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Elasti
 wave s
attering by a re
tangular 
ra
k near anon-planar ba
k surfa
eJ. Westlund, A. BoströmChalmers University of Te
hnology, Department of Applied Me
hani
s, SE-412 96Gothenburg, Sweden
Abstra
tA 3D model of nondestru
tive ultrasoni
 testing for 
ra
ks near a non-planarba
k surfa
e is presented. The s
attering by an interior re
tangular 
ra
k in athi
k-walled 
omponent with a ba
k surfa
e of general geometry is 
onsidered.The 3D wave s
attering problem is solved using boundary integral equationmethods (BIEMs): the boundary element method (BEM) for the ba
k surfa
edispla
ement is 
ombined with an analyti
al te
hnique for the hypersingulartra
tion boundary integral equation for the 
ra
k opening displa
ement. Thesolution method generates many unknowns, but by applying a threshold 
rite-rion a sparse approximation of the system matrix is obtained su
h that a fastsparse solver may be used. The 
omputations are a

elerated further by usingthe stationary phase approximation for the 
omputation of probe �eld inte-grals. The a
tion of ultrasoni
 probes in transmission and re
eption, 
alibrationby side-drilled holes and e�e
ts of material damping are taken into a

ount inthe model, and a few numeri
al examples illustrate the in�uen
e of the ba
ksurfa
e geometry.Keywords: Elasti
 waves, Boundary integral equation method, Boundaryelement method, S
attering, Nondestru
tive testing, Ultrasoni
s1. Introdu
tionQuantitative methods of nondestru
tive evaluation (NDE) today play animportant role in in-servi
e inspe
tion and maintenan
e of stru
tures, with es-pe
ially important appli
ations in the aerospa
e and nu
lear industries wherefailures 
an have very severe 
onsequen
es. Among the several methods of NDEthat exist today the ultrasoni
 te
hniques, the fo
us of the present paper, arearguably the most important.As is re
ognized by Thompson and Gray [1℄ and A
henba
h [2, 3, 4℄, the needof a measurement model - a model of the 
omplete testing situation - is 
ommonEmail address: anders.bostrom�
halmers.se (A. Boström)Preprint submitted to Eng. Anal. Boundary Elements February 29, 2012



to all methods of NDE. In the 
ase of ultrasoni
 testing su
h a model shouldin
lude the generation of the in
oming ultrasound by the transmitting probe, theintera
tion of this wave �eld with the defe
t, and the signal response obtainedas output at the re
eiving probe due to ex
itation by the wave �eld s
atteredby the defe
t. A

ess to a good measurement model has major bene�ts: itenables parametri
 studies su
h that 
ostly and time-
onsuming experiments
an be avoided, thus making the model an important tool when designing andoptimizing testing pro
edures. A model 
an also be a very valuable tool in theinterpretation of experimental data, thus in
reasing the physi
al understandingof the wave propagation. Models are also very useful in the assessment ofprobability of dete
tion of defe
ts.In this paper a model of ultrasoni
 testing for 
ra
ks near a non-planarba
k surfa
e is presented. The appli
ation in mind is the testing of nu
learpower plant 
omponents su
h as thi
k-walled pipes, whi
h 
an feature diameter
hanges or 
onne
tions with 
omplex, non-planar geometries. The presen
e ofthese non-planar ba
k surfa
es 
ompli
ates the testing sin
e the signal from adefe
t may be strongly in�uen
ed or even masked by the signal from the non-planar surfa
e.The solution method employed in the model is based on boundary integralequation methods, BIEMs, with the major advantage of being essentially exa
tmethods su
h that the results are valid both for low, intermediate and highfrequen
ies. This is in 
ontrast to the approximate theories su
h as the Geo-metri
al Theory of Di�ra
tion (GTD) and the elastodynami
 Kir
hho� theoryused, for example, in the models by Calmon et al. [5℄ and Chapman [6℄. Theseapproximate theories provide powerful and e�
ient methods with the possibil-ity to treat 
omplex geometries, but �nding the bounds of appli
ability of thetheories in a spe
i�
 
ase 
an be di�
ult. The identi�
ation of su
h bounds maya
tually be an important appli
ation of an essentially exa
t model, as dis
ussedin the paper by S
hafbu
h et al. [7℄ who employ the boundary element method(BEM) in a model of ultrasoni
 NDE. The authors also make 
omparisons oftheir BEM-results with the results of approximate, asymptoti
 theories and alsoexperiments.This paper is organized as follows. In Se
tion 2 the problem formulationis given, and in Se
tion 3 the reformulation of the wave s
attering problem astwo 
oupled boundary integral equations, BIEs, is des
ribed. In Se
tion 4 thea
tion of ultrasoni
 probes in transmission and re
eption is modeled, while thedis
retization and the numeri
al solution method are des
ribed in Se
tion 5.Finally, in Se
tion 6, the numeri
al 
omputations are dis
ussed and in Se
tion 7a few numeri
al examples are given.2. Problem formulationThe s
attering geometry is depi
ted in Fig. 1, where an interior re
tangular
ra
k with sides 2a1 and 2a2 is lo
ated in a thi
k-walled 
omponent with a non-planar ba
k surfa
e. Conventional transmitting and re
eiving ultrasoni
 
onta
tprobes (T) and (R), respe
tively, s
an along the surfa
e of the 
omponent. The2



same probe may also be used in both transmission and re
eption, in the 
ommon
ase of pulse-e
ho testing.The �gure also introdu
es four 
oordinate systems: the 
ra
k 
oordinatesystem xc, the ba
k surfa
e system xb, the transmitter system xt and there
eiver system xr. The supers
ripts `c', `b', `t' and `r' on quantities indi
atethat they are represented in the 
orresponding 
oordinate system. Omittedsupers
ripts indi
ate expressions whi
h hold in any of the 
oordinate systems.The lo
ation of the 
ra
k 
enter relative to the ba
k surfa
e 
oordinate sys-tem is given by the ve
tor d, and the 
ra
k orientation relative to the ba
k sur-fa
e 
oordinate system is des
ribed by the three Euler angles (ϕc, θc, ψc). Here
ϕc is the rotation around the xb

3-axis, θc the rotation around the intermediate
x2-axis and ψc the rotation around the xc

3-axis. The standard transformationrules for the transformation between the 
oordinate systems apply, with thetransformation (rotation) matrix Rc from xb to xc. The positions of the trans-mitting and re
eiving probes relative to the ba
k surfa
e 
oordinate system aregiven by the ve
tors dT and dR, respe
tively, and the probe systems and theba
k surfa
e system are assumed to be 
ollinear.The shape of the ba
k surfa
e is des
ribed by the fun
tion g(xb
1 , x

b
2) and isallowed to be quite arbitrary, as long as it has a 
ontinuous normal ve
tor. In thesubsequent numeri
al solution pro
edure the in�nite ba
k surfa
e is trun
atedand dis
retized, and (T1, T2) and (T3, T4) denote the 
orresponding lower andupper trun
ation limits in the xb

1 - and xb
2 -dire
tions, respe
tively.The 
omponent is linearly elasti
, isotropi
 and homogeneous in the exteriorof the 
ra
k, with Lamé 
onstants λ and µ and density ρ. The distan
e betweenthe 
ra
k and the ba
k surfa
e may be arbitrary as long as the 
ra
k is interior,but the distan
e between the s
anning surfa
e of the 
omponent and the 
ra
kand ba
k surfa
e is assumed to be at least a 
ouple of wavelengths. Thus themultiple s
attering between the 
ra
k and the ba
k surfa
e is fully taken intoa

ount, whereas the multiple s
attering between the s
anning surfa
e and the
ra
k and ba
k surfa
e is negle
ted. This also means that the in
ident �eld fromthe transmitting probe 
an be 
al
ulated as the �eld in a half-spa
e.Only time-harmoni
 elastodynami
s is 
onsidered and the time-fa
tor e−iωt,with ω denoting the angular frequen
y and t the time, is suppressed throughout.The elastodynami
 equation of motion is then:

∇ · σ + ρω2u = 0, (2.1)where σ is the Cau
hy stress tensor, u the displa
ement ve
tor and the 
on-stitutive equation relating the stresses and displa
ement gradients is Hooke'slaw:
σ = C : ∇u. (2.2)For the isotropi
 and homogeneous materials 
onsidered here the elasti
 sti�nesstensor C may be expressed as C = λI2 ⊗ I2 +2µS4, where I2 is the se
ond-orderidentity tensor and S4 the symmetri
 fourth-order identity tensor.3



The 
ombination of the expli
it expression for the sti�ness tensor withHooke's law (2.2) plugged into the equation of motion (2.1) yields the usualelastodynami
 wave equation:
k−2
p ∇(∇ · u) − k−2

s ∇× (∇× u) + u = 0, (2.3)where kp = ω/cp is the pressure wave number, cp = ((λ+2µ)/ρ)1/2 the pressurewave speed, ks = ω/cs the shear wave number and cs = (µ/ρ)1/2 the shearwave speed. Adding the tra
tion-free boundary 
onditions on the 
ra
k andba
k surfa
e, a spe
i�ed in
ident wave �eld and the usual outgoing radiation
ondition at in�nity 
ompletes the formulation of the wave s
attering problemat hand.3. The integral equationsThe wave s
attering problem is solved using boundary integral equation(BIE) methods; the s
attering problem is reformulated as two 
oupled BIEswhi
h are then solved simultaneously. The BIE-reformulation is based on useof the isotropi
 free-spa
e outgoing wave Green's tensor, 
ommonly 
alled theHelmholtz fundamental solution and here denoted by Uk(x,y;ω). It is de�nedas the outward propagating solution of the equation:
∇ ·Σk(x,y;ω) + ρω2Uk(x,y;ω) = −δ(x − y)ek, (3.1)where the 
orresponding stress tensor is Σ

k(x,y;ω) ≡ C : ∇Uk(x,y;ω), δ(x−
y) denotes the 3D Dira
 delta distribution and ek is the unit ve
tor in the k-dire
tion, k = 1, 2, 3. Throughout the paper, the ∇-operator always a
ts on the
x-
oordinates.The Green's tensor may be 
al
ulated using the formula (see e.g. Ström [8℄):

Uk
j (x,y;ω) =

1

µk2
s

[

k2
s δjkG(x,y; ks)

+
∂

∂xj

∂

∂xk

(

G(x,y; ks) − G(x,y; kp)
)]

,

(3.2)where δjk is the Krone
ker delta and G(x,y; km) is the outward-propagatingfundamental solution of Helmholtz equation with wave number km, m = p, s.To obtain the Green's tensor on 
losed form, Eq. (3.2) is used in 
onjun
tionwith the standard 
losed form expression for G:
G(x,y; km) =

eikm|x−y|

4π|x − y| . (3.3)3.1. The ba
k surfa
e integral equationThe ba
k surfa
e integral equation may be derived dire
tly using the Green'stensor, the divergen
e theorem and a limiting pro
ess. However, in orderto avoid strongly singular integrals an indire
t regularization approa
h (see4



Bonnet [9℄) is also followed. This approa
h transfers the singularity of thedynami
 Green's stress tensor Σ
k(x,y;ω) to the stati
 Green's stress tensor

Σ
k(x,y) = C : ∇Uk(x,y), with Uk(x,y) denoting the 
orresponding stati
displa
ement tensor. This Green's tensor, also 
ommonly 
alled the Kelvin fun-damental solution, is the solution of Eq. (3.1) for ω = 0 and is given expli
itlyby e.g. Bonnet [9℄. By transferring the singularity to the stati
 Green's ten-sor it be
omes possible to evaluate the strongly singular integral analyti
ally.The result is a ba
k surfa
e BIE 
ontaining no worse than weakly singular in-tegrals, as long as the displa
ement u satis�es the usual assumption of Hölder-
ontinutity [9, 10℄.The derivation of the ba
k surfa
e BIE and the regularization is a straightfor-ward extension to 3D of the results in the paper by Westlund and Boström [11℄,resulting in the following regularized ba
k surfa
e integral equation:

∫

ST

ub
i (xb)

[

Σk
ij(x

b,yb;ω) − Σk
ij(x

b,yb)
]

nb
j (xb) dSxb

+

∫

ST

[

ub
i (xb) − ub

i (yb)
]

Σk
ij(x

b,yb)nb
j (xb) dSxb

+Rc
ipR

c
3q

∫ a2

−a2

∫ a1

−a1

∆uc
i (x

c
1, x

c
2)Σ

k
pq

(

(Rc)T{xc
1, x

c
2, 0} + db,yb;ω

)

dxc
1 dxc

2

−1

2
ub

k(yb) + uin,b
k (yb) = 0, (3.4)where y ∈ ST , u is the total displa
ement �eld, n the upward unit nor-mal ve
tor of the ba
k surfa
e, ∆u the 
ra
k opening displa
ement (COD):

∆u(xc
1, x

c
2) ≡ u(xc

1, x
c
2, 0

+) − u(xc
1, x

c
2, 0

−), uin the in
ident displa
ement �eldfrom the transmitting probe and k = 1, 2, 3. In this integral equation the in-tegrals over the in�nite ba
k surfa
e have been repla
ed by integrals over thetrun
ated ba
k surfa
e ST . This approximation is expe
ted to be valid forsu�
iently large trun
ation limits (T1, T2) and (T3, T4).3.2. The 
ra
k integral equationAn integral representation for the displa
ement �eld may be derived usingthe divergen
e theorem and the Green's tensor, just as is done in the deriva-tion of the ba
k surfa
e integral equation above and also dis
ussed by Pao andVaratharajulu [12℄. The result is the following equation, valid for interior points
y:

uc
k(yc) =

∫

ST

uc
i (x

c)Σk
ij(x

c,yc;ω)nc
j(x

c) dSxc

+

∫ a2

−a2

∫ a1

−a1

∆uc
i (x

c
1, x

c
2)Σ

k
i3({xc

1, x
c
2, 0},yc;ω) dxc

1 dxc
2 + uin,c

k (yc). (3.5)It is well-known that displa
ement BIEs degenerate for 
ra
ks [9, 13℄, so for the
ra
k a tra
tion BIE is used instead. The 
ra
k integral equation is then derived5



from the integral representation by applying the stress operator, letting thesour
e point approa
h the 
ra
k (from either side) and invoking the boundary
ondition to obtain:
lim

yc
3→0

σc
i3(y

c
1, y

c
2, y

c
3) =

∫

ST

uc
m(xc)Ci3kl

∂

∂yc
l

Σk
mn(xc, {yc

1, y
c
2, 0};ω)nc

n(xc) dSxc

+ lim
yc
3→0

∫ a2

−a2

∫ a1

−a1

∆uc
m(xc

1, x
c
2)Ci3kl

∂

∂yc
l

Σk
m3({xc

1, x
c
2, 0},yc;ω) dxc

1 dxc
2

+ Ci3kl
∂

∂yc
l

uin,c
k ({yc

1, y
c
2, 0}) = 0, (3.6)where i = 1, 2, 3, |yc

1| < a1, |yc
2| < a2 and Cijkl are the 
omponents of the elasti
sti�ness tensor C. The se
ond integral in this equation is of the hypersingulartype (see e.g. Refs. [13, 14, 15, 16℄ for dis
ussions of hypersingular integrals),so the limit 
annot be moved inside the integral. However, the present solutionmethod enables an expli
it evaluation of the limit at a later stage, as des
ribedin se
tion 5.4. The ultrasoni
 probesThis paper 
onsiders 
onventional ultrasoni
 
onta
t probes 
onsisting of apiezoele
tri
 
rystal atta
hed to a plasti
 wedge, with a 
ouplant usually appliedbetween the 
omponent and the probe. In order to a

ount for the a
tionof transmitting ultrasoni
 probes of this type, the probe model developed byBoström and Wirdelius [17℄ is used. This model is based on pres
ribing thetra
tion on the s
anning surfa
e of the 
omponent, and the tra
tion is taken asthat due to a plane SH, SV or P wave with given amplitude and propagationdire
tion. For the transmitting probe (T), the boundary 
ondition on the uppersurfa
e of the 
omponent is taken as the tra
tion:

tt =


































iA0fµkp

[

δ sin 2γt ext
1
+

(

k2
s

k2
p

− 2 sin2 γt

)

ext
3

]

e−ikpxt
1 sin γt ,P probe,

iA0fµks

[

−δ cos 2γt ext
1
+ sin 2γt ext

3

]

e−iksx
t
1 sin γt , SV probe,

iA0fµksδ cos γt ext
2
e−iksx

t
1 sin γt , SH probe, (4.1)beneath the surfa
e of the probe and tt = 0 elsewhere. The surfa
e of the probeis assumed to be either ellipti
al or re
tangular, and the fun
tion f is introdu
edin order to allow for a non-
onstant tra
tion tapering o� towards the edges ofthe probe. The transmitting probe angle γt is the rotation in the xt

2-dire
tionmeasured from the negative xt
3-axis, the parameter δ (with 0 ≤ δ ≤ 1) a

ounts6



for the e�e
t of a 
ouplant applied between the probe and the s
anning surfa
eand A0 is the amplitude.When multiple re�e
tions between the s
anning surfa
e and the 
ra
k andba
k surfa
e are negle
ted, the a
tion of the probe 
an be 
al
ulated as in a half-spa
e and enables a solution of the boundary value problem for the in
ident �eldusing a double Fourier transform. With the notation of Boström et al. [18℄ forthe ve
tor plane waves, the Fourier expansion reads:
uin,t(xt) =

3
∑

j=1

∫

C−

ξj(α, β)ϕt
j(α, β; xt) dγ̂, (4.2)where α and β are the spheri
al angles of propagation of the plane waves, ϕ1is the SH-wave, ϕ2 the SV-wave and ϕ3 the P-wave. The fun
tions ξj aredetermined by 
onverting Eq. (4.2) to re
tangular 
oordinates (q, p) in Fourierspa
e, 
omputing the 
orresponding tra
tion and identifying with the Fouriertransform T t of the pres
ribed tra
tion tt given by Eq. (4.1). The details aregiven in the paper by Boström and Wirdelius [17℄, where the ve
tor plane waves

ϕj , the fun
tions ξj , the integration 
ontour C−, the integration measure dγ̂and the ve
tor T t are all listed expli
itly.In order to predi
t the signal response measured in an ultrasoni
 testing sit-uation, the a
tion of the re
eiving probe must be modeled. This is a
hieved byusing the ele
trome
hani
al re
ipro
ity relation by Auld [19℄, whi
h states thatthe 
hange in the re
eived signal indu
ed by the presen
e of a defe
t may be
omputed by 
onsidering the two states (1): the transmitting probe illuminat-ing the medium with the defe
t present and (2): the re
eiving probe a
ting as atransmitter with the defe
t absent. Applied to this 
ase Auld's re
ipro
ity rela-tion gives the 
ra
k signal response (whi
h in
ludes multiple re�e
tions betweenthe 
ra
k and ba
k surfa
e) as:
δΓC =

−iω

4P

∫ a2

−a2

∫ a1

−a1

∆uc
i(x

c
1, x

c
2)σ

re,c
i3 (xc

1, x
c
2, 0) dxc

1 dxc
2, (4.3)and the ba
k surfa
e signal response (in the absen
e of the 
ra
k) as:

δΓBS =
−iω

4P

∫

ST

ure,b
i (xb)σin,b

ij (xb)nb
j (xb) dSxb , (4.4)su
h that the total signal response is δΓTot = δΓBS + δΓC . In the above equa-tions the supers
ript `re' denotes quantities 
omputed with the ba
k surfa
epresent but the 
ra
k absent and the in
ident �eld generated by the re
eivingprobe a
ting as transmitter, and the supers
ript `in' denotes quantities 
om-puted with both ba
k surfa
e and 
ra
k absent and the in
ident �eld generatedby the transmitting probe. The COD ∆ui is due to an in
ident �eld from thetransmitting probe with both 
ra
k and ba
k surfa
e present. The probes aretransmitting at the �xed angular frequen
y ω, and the quantity P is essentiallythe power supplied to the transmitting probe. For detailed dis
ussions of probesignal response 
al
ulations based on Auld's re
ipro
ity relation the reader isreferred to the papers by Thompson [20℄ and Mattsson and Niklasson [21℄.7



5. Solution of the integral equationsThe two 
oupled boundary integral equations (3.4) and (3.6) are solved bydis
retizing them and subsequently solving the resulting system of linear alge-brai
 equations. As is always the 
ase in BIEMs, the presen
e of singular in-tegrals requires spe
ial attention. However, due to the regularization approa
hfollowed for the ba
k surfa
e BIE, Eq. (3.4), it 
ontains no strong singularitiesand is immediately suited for a standard boundary element dis
retization. Useof the BEM for the ba
k surfa
e has the major bene�t of allowing for a generalshape of the ba
k surfa
e.The hypersingular integral in the 
ra
k BIE, Eq. (3.6), also requires somekind of regularization. One way of a
hieving this is to use the Galerkin method,in whi
h the ne
essary regularization is a
hieved automati
ally by the repeatedintegration over the 
ra
k. However, the Galerkin method typi
ally leads tomore expensive 
omputations 
ompared to other regularization te
hniques whi
hare used in 
onjun
tion with the 
ollo
ation method. Ex
eptions are foundfor simple defe
t types like the re
tangular 
ra
k 
onsidered in this paper, forwhi
h a suitable Fourier series expansion of the COD in Chebyshev fun
tions(see e.g. Refs. [22, 23℄) enables an analyti
al evaluation of the 
ra
k integralso

urring in the Galerkin method. The result is a 
omputationally e�
ientsolution pro
edure for the 
ra
k BIE whi
h automati
ally resolves the di�
ultiesasso
iated with hypersingular integrals.The Chebyshev fun
tions used in the series expansion of the COD are de�nedby:
ψn(v) =

{

1
π cos(n arcsinv), n = 1, 3, . . . ,
i
π sin(n arcsinv), n = 2, 4, . . . ,su
h that the expansion reads:

∆uc
i (x

c
1, x

c
2) =

N1
∑

n1=1

N2
∑

n2=1

αin1n2
ψn1

(xc
1/a1)ψn2

(xc
2/a2). (5.1)This expansion allows for an analyti
al evaluation of the 
ra
k integrals arising inthe 
ra
k BIE, due to the fa
t that the Chebyshev fun
tions satisfy the integralrelation:

∫ 1

−1

ψn(v) e−iγv dv =
n

γ
Jn(γ), (5.2)where Jn is the Bessel fun
tion of the �rst kind and order n. The expansion alsoexhibits the 
orre
t behavior at the 
ra
k edges sin
e the Chebyshev fun
tions

ψn(v) are of the form of a polynomial of degree n − 1 multiplied by the fa
tor√
1 − v2. At the 
orners of the re
tangular 
ra
k, on the other hand, slightlystronger singularities are expe
ted [24℄, but sin
e this behavior is di�
ult toin
orporate in the expansion no measure is taken to in
lude these singularities.In addition, the results of Nishimura and Kobayashi [25℄ show that negle
ting8



the 
orner singularities has no signi�
ant in�uen
e on the results; they reporta

urate results using a dis
retization whi
h exhibits the 
orre
t behavior at the
ra
k edges but is a
tually 
ompletely non-singular at the 
ra
k 
orners.A standard boundary element dis
retization (see e.g. Refs. [9, 26, 27℄) of theba
k surfa
e is performed using nine-noded quadrilateral elements and isopara-metri
al Lagrangian interpolation. With Nnode denoting the number of nodeson the trun
ated ba
k surfa
e ST after it has been dis
retized into Ne elements,the number of unknowns on the ba
k surfa
e is 3Nnode. The dis
retization ofthe COD given by Eq. (5.1) results in 3N1N2 unknown expansion 
oe�
ients
αin1n2

, su
h that the total number of unknowns is Ndof = 3(Nnode + N1N2).The same number of equations is obtained by 
ollo
ating the ba
k surfa
e BIEat ea
h node point ync
on ST and by using the Galerkin method for the 
ra
kBIE: the BIE is proje
ted on the N1N2 expansion fun
tions.Letting {Ee}Ne

e=1 denote the boundary elements, the partly dis
retized ba
ksurfa
e BIE 
an be written:
Ne
∑

e=1

[∫

Ee

ub
i (xb)

[

Σk
ij(x

b,yb
nc

;ω) − Σk
ij(x

b,yb
nc

)
]

nb
j (xb) dSxb

+

∫

Ee

[

ub
i (xb) − ub

i (yb
nc

)
]

Σk
ij(x

b,yb
nc

)nb
j (xb) dSxb

]

+ Rc
ipR

c
3q

N1
∑

n1=1

N2
∑

n2=1

αin1n2

∫ a2

−a2

∫ a1

−a1

ψn2
(xc

2/a2)ψn1
(xc

1/a1)

× Σk
pq

(

(Rc)T{xc
1, x

c
2, 0} + db,yb

nc
;ω

)

dxc
1 dxc

2

− 1

2
ub

k(yb
nc

) + uin,b
k (yb

nc
) = 0, for nc = 1, 2, . . . , Nnode and k = 1, 2, 3.(5.3)

9



Further, the partly dis
retized 
ra
k BIE 
an be written:
Ne
∑

e=1

∫ a2

−a2

∫ a1

−a1

ψn′

2
(yc

2/a2)ψn′

1
(yc

1/a1)

×
(∫

Ee

uc
m(xc)Ci3kl

∂

∂yc
l

Σk
mn(xc, {yc

1, y
c
2, 0};ω)nc

n(xc) dSxc

)

dyc
1 dyc

2

+

N1
∑

n1=1

N2
∑

n2=1

αmn1n2
lim

yc
3→0

∫ a2

−a2

∫ a1

−a1

ψn′

2
(yc

2/a2)ψn′

1
(yc

1/a1)

×
(∫ a2

−a2

∫ a1

−a1

ψn2
(xc

2/a2)ψn1
(xc

1/a1)

× Ci3kl
∂

∂yc
l

Σk
m3({xc

1, x
c
2, 0},yc;ω) dxc

1 dxc
2

)

dyc
1 dyc

2

+

∫ a2

−a2

∫ a1

−a1

ψn′

2
(yc

2/a2)ψn′

1
(yc

1/a1)Ci3kl
∂

∂yc
l

uin,c
k ({yc

1, y
c
2, 0}) dyc

1 dyc
2 = 0,for n′

1 = 1, 2, . . . , N1, n
′
2 = 1, 2, . . . , N2 and i = 1, 2, 3. (5.4)The fully dis
retized form of the integral equations is obtained after in-trodu
ing the elementwise representation of the geometry and the unknowns,in terms of the interpolation fun
tions and the node 
onne
tivity table, intoEqs. (5.3) and (5.4). Sin
e the pro
edure is standard the details are omitted.To solve the wave s
attering problem it remains to evaluate all boundary ele-ment and 
ra
k integrals numeri
ally, assemble the system of linear algebrai
equations and solve for the unknown ba
k surfa
e node displa
ements and CODexpansion 
oe�
ients.6. Numeri
al 
onsiderationsIn this se
tion the numeri
al 
omputations are dis
ussed.Ex
ept for the temporal Fourier transform whi
h is 
omputed using thetrapezoidal rule, all numeri
al integration is performed using ordinary Gauss-Legendre quadrature. However, due to the presen
e of singular integrals inthe integral equations some spe
ial attention is required for a

urate numeri
alintegration.Due to the fa
t that the ba
k surfa
e BIE (5.3) has been regularized thesenumeri
al 
omputations are quite straightforward. However, a

urate evalua-tion of the singular element integrals (element integrals with the 
ollo
ationpoint lo
ated on the element) still requires some attention. In this paper theintegration te
hnique des
ribed by Bonnet [9℄ is followed, in whi
h polar 
o-ordinates in the parent element (with the origin at the 
ollo
ation point) areintrodu
ed. For the weakly singular integrand a reformulation using modi�edshape fun
tions is then used, su
h that the regularizing e�e
t of the fa
tor

ub
i (xb) − ub

i (yb
nc

) is exploited fully. An element subdivision into triangles, as10



des
ribed by Rezayat et al. [28℄, followed by a �nal 
oordinate transformationba
k to re
tangular 
oordinates is then used, after whi
h regular Gauss-Legendrequadrature is applied to the resulting 
ompletely nonsingular integrals. It maybe remarked that the isoparametri
al interpolation used ensures that the 
on-dition of Hölder-
ontinuity assumed in the derivation of the ba
k surfa
e BIE isful�lled.The integrals 
ontaining the fa
tor Σk
ij(x

b,yb
nc

;ω) − Σk
ij(x

b,yb
nc

) are non-singular as they stand and thus require little extra attention. However, to avoidnumeri
al errors a series expansion of the dynami
 Green's tensor is used forsmall distan
es between the 
ollo
ation and integration points, su
h that thesingular term is 
an
eled expli
itly.As long as the 
ra
k is interior the 
ra
k integrals in the ba
k surfa
eBIE (5.3) are regular, and for the examples in this paper 15 Gauss points in ea
h
ra
k dire
tion have proven su�
ient. The same holds true for the ba
k surfa
eintegrals in the 
ra
k BIE (5.4), for whi
h 3 Gauss points in ea
h boundary el-ement dire
tion and 15 Gauss points in ea
h 
ra
k dire
tion, respe
tively, haveproven to be su�
ient for the examples 
onsidered here. However, the numberof Gauss points required for these integrations depends strongly on the distan
ebetween the 
ra
k and ba
k surfa
e su
h that 
ra
ks 
loser to the ba
k surfa
erequire more Gauss points. This matter is dis
ussed in more detail in the paperby Westlund [29℄ treating a s
alar 2D 
ase with the same method of solution.In order to make use of the integral relation (5.2) when evaluating the in
i-dent probe �eld and 
ra
k integrals in Eq. (5.4), the Fourier integral form of theGreen's tensor must be used. This form may be obtained by again employingEq. (3.2), but now instead with the following Fourier integral representation of
G(x,y; km):

G(x,y; km) =
i

8π2

∫ ∞

−∞

∫ ∞

−∞

1

hm
ei(q(x1−y1)+p(x2−y2)+hm|x3−y3|) dq dp,where hm = hm(q, p) = (k2

m − q2 − p2)1/2, m = p, s and the bran
h of the
omplex square root 
hosen su
h that Im
√
z ≥ 0 ∀z ∈ C. After insertingthe Fourier representation of the Green's tensor in Eq. (5.4) and evaluating the
ra
k integrals using the integral relation (5.2), the limit may be evaluated sin
ethe resulting integral is now 
onvergent in the ordinary sense. The result is:

lim
yc
3→0

∫ a2

−a2

∫ a1

−a1

ψn′

2
(yc

2/a2)ψn′

1
(yc

1/a1)

(∫ a2

−a2

∫ a1

−a1

ψn2
(xc

2/a2)ψn1
(xc

1/a1)

× Ci3kl
∂

∂yc
l

Σk
m3({xc

1, x
c
2, 0},yc;ω) dxc

1 dxc
2

)

dyc
1 dyc

2

= 2iµks(−1)n1+n2n1n2n
′
1n

′
2

×
∫ ∞

−∞

∫ ∞

−∞

Sim(q, p)Jn1
(a1q)Jn′

1
(a1q)Jn2

(a2p)Jn′

2
(a2p)

dq dp

q2p2
, (6.1)

11



where the fun
tion Sim(q, p) is:
[Sim(q, p)] =

1

16π2k3
s s

2







p2k2
s hs + q2

hs
R qp

hs
R− qpk2

shs 0
qp
hs
R− qpk2

shs q2k2
shs + p2

hs
R 0

0 0 s2

hp
R






.Here R = 4s2hphs + (2s2 − k2

s )
2 is the Rayleigh fun
tion and s2 = q2 + p2. Thequadruple 
ra
k integrals are thus redu
ed to double Fourier integrals. Theseare slowly 
onverging as they stand, but the following asymptoti
 behaviour of

Sim for large |q| with p �xed (with obvious 
ounterparts for large |p| with q�xed):
16π2k3

sSim = Cmδim
(

|q| + O(|q|−1)
)

+ (1 − δim)O(1), (6.2)where C1 = C3 = 2i(k2
s − k2

p) and C2 = ik2
s , may be exploited to improve the
onvergen
e. The asymptotes along the q- and and p-axes are then subtra
tedand added ba
k in the Fourier integrals, and the added ba
k terms are evaluatedanalyti
ally using the relations:

∫ ∞

−∞

Jk(q)Jl(q)

|q| dq =
δkl

k
, k, l = 1, 2, . . . ,

∫ ∞

−∞

Jk(q)Jl(q)

q2
dq = − 4(1 + (−1)k+l) cos(π

2 (k − l))

π(k4 + (l2 − 1)2 − 2k2(1 + l2))
, k, l = 1, 2, . . . .The remaining integrals, with the asymptotes subtra
ted, 
onverge qui
klyenough for dire
t numeri
al integration using about 100 Gauss points in ea
hdire
tion in ordinary Gauss-Legendre quadrature.In the 
omputation of the 
ra
k signal response given by Eq. (4.3) the stresson the 
ra
k due to an in
ident �eld from the re
eiving probe, in the absen
eof the 
ra
k but with the ba
k surfa
e present, enters. This stress is 
omputedby solving the ba
k surfa
e integral equation (3.1) with ∆ui = 0 and then
omputing the stress from the integral representation, Eq. (3.5). Exa
tly thesame integrals as in the 
ra
k BIE then enter, su
h that no additional integrationis required in the 
omputation of δΓC . The ba
k surfa
e signal response δΓBS ,on the other hand, requires integration of the in
ident stress �eld (multipliedby the interpolation fun
tions) on the boundary elements. Sin
e this stress �eldis expressed as an inverse double Fourier transform, the 
omputation of δΓBSbe
omes very time 
onsuming. In order to speed up these 
omputations, the2D stationary phase approximation is used in the 
omputation of the in
ident�eld given by Eq. (4.2). In the integral equations the in
ident displa
ement andstress �elds also enter as load ve
tors, and the stationary phase approximation isused also for the 
omputation of these. Applied to these 
ases the 2D stationaryphase approximation takes the following form:

∫

C−

f(γ̂)eikmr·γ̂ dγ̂ ≈ −2πi

kmr
f(r̂)eikmr as kmr → ∞, (6.3)12



where r = |r|, r̂ = r/r and m = p, s. For the validity of the stationary phaseapproximation several 
onditions should be met, as dis
ussed in the paper byBoström [30℄ and Boström and Bövik [31℄. In short, one may 
on
lude that the
ra
k and ba
k surfa
e should be at least a 
ouple of wavelengths from the probe,and that the 
ra
k and probe diameters must not be too large 
ompared to thedistan
e from the probe to the 
ra
k. These 
onditions are usually satis�ed inappli
ations. The one most often violated is the 
ondition on the probe size butin these 
ases the problem 
an be 
ir
umvented by dividing the probe surfa
einto elements, see Ref. [31℄. This probe element subdivision is employed also inthe present model, and in the numeri
al examples presented in the next se
tiona subdivision into 16 probe elements is used.The dis
retization of the ba
k surfa
e yields a very large system matrix. Thismatrix may in general, as usual in the BEM, be both unsymmetri
 and fullypopulated. However, due to both the spatial de
ay due to geometri
al spreadingand the exponential de
ay due to material damping (whi
h is in
luded in thenumeri
al examples) many o�-diagonal matrix elements of the Green's tensorsare very small. This 
an be exploited in a double thresholding s
heme in su
h away that all matrix elements that have a distan
e between the 
ollo
ation pointand element above a 
ertain value are 
he
ked and set to zero if their value isbelow a threshold. The system matrix then be
omes more or less sparse, anda sparse solver 
an be used, redu
ing the total 
omputation times signi�
antly.A similar method based on the same idea was previously employed by Orti,Alemán et al. [32℄, who note that for the elasti
 wave motion they 
onsider themain features of the motion are preserved even for a threshold resulting in anapproximated sparse system matrix 
ontaining less than 3% non-zero elements.For the 
onsidered examples in this paper a threshold resulting in a sparsesystem matrix with about 10% non-zero elements was used, and the equationswere solved using the sparse parallel dire
t solver PARDISO [33℄.In the 
omputations to follow, a ba
k surfa
e size of approximately 15 ×
9 pressure wavelengths and boundary element lengths of 1/3 of the Rayleighwavelength were used. These values have been 
he
ked by 
hanging both theba
k surfa
e size and boundary element lengths to see that a proper 
onvergen
eis obtained. For the ba
k surfa
e size it is noted that material damping isimportant in that it gives an exponential de
ay with distan
e, so the values
hosen do depend on the damping. The boundary element length is rather large,but as long as the variations of the ba
k surfa
e are very smooth and the wavesare predominantly shear waves (as the 
hosen probe is an SV probe) this givesgood enough results. Unfortunately, there seem to be no other results, neithernumeri
al nor experimental, that 
an be used to 
he
k the 
orre
tness of theresults. However, time domain results (see the next se
tion) are very good for
he
king the a

ura
y. If the ba
k surfa
e size is insu�
ient this will show up asarti�
ial re�e
ted pulses from the trun
ation boundaries of the ba
k surfa
e.An insu�
ient element size or other ina

ura
ies (
omputation of integrals,trun
ations in sums) generally give rise to non
ausal responses. The time tra
esin the next se
tion are 
asual, 
ontain the expe
ted pulses, and be
ome verysmall on
e the dominant pulses have passed.13



7. Numeri
al examplesAs stated in Se
tion 2, the shape of the ba
k surfa
e may be quite arbitrary.For the numeri
al results presented in this se
tion two simple examples of ba
ksurfa
es are used as illustrations, the �rst being a smooth transition in theform of a quarter-wavelength sine fun
tion. The transition is from xb
3 = 0 to

xb
3 = 1.5mm over the interval from xb

1 = 1mm to xb
1 = 6mm, independentlyof xb

2 . The se
ond example is a planar ba
k surfa
e with a lo
al, smooth bumpin the form of a produ
t of two half-wavelength sine fun
tions. The height ofthe bump is 1.5mm and it is lo
ated at (xb
1 , x

b
2) ∈ [1, 6] × [−3, 3]mm so thatthe ba
k surfa
e is planar (with xb

3 = 0) outside this domain. The peak of thebump is thus lo
ated at xb = {3.5, 0, 1.5}mm. This se
ond example is 
hosento give an illustration of the in�uen
e on the signal response of a ba
k surfa
ewith a very lo
ally non-planar geometry. The 
ra
k is re
tangular with sides
a1 = 2mm and a2 = 3mm and the 
ra
k 
enter lo
ated at db = {0, 0, 5}mm.The Euler angles are ϕc = ψc = 0◦ but θc = 90◦ (the 
ra
k verti
al) in Figs. 2and 4 and θc = 45◦ (the 
ra
k tilted 45◦) in Figs. 3 and 5.For the steel material 
onsidered the Lamé 
onstants are λ = 105GPa,
µ = 76GPa and the density is ρ = 7900 kg/m3, su
h that the wave propagationspeeds are cp ≈ 5.7mm/µs and cs ≈ 3.1mm/µs. To a

ount for the e�e
ts ofmaterial damping the Lamé 
onstants are given imaginary parts of 2% of thereal parts.In both 
ases the results of a pulse-e
ho testing situation are given, so thesame probe is working as both transmitter and re
eiver. The probe is s
anningalong a surfa
e parallel to the xb

1x
b
2-plane and lo
ated at a distan
e of 20mmfrom the lowermost part of the ba
k surfa
e. The probe is a square 10× 10mmSV probe, angled 45◦ to the right so that the probe angle γt = −45◦ and with�uid 
oupling so δ = 0. The geometry of the probe, the 
ra
k and the non-planarpart of the ba
k surfa
e is su
h that the 
ra
k is lying between the probe andthe non-planar part, and thus 'shadows' the non-planar part, when the probe islo
ated roughly at −20 < xb

1 < −10mm.In appli
ations, 
alibration by a standard s
atterer (typi
ally a side-drilledhole) is usually performed. Here, su
h 
alibration is taken into a

ount by
omputing the signal response from a side-drilled hole, and the maximum signalresponse obtained is then used as the 
alibration level when 
omputing the pulse-e
ho response as a fun
tion of probe position (but not in the time tra
es). In the
alibration 
omputation the transmitting and re
eiving probe models des
ribedin this paper are used. The s
attering by the side-drilled hole is treated bythe T matrix method as dis
ussed by Boström and Bövik [34℄, where moredetails are to be found. This method is essentially equivalent to separation-of-variables, but the pro
edure also involves 
al
ulations of the �eld from theprobe and transformation (translation and rotation) of this �eld to a 
ylindri
al
oordinate system in the side-drilled hole. Re
ipro
ity is used to determine theresponse in the re
eiving probe, and the stationary phase approximation 
an beused to simplify the 
al
ulations and obtain quite expli
it results.Figures 2 and 3 show the pulse-e
ho signal response as a fun
tion of probe14



position for the two di�erent 
ra
k orientations, for the 
ase of the ba
k surfa
ewith a transition from xb
3 = 0 to xb

3 = 1.5mm. Figures 2(a) and 3(a) show theba
k surfa
e signal responses, i.e. the responses in the absen
e of the 
ra
k,whereas Figs. 2(b) and 3(b) show the total signal responses from both the ba
ksurfa
e and the 
ra
k. Figures 4 and 5 show the 
orresponding results for these
ond ba
k surfa
e example geometry, with a lo
al bump. In all these �guresthe results are 
omputed for a single frequen
y of 1MHz, and the results are
alibrated against a side-drilled hole of radius 2mm lo
ated at a 
enter depthof 20mm. A de
ibel (dB) s
ale is used in these �gures, with a 40 dB di�eren
ebetween bla
k (strongest, 8 dB over the 
alibration level) and white (weakest,32 dB below the 
alibration level), in steps of 5 dB.As expe
ted, the planar parts of the ba
k surfa
e give only a weak signalresponse, and this response is seen to be equal for the planar parts of the ba
ksurfa
e in all the �gures. The independen
e of xb
2 for the �rst ba
k surfa
e type isalso 
learly seen in the signal response in Figs. 2(a) and 3(a). For the 
onsidered
ra
k orientations and ba
k surfa
e geometries there is also symmetry about theline xb

2 = 0, and this symmetry is apparent also in the signal response �gures.Finally it 
an also be noted that the intera
tion of the ba
k surfa
e and the
ra
k gives rise to quite 
ompli
ated signal responses in Figs. 2(b), 3(b), 4(b)and 5(b). A 'shadowing' e�e
t 
an be seen in Fig. 4(b) in that the response isweaker in the 
enter of the plot where the 
ra
k lies in front of the non-planarba
k surfa
e.If the frequen
y spe
tra of the probes are known, the time tra
es 
an be
omputed by applying an inverse temporal Fourier transform. To model thespe
trum of the probe in the numeri
al examples given here, a spe
trum in theform of a Hanning window:
1

∆f
cos2

(

π
f − fc

2∆f

)is assumed, where the 
enter frequen
y fc = 1MHz and the 6 dB bandwidth
∆f = 0.5MHz. 97 frequen
ies are used in the numeri
al 
omputation of theinverse temporal Fourier transform.Figure 6 shows the time tra
es for a probe lo
ated at (xb

1 , x
b
2) = (−30, 0)mm,for both ba
k surfa
e geometries and both with and without the 
ra
k present,with 
ra
k angle θc = 90◦ (verti
al 
ra
k). Figure 7 shows the 
orrespondingresult for a probe instead lo
ated at (xb

1 , x
b
2) = (−15, 0)mm. In both �gures thesame probe as above is used. The results in both these �gures are normalizedwith the maximum in Figure 7(d), but it should be noted that the s
ales aredi�erent in the two �gures. The geometry in Fig. 6 is su
h that the main beamfrom the probe hits the ba
k surfa
e on the �at part in front of the non-planarpart and the 
ra
k, but the re�e
tion of the beam in the ba
k surfa
e hits the
ra
k. In Fig. 7, on the other hand, the beam dire
tly hits the 
ra
k and thenon-planar part that is lo
ated dire
tly behind the 
ra
k. The �rst 
ontributionsto the signal responses (whi
h are relatively weak in Fig. 7) in these �gures arethe pulses from waves traveling verti
ally down to the ba
k surfa
e and ba
k tothe probe again, with arrival times of t ≈ 7.0 µs, t ≈ 10.0 µs and t ≈ 12.9 µs for15



the pure P, mode 
onverted and pure S wave pulses, respe
tively. It should bepointed out that this probe emits rather weak parts in the verti
al dire
tion,but due to the total re�e
tion in the ba
k surfa
e, these pulses are still relativelystrong. It may also seem that the �rst pulse arrives too early, around t ≈ 4.0 µs,but the reason for this early arrival is that the wave from the right side of theprobe is emitted at time t ≈ −1.1 µs (so as to give an angled probe; time 0 iswhen the middle of the pulse is emitted from the middle of the probe). Thesame time di�eren
e is also valid upon re
eption of the pulse. Note also thatdue to the limited bandwidth, all pulses are 'smeared out' with widths of a fewmi
rose
onds. In Fig. 6 also the re�e
tions from the non-planar part of the ba
ksurfa
e are visible, with 
orresponding arrival times of t ≈ 13.1 µs, t ≈ 18.6 µsand t ≈ 24.1 µs. The main 
ontribution from the 
ra
k is the 
orner e
ho (beingre�e
ted by both the 
ra
k and the ba
k surfa
e), with a wave path length
orresponding to an arrival time of t ≈ 23.4 µs for the pure S-wave pulse whi
hthus overlaps the last pulse from the non-planar part. With the 
ra
k presentthere are also possibilities of 
omplex, multiple intera
tions between the 
ra
kand ba
k surfa
e resulting in pulses arriving late in the tra
es.For the probe position 15mm to the left of the 
ra
k 
enter, Fig. 7, strongre�e
tions from the non-planar parts of the ba
k surfa
es are expe
ted. Thesere�e
tions 
orrespond to an arrival time of t ≈ 17.6 µs for the pure S wave pulse,and these pulses are the strongest ones seen in Fig. 7. The same verti
ally re-�e
ted ba
k surfa
e pulses as for the other probe position are of 
ourse presentalso in these tra
es, but for this probe position the di�erent ba
k surfa
e geome-tries are also seen to in�uen
e the signal response di�erently; in Fig. 7(b) thetotal response is weaker than without the 
ra
k in Fig. 7(a), whereas the 
ra
kand ba
k surfa
e re�e
tions intera
t to give an almost identi
al total responsein Fig. 7(d) as 
ompared to the results without the 
ra
k in Fig. 7(
). Thereseems to be no parti
ular reason for this di�eren
e in behavior.8. Con
luding remarksIn this paper a 
omplete model of ultrasoni
 nondestru
tive testing is devel-oped. The model in
ludes transmitting and re
eiving ultrasoni
 
onta
t probeslo
ated on a thi
k-walled 
omponent with a non-planar ba
k surfa
e and aninterior re
tangular 
ra
k. The a
tion of the transmitting probe is a

ountedfor in a model based on pres
ribing the tra
tion on the s
anning surfa
e, whilean ele
trome
hani
al re
ipro
ity argument is used to model the re
eiving probeand yield expressions for the signal response due to the 
ra
k and ba
k sur-fa
e. The wave s
attering problem is solved by reformulating it as two 
oupledboundary integral equations for the unknown 
ra
k opening and ba
k surfa
edispla
ements. By using a 
ombination of a series expansion of the 
ra
k openingdispla
ement and a boundary element dis
retization of the ba
k surfa
e to solvethe 
oupled integral equations, the hypersingularity in the 
ra
k BIE 
an betreated analyti
ally while the ba
k surfa
e is allowed to be of an arbitrary, 
om-plex geometry. The dis
retization of the ba
k surfa
e generates many unknowns16



and leads to demanding 
omputations, but the use of a fast sparse solver is en-abled by applying a threshold 
riterion to generate a sparse approximation ofthe system matrix. The 
omputations are a

elerated further by employing thestationary phase approximation for the 
omputation of all probe �eld integrals.Material damping and 
alibration against a side-drilled hole is in
luded in themodel, and time tra
es are 
omputed by applying an inverse temporal Fouriertransform. A few numeri
al results are given, illustrating the possibilities of themodel and the e�e
ts of the ba
k surfa
e geometry on the wave s
attering.A
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(b) Total signal response.Figure 2: The e
ho amplitude as a fun
tion of probe position, ba
k surfa
e with transition.Cra
k angle θc = 90◦.
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(b) Total signal response.Figure 3: The e
ho amplitude as a fun
tion of probe position, ba
k surfa
e with transition.Cra
k angle θc = 45◦.
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(b) Total signal response.Figure 4: The e
ho amplitude as a fun
tion of probe position, ba
k surfa
e with lo
al bump.Cra
k angle θc = 90◦.
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(b) Total signal response.Figure 5: The e
ho amplitude as a fun
tion of probe position, ba
k surfa
e with lo
al bump.Cra
k angle θc = 45◦.
25



0 10 20 30 40 50

−0.2

−0.1

0

0.1

0.2

0.3

Time [µs]

S
ig

na
l a

m
pl

itu
de

(a) Ba
k surfa
e with transition, 
ra
k absent.
0 10 20 30 40 50

−0.2

−0.1

0

0.1

0.2

0.3

Time [µs]

S
ig

na
l a

m
pl

itu
de

(b) Ba
k surfa
e with transition, 
ra
k present.
0 10 20 30 40 50

−0.2

−0.1

0

0.1

0.2

0.3

Time [µs]

S
ig

na
l a

m
pl

itu
de

(
) Ba
k surfa
e with lo
al bump, 
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(d) Ba
k surfa
e with lo
al bump, 
ra
k present.Figure 6: Time tra
es for probe position (xb

1
, xb

2
) = (−30, 0)mm, for the two di�erent exampleba
k surfa
e geometries. Cra
k angle θc = 90◦.26
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es for probe position (xb
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e geometries. Cra
k angle θc = 90◦.27


