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On ARQ-based Fast-Fading Channels
Behrooz Makki, Alexandre Graell i Amat, Senior Member, IEEE and Thomas Eriksson

Abstract—Automatic repeat request (ARQ) protocols are nor-
mally studied under slow-fading or quasi-static channel assumption
where the fading coefficients are assumed to remain fixed during
the transmission of a codeword or for the duration of all ARQ
retransmission rounds, respectively. This letter investigates the
performance of basic ARQ and incremental redundancy hybrid
ARQ protocols in fast-fading channels where a number of channel
realizations are experienced in each retransmission round. Long-
term throughput, delay-limited throughput and outage probability
of the ARQ schemes are obtained. Compared to slow-fading and
quasi-static channels, a fast-fading channel results in a higher
performance for both basic and incremental redundancy ARQ. The
fast-fading channel, however, can be mapped to an equivalent slow-
fading model at low signal-to-noise ratios. Finally, we show that
the efficiency of ARQ protocols is overestimated if the fast-fading
variations during a codeword transmission are approximated by
their average value.

I. INTRODUCTION

Automatic repeat request (ARQ) is an efficient approach for
improving the data transmission efficiency of wireless commu-
nication systems [1]–[7]. Utilizing both forward error correction
and error detection, the performance improvement is achieved
by retransmitting the data which has experienced bad channel
conditions. In basic ARQ protocols the same data is retransmitted
and the receiver decodes the message based on the received
signal in each round. Hybrid ARQ protocols, on the other hand,
are more advanced methods where the receiver combines all
received representations of a message.

Considering very slow moving users in, e.g., spectrum sharing
[1] and single-user networks [2], ARQ schemes are normally
studied under the assumption that the channel remains fixed
during the transmission of a codeword and all of its retrans-
mission rounds (quasi-static channel assumption). For medium
speed users, on the other hand, the channel is supposed to
change between two successive retransmission rounds, while it
is fixed for the duration of each codeword (slow-fading channel
assumption) [3]–[6]. However, for fast moving users or users
with long codewords compared to the channel coherence time,
this assumption should be further relaxed, as the channel may
change during each retransmission round. For instance, the
indoor ultra wideband (UWB) channels normally vary smoothly
during a codeword transmission [8]. On the other hand, modern
codes often use very long codewords, which may exceed the
channel coherence time [2].

This paper studies the data transmission efficiency of ARQ
protocols in fast-fading environments. Long-term throughput,
delay-limited throughput and outage probability of different
ARQ protocols are investigated in the case where a number
of channel realizations are experienced during every data re-
transmission round. This is a new model which, to the best

The authors are with Department of Signals and Systems, Chalmers University
of Technology, Gothenburg, Sweden, Email: {behrooz.makki, alexandre.graell,
thomase}@chalmers.se

of our knowledge, has not been studied before. Considering
basic ARQ and incremental redundancy (INR) hybrid ARQ
protocols, it is shown how the system performance changes in
different fading conditions. With the same fading distribution,
higher throughput and lower outage probability are obtained
when the channel variability increases in time. Using ARQ
at low signal-to-noise ratios (SNRs), we show that a fast-
fading channel can be mapped into an equivalent slow-fading
model with fading distribution obtained by averaging the fast-
fading behavior in a retransmission round. For higher SNRs,
the throughput (the outage probability) of the ARQ protocols is
upper (lower) bounded when the fast-fading channel realizations
within a codeword duration are approximated by their average
value, which changes the fading distribution correspondingly.

II. SYSTEM MODEL AND DEFINITIONS

Consider a communication setup where the input message
X multiplied by the fading coefficient h is summed with an
independent and identically distributed complex Gaussian noise
Z ∼ CN (0, 1) resulting in the output

Y = hX + Z. (1)

Let g = |h|2 denote the channel gain random variable. The
channel gain remains constant for a duration of L channel uses,
determined by the channel coherence time, and then changes
according to the fading probability density function (pdf) fG(g).

The receiver is assumed to have perfect instantaneous channel
state information (CSI). On the other hand, there is no CSI
available at the transmitter, except the ARQ feedback bits. We
consider a maximum of M retransmission rounds, i.e., each
codeword is (re)transmitted a maximum of M + 1 times. Also,
the results are presented in natural logarithm basis.

To model the fast-fading behavior, the length of each codeword
is assumed to be Lc = JL, i.e., J different channel gain real-
izations are experienced during each codeword (re)transmission.
This is the key difference in our channel model compared to,
e.g., [1]–[7], which, as seen in the following, leads to different
analytical and numerical results for the ARQ protocols.

Definitions: We define a packet as the transmission of a
codeword along with all its possible retransmission rounds. Also,
the long-term throughput [5], the delay-limited throughput [1],
[2], [7] and the average transmission power [9] are defined as

ηLT
.
=

E{Q}

E{τ}
, (2)

ηDL
.
= E{R}, (3)

and
φ

.
=

E{ξ}
E{τ}

, (4)

respectively. Here, E{.} represents the expectation operator and
E{Q}, E{τ}, E{R} and E{ξ} denote the expected value of
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the successfully decoded information nats, the expected number
of channel uses, the expected achievable rate, and the expected
energy consumed within a packet transmission period, respec-
tively. Finally, Pr(outage) is the outage probability defined as
the probability of the event that the data cannot be decoded by
the receiver when all retransmission rounds are used.

III. THEORETICAL ANALYSIS

In the following, first some closed-form expressions for (2)-(4)
are derived which are valid for different ARQ protocols. Later,
the results are particularized for the basic and INR hybrid ARQ.

Let Qc be information nats transmitted in each packet. If the
data is successfully decoded in each retransmission round, all
the information nats are received. Therefore, we have

E{Q} = Qc

∑M+1

m=1
Pr
(

S̄1, . . . , S̄m−1, Sm

)

(5)

where Sm is the event that the data is decodable at the m-
th (re)transmission round, and Pr(S̄1, . . . , S̄m−1, Sm) is the
probability that the data is successfully decoded at the m-th
round while it was not decoded before.

As the length of the codewords is Lc = JL, the number
of channel uses is τm = mJL if the data is successfully
decoded at the end of the m-th round. Also, independent of
the message decoding status, the number of channel uses is
τM+1 = (M + 1)JL if all (re)transmission rounds are used.
Therefore, the expected number of channel uses is found as

E{τ} = JL
∑M+1

m=1
m Pr

(

S̄1, . . . , S̄m−1, Sm

)

+ (M + 1)JL Pr
(

S̄1, . . . , S̄M+1

)

(a)
= JL

(

1 +
∑M

m=1
Pr
(

S̄1, . . . , S̄m

)

)

(6)

and the long-term throughput is obtained by

ηLT = r

∑M+1
m=1 Pr

(

S̄1, . . . , S̄m−1, Sm

)

1 +
∑M

m=1 Pr
(

S̄1, . . . , S̄m

)
. (7)

Here, r = Qc
JL

denotes the initial codeword rate, (a) is obtained
by some manipulations on the probability terms and (7) follows
from (2), (5) and (6).

Provided that the data is decoded at the m-th (re)transmission
round, the achievable rate is rm = Qc

mJL
= r

m
. Hence, the delay-

limited throughput (3), defined as the expected achievable rate
in a packet period, is obtained by

ηDL =
∑M+1

m=1

r

m
Pr
(

S̄1, . . . , S̄m−1, Sm

)

. (8)

Let the transmission power for the m-th (re)transmission
round be Pm. Then, the transmission energy in the m-th round
is JLPm and the sum energy up to the end of the m-th
(re)transmission round is JL

∑m

n=1 Pn. Hence, the expected
energy consumed in a packet period is

E{ξ} = JL
∑M+1

m=1

(

∑m

n=1
Pn

)

Pr
(

S̄1, . . . , S̄m−1, Sm

)

+ JL

(

∑M+1

n=1
Pn

)

Pr
(

S̄1, . . . , S̄M+1

)

= JL

(

P1 +
∑M

m=1
Pm+1 Pr

(

S̄1, . . . , S̄m

)

)

(9)

which, along with (6), leads to the average transmission power

φ =
P1 +

∑M
m=1 Pm+1 Pr

(

S̄1, . . . , S̄m

)

1 +
∑M

m=1 Pr
(

S̄1, . . . , S̄m

)
. (10)

Finally, the outage probability is determined by Pr(outage) =
Pr(S̄1, . . . , S̄M+1).

From (5)-(10), it follows that the only difference be-
tween different ARQ protocols is in the probability terms
Pr(S̄1, . . . , S̄m−1, Sm) and Pr(S̄1, . . . , S̄m). In the following,
these probabilities are obtained for the basic and INR hybrid
ARQ protocols under fast-fading channel assumption.

A. Basic ARQ protocol

Implementing basic ARQ, the receiver decodes the data in
each round independent of the previously received codewords.
Therefore, we have

Pr(S̄1, . . . , S̄m) =
∏m

n=1 Pr(S̄n)

Pr(S̄1, . . . , S̄m−1, Sm) = Pr(Sm)
∏m−1

n=1 Pr(S̄n),
(11)

where the probability Pr(Sn) is determined as follows. Let the
channel gain realizations during the n-th (re)transmission round
be gj , j = (n − 1)J + 1, . . . , nJ, where each one happens in
L successive channel uses. In this case, the results of [9], [10,
Chapter 15] can be used to show that the maximum decodable
information nats with transmission power Pn is

Qmax
basic,n = L

nJ
∑

j=(n−1)J+1

log (1 + gjPn) (12)

which is obtained by Gaussian input distributions. Also, note that
(12) is the same as the achievable nats in J parallel Gaussian
channels having gains gj . Consequently, Pr(Sn) is found as

Pr(Sn) = Pr



Qc ≤ L

nJ
∑

j=(n−1)J+1

log(1 + gjPn)





= Pr



r ≤
1

J

nJ
∑

j=(n−1)J+1

log(1 + gjPn)



 (13)

where the last equality comes from r = Qc
JL

.

B. INR hybrid ARQ protocol

Using INR hybrid ARQ, the transmitter sends a codeword
with very aggressive rate in the first round. Then, if the receiver
cannot decode the initial codeword, further parity bits are sent
in the next retransmission rounds and in each round the receiver
decodes the data based on all received signals. Consequently,
with the same arguments as in (12), the maximum decodable
information nats at the end of the m-th retransmission round is

Qmax
INR,m = L

m
∑

n=1

nJ
∑

j=(n−1)J+1

log (1 + gjPn) (14)

and the probability terms Pr(S̄1, . . . , S̄m) and
Pr(S̄1, . . . , S̄m−1, Sm) are respectively obtained by

Pr(S̄1, . . . , S̄m) = Pr

(

Qc > L

m
∑

n=1

nJ
∑

j=(n−1)J+1

log(1 + gjPn)

)

= Pr

(

r >
1

J

m
∑

n=1

nJ
∑

j=(n−1)J+1

log(1 + gjPn)

)

(15)
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and
Pr(S̄1, . . . , S̄m−1, Sm)

= Pr

(

L
∑m−1

n=1

∑nJ

j=(n−1)J+1 log(1 + gjPn) < Qc

≤ L
∑m

n=1

∑nJ

j=(n−1)J+1 log(1 + gjPn)

)

= Pr

(

1
J

∑m−1
n=1

∑nJ

j=(n−1)J+1 log(1 + gjPn) < r

≤ 1
J

∑m
n=1

∑nJ
j=(n−1)J+1 log(1 + gjPn)

)

.

(16)

Here, it is interesting to note that setting J = 1, i.e., assuming
a fixed gain value in each round, the results are simplified to
the ones obtained in slow-fading channels [4]–[6]. Also, with
gj = g, ∀j, the results match the ones presented in, e.g., [1], [2]
where the channel is fixed during the whole packet transmission
period (quasi-static channel).

The following theorem shows that at low SNRs the system per-
formance under fast-fading channel assumption can be mapped
into the one in a slow-fading channel with different fading pdf.

Theorem 1: At low SNRs, the performance of the basic and
INR hybrid ARQ protocols under fast-fading channel assumption
tends towards the one in a slow-fading channel with the fading
pdf obtained by averaging the fast-fading channel behavior in a
retransmission round period.

Proof: As log(1 + x) ' x for small values of x, the
probability terms (13), (15) and (16) are changed to

Pr(Sn) ' Pr
(

r ≤
Pn

J

nJ
∑

(n−1)J+1

gj

)

(17)

Pr
(

S̄1, . . . , S̄m

)

' Pr
(

r >
1

J

m
∑

n=1

Pn

nJ
∑

j=(n−1)J+1

gj

)

(18)

Pr
(

S̄1, . . . , S̄m−1, Sm

)

'

Pr

(

1

J

m−1
∑

n=1

Pn

nJ
∑

j=(n−1)J+1

gj < r ≤
1

J

m
∑

n=1

Pn

nJ
∑

j=(n−1)J+1

gj

)

(19)

for low SNRs. Defining the random variable U (J) = 1
J

∑J
j=1 gj ,

i.e., U (J) is the average of J gain realizations gj , (17)-(19) can
be rewritten as

Pr(Sn) ' Pr(r ≤ Pnun) (20)

Pr(S̄1, . . . , S̄m) ' Pr

(

r >

m
∑

n=1

Pnun

)

(21)

Pr(S̄1, . . . , S̄m−1, Sm) ' Pr

(

m−1
∑

n=1

Pnun < r ≤
m
∑

n=1

Pnun

)

(22)

which are the corresponding low-SNR probability terms in slow-
fading channels, i.e., J = 1 in (13), (15) and (16), with gain
realization un in the n-th retransmission round.

The intuition behind Theorem 1 is that less time diversity
is provided by the fast-fading channel at low SNRs. Thus, the
fast-fading channel will tend towards an equivalent slow-fading
model when the SNR decreases. Note that (17)-(19) can provide
very good approximations for the system performance at low
SNRs, as (13), (15) and (16) do not have closed-form solutions.

Remark 1: For Rayleigh fading channels, fG(g) = µe−µg ,
on which we focus, the cumulative distribution function (cdf) of
the auxiliary variable U (J) is obtained by

FU(J) (u) = Pr{
1

J

J
∑

j=1

gi ≤ u}
(b)
= 1 − e−Jµu

J−1
∑

j=0

(Jµu)
j

j!
(23)

where “!” is the factorial operator, µ is the fading parameter
determined by path loss and shadowing between the terminals
and (b) is found by iterative integration of the gain pdf.

Theorem 2 indicates that the throughput (the outage probabil-
ity) of the ARQ protocols is upper (lower) bounded if the fast-
fading realizations within a codeword duration are approximated
by their average value, which changes the channel equivalent cdf
as given in, e.g., (23).

Theorem 2: Assume uniform power allocation, i.e., Pm =
P, ∀m. The long-term and delay-limited throughput of the
considered ARQ schemes in the fast-fading channel with J

gain realizations gj , j = 1, . . . J, in a retransmission round are
respectively less than the long-term and delay-limited throughput
in a slow-fading channel experiencing a single gain realization
following the cdf FU(J) , U (J) = 1

J

∑J

j=1 gj . Also, the outage
probability in the fast-fading model is higher.

Proof: With some calculations in (7) and (8), we have

ηLT = r
1 − Pr

(

S̄1, . . . , S̄M+1

)

1 +
∑M

m=1 Pr(S̄1, . . . , S̄m)
(24)

ηDL = r
(

1 −
M
∑

m=1

Pr(S̄1, . . . , S̄m)

m(m + 1)
−

Pr(S̄1, . . . , S̄M+1)

M + 1

)

(25)

which are based on fact that Pr(S̄1, . . . , S̄m−1, Sm) =
Pr(S̄1, . . . , S̄m−1)−Pr(S̄1, . . . , S̄m). Therefore, since from con-
cavity of the function log(1 + x) we have

Pr (S̄1, . . . , S̄m)Fast =

Pr

(

r > 1
J

∑m

n=1

∑nJ

j=(n−1)J+1 log(1 + gjP )

)

≥ Pr

(

r >
∑m

n=1 log(1 + u
(J)
n P )

)

= Pr (S̄1, . . . , S̄m)Slow

for the INR scheme, lower throughput and higher outage prob-
ability Pr(outage) = Pr(S̄1, . . . , S̄M+1) are achieved in the
fast-fading channel. This is particularly because the long-term
and delay-limited throughput, i.e., (24) and (25), are decreasing
functions of Pr(S̄1, . . . , S̄m), ∀m. Finally, the same arguments
are applicable in the basic ARQ as well.

The theorem is of interest when we remind that in practice the
channel does not remain constant, even at low speeds, although it
is approximated to be fixed. The theorem shows that the practical
data transmission efficiency of ARQ protocols is worse than what
is theoretically obtained by such approximations.

Corollary 1: At high SNRs, upper bounds of the long-term
and delay-limited throughput and a lower bound of the outage
probability are obtained when (13), (15) and (16) are replaced
by (17)-(19).

Proof: Since log(1 + x) ≤ x, ∀x ≥ 0, the probability term
obtained in (18) is less than the value found in (15). Hence, from
(24) and (25), the long-term and the delay-limited throughput of
the INR scheme increases when Pr(S̄1, . . . , S̄m) is calculated by
(18), instead of (15). Also, the outage probability Pr(outage) =
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Pr(S̄1, . . . , S̄M+1) decreases. Finally, the same point is valid for
the basic ARQ protocol.

IV. SIMULATION RESULTS

Simulation results are obtained for Rayleigh fading channel
fG(g) = µe−µg where we set µ = 1. Also, a maximum of
M = 1 (re)transmission round and uniform power allocation
is considered. Assuming J = 2, i.e., two channel realizations
during each codeword transmission, Fig. 1 shows the perfor-
mance of the ARQ protocols in a fast-fading channel. Also,
the effect of different fading models on the data transmission
efficiency of the INR ARQ scheme is studied in Fig. 2. From
the figures it is deduced that 1) with a fast-fading channel, the
difference between the throughput of basic and INR hybrid ARQ
schemes decreases at high SNRs (Fig. 1a). 2) In harmony with
(12) and (14), the INR ARQ scheme outperforms the basic ARQ
method, in terms of throughput and outage probability (Fig. 1).
3) Compared to no feedback case, i.e., M = 0, considerable
performance improvement is achieved by the basic ARQ in fast-
fading channels (Fig. 1)1. This is different from the results in the
quasi-static [1], [2] or slow-fading channels [3]–[6], where the
basic ARQ has no or marginal effect on the system performance,
respectively. 4) The difference between the system performance
in fast- and, e.g., slow-fading channels increases with the initial
codeword rate r (Fig. 1b). 5) As expected from intuitions, with
the same fading pdf, the highest long-term and delay-limited
throughput is observed in the fast-fading channel (Fig. 2). The
reason is that more time diversity is exploited by the ARQ in
fast-fading channels. Also, 6) the ARQ shows better performance
in the slow-fading model compared to the quasi-static model.
Finally, due to space limitations, the numerical results associated
with Theorems 1 and 2 and Corollary 1, in which we compared
the fast-fading channel with a slow-fading model experiencing a
different fading pdf, are not given in the figures. If desired, the
numerical results for that case can be easily obtained via, e.g.,
(23).

V. CONCLUSION

This letter studied the performance of different ARQ protocols
in fast-fading channels. With the same fading distribution, the
best performance of the ARQ models is obtained in the fast-
fading channel. Using ARQ at low SNRs, the fast-fading channel
can be mapped into an equivalent slow-fading channel. Finally,
performance of the ARQ protocols in a fast-fading channel is
worse, when compared to a slow-fading channel with fading
distribution following the average characteristics of the fast-
fading channel in a retransmission round.
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