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Adaptive Coded Modulation for Nonlinear
Fiber-Optical Channels
Lotfollah Beygi, Erik Agrell, and Magnus Karlsson

Abstract—A low complexity hybrid polar low-density parity
check (LDPC) coded modulation (CM) scheme is introduced for a
single-wavelength fiber-optical channel. In the proposed scheme,
we exploit a low complexity probabilistic shaping together with
a four-dimensional (4D) mapping to reduce the complexity of a
4D non-binary LDPC CM scheme for fiber-optic channels. The
proposed scheme has a flexible structure and it can be used as an
adaptive-rate CM scheme. The numerical results show that the
forward error correction (FEC) threshold of the introduced CM
scheme can be significantly improved by probabilistic shaping
with a negligible increase in the system complexity. In particular,
the FEC threshold for the uncoded symbol error rate of the
introduced CM scheme with 4D 16-ary quadrature amplitude
modulation can be improved from 0.058 to 0.072 by exploiting a
shaping overhead (redundancy) of 0.016 for an information bit
error rate of 10−5.
Index Terms—Coded modulation, low density parity check

code (LDPC), polar code, probabilistic shaping, nonlinear Kerr-
effect, fiber-optic channel, Chromatic dispersion, adaptive coded
modulation, and FEC threshold.

I. INTRODUCTION

THE tremendous growth in the demand for high data rates
in optical networks motivates exploiting advanced coding

and modulation techniques in fiber-optical channels [1]–[4].
The nonlinear Schrödinger equation describes the propagation
of light in optical fibers. These channels are nonlinear, and
due to the lack of analytical solutions and the complexity of
numerical approaches, deriving the statistics of such channels
is in general cumbersome.
The recent progress in the modeling of fiber-optical chan-

nels has leveraged the design of new coded modulation (CM)
techniques based on the accurate channel models [5]–[9]. It
has been shown that in quasi-linear [9] regime, a single-
wavelength [7], [8] and wavelength-division-multiplexing
(WDM) [6] fiber-optic link can be modeled as an additive
white Gaussian noise (AWGN) channel with a noise variance
nonlinearly proportional to the input power and the channel
parameters. This interesting result simplifies the design of CM
schemes for these channels. However, the new model is an
approximation and exploiting the correlation and the residual
signal information in the introduced nonlinear noise is still a
challenging open problem.
Using strong coding schemes with 7% redundancy to obtain

a forward error correction (FEC) threshold of 3.8× 10−3 has
been well established in fiber-optic channels. To increase this
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threshold even further, one may need to use modern coding
schemes with soft decision decoding [10] or a concatenation
of them with conventional hard-decision decoding codes [11]–
[14]. Moreover, non-binary low density parity check codes
(NB-LDPC) have shown a great potential to replace Reed-
Solomon (RS) codes for some applications in data transmis-
sion such fiber-optic communications. Therefore, NB-LDPC
codes have been widely proposed for fiber-optical channels
[15], [16].
The aim of this paper is to introduce a low complexity

CM scheme based on the recently introduced channel model
for quasi-linear fiber-optic communications [6]–[8]. To this
end, we introduce a four dimensional (4D) hybrid polar
LDPC CM scheme to reduce the complexity of the NB-
LDPC CM [16]. More precisely, we change the bit-to-symbol
mapping unit using a new constellation labeling inspired by
the polar coding approach [17] to reduce the order of the
Gallois field of the NB-LDPC code. Moreover, we combine the
introduced CM scheme with a probabilistic shaping based on
the shell mapping algorithm [18]–[20] to improve the overall
FEC threshold of the system. The simulation results were
provided for a 4D NB-LDPC CM with probabilistic shaping
and multidimensional mapping over a polarization multiplexed
fiber-optic channel. According to the numerical results, one
can decrease the complexity of the system for a fixed FEC
threshold or increase the FEC threshold of the CM system
with a reasonably limited increase in the system complexity.

II. SYSTEM MODEL

The system model including the transmitter, the fiber-optical
channel, and the receiver has been depicted in Fig. 1. As
shown in this figure, the CM unit encodes the information
bit vector u to a matrix S of coded symbols. Then, the root
raised-cosine (RRC) pulse shaping and chromatic dispersion
pre-equalization are performed on the coded symbols to com-
pensate for the channel inter-symbol-interference caused by
chromatic dispersion. The channel is an uncompensated fiber-
optic link with N spans, each consisting of a single mode
fiber (SMF) and an erbium doped fiber amplifier (EDFA) with
a single-wavelength data transmission scheme. It is assumed
that for the output vector S[n] at time instant n, we have
E{‖S[n]‖2} = (Px + Py)/Rs, where Px(y) is the transmitted
power in polarization x(y), Rs is the symbol rate, and ‖ · ‖2

denotes the squared Euclidean norm of a complex vector. A
linear pre-compensation of the electronic chromatic dispersion
[21], as shown in Fig. 1, is used at the transmitter.
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Fig. 1. A fiber link including a coded modulation (CM) unit (u is
the input information-bit sequence) and pre-electronic chromatic dispersion
compensation at the transmitter, a fiber-optical channel with N spans, each
consisting of an SMF and an EDFA, and the CM decoder at the receiver.
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Fig. 2. The discrete-time equivalent model of the fiber-optic link for
sufficiently high symbol rates (ζ is a complex vector).

Moreover, we assume that each EDFA compensates for the
attenuation in each fiber span and adds a circular white com-
plex Gaussian amplified spontaneous emission (ASE) noise
vector in each span with variance σ2

ASE = GFnhνopt/(2T ) in
each polarization [22, eq. 8.1.15], where G is the required
gain to compensate for the attenuation in a span, Fn =
2nsp(1−G−1) is the noise figure, in which nsp is ASE noise
factor, and hνopt is the photon energy.
At the receiver, we consider a perfect synchronization con-

sisting clock, carrier, and polarization tracking schemes. We
also assume a quasi-linear [9] fiber-optical data transmission
with a standard quadrature amplitude modulation (QAM)1,
e.g., dual polarization 16-QAM, therefore we exploit the Gaus-
sian channel model introduced in [6]–[8]. According to this
model, the conditional distribution of the received signal for a
given transmitted symbol on each polarization is described by
a Gaussian distribution. More precisely, a fiber-optical channel
with N spans is replaced by an AWGN channel with a com-
plex constant attenuation factor ζ = (ζx, ζy), which attenuates
and rotates the transmitted symbol in each polarization by
the angle and the amplitude of the constant complex factor
ζx(y), respectively. Furthermore, the variance of the zero-mean
AWGN in polarization x is given by σ2

x = Nσ2
ASE + σ2

NLx ,
where

σ2
NLx = f(α, Lspan,β2, Rs)Nγ2P 3

x , (1)

f() is given in [6] for a WDM link and in [7], [8] for a single-
channel link, α is the SMF attenuation coefficient, Lspan is the
span length, β2 is the SMF dispersion coefficient, and γ is the
SMF nonlinear coefficient. This variance is used to compute a
posteriori probabilities of coded symbols required for the CM
decoder.

III. ENCODER OF CODED MODULATION

We introduce an adaptive CM by exploiting a hybrid polar
[17] and NB-LDPC [24, ch. 14] scheme. To this end, we first
describe a multidimensional mapping scheme, which performs

1This model is not valid for the satellite constellation introduced in [23].
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Fig. 3. The encoder of the proposed CM scheme consisting of the 4D (N=4)
mapping, probabilistic shaping, and non-binary LDPC units.

the role of a polar code in our scheme. Then, we discuss the
combination of this unit with NB-LDPC code and probabilistic
shaping units. The multidimensional mapping (constellation
labeling) scheme divides bit positions in the binary labeling
of constellation symbols into three main groups, namely good,
moderate, and bad channels. As described in Section III-A,
this technique helps us reduce the CM complexity compared
to multilevel coding [25] without performance degradation.
Moreover, the proposed approach provides a flexible structure
to implement an adaptive rate CM scheme. Before continuing
further, we describe the proposed encoder structure. As seen
in Fig. 3, a sequence of information bits u of length ' is split
into two groups. The first group, denoted by the matrix U1

of size h × r, is encoded by a probabilistic shaping unit to
generate the matrix V1 of size h× n.
The goal of the probabilistic shaping algorithm is to change

the distribution of symbols in the 2D constellation and make
them as close as possible to a Gaussian distribution. Clearly,
this reduces the average transmitted power. On the other hand,
the variance of the introduced nonlinear noise is proportional
to the input power, therefore the system performance improves
by performing probabilistic shaping as discussed in Section VI.
Then, the second group, denoted by matrix U2 of size q× k,
is encoded by an NB-LDPC code. This matrix represents k
uncoded symbols from a Galois field of order q denoted by
GF(q). The NB-LDPC encoder generates the matrix V2 of
size q × n consisting n symbols from the GF(q). The matrix
V3 is an all-zero matrix of size d× n.
The multi-dimensional mapper unit maps the input bit

vector V = {VT
1 [i],V

T
2 [i],V

T
3 [i]} at the time instant i to

an N -dimensional symbol S[i] selected from a constellation
C, where (·)T is the transpose and V1[i],V2[i], and V3[i]
are column i of matrices V1,V2, and V3, respectively. The
matrix S of size N × n consisting of n N -dimensional (ND)
symbols is pre-distorted by an electronic chromatic dispersion
pre-equalization unit and transmitted over the fiber-optic link.
Due to four available dimensions in a fiber-optical coherent
link, i.e., the possibility of sending two complex signals in
each polarization, we consider N = 4.

A. Multidimensional mapping (labeling)
We use an example to describe the multidimensional label-

ing scheme unit. To this end, we assume the 4D constellation
C is a 4D pulse amplitude modulation (PAM), denoted by
(4-PAM)4, with 256 symbols, therefore the input of the
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Fig. 4. The bitwise conditional mutual information bits for a 4D mapper
based on the Ungerboeck set partitioning with (4-PAM)4 constellation.

multidimensional mapper V , is a binary vector of length
h + q + d = 8. The grouping of the input bits is performed
based on the conditional bitwise mutual information of the
input bits and the received symbol R. One can represent the
channel between the vector V and the received signal R by
some binary channels using the chain rule as [25]

I(V ;R) =
7∑

i=0

I(V [i];R | V [0], . . . , V [i− 1]) =
7∑

i=0

Ii, (2)

where Ii = I(V [i];R | V [0], . . . , V [i − 1]); 0 ≤ i < 8,
is the mutual information or information rate of the binary
channel i conditioned on the bits transmitted on channels
0, . . . , i − 1. The decomposition of a multidimensional sig-
naling to binary channels is determined by the labeling of
the exploited constellation; however, the mutual information
of the multidimensional scheme, which is the sum of the
mutual information of the binary channels, is independent of
its labeling. Fig. 4 shows these information rates, I0, . . . , I7,
of different binary channels for an AWGN channel. In this
figure, the Ungerboeck set partitioning has been performed
over (4-PAM)4 constellation [26].
One can exploit a multidimensional labeling to obtain

more flexibility in categorizing the binary channels into three
groups, namely bad, moderate, and good channels. Bad and
good channels have information rates 0 and 1, respectively,
while the rate of a moderate channel is between 0 and 1. As
an example, for SNRs larger than 5 dB in Fig. 4, we solely
have moderate and good channels, while for SNRs smaller
than 5 dB, the binary channel are categorized in two groups
of moderate and bad channels. Since the information rate of
bad channels is zero, the input of these channels is frozen to
zero or one. Therefore, as mentioned before, the matrix V3 is
selected as a d × n all-zero matrix, where d may be zero if
no bad channels exist.

B. NB-LDPC coding and decoding

The computational complexity required per iteration of the
fast Fourier transform 2q-ary sum product algorithm (FFT-
QSPA) in decoding of an NB-LDPC code designed over GF(q)
is in the order of O(Jρq2q log 2) [27], [28], where J and ρ are
the number and weight of the rows of the parity-check matrix

of the NB-LDPC code, respectively. Therefore, decreasing the
order of the GF or the number of bits for representing the
NB-LDPC code symbols, without degrading the performance,
can significantly decrease the CM complexity. To this end, we
used the grouping property of the multidimensional mapper
in Section III-A. More precisely, the error protection using
NB-LDPC coding is performed over moderate channels. Thus,
good channels are left uncoded and no information is trans-
mitted on bad channels. (The inputs of bad channels are fixed
to zero which are known to the receiver.) However, the bad
channels with rate 0 solely appear in systems with average
rates smaller than 0.5 (as seen in Fig. 4). Since the NB-
LDPC code is performed on moderate channel, we can use a
smaller order for the GF and consequently a CM scheme with
lower complexity can be obtained. As seen in Fig. 4, for an
average information rate of 0.935 (7% redundancy), we have 3
good channels (i.e., with information rate 1) and five moderate
channels, that need to be protected. For this case, one may get
a performance very close to the Shannon constrained capacity
by exploiting a capacity-approaching 32-ary NB-LDPC code
(q = 5).
It is worth mentioning that the NB-LDPC code performs

on a vector of input bits of moderate channels. Since these
channels are dependent, they need to be decoded jointly
(symbol-wise). Independent bit-wise decoding gives rise to
performance degradation of the CM scheme. We notice that the
decoding of the binary channels with rate 1 is performed after
the detection of moderate bits (i.e., coded by the NB-LDPC
code). This is because the information rate of these channels
are conditioned on the input bits of moderate channels in (2).
The introduced channel model, shown in Fig. 2 for a

fiber-optical channel with large accumulated dispersion and
linear chromatic dispersion, simplifies the computation of a
posteriori information required for LDPC decoder. In other
words, according to this model the residual memory can be
neglected. Therefore, the a posteriori of received symbols is
computed using (1) and no need for turbo equalization [29,
ch. 7].

C. Probabilistic Shaping
Probabilistic shaping is an algorithm that changes the dis-

tribution of the constellation symbols to a distribution close to
the Gaussian distribution. In other words, instead of uniform
distribution of input symbols, the symbols close to origin
(with small amplitudes) are sent more often than symbols far
from the origin of the constellation (with large amplitudes).
Shell mapping [18]–[20] and trellis shaping [30] are two well-
known algorithms for performing probabilistic shaping over
a constellation with uniformly distributed symbols. Since the
joint shell mapping and NB-LDPC codes can be implemented
with lower complexity than trellis shaping, we exploited
shell mapping in our CM scheme. Indeed, the shell mapping
algorithm can be more easily combined with block codes, such
as LDPC codes, than with trellis-based codes. The exploited
shell mapping is simply described as a mapping from h×r bits
to h×n bits as shown in Fig. 3, where the output matrices with



TABLE I
THE CHANGE OF THE CM PARAMETERS VS. SNR FOR AN AWGN

CHANNEL ((4-PAM)4 CONSTELLATION)

SNR (dB) -3 0 5 9 12
CM rate 0.15 0.25 0.5 0.77 0.95

Num. of shaping bits: h 0 0 1 3 5
Num. of coding bits: q 4 5 6 5 3
Num. of dropped bits: d 4 3 1 0 0

Hamming weight (the sum of the Hamming weights of the
matrix rows) larger than certain value are removed. Therefore,
it is readily seen that 2r ≤ 2n and we define the shaping rate
as Rshaping = r/n.
To combine the probabilistic shaping with the hybrid polar

LDPC CM scheme proposed in Section III-B, we exploited
the 4D set partitioning introduced in [26]. This labeling helps
us control the average energy of the 4D constellation by
changing the probability of 1s and 0s in the good channels.
The input distribution of moderate channels has no effect on
the average energy of the 4D constellation. The nonuniform
distribution of the inputs bits of the good binary channels
control the average energy of the 4D constellation. Therefore,
one may solely need to change the distribution of the input
bits to a nonuniform distribution in these channels, where we
exploited the shell mapping algorithm for this purpose. An
advantage of applying probabilistic shaping in good channels
is the possibility of using hard decision de-shaping without
performance degradation at the receiver.

IV. ADAPTIVE RATE CM SCHEME

The introduced CM scheme can be adjusted to support
the information rate introduced by the Shannon constrained
capacity for different SNRs. As discussed in Section III-A, the
grouping of good, bad and moderate binary channels changes
by SNR. Therefore, one may need to change the parameters of
the NB-LDPC code and probabilistic shaping units, while, the
structure remains unchanged for different SNRs. For example,
the required parameters of the system with the multidimen-
sional labeling given in Fig. 4 have been listed in Table I for
different SNRs. The total rate of the CM scheme is given by
CM rate = h/(h+q+d)Rshaping+q/(h+q+d)Rcoding, where
Rcoding = k/n is the coding rate. The number of shaping,
coding, and dropped bits are computed using Fig. 5. For
example at the CM rate of 0.5, one may find the SNR that gives
rise to this rate using the average rate,

∑8
i=1 Ii/8, curve. Then,

a vertical line can be drawn to cross the information rate curves
of the binary channels. The number of channels with rate 0
and 1 determine d and h, respectively and q is the number of
moderate channels (i.e., channels with rates between 0 and 1).
As shown in Table I, the number of coded bits is smaller than
8 and the complexity can be reduced without any degradation
in the performance.

V. SIMULATION RESULTS
In this section, we evaluate the performance of the proposed

CM scheme for a single-channel fiber-optical system with

(4-PAM)4 constellation, 32-ary (1024,928) NB-LDPC code
designed using the method introduced in [24, sec. 14.4.2]
(k = 928, n = 1024, q = 5, h = 3, and d = 0), and
three different probabilistic shaping schemes: no probabilistic
shaping (r = 1024) and probabilistic shaping of rates 0.9375
(r = 1003) and 0.875 (r = 981). The split-step Fourier
method [31, eq. 2.4.10] (SSFM) is used to simulate a fiber-
optic channel based on the Manakov equation with an adaptive
segment length [32] of ∆i = (εLNL2

D)
1
3 , where i is the

segment index, ε = 10−4, LD is the dispersion length, and
LN is the nonlinear length of segment i − 1 [31, p. 55].
In the simulations, the receiver is assumed to have perfect
knowledge of the polarization state. The EDFA filters are
assumed to be unity gain with double-sided bandwidth equal to
the exploited sampling frequency, which is usually greater than
the signal bandwidth. The following channel parameters are
used for the numerical simulations: the nonlinear coefficients
γSMF = 1.4 W−1km−1, the optical frequency νopt = 193.55
THz, the attenuation coefficients αSMF = 0.2 dB/km, L = 100
km, N = 15, the symbol rate of 28 Gbaud, a dispersion
coefficient of D = 17 ps/(nm·km), and Fn = 6 dB. Moreover,
we consider two pulse shapes: An RRC pulse [33, p. 675]
with an excess bandwidth of 0.25 and a truncation length of
8 symbols. The chromatic dispersion is compensated by an
electronic chromatic dispersion filter at the transmitter.
In Fig. 5, the information rates of the binary channels of

the described fiber-optical link have been plotted versus the
transmit power (the same transmit power is used in both
polarizations, i.e., Px = Py). As shown in this figure, a CM
scheme with total rate of 0.941 was selected for numerical
simulations. At this rate, q = 5 bits need to be protected
by NB-LDPC code and the rest of the bits (h = 3) can be
left uncoded. The bit, symbol, and frame error rates (BER,
SER, and FER) of this system are evaluated for three different
scenarios: The CM scheme with a total rate of 0.941 but no
probabilistic shaping and the CM scheme with probabilistic
shaping and total rates of 0.926 and 0.934. As seen in Fig. 6,
exploiting a probabilistic shaping with an overhead (added
redundancy) of 0.016 can improve the system performance
around 0.4 dB at BER = 10−5. This improves the uncoded
4D FEC threshold of the system from a SER of 0.058 to 0.072
at the information BER of 10−5.

VI. CONCLUSION

This paper introduced a new hybrid polar LDPC coded
modulation (CM) scheme for nonlinear fiber-optic channels.
The proposed multidimensional labeling inspired by polar
coding reduced the computational complexity of the CM
scheme without any degradation in the system performance.
The new scheme provides a flexible structure that can be
used as an adaptive-rate CM scheme for fiber-optic networks.
Furthermore, exploiting a probabilistic shaping based on the
shell mapping algorithm, the system FEC threshold can be
improved with a reasonable increase in the system complexity.
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