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Elasti wave sattering by a retangular rak near anon-planar bak surfaeJ. Westlund, A. BoströmChalmers University of Tehnology, Department of Applied Mehanis, SE-412 96Gothenburg, Sweden
AbstratA 3D model of nondestrutive ultrasoni testing for raks near a non-planarbak surfae is presented. The sattering by an interior retangular rak in athik-walled omponent with a bak surfae of general geometry is onsidered.The 3D wave sattering problem is solved using boundary integral equationmethods (BIEMs): the boundary element method (BEM) for the bak surfaedisplaement is ombined with an analytial tehnique for the hypersingulartration boundary integral equation for the rak opening displaement. Thesolution method generates many unknowns, but by applying a threshold rite-rion a sparse approximation of the system matrix is obtained suh that a fastsparse solver may be used. The omputations are aelerated further by usingthe stationary phase approximation for the omputation of probe �eld inte-grals. The ation of ultrasoni probes in transmission and reeption, alibrationby side-drilled holes and e�ets of material damping are taken into aount inthe model, and a few numerial examples illustrate the in�uene of the baksurfae geometry.Keywords: Elasti waves, Boundary integral equation method, Boundaryelement method, Sattering, Nondestrutive testing, Ultrasonis1. IntrodutionQuantitative methods of nondestrutive evaluation (NDE) today play animportant role in in-servie inspetion and maintenane of strutures, with es-peially important appliations in the aerospae and nulear industries wherefailures an have very severe onsequenes. Among the several methods of NDEthat exist today the ultrasoni tehniques, the fous of the present paper, arearguably the most important.As is reognized by Thompson and Gray [1℄ and Ahenbah [2, 3, 4℄, the needof a measurement model - a model of the omplete testing situation - is ommonEmail address: anders.bostrom�halmers.se (A. Boström)Preprint submitted to Eng. Anal. Boundary Elements February 29, 2012



to all methods of NDE. In the ase of ultrasoni testing suh a model shouldinlude the generation of the inoming ultrasound by the transmitting probe, theinteration of this wave �eld with the defet, and the signal response obtainedas output at the reeiving probe due to exitation by the wave �eld satteredby the defet. Aess to a good measurement model has major bene�ts: itenables parametri studies suh that ostly and time-onsuming experimentsan be avoided, thus making the model an important tool when designing andoptimizing testing proedures. A model an also be a very valuable tool in theinterpretation of experimental data, thus inreasing the physial understandingof the wave propagation. Models are also very useful in the assessment ofprobability of detetion of defets.In this paper a model of ultrasoni testing for raks near a non-planarbak surfae is presented. The appliation in mind is the testing of nulearpower plant omponents suh as thik-walled pipes, whih an feature diameterhanges or onnetions with omplex, non-planar geometries. The presene ofthese non-planar bak surfaes ompliates the testing sine the signal from adefet may be strongly in�uened or even masked by the signal from the non-planar surfae.The solution method employed in the model is based on boundary integralequation methods, BIEMs, with the major advantage of being essentially exatmethods suh that the results are valid both for low, intermediate and highfrequenies. This is in ontrast to the approximate theories suh as the Geo-metrial Theory of Di�ration (GTD) and the elastodynami Kirhho� theoryused, for example, in the models by Calmon et al. [5℄ and Chapman [6℄. Theseapproximate theories provide powerful and e�ient methods with the possibil-ity to treat omplex geometries, but �nding the bounds of appliability of thetheories in a spei� ase an be di�ult. The identi�ation of suh bounds mayatually be an important appliation of an essentially exat model, as disussedin the paper by Shafbuh et al. [7℄ who employ the boundary element method(BEM) in a model of ultrasoni NDE. The authors also make omparisons oftheir BEM-results with the results of approximate, asymptoti theories and alsoexperiments.This paper is organized as follows. In Setion 2 the problem formulationis given, and in Setion 3 the reformulation of the wave sattering problem astwo oupled boundary integral equations, BIEs, is desribed. In Setion 4 theation of ultrasoni probes in transmission and reeption is modeled, while thedisretization and the numerial solution method are desribed in Setion 5.Finally, in Setion 6, the numerial omputations are disussed and in Setion 7a few numerial examples are given.2. Problem formulationThe sattering geometry is depited in Fig. 1, where an interior retangularrak with sides 2a1 and 2a2 is loated in a thik-walled omponent with a non-planar bak surfae. Conventional transmitting and reeiving ultrasoni ontatprobes (T) and (R), respetively, san along the surfae of the omponent. The2



same probe may also be used in both transmission and reeption, in the ommonase of pulse-eho testing.The �gure also introdues four oordinate systems: the rak oordinatesystem xc, the bak surfae system xb, the transmitter system xt and thereeiver system xr. The supersripts `c', `b', `t' and `r' on quantities indiatethat they are represented in the orresponding oordinate system. Omittedsupersripts indiate expressions whih hold in any of the oordinate systems.The loation of the rak enter relative to the bak surfae oordinate sys-tem is given by the vetor d, and the rak orientation relative to the bak sur-fae oordinate system is desribed by the three Euler angles (ϕc, θc, ψc). Here
ϕc is the rotation around the xb

3-axis, θc the rotation around the intermediate
x2-axis and ψc the rotation around the xc

3-axis. The standard transformationrules for the transformation between the oordinate systems apply, with thetransformation (rotation) matrix Rc from xb to xc. The positions of the trans-mitting and reeiving probes relative to the bak surfae oordinate system aregiven by the vetors dT and dR, respetively, and the probe systems and thebak surfae system are assumed to be ollinear.The shape of the bak surfae is desribed by the funtion g(xb
1 , x

b
2) and isallowed to be quite arbitrary, as long as it has a ontinuous normal vetor. In thesubsequent numerial solution proedure the in�nite bak surfae is trunatedand disretized, and (T1, T2) and (T3, T4) denote the orresponding lower andupper trunation limits in the xb

1 - and xb
2 -diretions, respetively.The omponent is linearly elasti, isotropi and homogeneous in the exteriorof the rak, with Lamé onstants λ and µ and density ρ. The distane betweenthe rak and the bak surfae may be arbitrary as long as the rak is interior,but the distane between the sanning surfae of the omponent and the rakand bak surfae is assumed to be at least a ouple of wavelengths. Thus themultiple sattering between the rak and the bak surfae is fully taken intoaount, whereas the multiple sattering between the sanning surfae and therak and bak surfae is negleted. This also means that the inident �eld fromthe transmitting probe an be alulated as the �eld in a half-spae.Only time-harmoni elastodynamis is onsidered and the time-fator e−iωt,with ω denoting the angular frequeny and t the time, is suppressed throughout.The elastodynami equation of motion is then:

∇ · σ + ρω2u = 0, (2.1)where σ is the Cauhy stress tensor, u the displaement vetor and the on-stitutive equation relating the stresses and displaement gradients is Hooke'slaw:
σ = C : ∇u. (2.2)For the isotropi and homogeneous materials onsidered here the elasti sti�nesstensor C may be expressed as C = λI2 ⊗ I2 +2µS4, where I2 is the seond-orderidentity tensor and S4 the symmetri fourth-order identity tensor.3



The ombination of the expliit expression for the sti�ness tensor withHooke's law (2.2) plugged into the equation of motion (2.1) yields the usualelastodynami wave equation:
k−2
p ∇(∇ · u) − k−2

s ∇× (∇× u) + u = 0, (2.3)where kp = ω/cp is the pressure wave number, cp = ((λ+2µ)/ρ)1/2 the pressurewave speed, ks = ω/cs the shear wave number and cs = (µ/ρ)1/2 the shearwave speed. Adding the tration-free boundary onditions on the rak andbak surfae, a spei�ed inident wave �eld and the usual outgoing radiationondition at in�nity ompletes the formulation of the wave sattering problemat hand.3. The integral equationsThe wave sattering problem is solved using boundary integral equation(BIE) methods; the sattering problem is reformulated as two oupled BIEswhih are then solved simultaneously. The BIE-reformulation is based on useof the isotropi free-spae outgoing wave Green's tensor, ommonly alled theHelmholtz fundamental solution and here denoted by Uk(x,y;ω). It is de�nedas the outward propagating solution of the equation:
∇ ·Σk(x,y;ω) + ρω2Uk(x,y;ω) = −δ(x − y)ek, (3.1)where the orresponding stress tensor is Σ

k(x,y;ω) ≡ C : ∇Uk(x,y;ω), δ(x−
y) denotes the 3D Dira delta distribution and ek is the unit vetor in the k-diretion, k = 1, 2, 3. Throughout the paper, the ∇-operator always ats on the
x-oordinates.The Green's tensor may be alulated using the formula (see e.g. Ström [8℄):

Uk
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[
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)]

,

(3.2)where δjk is the Kroneker delta and G(x,y; km) is the outward-propagatingfundamental solution of Helmholtz equation with wave number km, m = p, s.To obtain the Green's tensor on losed form, Eq. (3.2) is used in onjuntionwith the standard losed form expression for G:
G(x,y; km) =

eikm|x−y|

4π|x − y| . (3.3)3.1. The bak surfae integral equationThe bak surfae integral equation may be derived diretly using the Green'stensor, the divergene theorem and a limiting proess. However, in orderto avoid strongly singular integrals an indiret regularization approah (see4



Bonnet [9℄) is also followed. This approah transfers the singularity of thedynami Green's stress tensor Σ
k(x,y;ω) to the stati Green's stress tensor

Σ
k(x,y) = C : ∇Uk(x,y), with Uk(x,y) denoting the orresponding statidisplaement tensor. This Green's tensor, also ommonly alled the Kelvin fun-damental solution, is the solution of Eq. (3.1) for ω = 0 and is given expliitlyby e.g. Bonnet [9℄. By transferring the singularity to the stati Green's ten-sor it beomes possible to evaluate the strongly singular integral analytially.The result is a bak surfae BIE ontaining no worse than weakly singular in-tegrals, as long as the displaement u satis�es the usual assumption of Hölder-ontinutity [9, 10℄.The derivation of the bak surfae BIE and the regularization is a straightfor-ward extension to 3D of the results in the paper by Westlund and Boström [11℄,resulting in the following regularized bak surfae integral equation:
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k (yb) = 0, (3.4)where y ∈ ST , u is the total displaement �eld, n the upward unit nor-mal vetor of the bak surfae, ∆u the rak opening displaement (COD):
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−), uin the inident displaement �eldfrom the transmitting probe and k = 1, 2, 3. In this integral equation the in-tegrals over the in�nite bak surfae have been replaed by integrals over thetrunated bak surfae ST . This approximation is expeted to be valid forsu�iently large trunation limits (T1, T2) and (T3, T4).3.2. The rak integral equationAn integral representation for the displaement �eld may be derived usingthe divergene theorem and the Green's tensor, just as is done in the deriva-tion of the bak surfae integral equation above and also disussed by Pao andVaratharajulu [12℄. The result is the following equation, valid for interior points
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from the integral representation by applying the stress operator, letting thesoure point approah the rak (from either side) and invoking the boundaryondition to obtain:
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2| < a2 and Cijkl are the omponents of the elastisti�ness tensor C. The seond integral in this equation is of the hypersingulartype (see e.g. Refs. [13, 14, 15, 16℄ for disussions of hypersingular integrals),so the limit annot be moved inside the integral. However, the present solutionmethod enables an expliit evaluation of the limit at a later stage, as desribedin setion 5.4. The ultrasoni probesThis paper onsiders onventional ultrasoni ontat probes onsisting of apiezoeletri rystal attahed to a plasti wedge, with a ouplant usually appliedbetween the omponent and the probe. In order to aount for the ationof transmitting ultrasoni probes of this type, the probe model developed byBoström and Wirdelius [17℄ is used. This model is based on presribing thetration on the sanning surfae of the omponent, and the tration is taken asthat due to a plane SH, SV or P wave with given amplitude and propagationdiretion. For the transmitting probe (T), the boundary ondition on the uppersurfae of the omponent is taken as the tration:
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2-diretionmeasured from the negative xt
3-axis, the parameter δ (with 0 ≤ δ ≤ 1) aounts6



for the e�et of a ouplant applied between the probe and the sanning surfaeand A0 is the amplitude.When multiple re�etions between the sanning surfae and the rak andbak surfae are negleted, the ation of the probe an be alulated as in a half-spae and enables a solution of the boundary value problem for the inident �eldusing a double Fourier transform. With the notation of Boström et al. [18℄ forthe vetor plane waves, the Fourier expansion reads:
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j(α, β; xt) dγ̂, (4.2)where α and β are the spherial angles of propagation of the plane waves, ϕ1is the SH-wave, ϕ2 the SV-wave and ϕ3 the P-wave. The funtions ξj aredetermined by onverting Eq. (4.2) to retangular oordinates (q, p) in Fourierspae, omputing the orresponding tration and identifying with the Fouriertransform T t of the presribed tration tt given by Eq. (4.1). The details aregiven in the paper by Boström and Wirdelius [17℄, where the vetor plane waves

ϕj , the funtions ξj , the integration ontour C−, the integration measure dγ̂and the vetor T t are all listed expliitly.In order to predit the signal response measured in an ultrasoni testing sit-uation, the ation of the reeiving probe must be modeled. This is ahieved byusing the eletromehanial reiproity relation by Auld [19℄, whih states thatthe hange in the reeived signal indued by the presene of a defet may beomputed by onsidering the two states (1): the transmitting probe illuminat-ing the medium with the defet present and (2): the reeiving probe ating as atransmitter with the defet absent. Applied to this ase Auld's reiproity rela-tion gives the rak signal response (whih inludes multiple re�etions betweenthe rak and bak surfae) as:
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5. Solution of the integral equationsThe two oupled boundary integral equations (3.4) and (3.6) are solved bydisretizing them and subsequently solving the resulting system of linear alge-brai equations. As is always the ase in BIEMs, the presene of singular in-tegrals requires speial attention. However, due to the regularization approahfollowed for the bak surfae BIE, Eq. (3.4), it ontains no strong singularitiesand is immediately suited for a standard boundary element disretization. Useof the BEM for the bak surfae has the major bene�t of allowing for a generalshape of the bak surfae.The hypersingular integral in the rak BIE, Eq. (3.6), also requires somekind of regularization. One way of ahieving this is to use the Galerkin method,in whih the neessary regularization is ahieved automatially by the repeatedintegration over the rak. However, the Galerkin method typially leads tomore expensive omputations ompared to other regularization tehniques whihare used in onjuntion with the olloation method. Exeptions are foundfor simple defet types like the retangular rak onsidered in this paper, forwhih a suitable Fourier series expansion of the COD in Chebyshev funtions(see e.g. Refs. [22, 23℄) enables an analytial evaluation of the rak integralsourring in the Galerkin method. The result is a omputationally e�ientsolution proedure for the rak BIE whih automatially resolves the di�ultiesassoiated with hypersingular integrals.The Chebyshev funtions used in the series expansion of the COD are de�nedby:
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the orner singularities has no signi�ant in�uene on the results; they reportaurate results using a disretization whih exhibits the orret behavior at therak edges but is atually ompletely non-singular at the rak orners.A standard boundary element disretization (see e.g. Refs. [9, 26, 27℄) of thebak surfae is performed using nine-noded quadrilateral elements and isopara-metrial Lagrangian interpolation. With Nnode denoting the number of nodeson the trunated bak surfae ST after it has been disretized into Ne elements,the number of unknowns on the bak surfae is 3Nnode. The disretization ofthe COD given by Eq. (5.1) results in 3N1N2 unknown expansion oe�ients
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Further, the partly disretized rak BIE an be written:
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2 = 1, 2, . . . , N2 and i = 1, 2, 3. (5.4)The fully disretized form of the integral equations is obtained after in-troduing the elementwise representation of the geometry and the unknowns,in terms of the interpolation funtions and the node onnetivity table, intoEqs. (5.3) and (5.4). Sine the proedure is standard the details are omitted.To solve the wave sattering problem it remains to evaluate all boundary ele-ment and rak integrals numerially, assemble the system of linear algebraiequations and solve for the unknown bak surfae node displaements and CODexpansion oe�ients.6. Numerial onsiderationsIn this setion the numerial omputations are disussed.Exept for the temporal Fourier transform whih is omputed using thetrapezoidal rule, all numerial integration is performed using ordinary Gauss-Legendre quadrature. However, due to the presene of singular integrals inthe integral equations some speial attention is required for aurate numerialintegration.Due to the fat that the bak surfae BIE (5.3) has been regularized thesenumerial omputations are quite straightforward. However, aurate evalua-tion of the singular element integrals (element integrals with the olloationpoint loated on the element) still requires some attention. In this paper theintegration tehnique desribed by Bonnet [9℄ is followed, in whih polar o-ordinates in the parent element (with the origin at the olloation point) areintrodued. For the weakly singular integrand a reformulation using modi�edshape funtions is then used, suh that the regularizing e�et of the fator
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) is exploited fully. An element subdivision into triangles, as10



desribed by Rezayat et al. [28℄, followed by a �nal oordinate transformationbak to retangular oordinates is then used, after whih regular Gauss-Legendrequadrature is applied to the resulting ompletely nonsingular integrals. It maybe remarked that the isoparametrial interpolation used ensures that the on-dition of Hölder-ontinuity assumed in the derivation of the bak surfae BIE isful�lled.The integrals ontaining the fator Σk
ij(x

b,yb
nc

;ω) − Σk
ij(x

b,yb
nc

) are non-singular as they stand and thus require little extra attention. However, to avoidnumerial errors a series expansion of the dynami Green's tensor is used forsmall distanes between the olloation and integration points, suh that thesingular term is aneled expliitly.As long as the rak is interior the rak integrals in the bak surfaeBIE (5.3) are regular, and for the examples in this paper 15 Gauss points in eahrak diretion have proven su�ient. The same holds true for the bak surfaeintegrals in the rak BIE (5.4), for whih 3 Gauss points in eah boundary el-ement diretion and 15 Gauss points in eah rak diretion, respetively, haveproven to be su�ient for the examples onsidered here. However, the numberof Gauss points required for these integrations depends strongly on the distanebetween the rak and bak surfae suh that raks loser to the bak surfaerequire more Gauss points. This matter is disussed in more detail in the paperby Westlund [29℄ treating a salar 2D ase with the same method of solution.In order to make use of the integral relation (5.2) when evaluating the ini-dent probe �eld and rak integrals in Eq. (5.4), the Fourier integral form of theGreen's tensor must be used. This form may be obtained by again employingEq. (3.2), but now instead with the following Fourier integral representation of
G(x,y; km):
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where the funtion Sim(q, p) is:
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.Here R = 4s2hphs + (2s2 − k2

s )
2 is the Rayleigh funtion and s2 = q2 + p2. Thequadruple rak integrals are thus redued to double Fourier integrals. Theseare slowly onverging as they stand, but the following asymptoti behaviour of

Sim for large |q| with p �xed (with obvious ounterparts for large |p| with q�xed):
16π2k3

sSim = Cmδim
(

|q| + O(|q|−1)
)

+ (1 − δim)O(1), (6.2)where C1 = C3 = 2i(k2
s − k2

p) and C2 = ik2
s , may be exploited to improve theonvergene. The asymptotes along the q- and and p-axes are then subtratedand added bak in the Fourier integrals, and the added bak terms are evaluatedanalytially using the relations:
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, k, l = 1, 2, . . . .The remaining integrals, with the asymptotes subtrated, onverge quiklyenough for diret numerial integration using about 100 Gauss points in eahdiretion in ordinary Gauss-Legendre quadrature.In the omputation of the rak signal response given by Eq. (4.3) the stresson the rak due to an inident �eld from the reeiving probe, in the abseneof the rak but with the bak surfae present, enters. This stress is omputedby solving the bak surfae integral equation (3.1) with ∆ui = 0 and thenomputing the stress from the integral representation, Eq. (3.5). Exatly thesame integrals as in the rak BIE then enter, suh that no additional integrationis required in the omputation of δΓC . The bak surfae signal response δΓBS ,on the other hand, requires integration of the inident stress �eld (multipliedby the interpolation funtions) on the boundary elements. Sine this stress �eldis expressed as an inverse double Fourier transform, the omputation of δΓBSbeomes very time onsuming. In order to speed up these omputations, the2D stationary phase approximation is used in the omputation of the inident�eld given by Eq. (4.2). In the integral equations the inident displaement andstress �elds also enter as load vetors, and the stationary phase approximation isused also for the omputation of these. Applied to these ases the 2D stationaryphase approximation takes the following form:
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f(r̂)eikmr as kmr → ∞, (6.3)12



where r = |r|, r̂ = r/r and m = p, s. For the validity of the stationary phaseapproximation several onditions should be met, as disussed in the paper byBoström [30℄ and Boström and Bövik [31℄. In short, one may onlude that therak and bak surfae should be at least a ouple of wavelengths from the probe,and that the rak and probe diameters must not be too large ompared to thedistane from the probe to the rak. These onditions are usually satis�ed inappliations. The one most often violated is the ondition on the probe size butin these ases the problem an be irumvented by dividing the probe surfaeinto elements, see Ref. [31℄. This probe element subdivision is employed also inthe present model, and in the numerial examples presented in the next setiona subdivision into 16 probe elements is used.The disretization of the bak surfae yields a very large system matrix. Thismatrix may in general, as usual in the BEM, be both unsymmetri and fullypopulated. However, due to both the spatial deay due to geometrial spreadingand the exponential deay due to material damping (whih is inluded in thenumerial examples) many o�-diagonal matrix elements of the Green's tensorsare very small. This an be exploited in a double thresholding sheme in suh away that all matrix elements that have a distane between the olloation pointand element above a ertain value are heked and set to zero if their value isbelow a threshold. The system matrix then beomes more or less sparse, anda sparse solver an be used, reduing the total omputation times signi�antly.A similar method based on the same idea was previously employed by Orti,Alemán et al. [32℄, who note that for the elasti wave motion they onsider themain features of the motion are preserved even for a threshold resulting in anapproximated sparse system matrix ontaining less than 3% non-zero elements.For the onsidered examples in this paper a threshold resulting in a sparsesystem matrix with about 10% non-zero elements was used, and the equationswere solved using the sparse parallel diret solver PARDISO [33℄.In the omputations to follow, a bak surfae size of approximately 15 ×
9 pressure wavelengths and boundary element lengths of 1/3 of the Rayleighwavelength were used. These values have been heked by hanging both thebak surfae size and boundary element lengths to see that a proper onvergeneis obtained. For the bak surfae size it is noted that material damping isimportant in that it gives an exponential deay with distane, so the valueshosen do depend on the damping. The boundary element length is rather large,but as long as the variations of the bak surfae are very smooth and the wavesare predominantly shear waves (as the hosen probe is an SV probe) this givesgood enough results. Unfortunately, there seem to be no other results, neithernumerial nor experimental, that an be used to hek the orretness of theresults. However, time domain results (see the next setion) are very good forheking the auray. If the bak surfae size is insu�ient this will show up asarti�ial re�eted pulses from the trunation boundaries of the bak surfae.An insu�ient element size or other inauraies (omputation of integrals,trunations in sums) generally give rise to nonausal responses. The time traesin the next setion are asual, ontain the expeted pulses, and beome verysmall one the dominant pulses have passed.13



7. Numerial examplesAs stated in Setion 2, the shape of the bak surfae may be quite arbitrary.For the numerial results presented in this setion two simple examples of baksurfaes are used as illustrations, the �rst being a smooth transition in theform of a quarter-wavelength sine funtion. The transition is from xb
3 = 0 to

xb
3 = 1.5mm over the interval from xb

1 = 1mm to xb
1 = 6mm, independentlyof xb

2 . The seond example is a planar bak surfae with a loal, smooth bumpin the form of a produt of two half-wavelength sine funtions. The height ofthe bump is 1.5mm and it is loated at (xb
1 , x

b
2) ∈ [1, 6] × [−3, 3]mm so thatthe bak surfae is planar (with xb

3 = 0) outside this domain. The peak of thebump is thus loated at xb = {3.5, 0, 1.5}mm. This seond example is hosento give an illustration of the in�uene on the signal response of a bak surfaewith a very loally non-planar geometry. The rak is retangular with sides
a1 = 2mm and a2 = 3mm and the rak enter loated at db = {0, 0, 5}mm.The Euler angles are ϕc = ψc = 0◦ but θc = 90◦ (the rak vertial) in Figs. 2and 4 and θc = 45◦ (the rak tilted 45◦) in Figs. 3 and 5.For the steel material onsidered the Lamé onstants are λ = 105GPa,
µ = 76GPa and the density is ρ = 7900 kg/m3, suh that the wave propagationspeeds are cp ≈ 5.7mm/µs and cs ≈ 3.1mm/µs. To aount for the e�ets ofmaterial damping the Lamé onstants are given imaginary parts of 2% of thereal parts.In both ases the results of a pulse-eho testing situation are given, so thesame probe is working as both transmitter and reeiver. The probe is sanningalong a surfae parallel to the xb

1x
b
2-plane and loated at a distane of 20mmfrom the lowermost part of the bak surfae. The probe is a square 10× 10mmSV probe, angled 45◦ to the right so that the probe angle γt = −45◦ and with�uid oupling so δ = 0. The geometry of the probe, the rak and the non-planarpart of the bak surfae is suh that the rak is lying between the probe andthe non-planar part, and thus 'shadows' the non-planar part, when the probe isloated roughly at −20 < xb

1 < −10mm.In appliations, alibration by a standard satterer (typially a side-drilledhole) is usually performed. Here, suh alibration is taken into aount byomputing the signal response from a side-drilled hole, and the maximum signalresponse obtained is then used as the alibration level when omputing the pulse-eho response as a funtion of probe position (but not in the time traes). In thealibration omputation the transmitting and reeiving probe models desribedin this paper are used. The sattering by the side-drilled hole is treated bythe T matrix method as disussed by Boström and Bövik [34℄, where moredetails are to be found. This method is essentially equivalent to separation-of-variables, but the proedure also involves alulations of the �eld from theprobe and transformation (translation and rotation) of this �eld to a ylindrialoordinate system in the side-drilled hole. Reiproity is used to determine theresponse in the reeiving probe, and the stationary phase approximation an beused to simplify the alulations and obtain quite expliit results.Figures 2 and 3 show the pulse-eho signal response as a funtion of probe14



position for the two di�erent rak orientations, for the ase of the bak surfaewith a transition from xb
3 = 0 to xb

3 = 1.5mm. Figures 2(a) and 3(a) show thebak surfae signal responses, i.e. the responses in the absene of the rak,whereas Figs. 2(b) and 3(b) show the total signal responses from both the baksurfae and the rak. Figures 4 and 5 show the orresponding results for theseond bak surfae example geometry, with a loal bump. In all these �guresthe results are omputed for a single frequeny of 1MHz, and the results arealibrated against a side-drilled hole of radius 2mm loated at a enter depthof 20mm. A deibel (dB) sale is used in these �gures, with a 40 dB di�erenebetween blak (strongest, 8 dB over the alibration level) and white (weakest,32 dB below the alibration level), in steps of 5 dB.As expeted, the planar parts of the bak surfae give only a weak signalresponse, and this response is seen to be equal for the planar parts of the baksurfae in all the �gures. The independene of xb
2 for the �rst bak surfae type isalso learly seen in the signal response in Figs. 2(a) and 3(a). For the onsideredrak orientations and bak surfae geometries there is also symmetry about theline xb

2 = 0, and this symmetry is apparent also in the signal response �gures.Finally it an also be noted that the interation of the bak surfae and therak gives rise to quite ompliated signal responses in Figs. 2(b), 3(b), 4(b)and 5(b). A 'shadowing' e�et an be seen in Fig. 4(b) in that the response isweaker in the enter of the plot where the rak lies in front of the non-planarbak surfae.If the frequeny spetra of the probes are known, the time traes an beomputed by applying an inverse temporal Fourier transform. To model thespetrum of the probe in the numerial examples given here, a spetrum in theform of a Hanning window:
1

∆f
cos2

(

π
f − fc

2∆f

)is assumed, where the enter frequeny fc = 1MHz and the 6 dB bandwidth
∆f = 0.5MHz. 97 frequenies are used in the numerial omputation of theinverse temporal Fourier transform.Figure 6 shows the time traes for a probe loated at (xb

1 , x
b
2) = (−30, 0)mm,for both bak surfae geometries and both with and without the rak present,with rak angle θc = 90◦ (vertial rak). Figure 7 shows the orrespondingresult for a probe instead loated at (xb

1 , x
b
2) = (−15, 0)mm. In both �gures thesame probe as above is used. The results in both these �gures are normalizedwith the maximum in Figure 7(d), but it should be noted that the sales aredi�erent in the two �gures. The geometry in Fig. 6 is suh that the main beamfrom the probe hits the bak surfae on the �at part in front of the non-planarpart and the rak, but the re�etion of the beam in the bak surfae hits therak. In Fig. 7, on the other hand, the beam diretly hits the rak and thenon-planar part that is loated diretly behind the rak. The �rst ontributionsto the signal responses (whih are relatively weak in Fig. 7) in these �gures arethe pulses from waves traveling vertially down to the bak surfae and bak tothe probe again, with arrival times of t ≈ 7.0 µs, t ≈ 10.0 µs and t ≈ 12.9 µs for15



the pure P, mode onverted and pure S wave pulses, respetively. It should bepointed out that this probe emits rather weak parts in the vertial diretion,but due to the total re�etion in the bak surfae, these pulses are still relativelystrong. It may also seem that the �rst pulse arrives too early, around t ≈ 4.0 µs,but the reason for this early arrival is that the wave from the right side of theprobe is emitted at time t ≈ −1.1 µs (so as to give an angled probe; time 0 iswhen the middle of the pulse is emitted from the middle of the probe). Thesame time di�erene is also valid upon reeption of the pulse. Note also thatdue to the limited bandwidth, all pulses are 'smeared out' with widths of a fewmiroseonds. In Fig. 6 also the re�etions from the non-planar part of the baksurfae are visible, with orresponding arrival times of t ≈ 13.1 µs, t ≈ 18.6 µsand t ≈ 24.1 µs. The main ontribution from the rak is the orner eho (beingre�eted by both the rak and the bak surfae), with a wave path lengthorresponding to an arrival time of t ≈ 23.4 µs for the pure S-wave pulse whihthus overlaps the last pulse from the non-planar part. With the rak presentthere are also possibilities of omplex, multiple interations between the rakand bak surfae resulting in pulses arriving late in the traes.For the probe position 15mm to the left of the rak enter, Fig. 7, strongre�etions from the non-planar parts of the bak surfaes are expeted. Thesere�etions orrespond to an arrival time of t ≈ 17.6 µs for the pure S wave pulse,and these pulses are the strongest ones seen in Fig. 7. The same vertially re-�eted bak surfae pulses as for the other probe position are of ourse presentalso in these traes, but for this probe position the di�erent bak surfae geome-tries are also seen to in�uene the signal response di�erently; in Fig. 7(b) thetotal response is weaker than without the rak in Fig. 7(a), whereas the rakand bak surfae re�etions interat to give an almost idential total responsein Fig. 7(d) as ompared to the results without the rak in Fig. 7(). Thereseems to be no partiular reason for this di�erene in behavior.8. Conluding remarksIn this paper a omplete model of ultrasoni nondestrutive testing is devel-oped. The model inludes transmitting and reeiving ultrasoni ontat probesloated on a thik-walled omponent with a non-planar bak surfae and aninterior retangular rak. The ation of the transmitting probe is aountedfor in a model based on presribing the tration on the sanning surfae, whilean eletromehanial reiproity argument is used to model the reeiving probeand yield expressions for the signal response due to the rak and bak sur-fae. The wave sattering problem is solved by reformulating it as two oupledboundary integral equations for the unknown rak opening and bak surfaedisplaements. By using a ombination of a series expansion of the rak openingdisplaement and a boundary element disretization of the bak surfae to solvethe oupled integral equations, the hypersingularity in the rak BIE an betreated analytially while the bak surfae is allowed to be of an arbitrary, om-plex geometry. The disretization of the bak surfae generates many unknowns16
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(a) Bak surfae signal response.
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(b) Total signal response.Figure 2: The eho amplitude as a funtion of probe position, bak surfae with transition.Crak angle θc = 90◦.
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(b) Total signal response.Figure 3: The eho amplitude as a funtion of probe position, bak surfae with transition.Crak angle θc = 45◦.
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(b) Total signal response.Figure 4: The eho amplitude as a funtion of probe position, bak surfae with loal bump.Crak angle θc = 90◦.
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(b) Total signal response.Figure 5: The eho amplitude as a funtion of probe position, bak surfae with loal bump.Crak angle θc = 45◦.
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(a) Bak surfae with transition, rak absent.
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(b) Bak surfae with transition, rak present.
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() Bak surfae with loal bump, rak absent.
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(d) Bak surfae with loal bump, rak present.Figure 6: Time traes for probe position (xb

1
, xb

2
) = (−30, 0)mm, for the two di�erent examplebak surfae geometries. Crak angle θc = 90◦.26



0 10 20 30 40 50
−1

−0.5

0

0.5

1

Time [µs]

S
ig

na
l a

m
pl

itu
de

(a) Bak surfae with transition, rak absent.
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(b) Bak surfae with transition, rak present.
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() Bak surfae with loal bump, rak absent.
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(d) Bak surfae with loal bump, rak present.Figure 7: Time traes for probe position (xb

1
, xb

2
) = (−15, 0)mm, for the two di�erent examplebak surfae geometries. Crak angle θc = 90◦.27


