time from when the operation ed If:__a_ch E)k?lnttcut afnk()j attnbt(;jte flunct|o;1_thas ?. b;'l_t”']n ?ttrebt_ut
ters the execution state until it enters the finished stditthid efining the type otbase code elementitcanfind. Thefunstion

time exceeds a specific time, an alarm will be raised. also have a s_et of predefined input parameters that should be
matched against these elements. These parameters are often
. . defined as strings that can include wild card characterstterbe
The weaving process and its challenges pinpoint a join point.
.Let us study the fgncUonahty of the weaver in more detail. The weaver takes the pointcut function and add elements in
First the base code is loaded into memory as an XML DOCUthe document that matches the built in element type and input
parameter to a set. After that, the attribute function esgion
Alarm_Advice of the pointcut is checked against the children elementsciie
-name elementin the set. If the expression is evaluated to falesle-
ment is removed from the set. The result is a pointcut cdngist
name + 'Alarm’ of a set of matching elements from the base code document.
execCnd Alarm name + *.alarm' When the poincuts in the aspect descriptor are created, each
(| Executing Alarn——() advice is executed. The three advices used by the weaver,
fincnd BEFORE, AFTER and AROUND, can be applied to multiple
11 Complete pointcuts. For each element in the pointcuts, the weavéewil
ther place code before, after or instead of (around) theeém
How exactly the code is inserted will vary depending on the
Figure 4: The alarm advice code with its implementation.iiuts are oftype ~ Pointcut function type, the language of the base code and ad-
String. vice code and what is defined in the advice code. For example

—execCmd

—finCmd

if a Read pointcut function picks out a contact in a laddegtun 6.1. Sequence Planning
and the advice code only consists of a set of new contactsg the The challenge to plan sequences of operations can be found

contacts will be inserted in th_e same rung. But as n the exan; many research areas, for example project management (Lee
ple above, a complete rung is defined in the advice code a al., 2005), product assembly planning (Abdullah et 803)
therefore a new rung is inserted after the function bloclgrun manl,Jfacturi,ng task planning (Shabaka & Elmaraghy 2608)
This logic i; built into the weaver, but could probably als® b computer aided manufacturing (Miao et al., 2002), cémputer,
expressed.m each aspect._)) aided process planning (Marri et al., 1998), and controiges
The advice can extract information about each pointcut, b3(Shen et al., 2006). Academics have mostly focused on the op-
calling various predefined methods defined by the pointcdt angmization based planning problem, but the industrial iatpa
attribute functions. If specific information is requiretneeds 155 peen quite limited so far, probably due to the complexity
to be identified by the functions, even if the programmer ksiow 1 solve real problems. The industry focus has instead been

that a join point has some specific parameters. The informay, represent and visualize sequences and tasks, and tagmul
tion from the pointcut is loaded into the advice code wheee th {ham.

weaver will replace corresponding elements in its code. The T, develop the core concems, a new tool called Sequence
final code is then inserted as a new element into the documenp|gnner (Bengtsson, 2009), is used by the framework in this p
Not all languages in 61131-3 have been studied in this reper, This tool does not only manage the complexity to develop
search, for example sequential function charts (SFCs). Onge operations but also to represent and visualize them. Se-
reason for this is that a SFC USUa”y Only describes core Corquence Planner uses a new Sequence p|anning approach, where
cerns. The join point model for SFCs may also be somewhafequences are based on the relations among operatioreinste
different, but this needs further investigations. SFC virgis of explicit manual sequence construction (Bengtsson et al.
related to what Motorola WEAVR (Cottenier, 2006) is doing, 2012). This is achieved by using self-contained operatiod-m
which should be a starting point for the investigation. els that include only relevant conditions on when and how the
This section shows how an AOP approach can work for PLGyperations can execute. The operation models are also-repre

development. If the example above would have been prosented by an automata model extended with variables. This
grammed in a normal development approach, the alarm fungnodel is for example used for formal verification, contrahsy
tionality is added to many places in the program. With the asthesis and optimization (Lennartson et al., 2010).
pect weaver, the effort can be reduced. Obviously, thisequit Sequence Planner uses a graphical language called Se-
simple example can be managed by other methods like tenuences of Operations (SOP) introduced by Lennartson et al.
plates, since the interface between the operation and alar?010). By using various views or perspectives, the seqegenc
function block are quite standardized. This however, wilt n of operations related to e.g the part flow, transport opemnati
be the case when more functionality is added to the alarm agr workstation tasks can be visualized. The SOP language is
pect, as we will see in the next section. That section wilpré based on operations where the execution of each operatian co
a framework on how to manage both the core and support corsists of three states: initial state, execute state andédistate.
cerns during a PLC development project. If an operation is denote@, the states are denot@ (initial),

O° (execute) and’ (finished). The operation can start when

its preconditionO" is satisfied and stop when its postcondition
6. Developing PLC programs O! is satisfied. To better understand the operations and the too

Sequence Planner, let us study an example.

To manage the development of PLC programs in industry .
flexible and efficient programming standards and a libraies 6.2. An automation system example
crucial. These standards must accommodate a diversityrof va This example is based on a real installation in the Robot and
ious manufacturing installations, and be easy for the gdant ~ Automation Lab at Chalmers University of Technology. The
sonal to recognize and understand. However, crosscutting ¢ cell is shown in Figure 6. The cell receives two pieces of shee
cerns are hard to fully integrate into a standard, as has beenetal, one from an Automated Guided Vehicle (AGV) (6), and
discussed in this paper. Therefore the standards and the the other one from a conveyor (1). One of the small robots (3),
braries need to be flexible and adaptive to the diversity df va and the large robot (5), picks up the parts and put them in the
ous types of automation systems in a plant. This paper pesposfixture (2), which fixates the parts before the robots drilelso
a clear separation of core and support concerns, both dilméng and rivet the plates together. The assembled part is thes-tra
development process and in the standards and the libraries. ported away by the AGV.

The core concerns are unique for each PLC program and In the given example, let us focus on when the parts are
need to be specified and designed during the developmerbaded into the fixture by the robots. In Figure 7, some of the
These concerns are related to the notion of operation, whicbperations executed by the fixture and the robots are shoan in
defines the behavior of a system related to the products &nd ttsOP (Sequences of Operations). The SOP language visualizes
manufacturing resources (Bengtsson et al., 2009b). Rignni the operations, denoted by boxes, and the relations ameny th
these operations is often referred to as process plannisg-or by graphical lines and logical expressions. The basic agsum
guence planning. tion is that all operations are starting simultaneouslyviwere

When part B is placed in the fixture, the clamp that fixates B
can be closed. After both parts are loaded, the robots can sta
to drill and rivet the parts together. The two parallel horital
lines in the left sequence defines that the two operationdAoa
and LoadB needs to be completed before the Drill operation
can start its execution, i.e. they are included in the prditmm
for the Drill operation Drill T = LoadA’ A LoadB'). The SOP
language also include alternatives, arbitrary order, $oete,
and is described in detail in Lennartson et al. (2010).

The operations are planned in more and more detail by
adding new conditions or creating sub-operations. This-ope
ation specification together with the resource descriptiom-
stitutes the core specification needed to create the bagseofod
the PLC program.

6.3. Creating the base code
Figure 6: The example cell The core specification from Sequence Planner can obviously
be implemented in various ways. The proposed framework does
pre- post- and reset-conditions influence the executiorrord MOt restrict how the base code is structured and implemented
The relations among the operations due to these conditams ¢ PUt the chosen structure will influence the aspects. Theefo
then be visualized by the SOP-language. The SOP in this exar€ base code needs to be implemented in a standardized way.
ple includes 10 operations structured in three sequendesgw In this example the base code is divided into a set of programs
the left sequence describes the high-level behavior, anthih ~ ON€ that coordinates the complete cell control and thre®sta
right sequences show the detailed sub-operations of the twPNtrol programs. A station in the cell is an individual pees

load operations. area for a set of operations. Eac_h station program contrels t
station resources and the execution of station sequences.
AinPos BinPos | (TLoadA Y (LoadB B Some of the operations from the Sequence Planner example
LoadA| |LoadB are shown in Table 2. In this example, these operations are
PickA implemented with the operation function block shown in Fegu

2 at various places in the program. Other parts of the base cod
handles the interaction with the resources, like the robots
PlaceB fixture that are implemented from a library but is not further
discussed in this paper.

o AN J
Table 2: Operations with some of their core concerns

Figgre 7: Sequences of Operations (SOP) describing thevioefiathe fixture Name PreCond PostCond Resource
station LoadA AinPos CloseClamp/A Robot5A Fixture

The LoadA and LoadB operations load the parts into the fix- LoadB BinPos CloseClamgB Robot3 Fixture
ture. These operations can start when the parts to be pigked u Dril LoadA’A LoadB' DrillDone Robot4
are in the correct position. This is defined by the logicakesp Rivet Dril’ RivetDone Robot3\ Robot4
sionsAinPosandBinPosabove the line in the operation boxes ~ PickA LoadA® APicked Robot5
at the upper left in Figure 7. Preconditions are shown atdpet PlaceA PickA APlaced Robot5 Fixture
of the operation box and postconditions at the bottom. CloseA PlaceAn AinFix _ APlaced Fixture

Part B is picked up from the conveyor by Robot 3, ex-
ecuted by operation PickB. After that, the part is placed in In Figure 8, an overview of the proposed development frame-
the fixture by the PlaceB operation. The arrow inbetweerwork is shown. The base code is created based on the Sequence
PickB and PlaceB denotes that PickB must be completed bdRlanner core specification and the core libraries and stdada
fore PlaceB can start, i.eRickB’ is included in the precondi- The programis structured as specified by the standards aad co
tion of PlaceB. But part B cannot be placed in the fixture befor tains the operations and the resource control. Howeverjarma
part A, therefore the extra logical expressiBlaceA is also partof a PLC program is about e.g. field bus control, HMI com-
included in the precondition of PlaceB. The final precowditi munication, general diagnostics, safety, cell monitorjprgd-
is: PlaceB = PickB' A PlaceA. This shows the strength of uct information, and coordination between stations aneroth
the SOP-language, since it would be messy to show both preells. These parts are implemented as aspects and are weaved
conditions graphically. into the base code by the aspect weaver.

>~ VAR

Sequence Planner AC : Al arm Advi ce;
Core Speciﬁcation Al ar messageAC : Al ar m\Vessage_Advi ce

R : Rung;
END_VAR
)
Core library & POl NTCUT opCal | DO
standards CALL(TypeName =’ Operation’) AND

HASCQUTPUT(’ Exec’ + 'Fin') AND
: HAS_| NPUT_RUNG(’ Post Cond’) ;
Cell POU Station POU END_PO NTCUT;

AFTER opCal | DO
AC(nane: = opCal | . get | nst anceNane,
execCnd: =opCal | . Get Qut Put Nanme(’ Exec’),
finCrd: =opCal | . Get Qut Put Nane(’ Fin'));

R : = opCal | . Get | nput Rung(’ Post Cond’) ;
FOR i:=0 TO R andC auseSi ze DO
Al ar mvessageAC(
name: = opCal | . get | nst anceNane,
clause : = R andC auseArray[i]);
END_FOR;
END_AFTER,;

Aspect
Weaver

Figure 9: Extended aspect description for the alarm aspect

added to the aspect, which is shown in Figure 9.

To identify the two contacts in the postconditionpt
Clamp.OperandClamp.Closedthe pointcut methoGetinpu-
tRung from attribute HAS_INPUT_RUNG, is used. This
method extracts the rung connected to the irffagtCondand
places it in the variabl® in the AFTER advice. The rung ob-
jectinclude a translation of the rung to conjunctive norfoain
where a clause is represented by a set of contacts. This repre
sentation is used by the for loop where a new function block,

PLC Program for each extracted clause, will be created. The Advice Code
AlarmMessageA@ not shown in the example but consists of
Figure 8: AOP developing methodology one AlarmMessage function block.

The weaver result can be seen in Figure 10, where
the two AlarmMessage function blocks checks if the

6.4. Aspect weaving and changeability CloseClamp.Alarm has been enabled and if respective dontac
. is true. If the signal Clamp.Open still is true, the alarm mes
One of the most important reasons to separate support Corslége “Alarm_CloseClamp: Clamp.Open” will be sent to the

i thout identall : h ; BIML. If the signal Clamp.Closed has not been set, the alarm
cutting concern without accidentally messing up otherspaf “Alarm_CloseClamp: not Clamp.Closed” will be sent. In some

the code is complicated in normal PLC programming. Therel— ases both messages will be sent. This simple example shows

fore, programmers tend to avoid changes ir_1 industry even Iﬁow efficiently AOP can be used to include a new function-
they are needed. Although the aspects are highly dependent glity by only changing at one place. But there are also some

how th_e base code is structuredz the AOP framework can hop hallenges that need to be handled when using the proposed
fully give the programmers confidence to really do the neede evelopment framework

changes.
In the example, the aspect weaver will take the base code and

weave the alarm aspect into the code. Each operation will now. Evaluation

have an alarm connected to it. But then someone “demands”

that the code also should include alarm messages about why th Aspect-oriented programming tries to modularize concerns

alarm went off. This function can be implemented by checkingn a better way than traditional language constructs. Bist it

which contact in the postcondition that is not fulfilled. In a still unclear if the required development effort with respto

normal PLC program these messages needs to be added to evdeyelopmenttime, maintenance and learning curve, is wioeth

single operation in the code. To implement this in the AOPpossible benefits. Some even state that there are no befuefits,

example, only a few lines of code and an extra advice code iexample Steimann (2006).

9

it's not obvious how to create the same reusable code. Even if
Sequence Closeclamp the possible benefits using AOP for high-level programming i
e Y ppeCOZZeratlir::tion—Eélzmpcmd not clear, it seems to have better leverage for PLC-programs
CLanp.open Clanp.Closed . Let us study the weaving example in Section 6 when used with
—PostCond e a complete PLC-program.
Clamp.Open
[ResetCond FiM] 7.1. Experiment setup
CloseClampAlarm The studied PLC program contains the control code for 72
CloseClamp. Exec Alarm CloseClamp.alarm operations structured in several POUs. Each operationen th
[} Executing Alarn——() base code consists of 5 to 12 rungs. The PLC program also
CloseClamp. Fin consists of code that for example handles the communication
I Complete with other resources such as the robots and manage HMI inter-
actions. All these parts form the base code where the oparati
AlarmMessage_Clamp.Open code is approximately 40% of the base code.
CloseClanp.Alarm AlarmMessage) When the aspect in Figure 9 is weaved into the code, 3to 7
|| S new rungs are created for each operation. Based on this sim-
Clamp.open ple aspect, the weaver automatically adds almost 300 ruings o
|| Contact unique code. This can be compared to the standard method for
these types of edits — copy and paste (Lucas & Tilbury, 2003)
AlarmMessage_ClLamp.Closed — which will be highly error prone due to the required small
CloseClanp.ALarm AlarmMessage] changes at each place.
| Alarm SendMess| rﬁ)ltar‘le_ach:.SCelcolsae":jp": Changes on the aspect can easily be managed by the weaver
Clamp. Closed by reweaving the aspect code. But when a change is made to
W Contact the base code it is not as straight forward, since it depends o
whatis changed. Only changes made on the structure of the joi

point structure, i.e. that the operation function blocleiface is
changed, will require rework at each operation implemémntat
and of the aspects. It is therefore important with well define
coding standards for the base code which is often the case for

Some studies have been conducted to study the benefits 8¥@mple in the automotive industry.
AOP for Java programming. Hanenberg et al. (2009) suggest This researc_h |n_|t|ally targeted large scale PLC develagme
based on a small empirical study that the use of AOP is only the automotive industry, where a large number of PLC sys-
beneficial if the crosscutting concern refers to a large rermb (€M are using code standards and libraries. In theseisitsat
of places. Another experiment (Bartsch & Harrison, 20083 wa the initial increased effort to use AOP, is probably well tior
not able to show any benefits but includes a summary of othdP€ investment. However, it may also be useful for single pro
studies that show both good and limited benefits by using AOFgram development, since the number of possible join points
Endrikat & Hanenberg (2011) argue that most empiricalseems tq be large. But due to the r_equwements on a highly
studies about AOP are missing the point of using AOP, sincsStandardized based code structure, this needs to be fexthler

they only consider the initial development time, which is of UYated: _ _
ten found to increase when using AOP. Their empirical study 1S €xample shows that the benefits of using AOP are great-

focuses instead on the relationship between the initigdes €St When a large number of join points can be targeted by few

and future changes. They conclude that the strength of AOBSPECtS and that these join points are not changed often.

is when frequent changes is required in the crosscutting.cod

On the other hand, if the base code needs frequent changes, th2- Challenges

AOP approach results in higher development times, and poor The evaluation shows a promising result, but to be able to

reusability. use the AOP framework in industry, more work is needed. For
The major difference when considering AOP for Java pro-one thing, the weaver must be able to understand vendor spe-

gramming compared to 6-1131, is that PLC-programs is onlyific code files, since most vendors do not read PLC open files.

using statically defined variables and objects. This mak&s P Another important study is to see if normal PLC programmers

code harder to make generic and flexible, but on the other harnghn understand and create aspects.

robust and consistent. Challenges related to crosscudting A foundation of AOP is that the base code is unaware of

cerns can in many cases be handled in Java or other high-levéle aspects. But the aspects on the other hand, are comgpletel

programs using dynamic language constructs, but for PLCaware of the base code and in some cases also of other aspects.

programming that option is not available. Changes in the base code structure can therefore demaed larg
The example presented in Section 6 can easily be created @hanges in the aspects. In PLC programming, many of the as-

Java without the use of AOP constructs, but in a PLC progranpects are influenced by the core specification from Sequence

10

Figure 10: The updated alarm aspect creates alarm messages

Planner, but this information is retrieved indirectly fraime The paper presents a possible method for PLC programming
base program. Further investigation must be done to an#lyze using AOP. However, further work is required before it can
it is better to retrieve some of the information directlyrfrethe be used in real industrial projects. For example, the pregos
specification. This is especially useful if the base codaikho framework needs to be included in the integrated developmen
be automatically generated. environments of the PLC vendors. How PLC programmers will

This tight integration between base code and aspects wdw able to understand and utilize programming by aspects mus
identified in the study by Endrikat & Hanenberg (2011) as aalso be studied, as well as how PLC programs are currently
possible risk when using AOP. If changes are required on thehanged online and if feedback functionality really is reskd
structure of the base code, the aspects can be complicated toNot all languages in 61131-3 have been studied in this re-
reuse. Endrikat & Hanenberg (2011) does not identify whatearch, for example sequential function charts. Furthersin
types of changes that are problematic, but conclude thttiur tigation is needed to understand how to fully combine all lan
research is required. PLC AOP development also needs to lipiages during aspect weaving. There are also open issues how
further studied to increase the understanding of the impfct to handle aspectinterference, more general advice ingeatid
changes of the code structure. more general pointcuts.

Another challenge is how to handle manual changes in the
generated and installed program. In other AOP approache
changes are never made to the weaved code, but in a PLC pr
gram changes can be made after deployment of the code. Thes
changes should be possible to retrieve back, to handle new up,

dates, fixing errors in the libraries and to develop the frameduction at Chalmers, supported by the Swedish Governmental

yvork. Obviously, _|t is complicated to feed back major chage Agency for Innovation Systems (VINNOVA), and the Knowl-
in the code and in the structure of the PLC program. How- .

. . . e edge Foundation.
ever, in reality, changes are mainly made on specificatien re

lated parts, for example new interlocking condition or satpe
changes. But since also the support concerns are tangled WiReferences
the core concerns, they must be changed as well.
The suggested approach to handle changes, is to annotate g8 (2001). www02.abb.com/global/seitp/seitp161.ngtwinid/-

o - iy 342d723e4a4d44c4c1256b580070ef69/$file/aspectstolydt; .
code where it is allowed to change and which parts are forblqAbdu”ah, T. Popplewell, K., & Page, C. (2003). A review tietsupport

den to change. Only parts that are related to operationfspeci tqols for the process of assembly method selection and &égetanning.
cations should be allowed to change. Then a separate programinternational Journal of Production ReseareHl, 2391-2410.

can extract changes and feed them back to Sequence Planféfisch. M., & Harrison, R. (2008). An exploratory study beteffect of

. . aspect-oriented programming on maintainabilBpftware Quality Journal
and a new code can be generated. It will be challenging to ac- 16, 23-44. 10.1007/511219-007-9022-7.

complish this in practice, but a general trend in industr§ois engtsson, K. (2009)Operation Specification for Sequence Planning and Au-
minimize online changes on the plant floor. tomation Design Licentiate thesis Signals and Systems, Chalmers Gote-
Even if online changes are not handled at the moment, thgeborg' Sweden.

df K L. f ib b ngtsson, K., Bergagard, P., Thorstensson, C., LenmarBo Akesson, K.,
proposed framework can In its present form contribute tota be Yuan, C., Miremadi, S., & Falkman, P. (2012). Sequence panosing

ter reuse of code compared to the common copy and paste de-multiple and coordinated sequences of operatiof&EE Transactions on

velopment method. It also gives a better possibility to auto Automation Science and Engineeriigy308 —319. '

generate code in a flexible way. Bengtsson, K., Lennart_son, B., & YL_Jan, C. (2009a). Aspeitrted program-
ming for manufacturing automation control systems.|IHAC Symposium

on Information Control Problems in Manufacturing, INCOM

. Bengtsson, K., Lennartson, B., & Yuan, C. (2009b). The arigfi operations:

8. Conclusionsand futureresearch Interactions between the product and the manufacturingnzation control
system. INFAC Symposium on Information Control Problems in Manufac-

turing, INCOM.
A develOpmem method has been presented where core al%gzivin, J., Joault, F., & Valduriez, P. (2004). First expents with a model-

support concerns are reused both when developing program-eaver. inworkshop on Best Practices for Model Driven Software Depelo
ming standards and during PLC programming. A software tool ment held in conjunction with the 19th Annual ACM Conferem®©bject-

called Sequence Planner is used for planning core coneards, g”enée" Programming, Systems, Languages, and Applieatigancouver,
. . anada
the pI’OpOSGd IEC 61131-3aspectweaveris used for Implemerkrlottenier, T. (2006). The motorola weavr: Model weaving large industrial

ing support concerns. context. Inin Proceedings of the International Conference on AspdetOr
The presented method contributes by adapting AOP- ented Software Development, Industry Track _

methodology into the PLC programming domain, especiallyPu™ P- Staijen, T., Bergmans, L., & Aksit, M. (2005). Reaing about se-
f h | h hod al i mantic conflicts between aspects. Rroceedings of the European Interac-
or the IEC 61131-3 languages. The method also unifies reuse gye workshop on Aspects in Software 2005
of core and support concerns during the development processdrikat, S., & Hanenberg, S. (2011). Is aspect-orientegjamming a re-
of a PLC program. When the proposed aspect-oriented pro- warding investment into future code changes? a socio-tezhatudy on

; _ ; development and maintenance time. Arogram Comprehension (ICPC),
gramming for 6-1131 WaS_ tested using an example program, 2011 IEEE 19th International Conference (pp. 51 —60).
the reuse of one crosscutting aspect were able to creats®IMstevez, E., Marcos, M., Irisarri, E., Lopez, F., Sarachdgai. Burgos, A.

300 rungs of unique code. (2008). A novel approach to attain the true reusability ef¢bde between
11

" Acknowledgment

eThis work was carried out within the Wingquist Laboratory
INN Excellence Centre within the Area of Advance - Pro-

different plc programming tools. IRactory Communication Systems, 2008.
WFCS 2008. IEEE International Workshop @@p. 315 —322).

Filman, R., Tzilla, E., & Siobhan, C. (2004Aspect-Oriented Software Devel-
opment Addison-Wesley. ISBN 0-321-21976-7.

Frey, G., & Litz, L. (2000). Formal methods in plc programiirin Proceed-
ings of the IEEE SMpp. 2431-2436). volume 4.

Hajarnavis, V., & Young, K. (2008). An investigation intoggrammable logic
controller software design techniques in the automotigeistry. Assembly
Automation 28, 43-54.

Hanenberg, S., Kleinschmager, S., & Josupeit-Walter, M09}. Does
aspect-oriented programming increase the developmertdpe crosscut-
ting code? an empirical study. Proceedings of the 2009 3rd International
Symposium on Empirical Software Engineering and MeasureB8EM
'09 (pp. 156-167). Washington, DC, USA: IEEE Computer Stycie

IEC 61512-1 (1997)Batch Control Part 1: Models and Terminolagiechnical
Report International Electrotechnical Commission.

ISO/IEC (2003). Programmable Controllers—Part. 3International standard
IEC 61131-3 (2nd ed.). ISO/IEC.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lo@esl.oingtier, J.,
& Irwin, J. (1997). Aspect oriented programming. Mmoceedings of the
European Conference in Object-Oriented programming

Lee, S. H., Pena-Mora, F., & Park, M. (2005). Dynamic plagramd control
methodology for strategic and operational constructiajgat managment.
Automation in ConstructigriL5, 84—97.

Lennartson, B., Bengtsson, K., Yuan, C., Andersson, K.ijgalM., Falkman,
P., & Akesson, K. (2010). Sequence planning for integratexiyct, pro-
cess and automation desig&EE Transactions on Automation Science and
Engineering 7, 791-802.

Lewis, R. (1998). Programming industrial control systems using IEC 1131-3
Revised editionThe Institution of Electrical Engineers.

Ljungkrantz, O., Akesson, K., Fabian, M., & Yuan, C. (2010&)rmal specifi-
cation and verification of industrial control logic compote |IEEE Trans-
actions on Automation Science and Engineeringb38-548.

Ljungkrantz, O., Akesson, K., & Fabian, M. (2010bractice of industrial
control logic programming using library components, ctepg, In L. A.
Guedes (Ed.), Programmable Logic Controlldntech.

Lucas, M., & Tilbury, D. (2003). A study of current logic dgsi practices
in the automotive manufacturing industipternational journal of Human-
Computer Studie$9, 725-753.

Marri, H. B., Gunasekaran, A., & Grieve, R. J. (1998). Coneputided process
planning: A state of artThe International Journal of Advanced Manufac-
turing Technology14, 261-268.

Meyer, B. (1997). Object-Oriented Software Construction, Second Edition
Prentice Hall Professional Technical Reference. ISBN &23155-4.

Miao, H., Sridharan, N., & Shah, J. (2002). Cad-cam intégnatising machin-
ing features.International Journal of Computer Integrated Manufachg;i
15, 296-318.

Miremadi, S., Akesson, K., & Lennartson, B. (2011). Symbaomputation
of reduced guards in supervisory conti®EE Transactions on Automation
Science and Engineering, 754-765.

PLCopen (2011). http://www.plcopen.org/, .

Richardsson, J., & Fabian, M. (2006). Modeling the contfa fiexible man-
ufacturing cell for automatic verification and control prag generation.
Journal of Flexible Service and Manufacturintg.

Shabaka, A., & Elmaraghy, H. (2008). A model for generatiptimal process
plans in rms.International Journal of Computer Integrated Manufachgi
21, 180-194.

Shen, W., Wang, L., & Hao, Q. (2006). Agent-based distriduteinufacturing
process planning and scheduling: a state-of-the-art gul#EE Transac-
tions on Systems, Man, and CybernetRf 563-577.

Siemens (2011). https://www.automation.siemens.com&eutomation-
software/en/digital-engineering/pages/default.aspx,

Speck, A. (2003). Reusable industrial control systetB&€E Transactions on
industrial Electronics 50, 412—-418.

Steimann, F. (2006). The paradoxical success of aspastted programming.
In Proceedings of the 21st annual ACM SIGPLAN conference oed®bj
oriented programming systems, languages, and applicat@@PSLA '06
(pp. 481-497). New York, NY, USA: ACM.

Supremica (). Supremica.

Tesanovic, A., Nystrom, D., Hansson, J., & Norstrom, C. @0®spects and
components in real-time system development: Towards fegoable and

12

reusable softwarel. Embedded Computing, 17-37.

Thramboulidis, K. (2004). Using umlin control and autoroatia model driven
approach. INEEE International Conference on Industrial Informatigsp.
587-593).

Visser, W. (1987). Strategies in programming programmablgrollers: A
field study on professional programmers. ItnProc. Emperical studies of
Programmers: Second Workshop, Washington(P& 217 — 230).

Vyatkin, V. (2007).IEC 61499 Function Blocks for Embedded and Distributed
Control Systems DesigrO3NEIDA - Instrumentation Society of America.
ISBN 978-0-9792343-0-9.

Vyatkin, V., Christensen, J., & Lastra, J. (2005). Oooneida open object-
oriented knowledge economy for intelligent industrial amation. IEEE
Transaction on Industrial Informaticq, 4-17.

Werner, B. (2009). Object-oriented extensions for iec @t23ndustrial Elec-
tronics Magazine, IEEE3, 36 —39.

