Testing versus proving in climate impact research

Cezar Ionescu! and Patrik Jansson?

1 Potsdam Institute for Climate Impact Research
Telegrafenberg A31, 14473 Potsdam, Germany
ionescu@pik-potsdam.de

2 CSE Department, Chalmers University of Technology
SE - 412 96 Goteborg, Sweden
patrikj@chalmers.se

—— Abstract

Higher-order properties arise naturally in some areas of climate impact research. For example,
“vulnerability measures”, crucial in assessing the vulnerability to climate change of various regions
and entities, must fulfill certain conditions which are best expressed by quantification over all
increasing functions of an appropriate type. This kind of property is notoriously difficult to
test. However, for the measures used in practice, it is quite easy to encode the property as a
dependent type and prove it correct. Moreover, in scientific programming, one is often interested
in correctness “up to implication”: the program would work as expected, say, if one would use
real numbers instead of floating-point values. Such counterfactuals are impossible to test, but
again, they can be easily encoded as types and proven. We show examples of such situations
(encoded in Agda), encountered in actual vulnerability assessments.

1998 ACM Subject Classification D.1.1 Applicative (Functional) Programming, D.1.6 Logic
Programming, D.2.4 Software/Program Verification, D.2.5 Testing and Debugging

Keywords and phrases dependently-typed programming, domain-specific languages, climate im-
pact research, formalization

Digital Object Identifier 10.4230/LIPIcs. TYPES.2011.41

1 Introduction

Climate impact research is not the same as climate research: it does not deal, for example,
with building the detailed simulations of the climate system that run on massively parallel
machines of incredible, yet always insufficient computational power. Rather, climate impact
research attempts to analyze the broad, first-order effects of various policies meant to mitigate
or alleviate the problems caused by human-induced climate change. The Potsdam Institute
for Climate Impact Research (the acronym PIK comes from the more compact German
version: Klimafolgenforschung) has on its web page the following introduction:

At PIK researchers in the natural and social sciences work together to study global change
and its impacts on ecological, economic and social systems. They examine the Earth
system’s capacity for withstanding human interventions and devise strategies for a sustainable
development of humankind and nature.
PIK research projects are interdisciplinary and undertaken by scientists from the following
Research Domains: Earth System Analysis, Climate Impacts and Vulnerabilities, Sustainable
Solutions and Transdisciplinary Concepts and Methods.
Through data analysis, computer simulations and models, PIK provides decision makers
with sound information and tools for sustainable development. In addition to publishing
results in scientific journals the Institute gives advice to national and regional authorities
and, increasingly, to global organisations such as the World Bank.

© C. Tonescu and P. Jansson; . (from http://www.pik-potsdam.de/institute)

Ol licensed under Creative Commons License BY-ND

18th International Workshop on Types for Proofs and Programs (TYPES 2011).
Editors: Nils Anders Danielsson, Bengt Nordstréom; pp. 41-54

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.TYPES.2011.41
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

42

Testing versus proving

The important point here is the following: many complex systems are studied together by
scientists from many different disciplines. In this kind of enterprise, the concepts that tend
to be most used across disciplines have a high intuitive content, which ensures that they
are quickly grasped by all the different parties (“vulnerability” will be our running example,
but consider also “stability”, “resilience”, “global change”, “sustainable growth”, “green
path”, and so on). The danger is that each party will grasp it in a different way, hence the
importance of definitions. In general, the more formal the definition, the less the risk it will
be misunderstood (though the chance of being understood might also decrease), and here is
where a first connection to logic and computer science appears.

Additionally, such “fulcrum” concepts that leverage our everyday intuitions and help
structure the interdisciplinary discourse also provide natural candidates for assessments, for
measurement and comparison, which then, in turn, can be used as the basis for “giving
advice to national and regional authorities”. Many of these assessments are computer-based,
and subject to the usual concerns of reuse, genericity, efficiency and correctness (especially
important, one would think, when giving advice “to global organizations such as the World
Bank”).

This is the computer scientists’ playground, and the game plan is: formalize the concepts
involved in order to be able to write specifications against which to assess program correctness.
Do it generically, in order to unify and reuse as much as possible of the existing code. Since
the subject is largely mathematical, use a high-level language with an expressive type system,
in order to minimize the distance from specification to implementation. Hopefully, the
end-result will be a domain-specific language, which will simplify writing the particular sort
of programs we started with, while at the same time making their correctness easier to assess.

This paper presents some of the results we obtained while playing this game within the
field of (computer-assisted) vulnerability assessment. The next section is a whirlwind tour
of definitions of vulnerability and the resulting (simplified) Haskell formalization. We then
take up the question of correctness: we want to ensure that key conditions are met by an
implementation. The first idea, presented in Section 3, is in tune with current software
engineering best practices: apply automatic property-based testing (for example, using
QuickCheck [8]). It turns out that writing good tests is somewhere between hard and
impossible, but proving on paper that the conditions hold is really easy. Therefore, we
re-implemented parts of the system in a dependently-typed programming language (Agdal,
[21, 26]) and found that expressing the conditions as types was at least as easy as thinking
up good tests, and that convincing the type checker that the conditions were met was at least
as easy as implementing those tests. Moreover, things that were impossible before become
not even hard. This is presented in Section 4, which raises questions such as: if proving
things is so easy, why does it get such a bad reputation? We have an opinion about this, and
you can read it in the conclusions.

2 Vulnerability

In the past decade, the concept of “vulnerability” has played an important role in fields such
as climate change, food security and natural hazard studies. Vulnerability studies have often
been successful in alerting policymakers to precarious situations. The importance of the

L The choice of Agda over, say, Coq, was motivated partly by similarity with Haskell (since we could
translate our Haskell code-base), partly by aesthetic considerations and by ease of use. Perhaps the
largest role was played by the fact that PIK has quite close ties to Chalmers, where Agda was developed.

C. lonescu and P. Jansson 43

concept in the particular field of climate change is described, for example, as follows [13]:

... Studies based primarily on the output of climate models tend to be characterized
by results with a high degree of uncertainty and large ranges, making it difficult to
estimate levels of risk. In addition, the complexity of the climate, ecological, social and
economic systems that researchers are modeling means that the validity of scenario
results will inevitably be subject to ongoing criticism. ...Such criticisms should not
be interpreted as questioning the value of scenarios; indeed, there is no other tool
for projecting future conditions. What they do, however, is emphasize the need for a
strong foundation upon which scenarios can be applied, a foundation that provides a
basis for managing risk despite uncertainties associated with future climate changes.
This foundation lies in the concept of vulnerability.

No doubt, vulnerability is one of the “fulcrum” concepts mentioned in the introduction and,
alerted to the importance of definitions in an interdisciplinary context, we expect this one
to be very well defined. Unfortunately, this is only the case if by “well defined” we mean
“defined many times”. Figure 1 contains a sample of vulnerability “definitions” found in the
literature:

[16]: Vulnerability is defined as the extent to which a natural or social system is susceptible
to sustaining damage from climate change. Vulnerability is a function of the sensitivity
of a system to changes in climate (the degree to which a system will respond to a given
change in climate, including beneficial and harmful effects), adaptive capacity (the degree
to which adjustments in practices, processes, or structures can moderate or offset the
potential for damage or take advantage of opportunities created by a given change in
climate), and the degree of exposure of the system to climatic hazards.

[28]: The conditions determined by physical, social, economic, and environmental factors
or processes, which increase the susceptibility of a community to the impact of hazards.
[7] Vulnerability, therefore, is a human-induced situation that results from public policy
and resource availability/distribution, and it is the root cause of many disaster impacts.
Indeed, research demonstrates that marginalized groups invariably suffer most in disasters.
Higher levels of vulnerability are correlated with higher levels of poverty, with the
politically disenfranchised, and with those excluded from the mainstream of society.

[6] Vulnerability (in contrast to poverty which is a measure of current status) should
involve a predictive quality: it is supposedly a way of conceptualizing what may happen
to an identifiable population under conditions of particular risk and hazards. Is the
complex set of characteristics that include a person’s: initial well-being (health, morale,
etc.); self-protection (asset pattern, income, qualifications, etc.); social protection (hazard
preparedness by society, building codes, shelters, etc.); social and political networks and
institutions (social capital, institutional environment, etc.).

[9] Vulnerability (V) = Hazard Coping,

with Hazard = H (Probability of the hazard or process; shock value; predictability;
prevalence; intensity/strength);

and Coping = C (Perception of risk and potential of an activity; possibilities for trade;
private trade, open trade).

Figure 1 A sample of vulnerability definitions from several different papers.

There are many, many more such definitions, a large percentage of which wouldn’t pass
Pascal’s requirement of “application of a name to things which are clearly designated by

TYPES 2011

44

Testing versus proving

terms perfectly known” [25]; the curious reader is referred to Thywissen’s summary of some
thirty-odd definitions [27].

There is a corresponding diversity in the way in which vulnerability is measured. Ex-
amining the technical details of computer-assisted vulnerability assessments is tedious, but
has a clear advantage over reading definitions such as the above: one can unambiguously
determine what is being measured.

Virtually all vulnerability assessments have the following structure. First, one tries to
estimate the evolution of various parameters of interest, for example, the average temperature
in a given region, the gross domestic product of a country, the sea-level of some coastal area,
but also less immediately relevant values, such as literacy rate or number of telephone lines
in a region [17]. Sometimes, the result of this forecasting analysis is a list of values, one
element for each time period (week, month or year) of the time horizon (typically measured
in decades). Most times, the result will consist of several such trajectories, perhaps with
some additional information about their likelihood. Thus, one can have lists of possible
trajectories, or a probability distribution over trajectories, or a fuzzy set of trajectories, etc.

Next, each trajectory is examined in order to determine the harm that befalls the region
or population under consideration: damages, negative impacts, losses caused by the factors
of interest (for example, human-induced climate change). Harm is represented in many ways,
but it is always assumed that the resulting values can be at least partially compared, i.e.,
that they are members of a preordered set.?

Depending on how the forecast of the parameters was achieved, we have so far a list
of harm values, or a probability distribution over harm values, or a fuzzy set, etc. Now
comes the final step: aggregating all these harm values, obtaining the final vulnerability
assessment. This is usually done either by taking some representative value, for example the
maximal or the likeliest harm, or by an integral measure of the possibilities (such as their
sum or average). The final value does not need to lie in the same set as the harm values, but
vulnerability values also need to form at least a preorder: the purpose of the assessment is
often to compare the relative vulnerabilities of regions, or of the same region under different
scenarios.

In Haskell, these explanations can be expressed more concisely and precisely:

data State = oo -- an appropriate type for the values of the

-- parameters of interest
type Trajectory = [State] - a trajectory is a list of states

-- a functor which represents the structure
-- of possible trajectories, e.g. List

type Possible = ...

data V = oo -- datatype of harm values
instance Preorder V where ... -- harm values must be preordered
data W = oo -- datatype for vulnerability values
instance Preorder W where ... -- vulnerability values must be preordered
vulnerability :: Possible Trajectory — -- possible trajectories

(Trajectory — V) — -- harm evaluation

(Possible V.— W) — -- aggregation of harm values

w

vulnerability possible harm measure =

-- type of final result

measure (fmap harm possible)

2 The reason for not requiring anti-symmetry is that harm values are often compared via cost functions.

C. lonescu and P. Jansson

Possible trajectories are collected together in a functorial structure. Besides the fact that
all our examples (probability distributions, fuzzy sets, lists) are functors, this makes sense
because of the need to apply the harm evaluation function to each trajectory. Otherwise, the
code follows literally the description above.

Most of the work in a vulnerability assessment is put in computing the structure of
possible trajectories. To do this, existing models are used (and reused), which are usually
written by specialists in the relevant disciplines: economists, climate scientists, geographers,
social scientists, etc. The models are then combined by the team that does the vulnerability
assessment. Sometimes, these models have different types: a climate model might yield a
deterministic trajectory of the average global temperature, while a demographic model might
offer only a list of possible evolutions of the population, and an economic model a probability
distribution over possible future values of the gross domestic product. Accordingly, most of
the work we have done was in extracting the general structure of these models and of the
means of combining them, in order to simplify the task of the vulnerability assessment in its
most difficult part. The result was a domain-specific language for describing and combining
monadic dynamical systems, described extensively by Ionescu [11] and concisely by Lincke et
al. [14].

Here, however, we concentrate on the computationally less intensive part: the interplay
between the evaluation of harm and the measurement of vulnerability. There is very little
one can say to better describe the possible candidates for these functions: one cannot claim,
for example, that only certain preordered sets are suitable and exclude others. But there is a
condition which virtually everybody agrees on: if the harm evaluations along all trajectories
in a structure are increased, then the vulnerability measure should also increase. This kind
of monotonicity can be taken as the defining condition for a vulnerability measure:

» Definition 1. Let V and W be two preorders, and F a functor. A functionm: FV — W
is called a vulnerability measure if, for any increasing function i : V. — V (that is, v < i v
forallv: V) and any z: F V we have m z < m (F i z).

If we use the order x C,,, ¥ = mx C m y on F V we can say that m is a vulnerability

measure if “(F 4) is increasing when ¢ is increasing”. We will use this formulation in Section 4.

No matter how good the models used to forecast the possible trajectories are, no matter
how well combined, if a vulnerability assessment uses a function which is not a vulnerability
measure in order to aggregate the harm values, then it must be regarded as flawed.

Are there any vulnerability assessments which fail in this respect? Unfortunately, yes.
The “likeliest harm value” we mentioned above does not fulfill this condition, and neither do
other “democratic” methods (the most frequent result of harm values, for instance). There is,
therefore, scope for error, and so we come to the idea of testing, for a given implementation,
that the vulnerability measure condition holds.

3 Testing vulnerability measures

To test a candidate vulnerability measure m : F' V. — W we first turn to the question of the
functoriality of the structure of type F' V that collects the harm values. How do we know
that the implementation of the mapping function preserves identities and compositions? The
Haskell type system does not detect the problem with

mapTry :: (a = b) — [a] — [b]
mapTry f [] = I
mapTry f (a: as) = mapTry f as

45

TYPES 2011

46

Testing versus proving

The problem is that mapTry id = const [] # id, so the first functor law fails (but the
second functor law holds). As an aside, mapTry is the version suggested by Agda’s automatic
theorem prover / type inhabitant searcher, called Agsy [15]. (To Agsy’s defence should be
said that it only aims at, and succeeds in, finding some value of the correct type.)

If we want to test if polymorphic properties like the functor laws hold for a polymorphic
function like map Try, we need to pick some monomorphic type to test them on. It is not
in general enough to pick a trivial type like () or a small type like Bool, but most often
it is enough to test with the type of natural numbers. For the functor laws the results of
Bernardy et al. [2] allow us to reduce testing the polymorphic map function to just one type
(and in fact, just we can even fix the function argument f), but there is still the question of
coverage:

map :: (a — b) — [a] — [b]

map f (] = [l

map [(a: as) = if length as > bigNumber
then map f as
else fa:mapf as

Granted, this is a malicious example, but the problem remains, especially in the case of
functors that require more complex implementations (such as the simple probability functor).
Still, let us accept for now that the implementation of the mapping function is likely to be
used in many programs and therefore verified in so many different cases that we can take it
to be correct.

For concreteness, let us fix the functor to be the non-empty list functor given by

data List a = Wrap a | Cons a (List a)
deriving (Ord, Eq, Show)

fold :: (a — b) —» (a — b — b) — Lista — b
fold w e (Wrapa) = wa
fold w ¢ (Cons a as) = c a (fold w c as)

instance Functor List where
fmap f = fold (Wrap o f) (A a bs — Cons (f a) bs)

A typical type for harm values is a tuple: pairs of floating-point numbers representing
(monetary) damages and natural numbers representing lost lives. The least controversial way
of comparing such values is given by the dominance relation:

instance POrd a where
leq :: a — a — Bool

instance (POrd a, POrd b) = POrd (a,b) where
(al,b1)‘le¢‘ (a2,02) = al ‘leg a2 N bl ‘leg‘ b2

We defined a new type class for preorders, similar to the Ord class provided by Haskell.
Instances of the Haskell Ord class are required to be total orders, while instances of POrd
should be preorders. Neither of these requirements can be expressed in Haskell, so there is no
automatic check that instances really satisfy them. Anyway, let us grant that the preorder
properties also do not need to be tested here (either because they are tested elsewhere, or
because the implementation can be trivially seen to be correct).

The biggest problem that we encounter in testing vulnerability measures is its higher-
order nature, namely the quantification over all possible increasing functions. In QuickCheck
notation, one might write

C. lonescu and P. Jansson

testMonotonicity m i x = increasing i ==> m x ‘leq m (fmap i x)

This naive translation of the requirement would check that 7 is an increasing function, and
then check that v assigns an increased measure to the increased z. Even assuming the
unlikely case in which the property of being increasing is decidable (this only works for
functions with finite domain — not the case in our example), we still have the problem that
arbitrarily generated functions are unlikely to be increasing, and QuickCheck will stop with
an inconclusive result once it reaches the maximum number of attempts for which it is
configured.

Thus, we need to use a custom generator which guarantees that the functions it generates
are increasing:

testMonotonicity m genlnc x = forAll genInc (X i —
m x ‘leq* m (fmap i x))

The problem of coverage will still stay with us, but at least we can ensure that we reach
the test of m. For the concrete example we have taken, we can, for example, implement a
custom generator by:

genlnc :: Gen ((Float, Int) — (Float, Int))
genlnc = do dx < choose (0, 10)

dn <+ choose (0, 10)

return (A (z,n) — (z + dz,n + dn))

and, in fact, we have done so [11]. Unfortunately, this can cause an error: large integers
can overflow and result in large negative integers. To do a proper job, the generator has
to examine its arguments, and make sure that the returned values really fulfill the desired
condition.

Even with the best generator, we still have a problem. Consider a measure which just
sums up the elements of the list of potential results:

sumList :: List (Float, Int) — (Float, Int)
sumList = fold id f
where [(z,n) (¢/,n") = (z+ 2',n + n)

This should be a vulnerability measure: increasing the values in a list increases their sum.

However, testing it can again fail if the integral part overflows, or if summing up the floating
point leads to round-off errors. This means that we need to control also the generation
of the arguments, not just the generation of the increasing functions. This is particularly
annoying, considering that an alternative popular measure, taking the maximal elements on
components, has the same structure as summing the values:

supList :: List (Float, Int) — (Float, Int)
supList = fold id f
where f (z,n) (z',n') = (maz z z', maz n n’)

The similarity of their names reflects the similarity of their implementations: both functions
are folds, the only difference being the use of mazx instead of +. Nevertheless, we cannot
with impunity use the generators for supList when testing sumlList. Moreover, in writing
more and more complicated generators, we mix up the test for the “interesting” monotonicity
condition, with the “implementational” defending against overflow or round-off errors. And
we still have a coverage problem, because only with knowledge of the implementation of

47

TYPES 2011

48

Testing versus proving

the measure can we estimate how well the sampling of the space of increasing functions is
achieved.

It might be thought that we can always get around implementational aspects by choosing
better representations for numerical values. For example, we can avoid round-off errors by
replacing Float with rational numbers. Unfortunately, we cannot do that if the vulnerability
measure requires computations which cannot be carried out on rational numbers, such as the
geometric mean. Resorting to exact real numbers does not solve our problem either, because
the order relation on these is not decidable, and we just trade one type of interference from
the implementational aspects (defending against round-off errors) for another (guarding
against undecidable comparisons).

To sum up:

We need detailed analysis of the implementation of the function under test, and, in

particular, of the datatypes they act on.

We often need to write different custom generators even for very similar cases (such as

sumList and supList).

We mix the conceptual part of the tests with the implementational part.

Good coverage is hard to achieve.

4 Proving correctness of vulnerability measures

It is tempting to point an accusing finger at the higher-order nature of the formalization of
the vulnerability measure condition. If we hadn’t used Haskell, with its functional nature
and expressive type system, we might not have run into so much trouble testing the resulting
implementations. Testing higher-order functions is not a topic in common textbooks on
software testing [1, 20].

On the other hand, thinking about the problems we saw in the discussion of testing
functoriality, it might just be that the culprit is not the exaggerated expressivity of Haskell,
but on the contrary: the fact that it is not expressive enough!

In a dependently-typed programming language such as Agda, we can formulate the
functor laws as types via the Curry-Howard isomorphism?®:

=_{AB:Set} - (fg: A— B) — Set
f=g9g=VYa—fa=ga
record Functor (F : Set — Set) : Setl where
field
fmap : {AB:Set} - (A—-B)—-FA—FB
idLaw: {A: Set} —
fmap (id {A}) = id {F A}
compLaw : {ABC:Set} - (f:B— C)— (¢9: A — B) —
fmap (f o g) = (fmap f o fmap g)

Now we can also prove that the mapping function we defined is indeed functorial. The
implementation of non-empty lists is virtually identical to the Haskell version:

3 We use everywhere the propositional equality type (_=_) provided by Agda as if it were the only
equivalence relation of interest. Parameterising by different equivalence relations (using setoids instead
of sets) does not introduce difficulties, but makes the examples more tedious and wastes space. Similar
remarks apply to universe-polymorphism.

C. lonescu and P. Jansson 49

data List (A : Set) : Set where
[-] : A — List A
A — List A — List A
fold :{AB:Set} - (A— B)—- (A— B — B) — ListA— B
fold w ¢ [a] = wa
fold w ¢ (a::as) = ca (foldwc as)
map :{A B: Set} — (A — B) — (List A — List B)
map f = fold ([=] o f) (A abs— f a:: bs)

Proving that the map function defined preserves identities and composition is actually
almost entirely performed by Agsy, the only nudging it needed was to “use the congruence of
something” in the inductive step.

mapld : {A: Set} —

map (id {A}) = id
mapld [a] = refl
mapld (a:: as) = cong (A as — a :: as) (mapld as)
mapComp : {ABC : Set} - (f:B— C) - (9: A —» B) —

map (f o g) = (map f o map g)
mapComp | g [a] = refl
mapComp f g (a :: as) = cong (A as — f (g a) :: as) (mapComp [g as)
Therefore, we can construct an element of type Functor List and clinch the proof that

our map is a suitable choice:

FunctorList : Functor List

FunctorList = record { fmap = map;
idLaw = mapld,
compLaw = mapComp }

No problems with the polymorphism or higher-order nature of map, and, of course, no
coverage problems. Motivated by this easy success, we proceed to formalize the vulnerability
measure condition, starting first with the definition of increasing functions. We use the Agda
standard library IsPreorder record for preorders, which is parameterized on the underlying
equivalence (for which we use _=_ throughout):

IsIncreasing : {A: Set} (<_: A — A — Set) —
(A — A) — Set
IsIncreasing (<_)f =Va — a<fa

VulnMeas : { F : Set — Set} — Functor F —
{V:8et} - {<_:V >V — Set} — IsPreorder _
{W:Set} - { C_: W — W — Set} — IsPreorder _
(m:FV — W) — Set
VulnMeas { F'} fE {V}{<_} p< {W}{_E_} pE m =
(¢: V = V) = IsIncreasing <_ i —
IsIncreasing _=,,_ (fmap 7)
where fmap = Functor.fmap fF
L :FV > FV — Set
Ly = mzCmy

This is a virtually literal translation of Definition 1, and not more trouble to write than
the testMonotonicity function above.

TYPES 2011

50

Testing versus proving

The Agda versions of our vulnerability measure candidates are also cut & paste productions
from the Haskell code, except for renamings due to the lack of type classes in Agda:

sumList : List (Float x Int) — Float x Int
sumlList = fold id f
where f : Float x Int — Float x Int — Float x Int
f(z,n) (a,n) = (x +5 2/,n +; n)
supList : List (Float x Int) — Float x Int
supList = fold id f
where f : Float x Int — Float x Int — Float X Int
f(z,n) (/,n) = (maxf z z', mazi n n')

In both cases, the arguments (id and f) that fold receives are monotonic functions, and it is
easy to see that this is a sufficient condition for a vulnerability measure. Formulating this
property in Agda raises no unexpected difficulties:

IsMonotonous : {A: Set} — { <A : A = A — Set} — (pA: IsPreorder =_ <) —
{B:8Set} - {<B:B— B — Set} — (pB: IsPreorder _=_ <B) —
(A— B) —
Set

IsMonotonous { A} { <A Y pA{B}{<B}pBf =

(a7 as : A) — (a3 <Paz) — fa; <Bfas

IsMonotonouss : {A: Set} — { <t : A — A — Set} — (pA: IsPreorder =_ <*) —
{B:Set} - {<B:B— B— Set} — (pB: IsPreorder _=_ _<B) —
{C:8et} - {<L:C— C— Sety — (pC : IsPreorder _=_ <) —

(A—- B— C) —
Set
IsMonotonouss {AY { <A} pA{B}{ <B}pB{C}{ < }pCf =
(a7 ag: A) — (a; <Pag) —
(b1 bQB) — (b1 ngg) —>fa1 b1 gcf a2 bg

foldMeas : {A: Set} — { <A : A — A — Set} — (pA: IsPreorder =_ <) —
{B:8Set} - {<B:B— B— Set} - (pB: IsPreorder =_ <B) —
(w: A — B) — IsMonotonous pA pB w —

(¢c: A — B — B) — IsMonotonouss pA pB pB ¢ —
VulnMeas FunctorList pA pB (fold w c)

Folding monotonic functions over non-empty lists produces vulnerability measures: how
hard is it to convince the type checker of this fact? Perhaps surprisingly, not hard at all.
Agsy finds out all by itself that increasing the elements of a singleton list and applying a
monotonic function to the result is going to result in an increased measure:

foldMeas pA pB w monw ¢ mongc i isInc [a] = monw a (i a) (isInc a)

More impressively, in the inductive case, after the gentle nudge to apply the monotonicity of
the second argument to fold, Agsy can fill in all the arguments to mongc except for the last
one, the induction hypothesis:

foldMeas pA pB w monw ¢ mongc i isInc (a :: as) =
mongc a (i a) (isInc a)
(fold w c as)
(fold w ¢ (fold Nz — [i z]) Az — _::i_ (i z)) as))
N

C. lonescu and P. Jansson

which we fill in and, after tempering a bit Agsy’s eagerness to reduce every term to normal
form, we reach the final version:

foldMeas pA pB w monw ¢ mongc i isInc (a :: as) =
mongc a (i a) (isInc a)
(fold w ¢ as) (fold w ¢ (map i as)) (foldMeas pA pB w monw ¢ mongc i isInc as)

All that remains to do in order to ensure that our candidates, sumlList and supList are
indeed vulnerability measures is to prove the monotonicity of id, +¢, 44, maxzf, mazi. Well,
we cannot! Float and Int are machine built-in types, which Agda allows us access with a bit
of builtin-trickery:

postulate Float : Set {-# BUILTIN FLOAT Float #-}
primitive
primFloatPlus : Float — Float — Float
primFloatLess : Float — Float — Bool

+_: Float — Float — Float
+ = primFloatPlus

<: Float — Float — Bool
< = primFloatLessThan

And the same thing again for Int. But, beyond the signature of these functions, the type
checker knows nothing about them, and any additional property must be postulated, for
example:

postulate <fRefl :(z: Float) — =z <f =
postulate <fTrans : (z y z : Float) —

e <fy—y<fz—=>z<f 2
postulate +fmon : (z y 2’ y' : Float) —

r<f 2 —>y<fy—

(z +7 y) <f (& +5 ¥)

where <f is a suitably lifted representation of the primitive boolean relation. The type
checker accepts then (but does not guarantee) that these properties hold, and we obtain thus
a conditional proof of correctness, with the implementational aspects nicely tucked away and
signalled by the postulate keyword.

Alternatively, we can use Peano naturals instead of Int and rationals instead of Float, for
which we can prove the required properties, and obtain an unconditional result (and a less
efficient program). Eventually, one expects such properties to be part of standard libraries,
and have an even easier time switching from one datatype to another. In any case, the most
difficult part of the job, proving that a fold gives a vulnerability measure, is independent of
the specific datatype considered.

To sum up, formulating the vulnerability measure condition via the Curry-Howard
isomorphism is not more difficult than coming up with the corresponding tests, while proving
it for the cases we considered is easier and more general than implementing those tests. The
conceptual and implementational aspects are cleanly separated, and the problematic spots
highlighted by the postulate keyword.

51

TYPES 2011

52

Testing versus proving

5 Conclusions

There have been several papers lately that show the advantages of dependently-typed
programming languages for embedded domain-specific languages [5, 19, 24], and we have
just provided another example.

A feature that distinguishes our work from the others is that it brings us in contact with
scientific programming: the kind of programming that covers the models used to generate the
possible trajectories to be measured. The scientific programming community often tackles
problems with the sort of features our example illustrates, where exhaustive testing is not
feasible and formal proofs of correctness might be easier. Scientific programmers tend also
to be familiar with mathematical proof in an informal context: many numerical methods
are justified by some sort of informal proof of correctness, which is then a candidate for
translating to a formal context. The question therefore is, why is formal proof not used more
frequently in scientific programming?

One reason is probably that usable implementations of dependently-typed programming
languages have not been around very long. Moreover, the experience we have accumulated
with them has been more on the discrete, algebraic side and rather less on the continuous,
real analysis side which is important for scientific programming. The Agda standard library
[26], young as it is (currently at version 0.6), implements many kinds of algebraic structures,
but has no mention of the Float datatype or real numbers. There are, to our knowledge, no
dependently-typed libraries available for doing the sort of things that a scientific programmer
takes for granted: solving linear systems, factorizing matrices, interpolating real functions,
optimization, and so on.

Developing such libraries in a dependently-typed programming language is quite chal-
lenging. Consider, for example, that in order to implement an optimization method, one
has to specify exactly what is meant by “optimization”: does the method return the exact
solution or just an approximation of it?

We can attempt to obtain the exact solution if we work with constructive real numbers in
the realm of constructive real analysis, as suggested, for example, by Bishop [3]. There are
several representations of exact real numbers: the ones most used in constructive numerical
analysis are based on the work of Russell O’Connor in Nijmegen [22, 23]. Validated numerical
methods via constructive analysis is still a research subject. There are promising results [12],
but they are quite far from providing a usable basis for scientific programming. In particular,
there are no library functions available yet for solving a linear system of equations.

An alternative approach is to content ourselves with an approximate solution. After all,
the vast majority of numerical libraries available today work with floating point numbers
and thus abandon the search for an exact solution from the beginning. Here the challenge
is to specify what is being computed: what guarantees are made about the quality of the
approximation delivered? Existing libraries tend to be surprisingly vague here, encouraging
a trial-and-error approach and relying on the expertise of the user. The arguments for
why a certain method should lead to a good approximation of the solution are also often
expressed in terms of exact real numbers and therefore can only be formalized with the help
of postulates, as we have done above.

To do better, one has to formalize the properties of floating-point numbers as expressed
in the IEEE 754 or 854 floating-point arithmetic standard. Several such formalizations
have been achieved in PVS [18], HOL [10], and Coq [4], and have been used to verify the
implementation of algorithms for fundamental and relatively simple functions, such as the
square root or the exponential. To our knowledge, no substantial numerical methods have

C. lonescu and P. Jansson

yet been verified. Moreover, this kind of work is hard to do in an academic context, and we
might have to wait until industry is motivated enough to fund it.

Until such a time, the best that we can do is to separate the problems that require the
continuous / analytic from those that deal more with the discrete / algebraic, and prove the
correctness of the latter conditional on (postulated) correctness of the former, which we can
at most test. In this sense, in the above examples, we were indeed lucky, having to deal only
with algebraic structures such as preorders and lists, and being satisfied with correctness
conditioned on the field structure of floating-point numbers and integers (a structure they, in
fact, do not have!).

Acknowledgement

The authors gratefully acknowledges the fruitful discussions with Andreas Abel, Jean-Philippe
Bernardy, Paul Flondor, and the members of the Cartesian Seminar at PIK.

—— References

1 P. Ammann and J. Offutt. Introduction to Software Testing. Cambridge University Press,
2008.

2 Jean-Philippe Bernardy, Patrik Jansson, and Koen Claessen. Testing polymorphic proper-
ties. In Andrew Gordon, editor, Furopean Symposium on Programming, volume 6012 of
LNCS, pages 125-144. Springer, 2010.

3 E. Bishop and D. Bridges. Constructive Analysis. Springer, New York, 1985.

4 S.Boldo and G. Melquiond. Flocq: A unified library for proving floating-point algorithms in
Coq. In Proceedings of the 20th IEEE Symposium on Computer Arithmetic, pages 243-252,
Tibingen, Germany, July 2011. IEEE CS Press.

5 Edwin C. Brady. Idris — systems programming meets full dependent types. In Proc. 5th
ACM workshop on Programming languages meets program verification, PLPV ’11, pages
43-54. ACM, 2011.

6 T. Cannon, J. Twigg, and J. Rowell. Social vulnerability, sustainable livelihoods and
disasters. Technical report, AON Benfield UCL Hazard Research Center, 2002. Available
at http://www.abuhrc.org/Documents/Social_vulnerability_sust_live.pdf.

7 J. Chakraborty, G.A. Tobin, and B.E. Montz. Population evacuation: assessing spatial
variability in geophysical risk and social vulnerability to natural hazards. Natural Hazards
Review, pages 22—-33, February 2005.

8 K. Claessen and J. Hughes. Specification based testing with QuickCheck. In The Fun of
Programming, Cornerstones of Computing, pages 17-40. Palgrave, 2003.

9 T. Feldbriigge and J. von Braun. Is the world becoming a more risky place? Trends in
disasters and vulnerability to them. Technical Report 46, Center for Development Research,
Bonn, 2002.

10 John Harrison. Floating point verification in HOL Light: the exponential function. Tech-
nical Report 428, University of Cambridge Computer Laboratory, 1997. Available as
http://www.cl.cam.ac.uk/~jrh13/papers/tang.html.

11 C. Ionescu. Vulnerability Modeling and Monadic Dynamical Systems. PhD thesis, Depart-
ment of Mathematics and Informatics, Free University Berlin, February 2009.

12 R. Krebbers and B. Spitters. Computer certified efficient exact reals in Coq. In James H.
Davenport et al., editors, Calculemus/MKM, volume 6824 of LNCS, pages 90-106. Springer,
2011.

13 D. Lemmen and F. Warren, editors. Climate Change Impacts and Adaptation: A Canadian
Perspective. Natural Resources Canada, 2004.

53

TYPES 2011

http://www.abuhrc.org/Documents/Social_vulnerability_sust_live.pdf
http://www.cl.cam.ac.uk/~jrh13/papers/tang.html

54

Testing versus proving

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Daniel Lincke, Patrik Jansson, Marcin Zalewski, and Cezar Ionescu. Generic libraries in C++
with concepts from high-level domain descriptions in Haskell: A DSL for computational
vulnerability assessment. In Walid Taha, editor, IFIP Working Conf. on Domain Specific
Languages, volume 5658 of LNCS, pages 236261, 2009.

F. Lindblad and M. Benke. A tool for automated theorem proving in Agda. In Jean-
Christophe Fillidtre et al., editors, Types for Proofs and Programs, International Workshop,
TYPES 2004, LNCS, pages 154-169. Springer, 2006.

J.J. McCarthy, O. Canziani, N.A. Leary, D.J. Dokken, and K.S. White, editors. Climate
Change 2001: Impacts, Adaptation and Vulnerability. Contribution of Working Group II
to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cam-
bridge University Press, 2001.

M.J. Metzger and D. Schroter. Towards a spatially explicit and quantitative vulnerability
assessment of environmental change in Europe. Regional Environmental Change, 6(4):201—
216, 2006.

Paul S. Miner. Defining the IEEE-854 floating-point standard in PVS. Technical re-
port, 1995. Technical Memorandum 110167, NASA | Langley Research. Availble as http:
//nasal995.tpub.com/NASA-95-tm110167/.

Jamie Morgenstern and Daniel R. Licata. Security-typed programming within dependently
typed programming. In Proc. 15th ACM SIGPLAN international conference on Functional
programming, ICFP ’10, pages 169-180. ACM, 2010.

G.J. Myers. The Art of Software Testing. Second edition, revised and updated by T. Badgett
and T.M. Thomas with C. Sandler. John Wiley & Sons, Inc., 2004.

U. Norell. Towards a Practical Programming Language Based on Dependent Type Theory.
PhD thesis, Chalmers University of Technology, September 2007.

R. O’Connor. A monadic, functional implementation of real numbers. Mathematical Struc-
tures in Computer Science, 1:129-159, 2007.

Russell O’Connor. Certified exact transcendental real number computation in Coq. In
Otmane Ait Mohamed et al., editors, Theorem Proving in Higher Order Logics, volume
5170 of LNCS, pages 246-261. Springer, 2008.

N. Oury and W. Swierstra. The power of Pi. In International Conference on Functional
Programming, pages 39-50. ACM, 2008.

B. Pascal. Minor Works, translated by O. W. Wright, volume XLVIII, Part 2 of The Harvard
classics. P.F. Collier & Son, 1909-14.

The Agda Team. The Agda Wiki, 2011. Available from http://wiki.portal.chalmers.
se/agda/pmwiki.php. Includes documentation, links to the Agda implementation and to
the standard library.

K. Thywissen. Components of risk, a comparative glossary. SOURCE - Studies Of the
University: Research, Counsel, Education, 2, 2006.

UN/ISDR (United Nations International Strategy for Disaster Reduction). Living with
Risk. A Global Review of Disaster Reduction Initiatives. United Nations, Geneva, 2004.

http://nasa1995.tpub.com/NASA-95-tm110167/
http://nasa1995.tpub.com/NASA-95-tm110167/
http://wiki.portal.chalmers.se/agda/pmwiki.php
http://wiki.portal.chalmers.se/agda/pmwiki.php

	Introduction
	Vulnerability
	Testing vulnerability measures
	Proving correctness of vulnerability measures
	Conclusions

