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Elastic wave scattering by a rectangular crack near a
non-planar back surface

J. Westlund, A. Bostrom

Chalmers University of Technology, Department of Applied Mechanics, SE-412 96
Gothenburg, Sweden

Abstract

A 3D model of nondestructive ultrasonic testing for cracks near a non-planar
back surface is presented. The scattering by an interior rectangular crack in a
thick-walled component with a back surface of general geometry is considered.
The 3D wave scattering problem is solved using boundary integral equation
methods (BIEMs): the boundary element method (BEM) for the back surface
displacement is combined with an analytical technique for the hypersingular
traction boundary integral equation for the crack opening displacement. The
solution method generates many unknowns, but by applying a threshold crite-
rion a sparse approximation of the system matrix is obtained such that a fast
sparse solver may be used. The computations are accelerated further by using
the stationary phase approximation for the computation of probe field inte-
grals. The action of ultrasonic probes in transmission and reception, calibration
by side-drilled holes and effects of material damping are taken into account in
the model, and a few numerical examples illustrate the influence of the back
surface geometry.

Keywords: Elastic waves, Boundary integral equation method, Boundary
element method, Scattering, Nondestructive testing, Ultrasonics

1. Introduction

Quantitative methods of nondestructive evaluation (NDE) today play an
important role in in-service inspection and maintenance of structures, with es-
pecially important applications in the aerospace and nuclear industries where
failures can have very severe consequences. Among the several methods of NDE
that exist today the ultrasonic techniques, the focus of the present paper, are
arguably the most important.

As is recognized by Thompson and Gray [1] and Achenbach [2, 3, 4], the need
of a measurement model - a model of the complete testing situation - is common
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to all methods of NDE. In the case of ultrasonic testing such a model should
include the generation of the incoming ultrasound by the transmitting probe, the
interaction of this wave field with the defect, and the signal response obtained
as output at the receiving probe due to excitation by the wave field scattered
by the defect. Access to a good measurement model has major benefits: it
enables parametric studies such that costly and time-consuming experiments
can be avoided, thus making the model an important tool when designing and
optimizing testing procedures. A model can also be a very valuable tool in the
interpretation of experimental data, thus increasing the physical understanding
of the wave propagation. Models are also very useful in the assessment of
probability of detection of defects.

In this paper a model of ultrasonic testing for cracks near a non-planar
back surface is presented. The application in mind is the testing of nuclear
power plant components such as thick-walled pipes, which can feature diameter
changes or connections with complex, non-planar geometries. The presence of
these non-planar back surfaces complicates the testing since the signal from a
defect may be strongly influenced or even masked by the signal from the non-
planar surface.

The solution method employed in the model is based on boundary integral
equation methods, BIEMs, with the major advantage of being essentially exact
methods such that the results are valid both for low, intermediate and high
frequencies. This is in contrast to the approximate theories such as the Geo-
metrical Theory of Diffraction (GTD) and the elastodynamic Kirchhoff theory
used, for example, in the models by Calmon et al. [5] and Chapman [6]. These
approximate theories provide powerful and efficient methods with the possibil-
ity to treat complex geometries, but finding the bounds of applicability of the
theories in a specific case can be difficult. The identification of such bounds may
actually be an important application of an essentially exact model, as discussed
in the paper by Schafbuch et al. [7] who employ the boundary element method
(BEM) in a model of ultrasonic NDE. The authors also make comparisons of
their BEM-results with the results of approximate, asymptotic theories and also
experiments.

This paper is organized as follows. In Section 2 the problem formulation
is given, and in Section 3 the reformulation of the wave scattering problem as
two coupled boundary integral equations, BIEs, is described. In Section 4 the
action of ultrasonic probes in transmission and reception is modeled, while the
discretization and the numerical solution method are described in Section 5.
Finally, in Section 6, the numerical computations are discussed and in Section 7
a few numerical examples are given.

2. Problem formulation

The scattering geometry is depicted in Fig. 1, where an interior rectangular
crack with sides 2a; and 2as is located in a thick-walled component with a non-
planar back surface. Conventional transmitting and receiving ultrasonic contact
probes (T) and (R), respectively, scan along the surface of the component. The



same probe may also be used in both transmission and reception, in the common
case of pulse-echo testing.

The figure also introduces four coordinate systems: the crack coordinate
system x°, the back surface system xP, the transmitter system ' and the
receiver system a'. The superscripts ‘c’, ‘b’, ‘t’ and ‘r’ on quantities indicate
that they are represented in the corresponding coordinate system. Omitted
superscripts indicate expressions which hold in any of the coordinate systems.

The location of the crack center relative to the back surface coordinate sys-
tem is given by the vector d, and the crack orientation relative to the back sur-
face coordinate system is described by the three Euler angles (¢, 0¢,1°). Here
¢° is the rotation around the z}-axis, ¢ the rotation around the intermediate
xp-axis and ¢ the rotation around the z§-axis. The standard transformation
rules for the transformation between the coordinate systems apply, with the
transformation (rotation) matrix R¢ from z® to x°. The positions of the trans-
mitting and receiving probes relative to the back surface coordinate system are
given by the vectors dT and d®, respectively, and the probe systems and the
back surface system are assumed to be collinear.

The shape of the back surface is described by the function g(z}, z5) and is
allowed to be quite arbitrary, as long as it has a continuous normal vector. In the
subsequent numerical solution procedure the infinite back surface is truncated
and discretized, and (77,7T%) and (75,74) denote the corresponding lower and
upper truncation limits in the z?- and z5-directions, respectively.

The component is linearly elastic, isotropic and homogeneous in the exterior
of the crack, with Lamé constants A and p and density p. The distance between
the crack and the back surface may be arbitrary as long as the crack is interior,
but the distance between the scanning surface of the component and the crack
and back surface is assumed to be at least a couple of wavelengths. Thus the
multiple scattering between the crack and the back surface is fully taken into
account, whereas the multiple scattering between the scanning surface and the
crack and back surface is neglected. This also means that the incident field from
the transmitting probe can be calculated as the field in a half-space.

Only time-harmonic elastodynamics is considered and the time-factor e~
with w denoting the angular frequency and ¢ the time, is suppressed throughout.
The elastodynamic equation of motion is then:

iwt
3

V.o + pwu =0, (2.1)

where o is the Cauchy stress tensor, u the displacement vector and the con-
stitutive equation relating the stresses and displacement gradients is Hooke’s
law:

oc=C:Vu. (2.2)

For the isotropic and homogeneous materials considered here the elastic stiffness
tensor C may be expressed as C = Mo ® Iy +2uSy, where I is the second-order
identity tensor and S the symmetric fourth-order identity tensor.



The combination of the explicit expression for the stiffness tensor with
Hooke’s law (2.2) plugged into the equation of motion (2.1) yields the usual
elastodynamic wave equation:

ky2V(V-u) — k2 x (VX u) +u =0, (2.3)

where k, = w/c, is the pressure wave number, ¢, = ((A+24)/p)'/? the pressure
wave speed, ks = w/cs the shear wave number and ¢; = (u/p)'/? the shear
wave speed. Adding the traction-free boundary conditions on the crack and
back surface, a specified incident wave field and the usual outgoing radiation
condition at infinity completes the formulation of the wave scattering problem
at hand.

3. The integral equations

The wave scattering problem is solved using boundary integral equation
(BIE) methods; the scattering problem is reformulated as two coupled BIEs
which are then solved simultaneously. The BIE-reformulation is based on use
of the isotropic free-space outgoing wave Green’s tensor, commonly called the
Helmholtz fundamental solution and here denoted by U*(x, y;w). Tt is defined
as the outward propagating solution of the equation:

V-3 (z, y;w) + pw?Ur (2, y;0) = —d(x — y)ey, (3.1)

where the corresponding stress tensor is 3 (x, y;w) = C : VU (z, y;w), §(x —
y) denotes the 3D Dirac delta distribution and ey is the unit vector in the k-
direction, k = 1,2, 3. Throughout the paper, the V-operator always acts on the
x-coordinates.

The Green’s tensor may be calculated using the formula (see e.g. Strom [8]):

1
9 )
8—%8—xk (G(w, yiks) — G(z, y; kp)):|7

where 0j;, is the Kronecker delta and G(x,y; kn) is the outward-propagating
fundamental solution of Helmholtz equation with wave number k,,, m = p,s.
To obtain the Green’s tensor on closed form, Eq. (3.2) is used in conjunction
with the standard closed form expression for G:

elkm|z—yl

G(z,y: km) (3.3)

T dnlz—y|
3.1. The back surface integral equation

The back surface integral equation may be derived directly using the Green'’s
tensor, the divergence theorem and a limiting process. However, in order
to avoid strongly singular integrals an indirect regularization approach (see



Bonnet [9]) is also followed. This approach transfers the singularity of the
dynamic Green’s stress tensor X¥(x,y;w) to the static Green’s stress tensor
SF(x,y) = C : VUF(x,y), with UF(z,y) denoting the corresponding static
displacement tensor. This Green’s tensor, also commonly called the Kelvin fun-
damental solution, is the solution of Eq. (3.1) for w = 0 and is given explicitly
by e.g. Bonnet [9]. By transferring the singularity to the static Green’s ten-
sor it becomes possible to evaluate the strongly singular integral analytically.
The result is a back surface BIE containing no worse than weakly singular in-
tegrals, as long as the displacement w satisfies the usual assumption of Holder-
continutity [9, 10].

The derivation of the back surface BIE and the regularization is a straightfor-
ward extension to 3D of the results in the paper by Westlund and Bostrém [11],
resulting in the following regularized back surface integral equation:

/S uP(2P) [25 (2, 5% w) — TE (2, y™)] nb () dSn
4 / [ (") — u?(5")] 2% (2, yP)nd (=) dS,e
St

a a
+R§, §q/ Auﬁ(xﬁ,x%)zgq ((RC)T{xﬁ, x5,0} + db,yb;w) dzf dz§
—a —a]
1 in
—5uR(®) + " (y") =0,
(3.4)

where y € Sp, uw is the total displacement field, n the upward unit nor-
mal vector of the back surface, Awu the crack opening displacement (COD):
Au(z§,25) = w(x§, 25,0%) — u(x§, 25,07), u' the incident displacement field
from the transmitting probe and & = 1,2,3. In this integral equation the in-
tegrals over the infinite back surface have been replaced by integrals over the
truncated back surface Sp. This approximation is expected to be valid for
sufficiently large truncation limits (77, 7T%) and (T3, T}).

3.2. The crack integral equation

An integral representation for the displacement field may be derived using
the divergence theorem and the Green’s tensor, just as is done in the deriva-
tion of the back surface integral equation above and also discussed by Pao and
Varatharajulu [12]. The result is the following equation, valid for interior points
y:

S (y°) = /S ()28 (2, s w)ns () d S

a2 a1 .
+ / A (a5, 25) 2 ({5, 25, 0}, 9 ) e da§ + w™(y°).  (3.5)

—az2 J —ai

It is well-known that displacement BIEs degenerate for cracks [9, 13], so for the
crack a traction BIE is used instead. The crack integral equation is then derived



from the integral representation by applying the stress operator, letting the
source point approach the crack (from either side) and invoking the boundary
condition to obtain:

. 0]
i, 05,55, 55,05) = | (@) S (2 (05,5, 0): o) (2) i
y5—0 St yl

a al 8
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+ Ci3kl Fuk ’ ({yla Y, O}) = 07 (36)
Y

where ¢ = 1,2,3, |y§| < a1, [y5| < az and C;j;j; are the components of the elastic
stiffness tensor C. The second integral in this equation is of the hypersingular
type (see e.g. Refs. [13, 14, 15, 16] for discussions of hypersingular integrals),
so the limit cannot be moved inside the integral. However, the present solution
method enables an explicit evaluation of the limit at a later stage, as described
in section 5.

4. The ultrasonic probes

This paper considers conventional ultrasonic contact probes consisting of a
piezoelectric crystal attached to a plastic wedge, with a couplant usually applied
between the component and the probe. In order to account for the action
of transmitting ultrasonic probes of this type, the probe model developed by
Bostrom and Wirdelius [17] is used. This model is based on prescribing the
traction on the scanning surface of the component, and the traction is taken as
that due to a plane SH, SV or P wave with given amplitude and propagation
direction. For the transmitting probe (T), the boundary condition on the upper
surface of the component is taken as the traction:

t' =
2

k
iAo fukp [5 sin 27y; et + (—

e
]:2 — 2sin? 'yt) emg] e kpTisinY P prohe,
p

iAo f ks [—6 COS 2y €, + sin 2 erg} g~ iks@] sin 7 SV probe,

iAo f kso cos vy erge’ikswi sinv. QH probe,
(4.1)

beneath the surface of the probe and t' = 0 elsewhere. The surface of the probe
is assumed to be either elliptical or rectangular, and the function f is introduced
in order to allow for a non-constant traction tapering off towards the edges of
the probe. The transmitting probe angle ~y; is the rotation in the zi-direction
measured from the negative z-axis, the parameter ¢ (with 0 < § < 1) accounts



for the effect of a couplant applied between the probe and the scanning surface
and Ag is the amplitude.

When multiple reflections between the scanning surface and the crack and
back surface are neglected, the action of the probe can be calculated as in a half-
space and enables a solution of the boundary value problem for the incident field
using a double Fourier transform. With the notation of Bostrom et al. [18] for
the vector plane waves, the Fourier expansion reads:

Z / £ B)pt (a, B ) 4, (4.2)

where a and [ are the spherical angles of propagation of the plane waves, 1
is the SH-wave, oo the SV-wave and 3 the P-wave. The functions {; are
determined by converting Eq. (4.2) to rectangular coordinates (g, p) in Fourier
space, computing the corresponding traction and identifying with the Fourier
transform T of the prescribed traction t* given by Eq. (4.1). The details are
given in the paper by Bostrom and Wirdelius [17], where the vector plane waves
@;, the functions ¢;, the integration contour C_, the integration measure d¥
and the vector T are all listed explicitly.

In order to predict the signal response measured in an ultrasonic testing sit-
uation, the action of the receiving probe must be modeled. This is achieved by
using the electromechanical reciprocity relation by Auld [19], which states that
the change in the received signal induced by the presence of a defect may be
computed by considering the two states (1): the transmitting probe illuminat-
ing the medium with the defect present and (2): the receiving probe acting as a
transmitter with the defect absent. Applied to this case Auld’s reciprocity rela-
tion gives the crack signal response (which includes multiple reflections between
the crack and back surface) as:

éolc = —_u,u Au (25, 25) 055 ¢ (2, 25, 0) dz§ das, (4.3)

—as —al
and the back surface signal response (in the absence of the crack) as:

—iw

I =
0ss = Ip

ufe P(x)o P (2" )nb (z®) dSe, (4.4)
such that the total signal response is 611, = 61’ Bs + I ¢. In the above equa-
tions the superscript ‘re’ denotes quantities computed with the back surface
present, but, the crack absent and the incident field generated by the receiving
probe acting as transmitter, and the superscript ‘in’ denotes quantities com-
puted with both back surface and crack absent and the incident field generated
by the transmitting probe. The COD Auw; is due to an incident field from the
transmitting probe with both crack and back surface present. The probes are
transmitting at the fixed angular frequency w, and the quantity P is essentially
the power supplied to the transmitting probe. For detailed discussions of probe
signal response calculations based on Auld’s reciprocity relation the reader is
referred to the papers by Thompson [20] and Mattsson and Niklasson [21].



5. Solution of the integral equations

The two coupled boundary integral equations (3.4) and (3.6) are solved by
discretizing them and subsequently solving the resulting system of linear alge-
braic equations. As is always the case in BIEMs, the presence of singular in-
tegrals requires special attention. However, due to the regularization approach
followed for the back surface BIE, Eq. (3.4), it contains no strong singularities
and is immediately suited for a standard boundary element discretization. Use
of the BEM for the back surface has the major benefit of allowing for a general
shape of the back surface.

The hypersingular integral in the crack BIE, Eq. (3.6), also requires some
kind of regularization. One way of achieving this is to use the Galerkin method,
in which the necessary regularization is achieved automatically by the repeated
integration over the crack. However, the Galerkin method typically leads to
more expensive computations compared to other regularization techniques which
are used in conjunction with the collocation method. Exceptions are found
for simple defect types like the rectangular crack considered in this paper, for
which a suitable Fourier series expansion of the COD in Chebyshev functions
(see e.g. Refs. [22, 23]) enables an analytical evaluation of the crack integrals
occurring in the Galerkin method. The result is a computationally efficient
solution procedure for the crack BIE which automatically resolves the difficulties
associated with hypersingular integrals.

The Chebyshev functions used in the series expansion of the COD are defined
by:

igs o —
— sin(n arcsinv), n=24,...,

1 .
= cos(n arcsinv), n=13,...,
wn(U) = {7‘-

such that the expansion reads:

Ny No

Aug(af,25) = Y D Qinyng¥ny (/a1) 0, (25 /a2). (5.1)

n1:1 n2:1

This expansion allows for an analytical evaluation of the crack integrals arising in
the crack BIE, due to the fact that the Chebyshev functions satisfy the integral
relation:

! n
/71 V() e dv = ;Jn(’y), (5.2)

where J,, is the Bessel function of the first kind and order n. The expansion also
exhibits the correct behavior at the crack edges since the Chebyshev functions
¥, (v) are of the form of a polynomial of degree n — 1 multiplied by the factor
V1 —v2. At the corners of the rectangular crack, on the other hand, slightly
stronger singularities are expected [24], but since this behavior is difficult to
incorporate in the expansion no measure is taken to include these singularities.
In addition, the results of Nishimura and Kobayashi [25] show that neglecting



the corner singularities has no significant influence on the results; they report
accurate results using a discretization which exhibits the correct behavior at the
crack edges but is actually completely non-singular at the crack corners.

A standard boundary element discretization (see e.g. Refs. [9, 26, 27]) of the
back surface is performed using nine-noded quadrilateral elements and isopara-
metrical Lagrangian interpolation. With N,,q4. denoting the number of nodes
on the truncated back surface St after it has been discretized into N, elements,
the number of unknowns on the back surface is 3N,04.. The discretization of
the COD given by Eq. (5.1) results in 3N; Ny unknown expansion coefficients
Qtinyng, such that the total number of unknowns is Ngof = 3(Npode + N1N2).
The same number of equations is obtained by collocating the back surface BIE
at each node point y,, on St and by using the Galerkin method for the crack
BIE: the BIE is projected on the N1 N5 expansion functions.

Letting {Ee}f;l denote the boundary elements, the partly discretized back
surface BIE can be written:

Ne
3 [ [ bt [ et ut ) — Sh k)] ) S

e=1

+ /E (@) — ub(y2.)] 5 (2", 5 nb(z?) S,

e

N1 N2 as

FRORS, S i, / W (25 /a2)m, (25 /a1)

n1:1 n2:1 —az —ai
x 2k (RO {af, 25,0} + d°, gyl ;w) da§ da§

1 .
- §u2(y26) +u"(yE ) =0, forn.=1,2,..., Npoge and k = 1,2, 3.

C (5.3)



Further, the partly discretized crack BIE can be written:

Ne

> / [ 68 a2) g ()

0
x / W () Cant o 5 (@, (35, 45, 0} ), () dSae ) dy§ dys
E. ayl
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ny= 1n2 1 —a1

([ vnatassoain, /a0
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l

a2 a“ a 1n c
+/ Uy (Y5/a2) Yuy (Yi/a1)Cisti 5 o ({y1,5,0}) dytdys = 0,

—as J—aq l

forn) =1,2,...,N;,n5 =1,2,...,Nyand : = 1,2,3. (5.4)

The fully discretized form of the integral equations is obtained after in-
troducing the elementwise representation of the geometry and the unknowns,
in terms of the interpolation functions and the node connectivity table, into
Egs. (5.3) and (5.4). Since the procedure is standard the details are omitted.
To solve the wave scattering problem it remains to evaluate all boundary ele-
ment and crack integrals numerically, assemble the system of linear algebraic
equations and solve for the unknown back surface node displacements and COD
expansion coefficients.

6. Numerical considerations

In this section the numerical computations are discussed.

Except for the temporal Fourier transform which is computed using the
trapezoidal rule, all numerical integration is performed using ordinary Gauss-
Legendre quadrature. However, due to the presence of singular integrals in
the integral equations some special attention is required for accurate numerical
integration.

Due to the fact that the back surface BIE (5.3) has been regularized these
numerical computations are quite straightforward. However, accurate evalua-
tion of the singular element integrals (element integrals with the collocation
point located on the element) still requires some attention. In this paper the
integration technique described by Bonnet [9] is followed, in which polar co-
ordinates in the parent element (with the origin at the collocation point) are
introduced. For the weakly singular integrand a reformulation using modified
shape functions is then used, such that the regularizing effect of the factor

uP(x) — uP(yh ) is exploited fully. An element subdivision into triangles, as

10



described by Rezayat et al. [28], followed by a final coordinate transformation
back to rectangular coordinates is then used, after which regular Gauss-Legendre
quadrature is applied to the resulting completely nonsingular integrals. It may
be remarked that the isoparametrical interpolation used ensures that the con-
dition of Holder-continuity assumed in the derivation of the back surface BIE is
fulfilled.

The integrals containing the factor ij (z®,y) jw) — Efj (x®,yy ) are non-
singular as they stand and thus require little extra attention. However, to avoid
numerical errors a series expansion of the dynamic Green’s tensor is used for
small distances between the collocation and integration points, such that the
singular term is canceled explicitly.

As long as the crack is interior the crack integrals in the back surface
BIE (5.3) are regular, and for the examples in this paper 15 Gauss points in each
crack direction have proven sufficient. The same holds true for the back surface
integrals in the crack BIE (5.4), for which 3 Gauss points in each boundary el-
ement direction and 15 Gauss points in each crack direction, respectively, have
proven to be sufficient for the examples considered here. However, the number
of Gauss points required for these integrations depends strongly on the distance
between the crack and back surface such that cracks closer to the back surface
require more Gauss points. This matter is discussed in more detail in the paper
by Westlund [29] treating a scalar 2D case with the same method of solution.

In order to make use of the integral relation (5.2) when evaluating the inci-
dent probe field and crack integrals in Eq. (5.4), the Fourier integral form of the
Green’s tensor must be used. This form may be obtained by again employing
Eq. (3.2), but now instead with the following Fourier integral representation of
G(z, y; km):

: oo (o) 1 .
G(x,y; k) = 8% / / h_el(q(ml—y1)+P(m2—y2)+hm|$3—y3\) dqdp,

where h,, = hm(q,p) = (K2, — ¢*> — p>)'/2, m = p,s and the branch of the
complex square root chosen such that Im /z > 0 Vz € C. After inserting
the Fourier representation of the Green’s tensor in Eq. (5.4) and evaluating the
crack integrals using the integral relation (5.2), the limit may be evaluated since
the resulting integral is now convergent in the ordinary sense. The result is:

i [ [ wngtosse vt ([ [ e foain, ()

C
y5—0 —az J—ax

0
 Can = (05,25, 0}, 450 o dw%)dyi s
l

= 2ipks(—1)" "2 nyngn)nl
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where the function S;,, (¢, p) is:

PR2hs+ R R~ qpkZhe 0

1 >
, —— | @R _ owk2h. o2k2h. + B
[Sim (g, )] T672352 LR — qpk?hs  ¢*k2hs + R 20
0 0 R

Here R = 4s%hphs + (25 — k2)? is the Rayleigh function and s? = ¢* + p®. The
quadruple crack integrals are thus reduced to double Fourier integrals. These
are slowly converging as they stand, but the following asymptotic behaviour of
Sim for large |g| with p fixed (with obvious counterparts for large |p| with ¢
fixed):

167%k2 Sim = Crbim (la] + O(lg|™")) + (1 = 8:n)O(1), (6.2)

where C1 = C3 = 2i(kZ — k2) and Cy = ikZ, may be exploited to improve the
convergence. The asymptotes along the ¢g- and and p-axes are then subtracted
and added back in the Fourier integrals, and the added back terms are evaluated
analytically using the relations:

[N g
—00

lql k-
oo Jk(q)Jl(q) _ 4(1+(_1)k+l)COS(%(k—l)) -
/—oo q? dq__7r(k4-|-(12_1)2_2k2(1+12))7 k,l=1,2,....

The remaining integrals, with the asymptotes subtracted, converge quickly
enough for direct numerical integration using about 100 Gauss points in each
direction in ordinary Gauss-Legendre quadrature.

In the computation of the crack signal response given by Eq. (4.3) the stress
on the crack due to an incident field from the receiving probe, in the absence
of the crack but with the back surface present, enters. This stress is computed
by solving the back surface integral equation (3.1) with Au; = 0 and then
computing the stress from the integral representation, Eq. (3.5). Exactly the
same integrals as in the crack BIE then enter, such that no additional integration
is required in the computation of 6Iw. The back surface signal response dI g,
on the other hand, requires integration of the incident stress field (multiplied
by the interpolation functions) on the boundary elements. Since this stress field
is expressed as an inverse double Fourier transform, the computation of dI'gg
becomes very time consuming. In order to speed up these computations, the
2D stationary phase approximation is used in the computation of the incident
field given by Eq. (4.2). In the integral equations the incident displacement and
stress fields also enter as load vectors, and the stationary phase approximation is
used also for the computation of these. Applied to these cases the 2D stationary
phase approximation takes the following form:

—2mi

f(A)eFmmY dy ~ f(#)e* " as k,r — oo, (6.3)

C_ ka
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where r = |r|, # = r/r and m = p,s. For the validity of the stationary phase
approximation several conditions should be met, as discussed in the paper by
Bostrém [30] and Bostrom and Bovik [31]. In short, one may conclude that the
crack and back surface should be at least a couple of wavelengths from the probe,
and that the crack and probe diameters must not be too large compared to the
distance from the probe to the crack. These conditions are usually satisfied in
applications. The one most, often violated is the condition on the probe size but
in these cases the problem can be circumvented by dividing the probe surface
into elements, see Ref. [31]. This probe element subdivision is employed also in
the present model, and in the numerical examples presented in the next section
a subdivision into 16 probe elements is used.

The discretization of the back surface yields a very large system matrix. This
matrix may in general, as usual in the BEM, be both unsymmetric and fully
populated. However, due to both the spatial decay due to geometrical spreading
and the exponential decay due to material damping (which is included in the
numerical examples) many off-diagonal matrix elements of the Green’s tensors
are very small. This can be exploited in a double thresholding scheme in such a
way that all matrix elements that have a distance between the collocation point,
and element above a certain value are checked and set to zero if their value is
below a threshold. The system matrix then becomes more or less sparse, and
a sparse solver can be used, reducing the total computation times significantly.
A similar method based on the same idea was previously employed by Orti,
Aleman et al. [32], who note that for the elastic wave motion they consider the
main features of the motion are preserved even for a threshold resulting in an
approximated sparse system matrix containing less than 3% non-zero elements.
For the considered examples in this paper a threshold resulting in a sparse
system matrix with about 10% non-zero elements was used, and the equations
were solved using the sparse parallel direct solver PARDISO [33].

In the computations to follow, a back surface size of approximately 15 x
9 pressure wavelengths and boundary element lengths of 1/3 of the Rayleigh
wavelength were used. These values have been checked by changing both the
back surface size and boundary element lengths to see that a proper convergence
is obtained. For the back surface size it is noted that material damping is
important in that it gives an exponential decay with distance, so the values
chosen do depend on the damping. The boundary element length is rather large,
but as long as the variations of the back surface are very smooth and the waves
are predominantly shear waves (as the chosen probe is an SV probe) this gives
good enough results. Unfortunately, there seem to be no other results, neither
numerical nor experimental, that can be used to check the correctness of the
results. However, time domain results (see the next section) are very good for
checking the accuracy. If the back surface size is insufficient this will show up as
artificial reflected pulses from the truncation boundaries of the back surface.
An insufficient element size or other inaccuracies (computation of integrals,
truncations in sums) generally give rise to noncausal responses. The time traces
in the next section are casual, contain the expected pulses, and become very
small once the dominant pulses have passed.
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7. Numerical examples

As stated in Section 2, the shape of the back surface may be quite arbitrary.
For the numerical results presented in this section two simple examples of back
surfaces are used as illustrations, the first being a smooth transition in the
form of a quarter-wavelength sine function. The transition is from z§ = 0 to
2% = 1.5mm over the interval from z? = 1mm to z? = 6 mm, independently
of x}g The second example is a planar back surface with a local, smooth bump
in the form of a product of two half-wavelength sine functions. The height of
the bump is 1.5mm and it is located at (z%,25) € [1,6] x [-3,3] mm so that
the back surface is planar (with 2 = 0) outside this domain. The peak of the
bump is thus located at ® = {3.5,0,1.5} mm. This second example is chosen
to give an illustration of the influence on the signal response of a back surface
with a very locally non-planar geometry. The crack is rectangular with sides
a; = 2mm and a2 = 3mm and the crack center located at d” = {0,0,5} mm.
The Euler angles are ¢ = ¢¢ = 0° but §° = 90° (the crack vertical) in Figs. 2
and 4 and 0° = 45° (the crack tilted 45°) in Figs. 3 and 5.

For the steel material considered the Lamé constants are A = 105 GPa,
p = 76 GPa and the density is p = 7900 kg/m?3, such that the wave propagation
speeds are ¢, ~ 5.7mm/us and ¢; &~ 3.1mm/ps. To account for the effects of
material damping the Lamé constants are given imaginary parts of 2% of the
real parts.

In both cases the results of a pulse-echo testing situation are given, so the
same probe is working as both transmitter and receiver. The probe is scanning
along a surface parallel to the zPz5-plane and located at a distance of 20 mm
from the lowermost part of the back surface. The probe is a square 10 x 10 mm
SV probe, angled 45° to the right so that the probe angle 74 = —45° and with
fluid coupling so § = 0. The geometry of the probe, the crack and the non-planar
part of the back surface is such that the crack is lying between the probe and
the non-planar part, and thus ’shadows’ the non-planar part, when the probe is
located roughly at —20 < z{ < —10 mm.

In applications, calibration by a standard scatterer (typically a side-drilled
hole) is usually performed. Here, such calibration is taken into account by
computing the signal response from a side-drilled hole, and the maximum signal
response obtained is then used as the calibration level when computing the pulse-
echo response as a function of probe position (but not in the time traces). In the
calibration computation the transmitting and receiving probe models described
in this paper are used. The scattering by the side-drilled hole is treated by
the T" matrix method as discussed by Bostrém and Bévik [34], where more
details are to be found. This method is essentially equivalent to separation-
of-variables, but the procedure also involves calculations of the field from the
probe and transformation (translation and rotation) of this field to a cylindrical
coordinate system in the side-drilled hole. Reciprocity is used to determine the
response in the receiving probe, and the stationary phase approximation can be
used to simplify the calculations and obtain quite explicit results.

Figures 2 and 3 show the pulse-echo signal response as a function of probe
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position for the two different crack orientations, for the case of the back surface
with a transition from 25 = 0 to 2§ = 1.5 mm. Figures 2(a) and 3(a) show the
back surface signal responses, i.e. the responses in the absence of the crack,
whereas Figs. 2(b) and 3(b) show the total signal responses from both the back
surface and the crack. Figures 4 and 5 show the corresponding results for the
second back surface example geometry, with a local bump. In all these figures
the results are computed for a single frequency of 1 MHz, and the results are
calibrated against a side-drilled hole of radius 2 mm located at a center depth
of 20mm. A decibel (dB) scale is used in these figures, with a 40 dB difference
between black (strongest, 8 dB over the calibration level) and white (weakest,
32 dB below the calibration level), in steps of 5 dB.

As expected, the planar parts of the back surface give only a weak signal
response, and this response is seen to be equal for the planar parts of the back
surface in all the figures. The independence of x5 for the first back surface type is
also clearly seen in the signal response in Figs. 2(a) and 3(a). For the considered
crack orientations and back surface geometries there is also symmetry about the
line 5 = 0, and this symmetry is apparent also in the signal response figures.
Finally it can also be noted that the interaction of the back surface and the
crack gives rise to quite complicated signal responses in Figs. 2(b), 3(b), 4(b)
and 5(b). A ’shadowing’ effect can be seen in Fig. 4(b) in that the response is
weaker in the center of the plot where the crack lies in front of the non-planar
back surface.

If the frequency spectra of the probes are known, the time traces can be
computed by applying an inverse temporal Fourier transform. To model the
spectrum of the probe in the numerical examples given here, a spectrum in the
form of a Hanning window:

=N cos? <7r—f — fc)

Af 2Af
is assumed, where the center frequency f. = 1 MHz and the 6 dB bandwidth
Af = 0.5MHz. 97 frequencies are used in the numerical computation of the
inverse temporal Fourier transform.

Figure 6 shows the time traces for a probe located at (2%, 25) = (—30,0) mm,
for both back surface geometries and both with and without the crack present,
with crack angle 8¢ = 90° (vertical crack). Figure 7 shows the corresponding
result for a probe instead located at (2%, 25) = (—15,0) mm. In both figures the
same probe as above is used. The results in both these figures are normalized
with the maximum in Figure 7(d), but it should be noted that the scales are
different in the two figures. The geometry in Fig. 6 is such that the main beam
from the probe hits the back surface on the flat part in front of the non-planar
part and the crack, but the reflection of the beam in the back surface hits the
crack. In Fig. 7, on the other hand, the beam directly hits the crack and the
non-planar part that is located directly behind the crack. The first contributions
to the signal responses (which are relatively weak in Fig. 7) in these figures are
the pulses from waves traveling vertically down to the back surface and back to
the probe again, with arrival times of ¢ ~ 7.0 us, t ~ 10.0 us and ¢ ~ 12.9 us for
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the pure P, mode converted and pure S wave pulses, respectively. It should be
pointed out that this probe emits rather weak parts in the vertical direction,
but due to the total reflection in the back surface, these pulses are still relatively
strong. It may also seem that the first pulse arrives too early, around ¢ ~ 4.0 us,
but the reason for this early arrival is that the wave from the right side of the
probe is emitted at time ¢t &~ —1.1 us (so as to give an angled probe; time 0 is
when the middle of the pulse is emitted from the middle of the probe). The
same time difference is also valid upon reception of the pulse. Note also that
due to the limited bandwidth, all pulses are ’'smeared out’ with widths of a few
microseconds. In Fig. 6 also the reflections from the non-planar part of the back
surface are visible, with corresponding arrival times of ¢ ~ 13.1 us, t ~ 18.6 us
and t &~ 24.1 us. The main contribution from the crack is the corner echo (being
reflected by both the crack and the back surface), with a wave path length
corresponding to an arrival time of ¢ ~ 23.4 us for the pure S-wave pulse which
thus overlaps the last pulse from the non-planar part. With the crack present
there are also possibilities of complex, multiple interactions between the crack
and back surface resulting in pulses arriving late in the traces.

For the probe position 15 mm to the left of the crack center, Fig. 7, strong
reflections from the non-planar parts of the back surfaces are expected. These
reflections correspond to an arrival time of ¢ ~ 17.6 us for the pure S wave pulse,
and these pulses are the strongest ones seen in Fig. 7. The same vertically re-
flected back surface pulses as for the other probe position are of course present
also in these traces, but for this probe position the different back surface geome-
tries are also seen to influence the signal response differently; in Fig. 7(b) the
total response is weaker than without the crack in Fig. 7(a), whereas the crack
and back surface reflections interact to give an almost identical total response
in Fig. 7(d) as compared to the results without the crack in Fig. 7(c). There
seems to be no particular reason for this difference in behavior.

8. Concluding remarks

In this paper a complete model of ultrasonic nondestructive testing is devel-
oped. The model includes transmitting and receiving ultrasonic contact probes
located on a thick-walled component with a non-planar back surface and an
interior rectangular crack. The action of the transmitting probe is accounted
for in a model based on prescribing the traction on the scanning surface, while
an electromechanical reciprocity argument is used to model the receiving probe
and yield expressions for the signal response due to the crack and back sur-
face. The wave scattering problem is solved by reformulating it as two coupled
boundary integral equations for the unknown crack opening and back surface
displacements. By using a combination of a series expansion of the crack opening
displacement and a boundary element discretization of the back surface to solve
the coupled integral equations, the hypersingularity in the crack BIE can be
treated analytically while the back surface is allowed to be of an arbitrary, com-
plex geometry. The discretization of the back surface generates many unknowns
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and leads to demanding computations, but the use of a fast sparse solver is en-
abled by applying a threshold criterion to generate a sparse approximation of
the system matrix. The computations are accelerated further by employing the
stationary phase approximation for the computation of all probe field integrals.
Material damping and calibration against a side-drilled hole is included in the
model, and time traces are computed by applying an inverse temporal Fourier
transform. A few numerical results are given, illustrating the possibilities of the
model and the effects of the back surface geometry on the wave scattering.
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Figure 1: The geometry with an interior rectangular crack in a thick-walled component with
a non-planar back surface.
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Figure 2: The echo amplitude as a function of probe position, back surface with transition.
Crack angle 6¢ = 90°.
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Figure 3: The echo amplitude as a function of probe position, back surface with transition.
Crack angle 6¢ = 45°.
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Figure 4: The echo amplitude as a function of probe position, back surface with local bump.
Crack angle 6¢ = 90°.
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Figure 5: The echo amplitude as a function of probe position, back surface with local bump.
Crack angle 6¢ = 45°.
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Figure 6: Time traces for probe position (a:]i’, :735) = (—30,0) mm, for the two different example
back surface geometries. Crack angle 8¢ = 90°.
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Figure 7: Time traces for probe position (a:]i’, :735) = (—15,0) mm, for the two different example
back surface geometries. Crack angle 8¢ = 90°.



