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Abstract

A fundamental functionality of a Programmable Logic Controller (PLC) is to control and execute a set of operations. But alarge
part of the program code is more involved in supporting the user with concerns like alarm, HMI, communication, safety andmanual
control. Code related to these supporting concerns is oftentangled with operation execution code, the core concerns, which makes
it hard to reuse.

This paper describes a method to reuse code and functionality when developing PLC programs and code libraries. The method
proposes that core concerns are planned with a software toolcalled Sequence Planner, and the supporting concerns are integrated
into the core concerns with a tool based on aspect-oriented programming.

Keywords: IEC 61131-3, Reusability, Aspect-oriented programming

1. Introduction

Programmable Logic Controllers (PLCs) have been used in
industry for decades. They are used in various areas like nu-
clear power plants, farming, machinery, servo motion control,
safety control and sorting tasks. In this paper, the focus ison
the usage of PLCs in discrete manufacturing, where they for ex-
ample are responsible for coordinating and executing robotand
machine operations, handling production sequences, providing
information to machine operators, logging production data, and
communicating with other systems. A typical automated as-
sembly plant can have several hundred PLCs, controlling the
manufacturing process.

An important programming task for a PLC programmer is to
design the sequential behavior of the automation system. This
behavior can be specified as a set of operation sequences, which
are unique for each program. The code that control these op-
eration sequences is calledcore concernsin this paper. The
operation sequences will also influence other parts of the pro-
gram, like alarm, HMI, safety and manual control. These parts
are calledsupport concerns. A challenge in industry is to reuse
both core and support concerns.

This paper proposes a method to help PLC programmers to
reuse code. Specifications and requirements related to corecon-
cerns are reused from earlier stages of the design process by
the tool Sequence Planner (Bengtsson, 2009). This tool speci-
fies operation sequences with a set of self-contained operations,
which include necessary requirements, like interlocking and re-
source usage. The operation specifications are verified by trans-
lating them to finite state automata models extended with vari-
ables (Lennartson et al., 2010). A supervisor can also be gener-
ated and converted back as new requirements on the operations
(Miremadi et al., 2011). Both the verification and synthesisare
accomplished by the solver Supremica. These operations can

then be implemented as a PLC program.
Support concerns are more complicated to handle since they

are located in many parts of the program and needs to be
adopted to each operation. This paper therefore proposes auto-
matic merging of supporting concerns into core concerns using
a tool based on aspect-oriented programming (AOP). AOP is
an emerging programming methodology (Filman et al., 2004)
in computer science, and was proposed by Bengtsson et al.
(2009a) as a possible methodology to separate various concerns
in a PLC program. That work is extended in this paper and a
development method is presented, including an aspect weaver
designed for the international PLC programming standard IEC
61131-3 (ISO/IEC, 2003), and a design method to plan and
specify the core concerns.

This paper contributes in two ways; the first is the method to
reuse both core and support concerns in a structured and unified
way, which has not been fully accomplished in available tools
and research. The other contribution is the introduction ofAOP
in 61131-3 languages and the specification of an aspect weaver
for a non object-oriented and graphical programming language.

In the next section, related work are presented and discussed.
Aspect-oriented programming in computer science is intro-
duced in Section 3. In Section 4, the various concerns in a PLC
program are explained based on a small example. In Section 5,
a prototype AOP weaver for 61131-3 is described, and in Sec-
tion 6, the framework to develop a PLC program is presented.

2. Related work

The industrial practice when developing a PLC program has
been studied by researchers, see for example Visser (1987),Lu-
cas & Tilbury (2003), Richardsson & Fabian (2006), and Hajar-
navis & Young (2008). These studies identify that the program-
ming activity is quite complex, where the programmer creates

Preprint submitted to Control Engineering Practice August 30, 2012



the program based on various types of specifications and re-
quirements, often with differing content. The complexity to
create new programs makes it challenging to reuse information
and code from earlier stages of a development process and in
between various projects.

Several companies use function blocks to reuse and struc-
ture code (Ljungkrantz et al., 2010b). Function blocks are part
of the widely used international standard for PLC programs,
IEC 61131-3 (ISO/IEC, 2003). The standard also defines five
inter-operable languages: Instruction List (IL), Ladder Diagram
(LD), Function Block Diagram (FBD), Structured Text (ST),
and Sequential Function Chart (SFC) (Lewis, 1998). Even com-
panies that do not use function blocks structures and decom-
poses the code into reusablecomponents, for example by copy-
ing from previous projects (Lucas & Tilbury, 2003) or by us-
ing templates. The components include functionality related to
for example standardized control of specific hardware, commu-
nication, production data, alarm or safety (Ljungkrantz etal.,
2010b).

Only using components as a mechanism for reuse is not real-
istic. Usually a component is only possible to reuse efficiently,
if it is highly specialized on one repeatedly occurring thing.
When trying to reuse a larger code base in one component, that
component tend to be harder to use in various places since it will
be hard to adopt for each a specific place. It can for example be
complicated to reuse code thatusesreusable components.

To tackle this problem and to increase reusability of control
code, some PLC vendors have introduced development envi-
ronments with model and meta designing tools. Two examples
are Aspect Objects technology from ABB (2001) and Simatic
Automation Designer from Siemens (2011). These tools try to
help the programmer and the end-user by allowing creation ofa
PLC program from high-level specifications and reusable tem-
plates.

Another problem to increase code reuse is that each PLC
vendor has its own code standard. The organization PLCOpen
(PLCopen, 2011), tries to tackle this by developing an inde-
pendent standard based on IEC 61131-3 and XML. A vendor
neutral XML-format approach is also proposed by other re-
searchers, for example Estevez et al. (2008).

Other approaches include improvements on current control
logic standards, like the OOONEIDA - Open Object-Oriented
kNowledge Economy in Intelligent inDustrial Automation,
(Vyatkin et al., 2005). This initiative aims at a highly integrated
development process with standard building blocks and com-
plete vendor neutral code, based on the industrial control stan-
dard IEC 61499 (Vyatkin, 2007). IEC 61499 is related to 61131
and is an event-driven distributed control architecture based on
function blocks.

Another IEC standard is IEC 61512-1 (1997), also known as
ISA-S88, addressing batch process control. This standard de-
fines models and terminology and has various implementations
like SattBatch from ABB and PackML from Organization for
Machine Automation and Control. Both these implementations
enable a higher degree of reuse by defining high-level model
specifications in the form of operation recipes (the core con-
cerns). These are then executed by a control system that imple-

ments the detailed execution code. Sequence Planner that will
be presented later is actually influenced by these tools, butis a
generalization of them together with a formal operation model.
What is not handled by these tools is how to reuse the detailed
implementation, which is unique for each installation.

Object-oriented languages were developed to increase the
development efficiency with clear language syntax and well-
defined structures and constructs, compared to procedu-
ral languages. The higher development efficiency results
in better reusability, flexibility and expressiveness (Meyer,
1997). Object-orientation has also been proposed for PLC-
programming by for example Speck (2003), Werner (2009), in-
cluding the use of Unified Modeling languages (UML) (Thram-
boulidis, 2004).

Industry has been slow to adopt other languages than IEC
61131-3. There are probably many reasons for this, but there
are actually some benefits to use IEC 61131-3 languages. They
are specialized and designed to address specific issues and chal-
lenges faced in automation manufacturing, and are therefore
good at expressing automation manufacturing concerns. Most
of the languages are easy to program and they give good com-
prehension for plant floor personals. It is also intuitive when
performing maintenance and online troubleshooting, and finally
the standard defines a robust and simple execution model.

Other methods to reuse code and to increase the code quality
are based on formal modeling, to verify code and to synthe-
size controllers for complex control issues. One example isa
framework based on 61131-3, proposed by Ljungkrantz et al.
(2010a), that defines reusable function blocks with a built-in
formal specification; to increase the quality of reused code. So-
lutions based on formal methods are not discussed in this paper,
but a comprehensive review has been written by Frey & Litz
(2000).

Most of the published methods to increase code reuse for
PLC programming have not fully addressed the root causewhy
it is hard to reuse larger parts of the code. One root cause is
that various functionality or concerns are hard to separateand
therefore complicated to reuse. Aspect-oriented programming
tries to increase the code reusablity by enabling separation of
the concerns.

3. Aspect-Oriented programming

Object-oriented programming increases program reusability
by providing design and language constructs with features such
as modularity, encapsulation, inheritance, and polymorphism
(Meyer, 1997). Although object-orientation is widely used
and very successful in modeling and implementing complex
designs, it has its problems. Practical experience with large
projects has shown that programmers may face some problems
with maintaining their code, because it becomes increasingly
difficult to cleanly separate various issues or concerns into mod-
ules (Kiczales et al., 1997). An attempt to do a minor change in
the program design may require several updates to a large num-
ber of unrelated modules. This problem is what aspect-oriented
programming tries to handle.
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Aspect-oriented programming (AOP) is a methodology that
considers how to separate various aspects of the system, when
developing a software program. One challenge is to handle
crosscutting concerns, such as data logging, synchronization
and diagnostics, which are located across the entire software
program. This is done in AOP by separating these crosscut-
ting concerns into aspects, and then weave them into the base
code (the normal concerns) at deployment or at runtime. The
core functionality of AOP isobliviousness, which states that the
base code is unaware of the aspects, andquantification, which
describes where and how the aspect code is weaved into the
base code (Filman et al., 2004).

The most commonly used AOP tool is AspectJ, which is an
AOP framework for Java. In AspectJ, the code is divided into
base code and aspects. The base code is a normal Java program
with the object-oriented structure and composition, and the as-
pects represent the concerns that are hard to separate cleanly.
The aspects are automatically integrated into the base codeby
a process called weaving. The key parts of an aspect are:

• Join point: A join point is a well-defined position in the
structure of the program (in both the base code and in other
aspects).

• Pointcut: The pointcut quantifies (or specifies) a set of join
points.

• Advice: An advice defines the behavior that is weaved at
the join points, which are picked out by a pointcut.

A join point defines a specific position in the program where
additional behavior can be added. Some join points defined in
AspectJ are: Method call, Method execution, Object initializ-
ing, Field reference and Field set. These join points define var-
ious positions in the source code or events during the execution
of the program. The pointcut is used to pick out a set of join
points in the base code, based on an expression. The expression
can for example state:Pick out every call to methods with the
name foo*(where * is a wildcard), which targets every method
name that begins with foo. For each picked out join point, an
advice defines the behavior (the code) that is weaved at the join
point. The advice also defines if the code should be added be-
fore (BEFORE), after (AFTER) or instead of (AROUND) each
join point.

AOP has mainly been used for object-oriented software, but
also for systems similar to PLC programming. For example
Tesanovic et al. (2005) have been studying the use of compo-
nents and AOP for real-time control systems. The use of AOP
for graphical specification languages has been studied in the
area of UML model weaving, see for example Atlas Model-
Weaver (Bezivin et al., 2004) and Motorola WEAVR (Cotte-
nier, 2006). Especially, WEAVR tackles a similar problem as
in this paper. The tool introduces an adopted weaver seman-
tic to be able to weave advice models into state-based UML
models, similar to the operation models used in this paper. But
WEAVR is still adopted for a high-level language and object-
oriented constructs.

The challenge addressed in this paper, compared to these
otheer methods and tools, is that the 61131-3 languages are
quite different from high-level languages since PLC-programs
are completely static. This demands an adopted AOP-
methodology. Another challenge in this work is that the final
weaved result needs to be understandable and changeable by
plant-floor personnel.

It is hard to understand what a crosscutting concern is and
how AOP can be used in real applications without an example,
hence, an example on how an operation could be implemented
is presented in the next section.

4. Implementing an operation

The main functionality of a PLC program is to execute and
coordinate various tasks or operations in the automation sys-
tem and to manage the interaction among the resources. An
important design activity when developing the control system
is therefore to plan when and how the operations are to be exe-
cuted. One example of an operation could be to close a clamp
in a fixture, like the clamps in Figure 1. To better understand
what type of concerns that are typically implemented to con-
trol this operation, the CloseClamp operation will be studied.
This example is based on a real programming standard from an
automotive company.

Figure 1: A product part is fixated by the two clamps A and B.

4.1. Close Clamp

The concerns in Table 1, can be divided into two groups, core
and support concerns. The core concerns on the left constitute
the core behavior of the operation, i.e when and how to execute
the operation. The support concerns on the right, adds function-
ality to the operation for increased usability.

Table 1: Operation concerns

Core Support

Realizing resources Manual control
Precondition Diagnostics
Postcondition Troubleshoot logics
Action HMI

An operation must be executed orrealizedby one or more re-
sources. For example, an operation that closes a fixation clamp

3



is realized by a clamp in a fixture, which is closed by an ac-
tuator that drives a pneumatic cylinder. To execute the close
action, the actuator’s physical I/O is mapped to an internalvari-
able used in the code.

Before the signal to close the clamp can be sent, the pre-
condition must be satisfied. The precondition consists of three
parts: safety, allocation, andsequencestatements. The safety
statements include guard predicates, to prevent dangerousor
unwanted situations, that must be fulfilled before the clampcan
close. If the operation needs to use shared resources such as
a common working area or shared tools, they are checked for
availability and booked by the allocation statement (including
availability guards and booking actions). The trigger for when
an operation should start its execution in automatic mode is
controlled by the sequence statement.

When the precondition is satisfied, the action command will
set the close output signal, which is mapped by the I/O map-
ping to the clamp actuator. To determine whether the operation
is completed, a sensor checks that the clamp is in the closed
position. This is defined by the postcondition.

The above core concerns are always specific to each instal-
lation and constitute the processing functionality of the cell.
However, to have a functional manufacturing cell, other more
user-oriented functions are needed, i.e., support concerns.

The human–machine interface (HMI) is the most important
tool for users, as it allows them to close the clamp manually
and presents status and diagnostic information. For diagnostics,
the opening and closing times for the clamp are monitored. If
the clamp cannot complete the close operation until the timeout
is reached, an alarm will be raised and reported to the event
handler.

Another useful support concern is the troubleshooting logic.
When trying to solve a problem in the cell, it may, for exam-
ple, be important to execute an operation manually. In some
cases, however, the preconditions are not fulfilled and the oper-
ation will not be executed, so it is useful to trace the conditions
hindering the action. Another useful functionality is to bypass
a sensor, to keep the production running until it is possibleto
change the failed resource.

All of these concerns are highly interrelated; for example,
the postcondition influences the diagnostics, the troubleshoot-
ing logic uses the precondition and can change the I/O mapping,
the manual condition is linked to the precondition and the ac-
tion command, and the HMI interacts with most of the other
concerns. This makes the various concerns of the operation en-
tangled and difficult to separate cleanly. This is a problem,since
these concerns cut across many operations and objects, making
them more difficult to reuse completely.

4.2. Crosscutting and tangled concerns
If there is only a single operation or a single program devel-

oped, it is probably not efficient to separate the support con-
cerns that are crosscutting the program. But in the automotive
industry, there are hundreds of PLCs using the same or similar
program architecture. If the support concerns are not separated
from the rest of the code, it will be a tough challenge to develop
and manage the code architecture.

The problems with existing PLC development approaches
can be divided into the two areas:standards and upgradeabil-
ity. A standardusually consists of a library of components and
a framework on how to use these components. The problem of
developing a standard for PLC programs is that each installa-
tion and program is unique and may require some special com-
ponents. As the size of a library grows, it is hard to manage and
handle all the variants, since the software components are not
general enough due to tangled concerns.

The other problem,upgradeability, is related to the fact that
a concern can be located in many places in the code, without
the possibility to encapsulate them cleanly. This will makethat
concern hard to maintain and upgrade. To take a simple ex-
ample, if the interface that sends status information to theHMI
from an operation, must be updated, the same update must be
applied to every operation component in the library and the run-
ning systems. It is the same with most interfaces, e.g. if a func-
tion block adds or removes an input, it must be changed at every
instance of the function block.

These crosscutting and tangled concerns can be handled by
aspect-oriented programming. In the next section, a 61131-
3 aspect weaver is presented, and in Section 6, a framework
that uses aspect-oriented programming for control logic devel-
opment is proposed.

5. IEC 61131-3 Aspect weaver

To use AOP when designing PLC-programs based on 61131-
3 in real industrial projects, AOP needs to be fully integrated
into the development environments of the vendors. But before
that is possible, it is important to identify and describe how an
aspect weaver for 61131-3 could work. This section specifies
the core functionality of such a weaver.

5.1. Aspects and base code

AspectJ has almost become a standard for AOP, which usu-
ally makes it the starting point when new AOP frameworks are
created. The suggested 61131-3 aspect weaver also tries to
adopt the foundation of AspectJ, but the dissimilarity between
61131-3 and Java requires some differences in the weaver. One
difference is that 61131-3 defines multiple languages that to
some extent are interchangeable and combinable and some of
them are graphical. Therefore the specification of the aspects
will be different.

As in AspectJ, the aspects consist of advices, join points and
pointcuts. The difference is that the behavior (the code) ofthe
advice is located separated from the aspect code, since it should
be possible to add code to all five 61131-3 languages. This
separated code is called the advice code, and the main part of
the aspect is called the aspect descriptor.

The structure of a program in 61131-3 is also different from
Java. The 61131-3 standard allows a project to be broken
down into functional elements, called program organization
units (POUs), and tasks. POUs include functions, function
blocks and programs. To allow full execution control, POUs
are assigned to tasks to enable various scan-rates and parallel
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execution. The base code used by the aspect weaver is struc-
tured by multiple POUs, and each aspect is located in its own
POU.

5.2. Aspect descriptor and advice code

The aspect descriptor consists of pointcuts and advices,
which were defined in Section 3. It defines where and how the
content of the advice code is weaved into the base code. The
aspect descriptor is written in Structured Text with some addi-
tional features. The new features manage the dynamic func-
tionality used to identify information from each identifiedjoin
point, called context exposure, which is not possible to handle
in a good way in Structured Text. There are also some new
language constructs to define pointcuts and advices.

Aspect weavers can pick out various types of join points in
the base code and in the aspects. However, since 61131-3 has a
statical and cycle-based execution model, it is only possible to
pick up statical join points. This is also a difference compared
to AspectJ that has the possibility to pick out join points dy-
namically when the program is executing. The following join
points can be identified in the base code and in the aspects:

• Call: When a call is made.

• Write: A value is written to a variable.

• Read: A variable is read.

• Declaration: A variable is declared.

• Execution: A section is executed.

These join points identify various locations in the code that ful-
fills a specific criterion. TheCall join point identifies when a
specific POU is called in the code, for example the call of a
function block in a ladder rung. When a variable is used in the
code it is identified by theWrite andReadjoin points, and the
Declarationjoin point identifies when a variable is declared in
the VAR section. The Execution join point identifies a complete
section of the code, for example the code in a function block.

Join points are picked out by pointcuts defined in the As-
pect Descriptor. A pointcut identifies a set of join points byan
expression. The expression consists of pointcut and attribute
functions separated by AND, OR and NOT. The pointcut func-
tions correspond to the possible join points and the attribute
functions defines attributes related to join points.

In the weaver, three types of advice constructs are used: AF-
TER, BEFORE and AROUND. The advice defines what should
happen at the identified join points in the pointcut. The AFTER
advice will insert extra code after a join point, the BEFORE ad-
vice will insert the advice before and the AROUND advice will
replace the join point.

5.3. Weaving

The input to the weaver is a base code and a list of aspects
where the base code and the aspects are structured as 61131-3
projectsstored in the PLCopen (2011) XML-format TC6. The
weaver loads each aspect, one at the time, and weaves the aspect

into the base code. The final result is saved as a new 61131-3
project and stored in the XML-format. To better understand
how the AOP weaver works, let us study part of the diagnostic
concern for the close clamp operation.

CloseClamp diagnostic example

The function block for the CloseClamp operation is shown
in Figure 2, where it is included in a ladder rung. This function
block controls the core behavior of the operation and is initially
in the init state where only the Init output is enabled. The Pre-
Cond input defines the operation precondition and is enabled
when both the sequence and the safety contacts are true. The
Sequence Condition defines when during the automatic execu-
tion of the manufacturing system the clamp should close, and
the safety condition hinders the clamp to collide with otherre-
sources.

When PreCond is enabled, the operation can start its ex-
ecution by setting the Action output and changing its state
to Execute (enabling Exec). The operation will be executing
until the postcondition is satisfied, which happens when the
Clamp.Closed sensor is active and the Clamp.Open sensor is
deactive. When the operation has completed, the Fin output,
i.e. the finished state, is enabled and the action output is deacti-
vated. The operation can return to its initial state when thereset
condition is enabled.

Operation

PreCond

PostCond

Action

Init

Exec

Fin

CloseClamp
Sequence

Condition Safety

Clamp.ClosedClamp.Open

CloseClampCmd

ResetCond

Clamp.Open

Figure 2: Close Clamp example

A common method to monitor and diagnose an operation is
to measure the time between the start of execution until it com-
pletes. If the measured time exceeds a predefined time, the op-
eration is assumed to be faulty and an alarm is raised. Most
operations in the system will use this type of monitoring, which
makes this functionality located at many places. The operation
alarm is therefore suitable to implement as an aspect.

In traditional PLC programming, the alarm concern is often
implemented for each individual operation. But when using
AOP, the concern will only be implemented once as an aspect
and then weaved into the code after each operation.

The aspect descriptor for the alarm aspect can be seen in Fig-
ure 3. The first part of the aspect descriptor is the declaration
section, where variables used in the aspect are declared. Anad-
vice code called Alarm_Advice is instantiated as AC, and will
be described later. After the VAR section, the pointcut is de-
fined with thePOINTCUT pointcut_nameDO construct, which
is not standard ST syntax. The pointcut construct will be inter-
preted by the aspect weaver and a pointcut object, opCall, will
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VAR
AC : Alarm_Advice;

END_VAR

POINTCUT opCall DO
CALL(TypeName = ’Operation’) AND
HASOUTPUT(’Exec’ + ’Fin’);

END_POINTCUT;

AFTER opCall DO
AC(name:= opCall.getInstanceName,

execCmd:=opCall.GetOutPutName(’Exec’),
finCmd:=opCall.GetOutPutName(’Fin’));

END_AFTER;

Figure 3: Aspect Description for the alarm aspect

be created. opCall picks out each join point in the base code
that correspond to the pointcut expression.

In the given example, the pointcut opCall picks out each
function block of type Operation, with the pointcut function
CALL. The pointcut attribute HASOUTPUT identifies that the
function block also has outputs called Exec and Fin, which will
be used by the Advice.

The advice of the alarm aspect begins with the After advice
construct. This advice defines that the after each join pointin
the pointcut opCall, the advice will insert the advice code.The
advice code, Alarm_Advice can be seen in Figure 4, including
its implementation in the box at the right. The three inputs to
Alarm_Advice are string variables, which will be used inside
the advice code implementation.

The weaver will take the input strings, which are unique
for each operation function block, and construct the correct
variable or instance names. In this example the weaver re-
places thename, execCmdandfinCmd, with the unique strings
CloseClamp, CloseClamp.Exec and CloseClamp.Fin respec-
tively. The CloseClamp example including the inserted advice
can be seen in Figure 5. The new rung includes a function block
called alarm that measures the time from when the operation en-
ters the execution state until it enters the finished state. If this
time exceeds a specific time, an alarm will be raised.

The weaving process and its challenges
Let us study the functionality of the weaver in more detail.

First the base code is loaded into memory as an XML Docu-

Alarm_Advice

name

execCmd

finCmd Alarm

Executing

Complete

Alarm

name + 'Alarm'

execCmd

finCmd

name + '.alarm' 

Figure 4: The alarm advice code with its implementation. Allinputs are of type
String.

Alarm

Executing

Complete

Alarm

CloseClampAlarm

CloseClamp.Exec

CloseClamp.Fin

CloseClamp.alarm 

Operation

PreCond

PostCond

Action

Init

Exec

Fin

CloseClamp
Sequence

Condition Safety

Clamp.ClosedClamp.Open

CloseClampCmd

ResetCond

Clamp.Open

Figure 5: The alarm Weaved after the CloseClamp operation inthe ladder code

ment Object Model. The Weaver then takes one aspect at the
time from the list of aspects and weaves the aspect into the doc-
ument. It is important that the aspects are weaved in a specific
order since a fundamental challenge in AOP is aspect interfer-
ence (Durr et al., 2005), where conflicts may occur when aspect
interact. There exist techniques to resolve aspect conflicts, for
example by defining precedence relations as in AspectJ, but for
the 61131-3 weaver, only the order of the list is considered.For
future weaver development, this issue should be studied in more
detail.

When an aspect descriptor is loaded, the weaver first cre-
ates the variables defined in the VAR section. After that, each
pointcut is created. A pointcut consits of one of the pointcut
operator functions:Call, Write, Read, Declarationor Execu-
tion, and several attribute functions. It is a limitation that only
one pointcut function is allowed in a pointcut, but that was a
design decision taken to minimize the possibility to generate il-
legal code. This could probably be more general in the future
but it was not an issue for the studied examples in this paper.

Each pointcut and attribute function has a built in attribute
defining the type of base code element it can find. The functions
also have a set of predefined input parameters that should be
matched against these elements. These parameters are often
defined as strings that can include wild card characters to better
pinpoint a join point.

The weaver takes the pointcut function and add elements in
the document that matches the built in element type and input
parameter to a set. After that, the attribute function expression
of the pointcut is checked against the children elements of each
element in the set. If the expression is evaluated to false, the ele-
ment is removed from the set. The result is a pointcut consisting
of a set of matching elements from the base code document.

When the poincuts in the aspect descriptor are created, each
advice is executed. The three advices used by the weaver,
BEFORE, AFTER and AROUND, can be applied to multiple
pointcuts. For each element in the pointcuts, the weaver will ei-
ther place code before, after or instead of (around) the element.
How exactly the code is inserted will vary depending on the
pointcut function type, the language of the base code and ad-
vice code and what is defined in the advice code. For example
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if a Read pointcut function picks out a contact in a ladder rung,
and the advice code only consists of a set of new contacts, these
contacts will be inserted in the same rung. But as in the exam-
ple above, a complete rung is defined in the advice code and
therefore a new rung is inserted after the function block rung.
This logic is built into the weaver, but could probably also be
expressed in each aspect.

The advice can extract information about each pointcut, by
calling various predefined methods defined by the pointcut and
attribute functions. If specific information is required, it needs
to be identified by the functions, even if the programmer knows
that a join point has some specific parameters. The informa-
tion from the pointcut is loaded into the advice code where the
weaver will replace corresponding elements in its code. The
final code is then inserted as a new element into the document.

Not all languages in 61131-3 have been studied in this re-
search, for example sequential function charts (SFCs). One
reason for this is that a SFC usually only describes core con-
cerns. The join point model for SFCs may also be somewhat
different, but this needs further investigations. SFC weaving is
related to what Motorola WEAVR (Cottenier, 2006) is doing,
which should be a starting point for the investigation.

This section shows how an AOP approach can work for PLC
development. If the example above would have been pro-
grammed in a normal development approach, the alarm func-
tionality is added to many places in the program. With the as-
pect weaver, the effort can be reduced. Obviously, this quite
simple example can be managed by other methods like tem-
plates, since the interface between the operation and alarm
function block are quite standardized. This however, will not
be the case when more functionality is added to the alarm as-
pect, as we will see in the next section. That section will present
a framework on how to manage both the core and support con-
cerns during a PLC development project.

6. Developing PLC programs

To manage the development of PLC programs in industry,
flexible and efficient programming standards and a librariesare
crucial. These standards must accommodate a diversity of var-
ious manufacturing installations, and be easy for the plantper-
sonal to recognize and understand. However, crosscutting con-
cerns are hard to fully integrate into a standard, as has been
discussed in this paper. Therefore the standards and the li-
braries need to be flexible and adaptive to the diversity of vari-
ous types of automation systems in a plant. This paper proposes
a clear separation of core and support concerns, both duringthe
development process and in the standards and the libraries.

The core concerns are unique for each PLC program and
need to be specified and designed during the development.
These concerns are related to the notion of operation, which
defines the behavior of a system related to the products and the
manufacturing resources (Bengtsson et al., 2009b). Planning
these operations is often referred to as process planning orse-
quence planning.

6.1. Sequence Planning

The challenge to plan sequences of operations can be found
in many research areas, for example project management (Lee
et al., 2005), product assembly planning (Abdullah et al., 2003),
manufacturing task planning (Shabaka & Elmaraghy, 2008),
computer aided manufacturing (Miao et al., 2002), computer
aided process planning (Marri et al., 1998), and control design
(Shen et al., 2006). Academics have mostly focused on the op-
timization based planning problem, but the industrial impact
has been quite limited so far, probably due to the complexity
to solve real problems. The industry focus has instead been
to represent and visualize sequences and tasks, and to simulate
them.

To develop the core concerns, a new tool called Sequence
Planner (Bengtsson, 2009), is used by the framework in this pa-
per. This tool does not only manage the complexity to develop
the operations but also to represent and visualize them. Se-
quence Planner uses a new sequence planning approach, where
sequences are based on the relations among operations instead
of explicit manual sequence construction (Bengtsson et al.,
2012). This is achieved by using self-contained operation mod-
els that include only relevant conditions on when and how the
operations can execute. The operation models are also repre-
sented by an automata model extended with variables. This
model is for example used for formal verification, control syn-
thesis and optimization (Lennartson et al., 2010).

Sequence Planner uses a graphical language called Se-
quences of Operations (SOP) introduced by Lennartson et al.
(2010). By using various views or perspectives, the sequences
of operations related to e.g the part flow, transport operations
or workstation tasks can be visualized. The SOP language is
based on operations where the execution of each operation con-
sists of three states: initial state, execute state and finished state.
If an operation is denotedO, the states are denotedOi (initial),
Oe (execute) andOf (finished). The operation can start when
its preconditionO↑ is satisfied and stop when its postcondition
O↓ is satisfied. To better understand the operations and the tool
Sequence Planner, let us study an example.

6.2. An automation system example

This example is based on a real installation in the Robot and
Automation Lab at Chalmers University of Technology. The
cell is shown in Figure 6. The cell receives two pieces of sheet
metal, one from an Automated Guided Vehicle (AGV) (6), and
the other one from a conveyor (1). One of the small robots (3),
and the large robot (5), picks up the parts and put them in the
fixture (2), which fixates the parts before the robots drill holes
and rivet the plates together. The assembled part is then trans-
ported away by the AGV.

In the given example, let us focus on when the parts are
loaded into the fixture by the robots. In Figure 7, some of the
operations executed by the fixture and the robots are shown ina
SOP (Sequences of Operations). The SOP language visualizes
the operations, denoted by boxes, and the relations among them
by graphical lines and logical expressions. The basic assump-
tion is that all operations are starting simultaneously, but where
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Figure 6: The example cell

pre- post- and reset-conditions influence the execution order.
The relations among the operations due to these conditions can
then be visualized by the SOP-language. The SOP in this exam-
ple includes 10 operations structured in three sequences, where
the left sequence describes the high-level behavior, and the two
right sequences show the detailed sub-operations of the two
load operations.

Figure 7: Sequences of Operations (SOP) describing the behavior in the fixture
station

The LoadA and LoadB operations load the parts into the fix-
ture. These operations can start when the parts to be picked up
are in the correct position. This is defined by the logical expres-
sionsAinPosandBinPosabove the line in the operation boxes
at the upper left in Figure 7. Preconditions are shown at the top
of the operation box and postconditions at the bottom.

Part B is picked up from the conveyor by Robot 3, ex-
ecuted by operation PickB. After that, the part is placed in
the fixture by the PlaceB operation. The arrow inbetween
PickB and PlaceB denotes that PickB must be completed be-
fore PlaceB can start, i.e.PickBf is included in the precondi-
tion of PlaceB. But part B cannot be placed in the fixture before
part A, therefore the extra logical expressionPlaceAf is also
included in the precondition of PlaceB. The final precondition
is: PlaceB↑ = PickBf ∧ PlaceAf . This shows the strength of
the SOP-language, since it would be messy to show both pre-
conditions graphically.

When part B is placed in the fixture, the clamp that fixates B
can be closed. After both parts are loaded, the robots can start
to drill and rivet the parts together. The two parallel horizontal
lines in the left sequence defines that the two operations LoadA
and LoadB needs to be completed before the Drill operation
can start its execution, i.e. they are included in the precondition
for the Drill operation (Drill ↑ = LoadAf ∧ LoadBf ). The SOP
language also include alternatives, arbitrary order, loops etc,
and is described in detail in Lennartson et al. (2010).

The operations are planned in more and more detail by
adding new conditions or creating sub-operations. This oper-
ation specification together with the resource descriptioncon-
stitutes the core specification needed to create the base code of
the PLC program.

6.3. Creating the base code

The core specification from Sequence Planner can obviously
be implemented in various ways. The proposed framework does
not restrict how the base code is structured and implemented,
but the chosen structure will influence the aspects. Therefore
the base code needs to be implemented in a standardized way.
In this example the base code is divided into a set of programs,
one that coordinates the complete cell control and three station
control programs. A station in the cell is an individual process
area for a set of operations. Each station program controls the
station resources and the execution of station sequences.

Some of the operations from the Sequence Planner example
are shown in Table 2. In this example, these operations are
implemented with the operation function block shown in Figure
2 at various places in the program. Other parts of the base code
handles the interaction with the resources, like the robotsand
fixture that are implemented from a library but is not further
discussed in this paper.

Table 2: Operations with some of their core concerns

Name PreCond PostCond Resource

LoadA AinPos CloseClampAf Robot5∧ Fixture

LoadB BinPos CloseClampBf Robot3∧ Fixture

Drill LoadA f∧ LoadBf DrillDone Robot4

Rivet Drill f RivetDone Robot3∧ Robot4

PickA LoadAe APicked Robot5

PlaceA PickAf APlaced Robot5∧ Fixture

CloseA PlaceAf ∧ AinFix APlaced Fixture

In Figure 8, an overview of the proposed development frame-
work is shown. The base code is created based on the Sequence
Planner core specification and the core libraries and standards.
The program is structured as specified by the standards and con-
tains the operations and the resource control. However, a major
part of a PLC program is about e.g. field bus control, HMI com-
munication, general diagnostics, safety, cell monitoring, prod-
uct information, and coordination between stations and other
cells. These parts are implemented as aspects and are weaved
into the base code by the aspect weaver.
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Figure 8: AOP developing methodology

6.4. Aspect weaving and changeability

One of the most important reasons to separate support con-
cerns from core concerns is changeability. To change a cross-
cutting concern without accidentally messing up other parts of
the code is complicated in normal PLC programming. There-
fore, programmers tend to avoid changes in industry even if
they are needed. Although the aspects are highly dependent on
how the base code is structured, the AOP framework can hope-
fully give the programmers confidence to really do the needed
changes.

In the example, the aspect weaver will take the base code and
weave the alarm aspect into the code. Each operation will now
have an alarm connected to it. But then someone “demands”
that the code also should include alarm messages about why the
alarm went off. This function can be implemented by checking
which contact in the postcondition that is not fulfilled. In a
normal PLC program these messages needs to be added to every
single operation in the code. To implement this in the AOP
example, only a few lines of code and an extra advice code is

VAR
AC : Alarm_Advice;
AlarmMessageAC : AlarmMessage_Advice
R : Rung;

END_VAR

POINTCUT opCall DO
CALL(TypeName = ’Operation’) AND
HASOUTPUT(’Exec’ + ’Fin’) AND
HAS_INPUT_RUNG(’PostCond’);

END_POINTCUT;

AFTER opCall DO
AC(name:= opCall.getInstanceName,

execCmd:=opCall.GetOutPutName(’Exec’),
finCmd:=opCall.GetOutPutName(’Fin’));

R := opCall.GetInputRung(’PostCond’);
FOR i:=0 TO R.andClauseSize DO

AlarmMessageAC(
name:= opCall.getInstanceName,
clause := R.andClauseArray[i]);

END_FOR;
END_AFTER;

Figure 9: Extended aspect description for the alarm aspect

added to the aspect, which is shown in Figure 9.
To identify the two contacts in the postcondition,not

Clamp.OpenandClamp.Closed, the pointcut methodGetInpu-
tRung, from attribute HAS_INPUT_RUNG, is used. This
method extracts the rung connected to the inputPostCondand
places it in the variableR in the AFTER advice. The rung ob-
ject include a translation of the rung to conjunctive normalform
where a clause is represented by a set of contacts. This repre-
sentation is used by the for loop where a new function block,
for each extracted clause, will be created. The Advice Code
AlarmMessageACis not shown in the example but consists of
one AlarmMessage function block.

The weaver result can be seen in Figure 10, where
the two AlarmMessage function blocks checks if the
CloseClamp.Alarm has been enabled and if respective contact
is true. If the signal Clamp.Open still is true, the alarm mes-
sage “Alarm_CloseClamp: Clamp.Open” will be sent to the
HMI. If the signal Clamp.Closed has not been set, the alarm
“Alarm_CloseClamp: not Clamp.Closed” will be sent. In some
cases both messages will be sent. This simple example shows
how efficiently AOP can be used to include a new function-
ality by only changing at one place. But there are also some
challenges that need to be handled when using the proposed
development framework.

7. Evaluation

Aspect-oriented programming tries to modularize concerns
in a better way than traditional language constructs. But itis
still unclear if the required development effort with respect to
development time, maintenance and learning curve, is worththe
possible benefits. Some even state that there are no benefits,for
example Steimann (2006).
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Figure 10: The updated alarm aspect creates alarm messages

Some studies have been conducted to study the benefits of
AOP for Java programming. Hanenberg et al. (2009) suggest
based on a small empirical study that the use of AOP is only
beneficial if the crosscutting concern refers to a large number
of places. Another experiment (Bartsch & Harrison, 2008) was
not able to show any benefits but includes a summary of other
studies that show both good and limited benefits by using AOP.

Endrikat & Hanenberg (2011) argue that most empirical
studies about AOP are missing the point of using AOP, since
they only consider the initial development time, which is of-
ten found to increase when using AOP. Their empirical study
focuses instead on the relationship between the initial design
and future changes. They conclude that the strength of AOP
is when frequent changes is required in the crosscutting code.
On the other hand, if the base code needs frequent changes, the
AOP approach results in higher development times, and poor
reusability.

The major difference when considering AOP for Java pro-
gramming compared to 6-1131, is that PLC-programs is only
using statically defined variables and objects. This makes PLC
code harder to make generic and flexible, but on the other hand
robust and consistent. Challenges related to crosscuttingcon-
cerns can in many cases be handled in Java or other high-level
programs using dynamic language constructs, but for PLC-
programming that option is not available.

The example presented in Section 6 can easily be created in
Java without the use of AOP constructs, but in a PLC program,

it’s not obvious how to create the same reusable code. Even if
the possible benefits using AOP for high-level programming is
not clear, it seems to have better leverage for PLC-programs.
Let us study the weaving example in Section 6 when used with
a complete PLC-program.

7.1. Experiment setup

The studied PLC program contains the control code for 72
operations structured in several POUs. Each operation in the
base code consists of 5 to 12 rungs. The PLC program also
consists of code that for example handles the communication
with other resources such as the robots and manage HMI inter-
actions. All these parts form the base code where the operation
code is approximately 40% of the base code.

When the aspect in Figure 9 is weaved into the code, 3 to 7
new rungs are created for each operation. Based on this sim-
ple aspect, the weaver automatically adds almost 300 rungs of
unique code. This can be compared to the standard method for
these types of edits – copy and paste (Lucas & Tilbury, 2003)
– which will be highly error prone due to the required small
changes at each place.

Changes on the aspect can easily be managed by the weaver
by reweaving the aspect code. But when a change is made to
the base code it is not as straight forward, since it depends on
what is changed. Only changes made on the structure of the join
point structure, i.e. that the operation function block interface is
changed, will require rework at each operation implementation
and of the aspects. It is therefore important with well defined
coding standards for the base code which is often the case for
example in the automotive industry.

This research initially targeted large scale PLC development
in the automotive industry, where a large number of PLC sys-
tems are using code standards and libraries. In these situations,
the initial increased effort to use AOP, is probably well worth
the investment. However, it may also be useful for single pro-
gram development, since the number of possible join points
seems to be large. But due to the requirements on a highly
standardized based code structure, this needs to be furthereval-
uated.

This example shows that the benefits of using AOP are great-
est when a large number of join points can be targeted by few
aspects and that these join points are not changed often.

7.2. Challenges

The evaluation shows a promising result, but to be able to
use the AOP framework in industry, more work is needed. For
one thing, the weaver must be able to understand vendor spe-
cific code files, since most vendors do not read PLC open files.
Another important study is to see if normal PLC programmers
can understand and create aspects.

A foundation of AOP is that the base code is unaware of
the aspects. But the aspects on the other hand, are completely
aware of the base code and in some cases also of other aspects.
Changes in the base code structure can therefore demand large
changes in the aspects. In PLC programming, many of the as-
pects are influenced by the core specification from Sequence
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Planner, but this information is retrieved indirectly fromthe
base program. Further investigation must be done to analyzeif
it is better to retrieve some of the information directly from the
specification. This is especially useful if the base code should
be automatically generated.

This tight integration between base code and aspects was
identified in the study by Endrikat & Hanenberg (2011) as a
possible risk when using AOP. If changes are required on the
structure of the base code, the aspects can be complicated to
reuse. Endrikat & Hanenberg (2011) does not identify what
types of changes that are problematic, but conclude that further
research is required. PLC AOP development also needs to be
further studied to increase the understanding of the impactof
changes of the code structure.

Another challenge is how to handle manual changes in the
generated and installed program. In other AOP approaches,
changes are never made to the weaved code, but in a PLC pro-
gram changes can be made after deployment of the code. These
changes should be possible to retrieve back, to handle new up-
dates, fixing errors in the libraries and to develop the frame-
work. Obviously, it is complicated to feed back major changes
in the code and in the structure of the PLC program. How-
ever, in reality, changes are mainly made on specification re-
lated parts, for example new interlocking condition or sequence
changes. But since also the support concerns are tangled with
the core concerns, they must be changed as well.

The suggested approach to handle changes, is to annotate the
code where it is allowed to change and which parts are forbid-
den to change. Only parts that are related to operation specifi-
cations should be allowed to change. Then a separate program
can extract changes and feed them back to Sequence Planner
and a new code can be generated. It will be challenging to ac-
complish this in practice, but a general trend in industry isto
minimize online changes on the plant floor.

Even if online changes are not handled at the moment, the
proposed framework can in its present form contribute to a bet-
ter reuse of code compared to the common copy and paste de-
velopment method. It also gives a better possibility to auto-
generate code in a flexible way.

8. Conclusions and future research

A development method has been presented where core and
support concerns are reused both when developing program-
ming standards and during PLC programming. A software tool
called Sequence Planner is used for planning core concerns,and
the proposed IEC 61131-3 aspect weaver is used for implement-
ing support concerns.

The presented method contributes by adapting AOP-
methodology into the PLC programming domain, especially
for the IEC 61131-3 languages. The method also unifies reuse
of core and support concerns during the development process
of a PLC program. When the proposed aspect-oriented pro-
gramming for 6-1131 was tested using an example program,
the reuse of one crosscutting aspect were able to create almost
300 rungs of unique code.

The paper presents a possible method for PLC programming
using AOP. However, further work is required before it can
be used in real industrial projects. For example, the proposed
framework needs to be included in the integrated development
environments of the PLC vendors. How PLC programmers will
be able to understand and utilize programming by aspects must
also be studied, as well as how PLC programs are currently
changed online and if feedback functionality really is needed.

Not all languages in 61131-3 have been studied in this re-
search, for example sequential function charts. Further inves-
tigation is needed to understand how to fully combine all lan-
guages during aspect weaving. There are also open issues how
to handle aspect interference, more general advice insertion and
more general pointcuts.
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