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ABSTRACT

RNA-seq, has recently become an attractive method
of choice in the studies of transcriptomes, pro-
mising several advantages compared with micro-
arrays. In this study, we sought to assess the
contribution of the different analytical steps
involved in the analysis of RNA-seq data generated
with the Illumina platform, and to perform a
cross-platform comparison based on the results
obtained through Affymetrix microarray. As a case
study for our work we, used the Saccharomyces
cerevisiae strain CEN.PK 113-7D, grown under two
different conditions (batch and chemostat). Here,
we asses the influence of genetic variation on the
estimation of gene expression level using three dif-
ferent aligners for read-mapping (Gsnap, Stampy
and TopHat) on S288c genome, the capabilities of
five different statistical methods to detect differen-
tial gene expression (baySeq, Cuffdiff, DESeq,
edgeR and NOISeq) and we explored the consist-
ency between RNA-seq analysis using reference
genome and de novo assembly approach. High re-
producibility among biological replicates (correl-
ation �0.99) and high consistency between the two
platforms for analysis of gene expression levels
(correlation �0.91) are reported. The results from
differential gene expression identification derived

from the different statistical methods, as well as
their integrated analysis results based on gene
ontology annotation are in good agreement.
Overall, our study provides a useful and comprehen-
sive comparison between the two platforms
(RNA-seq and microrrays) for gene expression
analysis and addresses the contribution of the dif-
ferent steps involved in the analysis of RNA-seq
data.

INTRODUCTION

In the field of functional genomics, transcriptome analysis
has always played a central role for unraveling the com-
plexity of gene expression regulation. After decades of
extensive investigations based on the characterization of
genome-wide gene expression through oligonucleotide-
based array technologies, transcriptomics has gained
new momentum, thanks to the advent of Next Generation
Sequencing (NGS). NGS has enabled high-throughput
of nucleic acid molecule sequencing such as DNA
(DNA-seq) and RNA (RNA-seq) (1). The establishment
of RNA-seq as an attractive analytical tool in
trancriptomics, led to a fast development of this tech-
nology, decreasing the running cost and offering the pos-
sibility to uncover novel transcriptional-related events.
Compared with hybridization-based transcriptome
studies, where only difference in expression of the
ORFs can be addressed, RNA-seq allows to analyze
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genome-wide transcription, thus providing additional
features such as, analysis of novel transcripts, smRNA,
miRNA and alternative splicing events. Furthermore,
RNA-seq allows the analysis of transcribed but non-
translated regions that may act in regulating gene expres-
sion, e.g. UTR (2). Other advantages of RNA-seq
compared with microarrays are its high resolution,
better dynamic range of detection and lower technical
variation (3). Nevertheless, microarrays represent a well
established technology and have been widely used in the
last decades, leading to availability of extensive informa-
tion. More than 900 000 published microarray assays are
available in repository databases like Gene Expression
Omnibus or ArrayExpress and have been shared within
the research community.

To date, several studies comparing RNA-seq and hy-
bridization arrays have been performed. Comparison
between the two techniques have been reported in
Candida parapsilolis (4), Candida albicans (5), on the fission
yeast Schizosaccharomyces pombe (6), Drosophila mela-
nogaster (7), Caenorhabditis elegans (8), in mice tissues
(8,9) and in several human cells and cell lines (5,10–15).
Several studies based on RNA-seq analysis of the well
known eukaryotic model microorganism Saccharomyces
cerevisiae, have been performed (16–20) and evaluation
of the performances of different library construction
methods for RNA-seq was also addressed using S.
cerevisiae as a model organism (19). The reported correl-
ations between microarrays and RNA-seq in detecting
normalized expression signal are in different ranges (1),
suggesting possible inconsistency of different processing
methods. Higher correlation is overall observed in differ-
ential gene expression (DGE) analysis; however, up to
date, a comprehensive description of the performances
of RNA-seq data in detecting DGE has not been ad-
dressed in detail.

There are two major approaches to process RNA-seq
data from short reads in order to identify DGEs (21).
With the first approach, which is the most widely used
in RNA-seq analysis, reads are mapped onto a reference
genome (22,23) and the results of gene expression level are
dependent on the aligner used in the analysis. Recently,
different aligners and algorithm for RNA-seq analysis
were compared, based on their mapping quality and
splice junctions (24). The second approach is de novo
assembly of the short reads (25–27) that does not
require a reference genome. Recently, the performances
of different transcriptome assemblers have been
compared, based on their capability to identify full-length
transcripts and on computational demand (28), however,
statistical analysis for DGE identification and comparison
between the two approaches was not covered.

In recent years, many statistical methods have been de-
veloped to identify DGE through different statistical
models based on discrete probability distribution. The
edgeR method proposed by Robinson et al. (29) has
been developed based on an overdispersed Poisson
model to explain the variation in the read count data,
then the evaluation of the differences across transcripts
are estimated using Empirical Bayes method. Trapnell
et al. (23) presented the Cuffdiff method that relies on

beta negative binomial model to estimate the variance of
the RNA-seq data for DGE analysis by t-like statistics
from FPKM values. In addition, different transcript
isoforms can also be evaluated for their differential expres-
sion using Jensen Shannon entropy. Anders and Huber
(30) showed that negative binomial was superior for esti-
mation of variability in read count type data and imple-
mented the method as a DESeq package showing better
results in DGE identification, when compared their
method with edgeR. Following this, Hardcastle and
Kelly (31) proposed another algorithm to identify DGE
from a count data based on the combination of negative
binomial distribution and Empirical Bayes approach to
estimate posterior probability of DGE. This method also
provides the ability to analyze complex experimental
setups that can be useful for several biological applica-
tions. Last, Tarazona et al. (32) proposed the NOISeq
method based on non-parametric statistics and empirical
models on the noise distribution of count data, and this
method was shown to be non-sensitive to the sequencing
depth of the data. In addition, this method also has a
better control of false discoveries. The development of
several statistical methods indicates the maturity in using
RNA-seq data for transcriptomics. However, a thorough
comparison of DGE analysis among different methods is
required in order to increase the understanding of the dif-
ferent steps involved in the analysis of RNA-seq data.
We thus undertook a study with the objective to

evaluate the contribution of different factors affecting
the detection of gene expression levels during the several
steps involved in analysis of RNA-seq data and compare
the capability of different statistical methods to capture
DGE. Figure 1 provides an overview of our study. We
performed RNA-seq data from the cultivations of S.
cerevisisae under two different metabolic conditions. For
each condition, in parallel, we also performed traditional
transcriptome analysis based on the microarray platform
and, additionally, we sequenced the genome (DNA-seq) of
the strain from the same initial culture in order to detect
eventual genetic variance such as single nucleotide vari-
ations (SNVs) and insertions–deletions (indels). Whereas
previous genome-wide transcriptomic studies using
RNA-seq of S. cerevisiae were based on the reference
strain S288c, we based our analysis on the widely used
laboratory strain CEN.PK 113-7D, as this allowed us to
further investigate the influence of genetic variation on the
gene expression levels estimations using the different
methods. We first address the impact of different
aligners in detecting DGE: Gsnap (33), Stampy (34) and
TopHat (35) and successively evaluate the impact of using
five different statistical methods: (i) baySeq (31),
(ii) Cuffdiff (23), (iii) DESeq (30), (iv) edgeR (25) and
(v) NOISeq (32). Additionally, we compared the results
obtained with the ‘reference genome method’ with the de
novo assembly using Trinity pipeline (26). To allow for
visualization of the detected transcripts, we provide a ver-
satile transcriptome browser that presents the results
generated within this study, and integrates previously pub-
lished RNA-seq data. This transcriptome browser may
serve as a platform for future RNA-seq-based transcrip-
tome analysis of S. cerevisiae.
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MATERIALS AND METHODS

Microbial cultivations

The S. cerevisiae strain used for this study is CEN.
PK113-7D (MATa ura3-52 MAL2-8c SUC2, provided
by P. Kötter, University of Frankfurt, Germany).
Minimal media as previously described (36) was used for
all cultivations that were performed aerobically. For batch
cultivations the medium was supplemented with 20 g l�1

glucose. For chemostat cultivations, a glucose concentra-
tion of 10 g l�1 was used to maintain carbon-limited
growth. Batch cultures were performed in 1.0 l DasGip
stirrer-pro� vessels with a working volume of 0.7 l.
Agitation was maintained at 600 rpm using a magnetic
stirrer integrated in the BioBlock�, which maintained
the temperature at 30�C. The aeration was set to

0.5 lmin�1. The pH of the medium was maintained at
5.0 by automatic addition of 2M KOH. Temperature,
agitation, gassing, pH and offgas composition were moni-
tored and controlled using the DasGip monitoring and
control system. Dissolved oxygen was measured with an
autoclavable polarographic oxygen electrode (Mettler
Toledo, Columbus, OH, USA). The effluent gas from
the fermentation was analyzed for real-time determination
of O2 and CO2 concentration by DasGip fedbatch pro�

gas analysis systems with the off gas analyzer GA4 based
on zirconium dioxide and two-beam infrared sensor. The
chemostat cultures were initiated after the residual ethanol
produced was depleted. The medium described above was
fed with a constant dilution rate of 0.1 h�1 and aeration
was set to 0.5 lmin�1. The working volume was kept at
0.5 l by a peristaltic effluent pump. Samples were taken

Figure 1. Study design overview. The same initial culture of S. cerevisiae strain CEN.PK-113-7D was used for DNA-seq (gray line) and transcrip-
tome analysis to reduce technical variation and polymorphism. The strain was cultivated under two different metabolic conditions, in well controlled
batch (red line) and chemostat (blue line) fermentation. From the triplicates’ cultures, samples for extraction of DNA and RNA were extracted. The
extracted RNA was used, in parallel, for microarray analysis through Affymetrix platform (dash lines) and for RNA-seq (solid line). DNA-seq and
RNA-seq were performed with the Illumina platform. DNA-seq data were used to identify the genetic variation (SNVs and indels) between the strain
CEN.PK 113-7D and the reference strain S288 and to identify genetic variations in the microarray probes. The RNA-seq data were analyzed with the
reference mapping approach and de novo assembly approach. The results obtained with different methods were compared and cross-compared with
the results from microarray analysis.
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after a steady state (defined by constant values of CO2 and
O2 in the off-gas, as well as a constant biomass concen-
tration for at least five residence periods) was achieved.

DNA extraction

Samples from DNA extraction were taken in triplicates
during steady state chemostat cultivations. The with-
drawal sample was immediately cooled in ice and the
pellet was harvested by centrifugation at 4�C, washed
with cold water and the biomass stored at �80�C until
further treatment. The genomic DNA was extracted
based on conventional phenol-chloroform method.

RNA extractions from cultivations

Samples for RNA extractions were taken from mid-expo-
nential phase during batch cultivations and after steady
state during chemostat cultivations. Samples were taken in
three biological triplicates. The withdrawn sample was im-
mediately cooled on ice and the pellet was harvested by
centrifugation at 4�C, washed with cold water and the
biomass stored at �80�C until further treatment. The
total RNA was extracted from cells through mechanical
disruption with glass beads, digested with DNAse and
purified using the RNeasy kit (Qiagen, Hilden,
Germany). The quality of the RNA was assayed using a
BioAnalyzer (Agilent Technologies, Palo Alto, CA, USA).
In total, 250 ng of the total RNA was used to synthesize
cDNA using Affymetrix 30 IVT Express kit and succes-
sively cRNA was synthesized (Affymetrix Inc., Santa
Clara, CA, USA). The same high quality RNAs were
used for constructing the library that was used for
sequencing.

Transcriptome analysis

For Microarray analysis, biotinylated RNA samples were
fragmented and hybridized to Affymetrix Yeast Genome
Array 2.0. The Arrays were washed using an Affymetrix
GenChip Fluidic station 450 and scanned using a
GeneChip� Scanner 3000 7G (Affymetrix Inc.). CEL
files were generated using the Comand console software
(Affymetrix). All CEL files were submitted to GEO
database under accession number GSE37599. For
RNA-seq analysis, Illumina HiSeq 2000 was used to
perform paired-end sequencing of the same RNA
samples of microarray using the standard Illumina
RNA-seq protocol with a pair-end 100 bp under. All
RNA-seq and DNA-seq data generated in this study
were submitted to NCBI SRA database under accession
number SRS307298

Microarray data acquisition and analysis

The CEL files were pre-processed and normalized together
using Probe Logarithmic Intensity Error (PLIER) (37)
and cubic spline method (38), respectively. Student’s
t-testusing linear models together with empirical Bayes
was applied (39) on the normalized expression values
using the limma R package. Calculated P-values were
transformed to Q-values using the false discovery rate

(FDR) method to evaluate DGE between batch and
chemostat cultivations.

NGS data acquisition and analysis

Pre-processing and quality assurance of the NGS reads
The raw reads form both RNA and DNA were first
assessed for their quality using FASTX tool kit (http://
hannonlab.cshl.edu/fastx_toolkit). Bad quality reads
(phred score <20) were trimmed using the BWA
trimming algorithm (40) through the SolexaQA tool kit
(41). Reads that has length >25 bp on both sides of
pair-end format were keep for further analysis. All
further analyses were performed based on default param-
eters, the details are available in Supplementary
Information. The versions of all software are also
reported in Supplementary Information.

SNV and indel calling along chromosomes, ORFs and
array probes
The quality reads of 150 coverage were first aligned on the
reference genome of S. cerevisiae strain S288c using a high
accuracy mapper Stampy (34) as recommended for NGS
data (42). Then the SNVs and indels between the S288c
and CENPK113-7 strains were identified along the
chromosomes’ location using the ATLAS2 pipeline (43).
Probe sequences of Yeast2 microarray were retrieved from
NetAffyX then mapped on the reference genome to obtain
the location of the probes along the chromosomes using
Bowtie (43). The identified SNV(s) and/or indel(s) in the
ORFs and microarray probes were checked for their
overlap using BEDTools (44)

Transcriptome analysis using reference genome-based
reads mapping
The genome sequence of S. cerevisiae strain S288c and its
annotations were retrieved from the SGD databases and
used for all analysis. Three different aligners for mapping
the quality reads were chosen for this study: (i) Gsnap
(33), which is a very fast mapping method, (ii) Stampy
(34), which is a high sensitive mapping and (iii) TopHat
(35), which is one of the most commonly used for
RNA-seq analysis. The aligned records from the aligners
in BAM/SAM format (45) were further examined for po-
tential duplicate molecules in each record and removed
using the Picard tool kit (46). After that, gene expression
levels were estimated using FPKM values by the Cufflinks
software (23).

Transcriptome analysis using de novo assembly of reads
The quality reads from all samples were pooled for de novo
assembly using the Trinity pipeline (26) to construct tran-
scriptional consensus contigs that can capture the tran-
scriptions in both batch and chemostat cultivation
conditions. The contigs were annotated against
S. cerevisiae S288c ORFs and also mapped back to the
chromosomes of S. cerevisiae S288c using GMAP (47).
The quality reads of each sample were then mapped on
the assembled contigs using TopHat (35). After removal
of possible duplicate molecules from the aligned records
by the Picard tool (46), the gene expression levels were
estimated as FPKM values by the Cufflinks software (23).
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Identification of differential gene expression
To identify differential gene expression between batch and
chemostat cultivations, five statistical methods were
employed and compared: Cuffdiff (23), baySeq (31),
DESeq (30), edgeR (29) and NOISeq (32). For the last
four methods, the number of reads mapped to each
ORF was counted and reported using the HTseq
package (30) and the output was used as input for statis-
tical calculations. The Q-value derived from all statistical
methods were used to evaluate differential gene expression
between batch and chemostat cultivation except for the
NOISeq (32) method where probability values (Pr) were
considered instead.

Gene ontology enrichment analysis
The statistical Q-values and 1�Pr (for NOISeq) of the
comparison between batch and chemostat condition
resulted from different statistical methods were used as
inputs for gene set enrichment analysis based on Gene
ontology (GO) annotations. The reporter algorithm
(48,49) was then employed to evaluate the functional
enrichment level of each GO term. The GO terms that
have reporter P-values (enrichment score) <10e�4, were
considered for illustration as a heatmap.
All statistical analyses and illustrations were done under

R suite software.

Visualizations by genome–transcriptome browser
The details of mapped reads, SNVs, indels, microarray
probes position, contigs from transcriptome de novo
assembly and gene annotations were visualized using
GBrowse (50) publicly available at http://sysbio.se/Yseq
.Moreover, five published RNA-seq data of S. cerevisiae
grew under normal conditions in the study of Drinnenberg
et al. (20), Levin et al. (19), Nagalakshmi et al. (16), Skelly
et al. (18) and van Dijk et al. (17) were collected according
to their accession numbers SRR332049, SRR059163,
SRR059177, SRR002062, SRR309119 and SRR122177.
Then the reads were processed in the same way as
described previously using the TopHat (35) aligner.

RESULTS

Experimental setup

In our study, we sought to evaluate different processing
methods, as well as statistical methods to identify DGE
and cross-compare the results with microarray analysis;
for this purpose, we used as case study the transcriptome
of S. cerevisiae laboratory strain CEN.PK 113-7D under
two different metabolic conditions: respiro-fermentative
(batch) or fully respiratory (chemostat) metabolism. The
metabolism of yeast under these conditions has been ex-
tensively characterized and it is known that S. cerevisiae
shows significant differences in gene expression levels
under these conditions. It has been previously shown
that CEN.PK113-7D shows 14% genetic variation in
ORFs compared with the well characterized S. cerevisiae
strain S288c (51). Recently, the complete genome of
CEN.PK 113-7D was re-sequenced and assembled by
Nijkamp et al. (52). They reported �33% SNV in ORFs

compared with the S288c. To further investigate the effect
of genetic variation on gene expression level when reads
were mapped on the reference genome of S. cervisiae
strain S288c, the same initial cell culture of yeast
CEN.PK113-7D was used for DNA-seq, RNA-seq and
microarray analysis. To this purpose, the strain
CEN.PK113-7D was cultivated in triplicates under batch
and chemostat conditions and the DNA and the RNA
were extracted. The RNA from each biological replicate
was used, in parallel, for RNA-seq and microarray
analysis. Analyzing the RNA extracted from the same
biological sample should reduce technical variation
coming from sample treatment, allowing us to perform a
robust comparison between the two platforms for tran-
scriptome analysis and for evaluation of different process-
ing and statistical methods. In this study, 35.85million of
100-bp paired-end reads were generated for the RNA-seq
analysis, corresponding to 7.17Gb. For each biological
replicate, in average of 5.97±1.2million of 100 bp
paired-end reads were generated corresponding to
1.19±0.24Gb (Supplementary Table S1).

SNVs and indels between the S. cerevisiae strains S288c
and CENPK113-7D

For DNA-seq, a deep sequencing of 9.68 million of 100-bp
paired-end reads corresponding to more than 150
coverage of the reference genome of S288c were generated.
Based on the results from DNA sequencing of CEN.PK
113-7D, we identified 28 139 SNVs and 3520 indels
compared with the reference strain S288c, as shown in
Supplementary Table S2. About 61% of the total
detected SNVs and 22% indels were found on the
known coding regions. These correspond to around
34.35% and 5.07% of the ORFs containing SNV(s) and
indel(s), respectively, in agreement that with the results
recently reported by Nijkamp et al. (33.29 and 5.38% of
ORFs containing SNVs and indels, respectively) (52).
Nevertheless, when comparing the genome of the two
strains, we found a higher genetic variation than previ-
ously identified by Otero et al. (51) probably as a conse-
quence of deeper coverage and longer reads that were used
in our study, as well as in Nijkamp’s study. To explore the
effect of the genetic variations on microarray hybridiza-
tion, we mapped all the designed probes on the reference
genome, identifying 2472 probes with SNVs and 119 with
indels. As a consequence, reduced or even lack of RNA
hybridization on these probes might lead to an altered
signal measurement through microarray analysis.

Sample-wise and gene-wise correlation of RNA-seq
analysis with the reference genome approach

The reads obtained from sequencing were mapped on the
reference genome of S. cerevisae S288c. For this purpose,
the performances of three different aligners for read-
mapping, TopHat (35), Stampy (34) and Gsnap (33),
were evaluated and the results obtained were compared
with microarray data. The rate of alignment based on
our computing systems (Xeon E5520, 2.27GHz) is ap-
proximately 3511, 1762 and 315 reads/second for Gsnap,
TopHat and Stampy, respectively. On average, >96% of
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the high quality reads can be mapped on the reference
genome by all three aligners (Supplementary Table S3).
To assess the capabilities of the different aligners, we
determined pairwise correlations both based on
normalized expression levels and fold-changes as shown
in Figure 2A and B, respectively. In Figure 2A the
pairwise correlation between each biological replicate is
shown based on the expression level. Here, it is possible
to observe a high reproducibility among biological repli-
cates with both microarray and RNA-seq platforms,
indicated by a Pearson correlation �0.98. Moreover,
when comparing the results among different aligners for
the same biological condition, a Pearson correlation �0.94
can be obtained. These results are in good agreement with
previous works that reported high reproducibility among
technical replicates of RNA-seq (Pearson correlation
values >0.95) (5,11,15) and biological replicates (Pearson
correlation values >0.82) (4). When comparing the per-
formances of the two transcriptomics platforms to identify
expression levels based on intensity, we found similar
results (Pearson correlation �0.81), in agreement with
previous report by Levin et al. (19). Interestingly, the
cross-platform correlation values showed more consistent
results than the correlation from comparison with differ-
ent microarray platforms (8,53–55).

To evaluate the capability of the two platforms to
capture the different response of gene expressions
between the two conditions, we also performed a
fold-change-based comparison. In Figure 2B, the scatter
plots of fold changes generated with different aligners are
shown. The remarkably high correlation values found
(Pearson correlation �0.99), show the robustness of
RNA-seq data, in agreement with what was previously
observed (5,11,15). Interestingly, the value of the cross-
platform correlation was improved by using fold
changes (Pearson correlation �0.93). Using linear regres-
sion fitted on cross-platform fold changes, we obtained a
model of RNA-seq=1.29�Microarray+0.25 with
P< 1e�16. This indicates an improvement in the
dynamic range of RNA-seq data, compared with micro-
array data, of 30%. Interestingly, the impact of potential
duplicates arising from PCR amplification during library
construction procedure, which were contained around
6–16% of total reads (Supplementary Table S3), was
also examined, showing to have a minor influence on the
correlation results (Supplementary Figure S1). Besides
analyzing the correlation between samples, we evaluated
whether gene-wise correlation across samples is dependent
on their expression levels. The plot of gene-wise
correlation between RNA-seq and Microarray data
based on their average gene expression level is illustrated
in Figure 2C. Most of the genes (�70%) have a cross-
platform correlation >0.7 as observed in the density
plot. The distribution of the average gene expression
signal of RNA-seq and microarray data, shown on the
boxplots, also supports the better dynamic range of the
RNAseq data. Interestingly, we found that cross-platform
correlation is random and independent of the level of gene
expression, meaning that a poor correlation does
not imply that a certain gene is poorly expressed and
vice versa.

Evaluations of DGE of RNA-seq data through different
statistical methods and cross comparison with
microarray data

As RNA-seq can be applied to capture differential expres-
sion, we evaluated the impacts of using different reads–
aligners and different statistical methods on the identifica-
tion of DGE from RNA-seq data and performed a
cross-comparison of these results with the DGE
obtained using microarray analysis. The number of
DGE derived from the results from the three different
aligners and five different statistical methods (DESeq,
edgeR, baySeq, Cuffdiff and NOISeq) at a specific
cut-off, i.e. Q-value <1e�5 for all methods and
Pr> 0.875 for NOISeq, are provided in Supplementary
Table S4. It is observed that edgeR identified more
DGE than the other methods at the same condition. The
potential PCR duplication has minor influence on the
DGE identification. The performances of the five different
statistical methods for DGE identification were compared
based on the mapping results obtained with the Stampy
aligner as a priori input for the statistical calculation. The
comparison is illustrated in a Venn’s diagram of identified
DGE between the two different biological conditions
using each method and is shown in Figure 3A. In total,
963 genes were commonly identified as DGE by all the five
methods; however, edgeR uniquely identified more DGE
than Cuffdiff, baySeq, DESeq and NOISeq. To evaluate
whether there is good consistency between the different
statistical methods for analysis of RNAseq data also for
other biological systems, we evaluated different methods
for analysis of published data from mammalian experi-
ments (5,56). The consistency as found in our yeast data
set (Figure 3A) was still valid in the mammalian systems
as shown in Supplementary Figure S4.
Next, we cross-compared the DGE identified from

RNA-seq data (Cuffdiff, baySeq DESeq and NOISeq)
with DGE identified through microarray analysis.
Successively, in Figure 3B it is possible to observe that,
whereas 828 genes were commonly identified as differen-
tially expressed, only 145 genes could not be captured as
DGE with RNA-seq analysis through the different statis-
tical methods. On the contrary, 135 genes were commonly
identified through RNA-seq with all statistical methods
but not captured by microarray analysis. At this point,
we sought to further address the impact of different
aligners (Gsnap, Stampy and TopHat) on DGE
identification.
Reads processed with the three aligners were analyzed

using Cuffdiff and cross-compared with the microarray
data. In Figure 3C, it is possible to observe that the
DGE identified from the read-mapped results based on
Stampy and TopHat aligners show high consistency.
Impressively, 1130 DGEs were commonly identified with
both aligners and the microarray data. About 364 genes
were uniquely identified as DGE from microarray data
and 512 genes (82 genes are not included in the micro-
array) were commonly identified as DGE from RNA-seq
data among the read-mapped result from the three
aligners. Interestingly, when decreasing the stringency of
the Q-value cut-off (<0.05), the number of commonly
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Figure 2. Sample-wise and gene-wise correlation of transcriptome data from microarray and RNA-seq with different processing methods.
(A) Upper-right triangle matrix: pairwise correlation of different biological replicates from batch and chemostat cultivations (for microarray
analysis the normalized signals and for RNAseq analysis the FPKM valued were used). The color intensities (scale in the side bar) and the
numbers indicate the degree of pairwise correlation. (B) Lower-left triangle matrix: scatter plot based on fold changes of gene expression
(average values, batch vs chemostat). The red numbers indicate the level of pairwise correlation between different methods. On the diagonal of
the triangle matrix, the distribution of fold changes of each processing methods is presented as histrograms. Array=microarray, Gsnap=process
quality reads by Gsnap aligner after removal of potential PCR duplicate, n.Gsnap=process quality reads by Gsnap aligner without removing
potential PCR duplicate, Stampy=process quality reads by Stampy aligner after removal of potential PCR duplicate, n.Stampy=process quality
reads by Stampy aligner without removing potential PCR duplicate, TopHat=process quality reads by TopHat aligner after removal of potential
PCR duplicate, n.TopHat=process quality reads by TopHat aligner without removing potential PCR duplicate. (C) Yellow open circle, red open
triangle, cyan plus sign and blue cross sign represent the average gene expression values from microarray of batch and chemostat cultivation and
from RNA-seq of batch and chemostat cultivation, respectively. On the left, the distribution of average expression values from microarray and
RNA-seq analysis is presented as orange boxplot and dark cyan boxplot (combined batch and chemostat cultivation conditions), respectively. At the
bottom, the distribution of the gene-wise correlation values is presented as a white boxplot and density plot.
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identified DGE increases to 49% (purple portion of the pie
charts of Figure 3C) of the 364 genes uniquely identified
from microarray data and 54% (purple portion of the pie
charts of Figure 3C) of the 512 genes that uniquely
identified from RNA-seq. Low expression genes also
caused inconsistencies in DGE identifications, �6–7%
(green portion of the pie charts of Figure 3C) of
uniquely identified DGE from only microarray data (364
genes), the common of the three aligners (512 genes) and
Gsnap aligner (278 genes). Around 17–18% (dodger blue
portion of the pie charts of Figure 3C) of the
inconsistencies were due to SNVs or/and indels in the
microarray probes. 278 genes were uniquely identified as
DGE using the Gsnap aligner, probably indicating differ-
ent read-map performance compared with the other
aligners. Noticeably, >36% (light gray–blue in the pie
chart of Figure 3C) of the 278 genes contain SNVs or/
and indels in their ORFs, compared with the reference
genome S288c. Subsequently, in Figure 4, we further
address the inconsistencies by using our Transcriptome
Browser that allows direct visual comparison of the per-
formances of the different aligners to map ORF showing
genetic variations with the reference genome of the strain
S288c. An example of an ORF containing several SNVs

can be found in PHO11. In the Figure 4A, it is possible to
see that Gsnap has problem to map reads in the coding
region of PHO11. Only Stampy performed well in
mapping reads on the ORF that contains many indels
like YHL008C, as shown in Figure 4B. These results
indicate superior capabilities of seed-based method when
mapping reads on polymorphic region, in agreement with
what previously observed (57). Figure 4C instead reports
the good performance showed by TopHat in mapping
small exons such RPL26A that indicates the benefit of
spliced aligners.

De novo assembly versus reference mapping

An approach that can be used to sequence
RNA (or DNA) when a reference genome is not available
is de novo assembly (25–28). Using this approach might
also eliminate the effects of genetic variations between the
strains CEN.PK 113-7D and S288c that can potentially
influence read mapping results in detecting inappropriate
gene expression level estimation. For this purpose, we
also evaluated the use of de novo assembly. As shown in
Figure 5A, de novo assembly gave high reproducibility
among biological replicates, as indicated by the Pearson
correlation coefficient �0.98. The expression-based

Figure 3. Comparisons of number of DGE identified by different statistical methods of RNA-seq data and cross comparison with DGE identified
from microarray data. (A) Venn’s diagram of the comparison of differential gene expression based on RNA-seq data (result from Stampy aligner)
through five different statistical methods: Cuffdiff, DESeq, NOISeq, edgeR and baySeq. (B) Venn’s diagram of the cross comparison of differential
gene expression based on RNA-seq data (result from Stampy aligner) identified through Cuffdiff, NOISeq and DESeq method versus differential
gene expression from microarray data (see the other comparison in different method combination in Supplementary Figure S2.) (C) Venn’s diagram
of the cross comparison of DGE based on RNA-seq data identified through Cuffdiff method, using the three different aligners. The similar
comparison using baySeq, DESeq, edgeR and NOISeq are provided in Supplementary Figure S3. The potential factors underlying the differences
in genes identified with each method are presented as percentages pie chart. All Venn’s diagrams were built based on Q-value<1e�5 for all methods
except NOISeq P> 0.875 was used as the cut-off.
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comparison within the same platform and same sample
gave a correlation �0.87. Slightly reduced Pearson correl-
ation values were observed when cross-comparing the
FPKM values with the normalized microarray signals.
Interestingly, the fold-change-based correlation increased
to 0.96 and 0.91 when comparing the results from de novo
assembly approach to these obtained when mapping to
a reference genome and microarray, as reported in
Figure 5B. The regression model based on fold changes

derived from de novo assembly and microarray
(De novo=1.21�Microarray+0.24 with P< 1e�16)
showed similar values to the previous regression model
based on the fold changes derived with the approach
based on a reference genome. When comparing the
result from de novo assembly with reference genome
approach (De novo=0.96�Ref. mapped+0 with
P< 1e�16), a minor difference can be found. Figure 5C
summarizes the number of identified transcripts with the

A

B

C

G
sn
ap

St
am

py
To
ph

at
G
sn
ap

St
am

py
To
ph

at
G
sn
ap

St
am

py
To
ph

at

Figure 4. Coverage plots of mapped reads shows different capabilities of the three different aligners. (A) The ORF YHR215W (PHO11) contains
many SNVs on the coding region (green box). (B) The ORF YHL008C contains many INDELs on the coding region (green box). (C) The ORF
YLR344W (RPL26A) contains a small exon (green box).
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different platforms and the two different analysis
approaches (reference genome and de novo). Interestingly,
most of the protein coding genes in the genome can be
detected by the de novo assembly approach. Only 67 genes
could not be captured based on this method, as a conse-
quence of their low expression (Supplementary Figure S5).
The results from statistical analysis in capturing DGE
showed good agreements when comparing the results
obtained by processing RNA-seq data through de novo
assembly with reference genome approach and micro-
array, as shown in Figure 5D. The comparison of DGE

identification results derived from the five different statis-
tical methods (baySeq, Cuffdiff, DESeq, edgeR and
NOISeq) when count data from the de novo assembly
approach was used as a priori input, was also in good
agreement as shown in Supplementary Figure S6.

GO enrichment analysis of transcriptome data

To evaluate whether the different statistical methods
provide the same biological results, we analyzed the
global response of the yeast transcriptome in the shift

Figure 5. Comparisons of transcriptome analysis through de novo assembly and reference genome mapping approach and cross-comparison with
microarray data. (A) Upper-right triangle matrix: pairwise correlation of different biological replicates from batch and chemostat cultivations (for
microarray analysis the normalized signals and for RNA-seq analysis, the FPKM values were used). The color intensities (scale in the side bar) and
the numbers indicate the degree of pairwise correlation. (B) Lower-left triangle matrix: scatter plot based on fold changes of gene expression (average
values, batch versus chemostat). The red numbers indicate the level of pairwise correlation between different methods. On the diagonal of the triangle
matrix, the distribution of fold changes of each processing method is presented as histograms. Array = microarray, De novo = De novo assembly
approach, Ref. mapped = Reference genome reads mapping approach. The RNAseq by both the approaches were processed quality reads by
TopHat aligner with removing potential PCR duplicate. (C) Comparisions of number of transcripts detected by different approach (D) Comparison
of number of DGEs identified by different transcriptome analysis of RNA-seq data and cross-comparison with differential gene expression identified
from microarray data.
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from growth at glucose excess conditions (batch) to
glucose-limited conditions (chemostat). For this purpose,
we used the reporter feature algorithm [Patil and Nielsen
(49) and Oliveira et al. (48)] to integrate the Q-values of
detected transcripts and identify significant GO terms. The
algorithm was applied both on the statistical results from
the microarray data and the RNA-seq data analyzed
with baySeq, Cuffdiff, DESeq, edgeR, NOISeq and
based on de novo assembly (using statistical results from
Cuffdiff). As shown in Figure 6, 48 significant GO biolo-
gical process terms were identified with a reporter P-value
cut-off of 1e�4. Despite a few differences, the analysis of
significant GO terms identified using the results from dif-
ferent statistical methods and approaches to analyze

RNA-seq data and the results from microarray data are
generally in agreement, leading to similar biological con-
clusions. Although all the methods were in agreement in
identifying significant GO terms related to growth (a con-
sequence of the increased specific growth rate during batch
cultivations), GO terms known to be relevant during fully
respiratory growth are not all in agreement with the dif-
ferent methods. Specifically, edgeR showed some
inconsistencies in capturing GO terms associated with
fatty acid beta-oxidation terms (as well as DESeq), fatty
acid metabolic process and TCA cycle, whereas baySeq
weakly identify increased expression of ATP-coupled
proton transport and ion transport. Interestingly, the
results derived from NOISeq seem to give stronger

Figure 6. Clustered heatmap of GO enrichment analysis. The color intensities indicate the level of enrichment score of each GO term.
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signals that explain the known differences between batch
and chemostat growth better than the results derived from
the other methods.

Transcriptome browser

To enable visualization of transcriptome data and
combine this with genomic information of S. cerevisiae,
we designed a genome/transcriptome browser. The tran-
scriptome browser gives the possibility to visualize tran-
scriptional abundance levels (coverage mapped reads) of
each ORF at different cultivation conditions and compare
the results obtained using different aligners. Moreover, the
browser also provides the location of indel and SNV
derived from the genetic differences between
CEN.PK113-7D and S288c. The transcriptional contigs
from de novo assembly analysis are also represented on
the browser mapped according to their position on
the chromosome. Additionally, the positions where the
Affymetrix microarray probes are designed on the
chromosome are also included. To allow the direct com-
parison between RNA-seq data generated in this study
and the transcriptomic data of different S. cerevisiae
strains sequenced in other works, we included selected
published RNA-seq data into the library of the browser.
The browser is publicly available at http://sysbio.se/Yseq.
The detailed screen shot of the transcriptome browser is
shown in Supplementary Figure S7.

DISCUSSION

In our work, we present a comprehensive comparison of
different methods for analysis of transcriptome data
obtained through NGS technology and we present a
cross-comparison between the two mostly used platforms
for analysis of transcriptomic data: RNA-seq and micro-
arrays. To our knowledge, this is the first time that
RNA-seq generated data from Illumina platform are
compared in depth with Affymetrix microarrays. An as-
sessment of the contribution of different processing steps
involved in analysis of RNA-seq data is performed in our
work, addressing the impact of using different
read-aligners and statistical methods to obtain biologically
meaningful data. A good reproducibility among biological
replicates and between the different platforms was found
to be remarkably high and, generally, higher than previ-
ously reported (4,5,7,11,14). The inconsistencies found in
DGE identification between RNA-seq and microarrays
were shown to be mainly due to genetic variation found
on the ORF and on the microarray probes.

Overall, the good agreement found between the
RNA-seq and microarray platforms of our study can be
interpreted based on two major factors. First, S. cerevisiae
is an extremely well characterized microorganism, for
which high quality genomic data are available.
Furthermore, a very good annotation of gene structures
allowed us to map a high portion of reads on the reference
genome (>95%) and hereby, to estimate accurately gene
expression level. The well-annotated gene structures also
benefited from the accurate design probes of microarrays.
Additionally, it also has to be considered that, for our

study, we used deep sequencing of more than 5 million
paired reads, enabling the coverage of a wide range of
gene expression levels.
What we concluded from the approach based on reads

mapping on a reference genome, is that accurately
mapping is of fundamental importance to estimate gene
expression level and to identify DGE. Based on our com-
parison of three different aligners, Stampy, the most
time-consuming of the aligners, showed the highest
mapping accuracy for ORFs with high genetic variation.
This capability is useful when analyzing genomes and
trascriptomes of higher eukaryote, usually containing
high variation in the exome (�40% of total) (58,59).
However, a high-speed aligner like Gsnap, which has
lower mapping accuracy compared with the other
aligners, is also useful for analysis massive amount of
data over the reference genome that contain low poly-
morphisms. TopHat appears to compromise between
accuracy and speed and it also performed well at
mapping reads on small exons.
Our analysis on the de novo assembly approach, showed a

high consistency with reference genome approach in terms
of number of detected transcripts, expression values and
DGE analysis. This shows that de novo assembly of the
transcriptome provides a compelling and robust approach
for analysis of RNA-seq data without using reference
genome. This is a benefit for organisms whose genome
sequence is not available. However, de novo assembly
requires a lot of computational resources (for our study
to obtain contigs from de novo assembly approach, it
took almost 96 h on Opteron 6200, 3.0GHz) and more
complicated in terms of post-processing of the data.
In order to address the impact of different statistical

methods on the identification of DGE, we found that
Cuffdiff, baySeq, DESeq, edgeR and NOISeq generated
consistent results. Additionally, the results obtained based
on RNA-seq data were in good agreement with micro-
array data. Interestingly, edgeR identified more DGE
than the other methods at the same cut-off, which might
infer less control of type 1 error with this method. Using
results derived from different statistical methods of
RNA-seq gave similar biological interpretations as is
shown in GO enrichment analysis. This result strongly
supports the robustness and reliability of different pro-
cessing and analysis of RNA-seq data. Furthermore, we
identified high consistency between microarray and
RNA-seq platforms, thus encouraging the continual use
of microarray as a versatile tool for differential gene
expression analysis. In conclusion, our study provides a
comprehensive comparison of different methods for
analyses of S. cerevisiae transcriptome based on RNA-
seq data using Illumina platform, elucidating the contri-
bution of the different steps involved in analysis of
RNA-seq data.
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