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Abstract

It is well established that spherical and nonspherical particles scatter light

differently. There are a large number of studies where scattering proper-

ties of different nonspherical particles are studied. Here we study to what

degree scattering matrices of different nonspherical particles resembles each

other, and whether there are significant correlations between morphological

similarity and similar single-scattering properties. Altogether 15 different

shapes are considered, including both irregular and regular shapes as well as

homogeneous and inhomogeneous particles. For all nonspherical particles,

orientation- and ensemble-averaged scattering properties are considered, and

variability within each ensemble is ignored. The results reveal that different

nonspherical shapes have surprisingly similar phase functions. An analysis

of the asymmetry parameter reveals that the resemblance is, however, only

qualitative: the phase functions are featureless and predominantly flat at

side scattering, but they are nevertheless different. The degree of linear po-
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larization for unpolarized incident light shows much larger differences among

the shapes, albeit it is much more positive for all nonspherical targets than

for Mie spheres. Similarly to the phase function, the depolarization ratio

tends to be similar among the nonspherical particle types, implying that the

strength of depolarization cannot be used as a measure for the degree of

nonsphericity. In general, it is found that there does not seem to be a clear

correlation between particle morphology and scattering properties.

1. Introduction

One of the main objectives in the field of light scattering by particles is to

understand how physical properties, i.e. the size, morphology, and dielectric

properties, are related to the particles’ optical properties. This question is

particularly important in the context of inverse modelling and remote sensing.

The earliest studies in the field focused on light scattering by homogeneous

spheres [1], for which the light-scattering problem can be solved analytically.

The homogeneous sphere model can only account for a particle’s size and

effective dielectric properties, but it neglects more complex morphological

features, such as non-sphericity, aggregation, or inhomogeneity. Thus this

model is only capable of reproducing optical characteristics that are mainly

size dependent and largely insensitive to particle morphology. For instance,

for some non-spherical homogeneous particles, the width of the forward-peak

of the phase function, as well as the single-scattering albedo are mainly size-

dependent and rather insensitive to particle shape [2]. In general, however,

the polarized differential scattering properties are highly sensitive to particle

morphology.
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The use of more sophisticated model geometries is complicated by both

practical and technical challenges. It is technically difficult to use model

geometries with a high degree of morphological details, owing to high CPU

time requirements or ill-conditioning problems in numerical light-scattering

computations. Despite such difficulties, much progress has been made in re-

cent years in the development of numerical solvers for light scattering prob-

lems (see [3] and references therein), which has paved the way for studies of

more realistic model geometries. However, it is practically not possible to

employ exact replicas of each and every particle shape encountered in na-

ture. Therefore, one often devises model geometries that emphasise certain

morphological features, such as aggregation [4–6], irregularity [7], small-scale

surface roughness [8–10], surface dusting [11], or inhomogeneity [12]. To

test the suitability of different model geometries for operational applications

in remote sensing and climate modelling, one can compare computed opti-

cal properties with laboratory measurements (see, e.g., [13] and references

therein). On a more fundamental level, one can gain significant empirical

insight into the interrelation of physical and optical particle properties by

performing numerical experiments. One approach is to develop parametrized

models of particle geometries, and to investigate the changes in the optical

properties as one varies the geometric parameters [7, 14–16]. Another ap-

proach is to intercompare computed optical properties of model particles with

different degrees of sophistication. Such intercomparisons have often focused

on certain morphological aspects, such as different degrees of geometric sym-

metries [17], small-scale surface roughness [18], or differences due to regular

and stochastic particle geometries [19].
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In the present study we perform a comprehensive intercomparison of

light-scattering properties of 15 different shapes ranging from homogeneous

spheres to highly irregular and inhomogeneous scatterers. For all nonspher-

ical targets, scattering is averaged over an ensemble and over orientations.

Our main objectives are to establish what are the similarities and differences

in scattering among such diverse classes of shapes; and whether scatter-

ing correlates in any clear way with the morphology of the scatterers. The

study is largely motivated by the earlier findings that scattering by irregu-

larly shaped, rough, and potentially inhomogeneous real dust particles can

be mimicked surprisingly well by ensembles of simple spheroids, ellipsoids, or

nonsymmetric hexahedra [17, 20, 21]; and by the fact that the shapes within

these well-fitting ensembles may not necessarily resemble the target particles

in any clear way [22]. To mitigate the otherwise quite considerable compu-

tational requirements, we use, whenever available, existing data of particle

optical properties.

2. Theoretical aspects

When the properties of light, or more generally those of any electromag-

netic radiation, are described by the Stokes parameters [23], the properties of

incident and scattered light are connected by a 4× 4 Mueller matrix. There

are varying definitions for such matrices, depending on their normalization;
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here we use the scattering matrix S [23], defined such that
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where I, Q, U , and V are the Stokes parameters; k is the wave number

k = 2π/λ, where λ is the wavelength; d is the distance from the particle

to the observer; and subscripts ’s’ and ’i’ refer to scattered and incident

radiation, respectively. For incoherent scattering, the Stokes parameters,

and thus also the scattering matrix S, are additive.

The scattering matrix elements contain information about the scatterer

and depend on the wavelength as well as the (complex) refractive index m,

shape, size, and orientation of the scatterer. In addition, they are functions

of the scattering angle θ that specifies the angle between the propagation

directions of incident and scattered radiation and the azimuth angle φ; the

latter dependence vanishes for random orientation. For simplicity, we only

considered the following matrix elements here: the intensity of the scattered

light for unpolarized incident light S11; the linear polarization of scattered

light for unpolarized incident light −S12/S11; the depolarization ratio D =

1 − S22/S11; and the difference R = S33/S11 − S44/S11. The last two are

indicators for anisotropy in the scatterer, most often due to non-spherical

shape, as for isotropic spheres S22 = S11 and S33 = S44.

We also consider a number of other quantities derived from the scatter-

ing matrix. The asymmetry parameter g is an integral of a normalized S11

element and describes the partitioning of the scattered intensity between
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forward and backward hemispheres. It is of particular interest in radiative

balance considerations. Scattered intensity and depolarization at backscat-

tering direction, S11(180) and D(180), respectively, are relevant e.g. for lidar

applications. The linear and circular polarization ratios, µL and µC , respec-

tively, are defined as

µL =
S11 − S22

S11 + 2S12 + S22

, (2)

µC =
S11 + S44

S11 − S44

, (3)

and are used, e.g., in radioastronomy to characterize different targets. Addi-

tionally, we consider the maximum of positive polarization, max(−S12/S11)

and the scattering angle θp at which it is obtained, as well as the ampli-

tude of the negative polarization close to backscattering, min[−S12(135 :

180)/S11(135 : 180)].

All our quantities of interest are dimensionless, so they follow the scale

invariance rule [24, page 147] and thus depend on the refractive index and the

so-called size parameter. The latter conveniently combines the wavelength

and size into a single parameter, defined as

x =
2πr

λ
, (4)

where r is the radius of a scatterer. In case of non-spherical targets, some kind

of equivalent size needs to be established. Here, as described in Section 3,

several different types of size equivalences have been used.

3. Model shapes

Example images of the shapes considered here are presented in Fig. 1. The

parameters with which their single-scattering properties have been computed
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are summarized in Table 1. In the subsections below, the shapes are shortly

introduced, but the reader is directed to the original publications for full

details on the shape generation and light-scattering simulations. For some

shapes, the scattering computations have been carried out specifically for

the present study. These are indicated by ’-’ in the table. For other shapes,

computations carried out for the papers indicated are used.

We compare computational results with a refractive index m similar to

that of silicate minerals at visible wavelengths, as computations with such

values were readily available for many different shapes. As can be seen from

the table, the variation in the refractive index among the particle types is

generally rather small. In the computations we compare here, the real part

of the refractive index is between 1.55 and 1.603. Such a small range will

not cause a high impact on scattering that it would influence our mostly

qualitative analysis. The imaginary part varies from zero to 0.002. The

size parameters of the targets considered are fairly small, so the impact of

the variation in Im(m) is unlikely to have a significant effect on the light

scattering properties.

One also needs to keep in mind that comparisons of optical properties of

different particle shapes depends on the kind of size measure one employs

for different types of particles. As can be seen in the table, different size

measure have been adopted for different geometries. We therefore focus in

our analysis on general size trends of optical properties within each shape

class, rather than performing direct shape-to-shape comparisons at specific

sizes.
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3.1. Modified spheres and agglomerated debris particles

Five types of irregularly shaped particles, which are referred in Table 1

to as rough-surface sphere, pocked spheres, strongly damaged spheres, debris

of spheres, and agglomerated debris particles, have been generated using the

same algorithm: First, a spherical volume is defined in a regular cubic lattice

that consists of 137,376 cells. The cells are divided into surface and core

cells, the depth of the surface layer being a free parameter. For agglomerated

debris particles and rough-surface spheres, the depth is only 0.5% of the total

radius, so that the surface layer is formed only by cells having direct contact

with the surrounding medium. In the case of pocked spheres, the depth is

12.5% of the radius. Strongly damaged spheres and debris of spheres are

generated having no surface layer, so all cells belong to the core.

Randomly located seed cells are then introduced to the volume. There

are two types, one for the empty space and one for material. We further

distinguish seed cells for empty space between those within the surface layer

and those within the core, while seed cells for the material can only be located

in the core. Agglomerated debris particles are generated with 100 seed cells

of empty space within the surface layer, and 20 seed cells of empty space

and 21 seed cells of material within the core. For rough-surface spheres, the

corresponding numbers are 1200, 150, and 0, and for the pocked spheres they

are 100, 50, and 0, respectively. For strongly damaged spheres and debris of

spheres, the depth of the surface layer and thus also the number of seed cells

within it are zero. For strongly damaged spheres, there are 20 seed cells of

empty space and 21 seed cells of material for the core; whereas, for debris

of spheres both numbers are 4. Once all the seeds are allocated, each cell in
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the volume is assigned the same properties (refractive index of the material

or the empty space) as the nearest seed cell.

The light scattering computations have been performed using a discrete

dipole approximation (DDA). In the computations, m = 1.6 + 0.0005i has

been used, and size parameters have been specified based on the size of

the circumscribing sphere. The results are ensemble averaged over 200–900

particles and over 4 arbitrary orientations for each particle. For further

details, see [25, 26].

3.2. GRS and Rough GRS

Gaussian random sphere (GRS) is a statistical shape model introduced

by [7]. GRS particles are spheres with a deformation in form of a spherical

harmonics expansion. To guarantee that the deformation does not produce

radii with negative values, the deformation is applied to the logarithm of the

radius rather than the radius itself. GRS particles are generated by randomly

assigning the weights of the spherical harmonics expansion using statistics

specified by the desired autocovariance function of the radius. The GRS

particles considered here are based on a power-law parameterization of the

autocovariance function with shape parameters σ = 0.245 and ν = 4 [27].

The rough GRS particles are generated through a random disturbance

of surface layer of initially smooth GRS particles. The surface layer is de-

termined the same way as for the shapes in Section 3.1, using a thickness

of five cells. Among surface dipoles, we randomly choose 300 seed cells for

both empty space and material. Then, each cell within the surface layer is

assigned the same properties as the nearest seed cell. Finally, the size of

the rough GRS particle is adjusted such that its volume is the same for the
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original GRS shape. As the rough GRS particle has fewer material cells than

the original, its actual size parameter is slightly larger than its nominal size

parameter based on the circumscribing sphere of the original GRS particle.

The light scattering computations have been carried out for an ensemble

of 100 particles for both the GRS and rough GRS shapes, using the DDA. At

least 5 random orientations have been used for each particle in the ensemble,

the number increasing until a desired accuracy is reached. A refractive index

of 1.6 + 0.0005i has been used for both shapes.

3.3. Calcite and clay flakes

Two different flakes are considered, differing only by their composition

(the shapes are identical). One type is assumed to be composed of calcite

and is thus birefringent with the ordinary refractive index of 1.658+0.0i and

extraordinary refractive index of 1.486 + 0.0i. Such particles are referred to

as calcite flakes. The second type, called clay flakes, are isotropic and have a

refractive index of 1.603+0.0i. The single-scattering data for both types have

been published by [28]. The shape of these particles are generated similarly

to those of agglomerated debris particles. The main difference is that, instead

of a spherical volume, an oblate spheroid with an aspect ratio of 8:1 is used.

The resulting shape is also smoothed by removing such volume elements

from the particle surface that do not have sufficient number of neighboring

volume elements. This procedure is repeated several times to achieve the

desired effect. The resulting shapes are irregular, roundish, platy, and have

an aspect ratio of about six. The details of the shape generation can also

be found from [28]. The single-scattering properties of both flakes have been

computed assuming volume-equivalent size parameter, using the DDA. The
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size parameters based on equivalent circumscribing spheres would be about

twice as large. The results are averaged over 10 randomly generated sample

particles and 729–3375 orientations, depending on the size parameter.

3.4. Distribution of spheroids

For spheroids, we consider an ensemble consisting of varying aspect ratios.

Let a denote the semi-axis length along the spheroid’s main rotational sym-

metry axis, and b denote the semi-axis length in the perpendicular direction.

Then the aspect ratio ǫ = b/a is smaller than 1 for prolate, and larger than

1 for oblate spheroids. Our ensemble consists of a distribution of 21 aspect

ratios ranging from 1/3 to 3 (these extreme cases are shown in Fig. 1). The

size parameter x for spheroids is defined such that x = ka for prolate and

x = kb for oblate spheroids. This definition coincides with that using the

circumscribing sphere. The light-scattering computations were performed

specifically for this study, using the T -matrix code by [29] and assuming a

refractive index m = 1.6 + 0.0005i. In this method, orientation averaging is

analytic.

3.5. Polyhedral prisms

Polyhedral prisms are cylinders with a regular polygonal cross section.

In this study, we consider prisms with square, pentagonal, hexagonal, hep-

tagonal, and octagonal cross sections, i.e., polygonal cross sections with

N = 4, . . . , 8 corners. Let a be the distance from the centre of the poly-

gon to any of its corners. Let further h denote the length of the prism, i.e.

the cylinder height. We then define the aspect ratio of the prism by ǫ = 2a/h.

The aspect ratio is smaller than unity for columns (or prolate prisms), and
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larger than unity for plates (or oblate prisms). We define the size parameter

x as x = kh/2 for prolate and x = ka for oblate prisms. As in the case of

spheroids, we consider 21 different aspect ratios in the range between 1/3

and 3, and use a refractive index of m = 1.6 + 0.0005i. The computations

were carried out specifically for this study, using the TSYM code by [30]. In

this method also the orientation averaging is analytic.

3.6. Volcanic ash

The volcanic ash particles reviewed in this study are examples of in-

ternally porous shapes, and are therefore called vesicular. Both particle

types considered include cavities of varying sizes: for large-vesicle particles,

the cavities create cratery features on the surface, whereas the structure of

small-vesicle particles is more fluffy. The shapes are generated essentially by

building a concave-hull-transformed cluster of spheres, where the spheres are

replaced with voids shaped like Gaussian random spheres. The resulting par-

ticle surface is smoothed several times in a process similar to that described

for flake particles, and possible loose small parts that are not in contact

with the particle are removed. Shape generation, as well as the DDA-based

light-scattering simulations for the shapes, are explained in more detail and

with illustrations in [12]. Volcanic ash is typically composed of mainly glassy

silicate with possible inhomogeneities that are more absorbing. Therefore,

the refractive index has been set to 1.55 + 0.002i. For the large-vesicle ash,

volume-equivalent size is assumed. For the small-vesicle ash, the size param-

eter describes a volume-equivalent size that an internally compact version

of the small-vesicle particles would have (volume of the porous cavities are

included in the volume), meaning that the actual volume-equivalent size pa-
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rameter would be somewhat smaller. For the scattering computations, 2925

orientations and ensembles of 5 particles were used for both shapes.

3.7. Mie spheres

We also show results for isotropic, homogeneous spheres obtained from

the Mie theory. These are called Mie spheres for brevity. Mie spheres are

still commonly used as an approximation for different nonspherical particle

types in climate models and in many satellite retrieval algorithms. Here

they are used for illustrating the differences in scattering by spherical and

nonspherical particles. The spherical shape differs from other shapes consid-

ered here in that it does not vary from particle to particle in an ensemble

and is also perfectly rotationally symmetric, so ensemble- and orientation

averaging cannot be used to reduce the intrinsic interference patterns. We

have thus used a narrow size distribution in the scattering computations:

lognormal size distribution with a geometric standard deviation of 0.2 has

been adapted, and radii within ±1% of the geometric mean radius rg have

been included. The size parameter has been defined in terms of rg. For

the refractive index, m = 1.6 + 0.001i has been used. The light-scattering

computations have been done specifically for this study, using the Mie code

described in [24, page 158].

3.8. Cluster of spheres

In addition to single spheres, we consider clusters of ten equal-sized and

homogeneous spheres. The clusters are formed by using a ballistic-cluster-

aggregation (BCA) method, where the positions of the spheres are deter-

mined by colliding spheres from random directions and attaching them at
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first collision. Overlapping between the spheres was not permitted. This

method typically produces very fluffy clusters. To obtain packing densities

comparable to those of the other particles in the study, the BCA method has

been modified such that, for every ten collisions, only the sphere that collides

closest to the first sphere of the cluster is attached. This results in denser

clusters with a packing density that ranges from 0.20 to 0.34. This method

was also used in [12] for creating large-vesicle volcanic ash particles. For the

individual spheres, we have chosen the refractive index of m = 1.6+0.0005i.

The size parameter of the clusters is that of an equal-volume sphere. For

each size parameter, ten random samples are used in the ensemble averag-

ing, while orientation averaging is conducted analytically. The computations

have been done specifically for this study, using the superposition T -matrix

method by [31].

4. Results

As noted in the previous section, light-scattering data for different classes

of geometries are difficult to compare directly, since it is not straightforward

to define a common measure of size-equivalence for nonspherical particles.

The data are also available only for relatively sparse set of discrete size pa-

rameters, so any attempt to convert the data to a (however defined) common

measure of size equivalence would require considerable interpolation, and the

comparison would depend on the common size equivalence adapted. We thus

avoid direct shape-to-shape comparisons for specific sizes or size distributions

but rather focus on comparing the size dependencies and generic features.

Most of our analyses are qualitative rather than quantitative.
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The single-scattering properties of interest are shown in Figs. 2–7. Fig-

ures 2–5 show the scattering matrix elements, one shape per panel. For

convenience, the panels are positioned the same way as the corresponding

shapes in Fig. 1. Figs. 6 and 7 summarize other properties of interest.

4.1. S11

The angular dependence of scattered intensity for unpolarized incident

light, S11, is shown in Fig. 2 for all the shapes considered. From the fig-

ure, it is immediately obvious that for most of the shapes considered, S11

elements are qualitatively very similar with flat side-scattering angles, mod-

est increase close the backscattering angles, nearly monotonic increase with

increasing size parameter, and a general lack of distinct features at any scat-

tering angle. The only clear exceptions are the Mie spheres and, to a lesser

extend, the rough spheres, for which the interference patterns are quite pro-

nounced. Many of the nonspherical shapes considered also show a weak

secondary diffraction maximum at large size parameters close to 15–25◦ scat-

tering angle. This seems to be connected to the aspect ratio, as the feature

is most pronounced for all nearly equi-dimensional shapes, while it is only

weakly pronounced or entirely absent for the more elongated target types

(both GRS and flake types, spheroids, and prisms).

For most nonspherical particles, especially towards larger size parameters,

the side scattering becomes remarkably neutral. In contrast, side scattering

for Mie spheres displays characteristic interference patterns and does not

show a clear tendency for flattening within the size parameter range consid-

ered. There are, however, some modest differences also among the nonspher-

ical particle types. For example, the angle where the minimum intensity is
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obtained varies considerably. For debris of spheres it is often found around

θ = 100◦ scattering angle, while for Gaussian random spheres, agglomer-

ated debris, flakes, and spheroids it is often much closer to backscattering

direction. Thus, for some shapes, S11 decreases however slightly but more or

less monotonically almost to the backscattering direction, for some there is a

minimum at side-scattering angles, and for some S11 is nearly constant over

a wide range of scattering angles.

Finally, all shapes produce some kind of backscattering enhancement.

Again, there are some differences in details among the shapes. For exam-

ple, the effect is very weak and broad for volcanic ash with small vesicles

and for rough Gaussian random spheres. The Mie spheres produce a strong

and broad enhancement toward backscattering especially for larger size pa-

rameters. For the cluster of spheres and rough spheres, the enhancement is

moderately strong and broad.

4.2. −S12/S11

Compared to S11, the degree of linear polarization for unpolarized incident

light, −S12/S11, varies considerably among shapes (Fig. 3). There is also

more angular variability in the values, albeit the rough-surface spheres and

especially the Mie spheres again dominate in this respect.

Overall, the −S12/S11 values are more positive than negative for all the

nonspherical shapes, while for the Mie spheres they are predominantly neg-

ative. For agglomerate debris particles, pocked spheres, and volcanic ash

particles with both small and large vesicles, the values are always positive

at side-scattering angles, and for rough Gaussian random spheres and dam-

aged spheres nearly so. Only the Mie spheres, rough-surface spheres, and the
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flakes at smaller size parameters show negative values in this angular range.

Each shape produces slightly negative polarization near forward-scattering

angles, at least for some size parameters. Likewise, polarization tends to be

negative close to backscattering.

The occurrence of interference patterns also varies among shapes. For Mie

spheres they are very strong despite our effort to suppress them by averaging

over a modest range of sizes. Obviously, a much broader size distribution

would be needed to considerably dampen the interference patterns, which in

turn would make the comparisons with the monodisperse nonspherical cases

questionable. Debris of spheres, Gaussian random spheres, strongly damaged

spheres, rough-surface spheres, and prisms also exhibit some interference,

while for rough Gaussian spheres, small-vesicle ash, and agglomerated debris

particles it is practically absent.

For most nonspherical shapes, −S12/S11 tends toward zero values with in-

creasing size parameter. Polarization decreases with size nearly monotonously

for agglomerated debris particles, rough Gaussian random spheres, and vol-

canic ash with small vesicles. Other shapes show varying deviations from

this behavior, but for all shapes except Mie spheres the degree of polariza-

tion tends to be smaller for large than for small size parameters especially at

side-scattering angles.

Small-scale surface roughness and internal inhomogeneity were identified

by [28] as possible candidates to explain the observed bell-shaped positive

polarization of laboratory-measured dust particle samples. Of the shapes

considered here, only the agglomerated debris particles, small-vesicle ash,

and to a lesser extend, the rough GRS particles, show such polarization
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characteristics throughout the size parameter range investigated. However, if

scattering were averaged over a size distribution, several other particle types

would probably also show similar polarization; for example, large-vesicle ash,

pocked spheres, and probably those whose polarization is nearly zero for

larger size parameters (e.g., damaged spheres, prisms). For the latter cases,

the positive Rayleigh-like polarization from smaller size parameters might

suffice to give the size-integrated polarization the desired angular depen-

dence. Further, [32] show that both calcite and clay flakes would have such

−S12/S11 after size integration. These results imply that surface roughness

or inhomogeneity may not be needed to explain the measured polarization of

mineral dust particles, although they definitely seem to promote such angular

profile of polarization.

4.3. 1− S22/S11

Similarly to the linear polarization, the depolarization ratio D = 1 −

S22/S11 shows larger particle-to-particle differences than the scattered inten-

sity.

In general, D tends to increase with increasing size parameter. This

increase is monotonic for pocked spheres, rough Gaussian random spheres,

and volcanic ash with both large and small vesicles; clearly non-monotonic

it is only for both flakes, and even for them the overall tendency to increase

with increasing size is clear. For Mie spheres, D is identically zero.

The maximum D values obtained for different shapes vary in a way that

is clearly not due to different size equivalences. For example, both flakes

produce maximum D values of only about 0.6, although their size is based

on equivalent volume and, as very elongated shapes, their circumscribing
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sphere size equivalence would go up to about 20. Many shapes with smaller

circumscribing sphere size equivalence nevertheless produce larger maximum

D values. Interestingly, the maximum D for GRS particles is larger than

that for rough GRS particles, although the latter can be considered to de-

viate more from the spherical shape. Likewise, small-vesicle ash particles

depolarize weaker than the large-vesicle particles, consistently with similar

findings by [33]. These findings might suggest that large-scale features are

more important for depolarization than small-scale features. Then again, in

the latter case, volcanic ash particles with small vesicles have much larger

number of porous cavities than those with large vesicles, meaning that the

internal field will be much more distorted and weaker. This could explain

the difference between the two volcanic ash types.

There are also some differences at small scattering angles, for example, in

how quickly D deviates from zero as θ increases. For many shapes, D starts

to deviate from zero almost immediately outside the forward scattering direc-

tion, but for both GRS particles and, to a lesser extent, spheroids, it remains

close to zero much further out. Second, both flakes show an interesting fea-

ture in D that is not seen in any other shapes: at small size parameters D

is clearly non-zero at the forward-scattering angle of θ = 0◦. In [28], it was

shown that this feature is seen also for very flat oblate spheroids. It thus

seems to be a feature associated with very large aspect ratios. It might be

useful for detecting the presence of thin, plate-like particles using forward

scattering of linearly polarized light.

Almost all shapes produce a minimum in D around θ = 160◦, moving

closer to the backscattering direction with increasing x. This gives rise to a
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so-called double-lobe feature that is visible in all shapes except clay flakes.

The double-lobe feature is most pronounced for the GRS particles, but the

introduction of surface roughness (rough GRS) clearly weaken the second

maximum at the exact backscattering direction. For most other nonspherical

shapes, the second lobe is weaker than the first, but for spheroids, the second

lobe is stronger.

In general, it appears difficult to draw any definite conclusions on how

different types of nonspherical particles depolarize. For example, D is very

similar for the pocked spheres, agglomerated debris particles, and rough GRS

particles, although these shapes are morphologically very different.

4.4. S33/S11 − S44/S11

Figure 5 shows the values of R = S33/S11 −S44/S11 for the model shapes

considered. The obvious first observation is that near forward scattering

direction R tends to be very close to zero, and then become more nega-

tive towards backscattering directions, albeit not systematically. In general,

R also tends to become more negative with increasing x. The only clear

exceptions are the Mie spheres, for which R is identically zero and thus ex-

cluded from further analysis, and the two flakes. Except for the rough-surface

spheres, largest negative values are obtained for the largest particles at the

exact backscattering direction (θ = 180◦).

The double-lobe feature in D appears also in R, here as a local maximum

at θ ≈ 160◦. This feature is seen for all shapes, but its exact location varies

among shapes, and seems to move towards backscattering direction as the

particle size increases, again in accordance with the double-lobe feature in

D. The features are thus very likely to be related.
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Overall, the general angular dependence ofR for the shapes considered are

similar, except for the flakes. In addition, rough-surface spheres show, again,

strong interference patterns, but even for it the overall form is similar. There

are, however, some possibly useful differences visible. For example, both

rough GRS and small-vesicle ash particles produce much smaller negative R

values than most of the other shapes. Comparison with the similar smooth

GRS particles and volcanic ash with large vesicles, respectively, implies that

small-scale internal inhomogeneity and rough surface might lead to smaller

deviations of R from zero. A more detailed look on this is, however, in order

to find out if this really is a generic result or just a coincidence.

Another potential morphological detail that could be identified from R is

the elongation of the particle, as strongly-elongated flakes show considerably

different dependence of R on x and θ. Further, R might also be useful for

detecting birefringent targets, as the differences between the calcite and clay

flakes are considerable. These two cases have identical shapes and differ only

by calcite flakes being birefringent. On the downside, measuring R requires

in practice that the whole 4× 4 scattering matrix is measured.

4.5. Other quantities

Other quantities of interest are summarized in Figs. 6 and 7 as a function

of size parameter x. As these plots compare differently shaped particles

directly with each other, it is important to remember that their sizes are

based on different size equivalences. Thus, x of one shape is not necessarily

comparable with x of some other shape. Also, we note that the size parameter

range for different shapes vary such that only size parameters from 4 to 10

have been computed for all shapes. Finally, it is noted that the refractive
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indices vary somewhat among the shapes. The plots should therefore be

interpreted with caution.

The backscattered intensity S11(180
◦) is shown in the top left panel of

Fig. 6. The first obvious observation is that S11(180
◦) tends to increase

with increasing x, although this increase is not necessarily monotonic for

individual shapes. Second, spheres tend to backscatter much more than the

other shapes considered. Among the non-spherical shapes, clusters of spheres

and rough spheres tend to be among the strongest backscatterers and the

GRS and rough GRS particles among the weakest. These findings suggest

that spherical particles tend to backscatter more efficiently than nonspherical,

and that surface roughness reduces backscattering. The latter finding is

consistent with the results obtained by [9]. A significant spread of about two

orders of magnitude is seen among the shapes, which cannot be attributed

solely on different size equivalences and slightly different m.

The maximum positive polarization, max(−S12/S11), is shown in the top

right panel of Fig. 6. This quantity generally decreases from the unity of the

Rayleigh scattering as x increases, but for Mie spheres the behavior is rather

opposite: the small values are obtained at small x and large values at large

x. At least partially this odd behavior is because at x = 2, Mie scattering

is already very non-Rayleigh-like with largely negative −S12/S11. The large

positive values at larger x are produced by the strong resonance peaks and

do not indicate that polarization would be predominantly positive. The

nonspherical shapes do not give rise to such strong resonances, which is at

least partially because of the ensemble- and orientation averaging, and their

max(−S12/S11) values are generally very different to those for Mie spheres.
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If Mie spheres are excluded, the spread among the shapes decreases as x

increases. Among the nonspherical shapes, the smallest values are obtained

for the prisms, while many shapes compete for the largest. Overall, the

volcanic ash with small vesicles is often found among those with largest

max(−S12/S11).

The bottom left panel of Fig. 6 shows the minimum of linear polarization,

min(−S12/S11), within the scattering angle range from 135◦ to 180◦. This is a

proxy for the amplitude of the negative polarization branch (NPB). It is seen

that, again, Mie spheres deviate strongly from the nonspherical shapes, pro-

ducing consistently large negative values. Among the nonspherical shapes,

the rough spheres and, at large size parameters, clusters of spheres produce

the largest negative values and thus resemble most those for Mie spheres.

The general trend among the other nonspherical shapes is a modest increase

in the negative amplitude with increasing x until, around x = 6–8, the trend

seems to reverse and a slight decrease with increasing x is observed.

The scattering angle where the maximum positive polarization is achieved

is presented in the bottom right panel of Fig. 6. In general, the maximum

is located at side scattering angles, with a slight tendency towards larger

scattering angles with increasing x. However, for size parameters x ≥ 6, the

maximum may also be located close to forward scattering angles for some

shapes.

The top left panel of Fig. 7 shows the asymmetry parameter g for each

shape as a function of size parameter x. In general, g tends to peak around

x ∼6–8. The spread among the shapes is also largest at those sizes. However,

part of the spread may be artificial, caused by the different size equivalences
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used for different shapes. Of the shapes considered, the calcite and clay flakes

tend to have the highest asymmetry parameters. For Mie spheres, and to a

lesser extent for rough spheres, g varies strongly from size to size. Overall,

the spread among the shapes is considerable, despite the apparent similarity

of the corresponding phase functions. There are some indications that for

small x the Mie spheres have smaller g than nonspherical shapes, while for

larger x the situation appears to reverse. This behavior has been formerly

noted by, e.g., [34, 35].

The linear depolarization at backscattering, D(180◦), is presented at the

top right panel of Fig. 7. For Mie spheres, this quantity is zero, while for

nonspherical particles it usually deviates from it. The shapes considered

here generally show an increasing trend in D(180◦) as a function of x, but

there are indications that D plateaus for larger size parameters. The rough

spheres usually produce the weakest depolarization (smallest D), while the

strongest depolarizer varies among sizes. The spread among the shapes is

quite considerable, but again this may be partially because of the different

size equivalences among the shapes.

The linear polarization ratio at backscattering, µL(180
◦), shown in the

bottom left panel of Fig. 7, is almost identical to D(180◦) except that values

of the latter are systematically somewhat larger. The explanation is that S12

is identically zero at backscattering, and hence the definitions of these two

quantities vary only for the denominator (S11 for D and S11 + S22 for µL).

The circular polarization ratio at backscattering, µC(180
◦), is shown in

the bottom right panel of Fig. 7. Even though its definition differs con-

siderably from that of D and µL, the results are qualitatively very similar
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with these quantities. The absolute values are different; note that µC is not

bound between zero and unity. For spheres this quantity is zero because

P11(180
◦) = −P44(180

◦) (see e.g. [36], Table II).

5. Summary and conclusions

It is well established that scattering matrices of single particles depend

on their shape, and that nonspherical particles scatter differently to spherical

particles even after ensemble and orientation averaging. In contrast, possible

differences or similarities in the scattering properties of different types of

nonspherical particles have received little attention. To address this, we

compared light-scattering properties of 15 different types of wavelength-scale

particles as a function of size parameter. For all nonspherical particle types,

the scattering matrices were ensemble- and orientation-averaged. For many

of the particle types considered, previously published light-scattering data

were used, resulting in small differences in the refractive indices and varying

definitions of particle size.

The comparison reveals that the scattered intensity for unpolarized inci-

dent light, S11, is generally very similar for the nonspherical particle types

considered. There are some differences, but in each case the intensity dis-

tributions tend to be smooth, flat at the side scattering angles, and show

at least a modest increase close to the exact backscattering angle. For

spheres, S11 is clearly different, showing stronger interference structures and

more pronounced backscattering enhancement. The asymmetry parameter,

on the other hand, showed differences among the particle types that ex-

ceed differences that could be attributed to varying size equivalences and
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slightly different refractive indices of the shapes. This implies that, despite

of the qualitative similarities, there are quantitative differences in the phase

functions. The analysis of backscattered intensity showed that nonspherical

shapes backscatter generally much less efficiently than the Mie spheres, and

surface roughness was found to reduce backscattering further.

The degree of linear polarization for incident unpolarized light, −S12/S11,

on the other hand, shows clear differences among the particle types, but there

are also similarities. For example, −S12/S11 tends to be much more positive

for nonspherical particles than for Mie spheres. Likewise, for all nonspheri-

cal shapes, the absolute value of the degree of polarization tends to decrease

considerably with increasing size. Although only few of the shapes consid-

ered produced bell-like positive polarization curves for all size parameters

considered, quite a few of them could have shown that kind of polariza-

tion if averaged over a size distribution. Thus, even though small-scale sur-

face roughness and internal inhomogeneity promote this type of polarization

and has been offered as an explanation for such polarization in laboratory-

measured polarization curves for mineral dust samples, other explanations

are clearly also possible. Polarization patterns and particle morphologies did

not correlate very clearly, as some seemingly quite different shapes produced

very similar angular distribution.

Similar to the S11 element, the depolarization ratios 1−S22/S11 tended to

be fairly similar for the particle types considered, except for the Mie spheres

for which it is identically zero. One clear exception among the nonspheri-

cal shapes were the platy flake particles, suggesting that high-aspect-ratio

particles depolarize differently to more equidimensional nonspherical parti-
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cles. More interference patterns were seen for particles that do not have

small-scale surface roughness or small-scale internal inhomogeneity. Close

to a scattering angle θ = 160◦ an interesting double-lobe feature was seen

that is present for almost all particle types considered but nevertheless often

differs in details. Interestingly, there are some differences between the model

particles in how quickly D starts to deviate from zero as the scattering an-

gle increases from 0◦. For example, according to laboratory measurements

[37, 38], D for many mineral particle samples starts to deviate from zero al-

most immediately. This is one aspect where distributions of spheroids clearly

fail when mimicking scattering by these samples [13, 17, 39]. In general, the

dependence of D on the particle morphology seems to defy simplistic expla-

nations. Thus, even though D is a very useful indicator for deviations from

particle isotropy (due to nonspherical shape, for example), it does not seem

particularly useful for quantifying this deviation, or for identifying different

classes of particle morphology.

The dependence of S33/S11 − S44/S11 on the scattering angle was gener-

ally similar for most particle types considered, with the notable exception

of spheres. Again, the high-aspect ratio flake particles showed the largest

deviations from the other nonspherical particles. This is especially true for

the birefringent calcite flakes, indicating that this quantity might be use-

ful for detecting birefringent species. On the other hand, it does not seem

promising for differentiating other types of nonsphericity. For Mie spheres

S33/S11 − S44/S11 is identically zero, so it is another quantity that could be

used for identifying deviations from isotropy.

Overall, it seems that, qualitatively, different types of nonspherical par-
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ticles scatter light surprisingly similarly. This implies that scattering by

nonspherical particles can often be mimicked by other types of nonspheri-

cal model particles. Still, there are indications that morphological features

such as the degree of surface roughness or the size-scale of internal struc-

ture could very well have systematic effects on scattering. Further, there

are clearly quantitative differences in scattering by different shapes. Thus,

despite great similarities, ensembles of different shapes cannot be considered

equal. Of the parameters considered here, the degree of linear polarization

for incident unpolarized light seems most promising for inverting particle

shapes. Luckily, it is also one of the parameters that can be measured for

targets illuminated by natural light and thus applies to passive remote sens-

ing. Shape inversion based on light scattering seems nevertheless difficult, in

particular because light-scattering properties do not seem to correlate well

with morphological details: seemingly similar particles may scatter differ-

ently and seemingly different very similarly. Finally, it is emphasized that

the results shown here only apply to ensemble averages of randomly oriented

nonspherical particles. Undoubtedly single nonspherical particles in fixed

orientation can have very different and distinct single-scattering properties.

Indeed, single-particle shape inversions would probably be much easier and

might be potentially useful for deriving three-dimensional shapes of real non-

spherical particles if such measurements could be carried out.
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[37] H. Volten, O. Muñoz, J. Hovenier, L. Waters, An update of the Amster-

dam Light Scattering Database, J. Quant. Spectrosc. Radiat. Transfer

2006;100:437–443.
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Figure 1: Example images of the shapes considered in the study.
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Figure 2: The angular dependence of scattered intensity for unpolarized incident light,
S11 for all the shapes considered. The different line styles correspond to size parameters
2 (solid black), 4 (dashed black), 6 (dotted black), 8 (solid grey), 10 (dashed grey), and
12 (dotted grey). For the definition of the size equivalences for each shape, see Sect. 3.
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Figure 3: As Fig. 2 but for −S12/S11, the degree of linear polarization for incident unpo-
larized light.
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Figure 4: As Fig. 2 but for the depolarization ratio D = 1− S22/S11.
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Figure 5: As Fig. 2 but for S33/S11 − S44/S11.
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Figure 6: Dependence of S11(180) (top left panel), max(−S12/S11) (top right panel),
min[−S12(135 : 180)/S11(135 : 180)] (bottom left panel), and the scattering angle of
max(−S12/S11) (bottom right panel) as a function of size parameter (as defined for each
shape).
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Figure 7: As Fig. 6 but for the asymmetry parameter (top left panel), D(180) (top right
panel), µL (bottom left panel), and µC (bottom right panel).
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Table 1: Summary of the particle shapes considered.

Shape m x size equivalence Reference

GRS 1.6 + 0.0005i 4–12 circumscribing sphere [27]
Rough GRS 1.6 + 0.0005i 4–12 circumscribing sphere [27]
Rough spheres 1.6 + 0.0005i 4–12 ≈circumscribing sphere [25]
Pocked spheres 1.6 + 0.0005i 4–12 circumscribing sphere [25]
Damaged spheres 1.6 + 0.0005i 4–12 circumscribing sphere [25]
Debris of spheres 1.6 + 0.0005i 4–12 circumscribing sphere [26]
Aggl. debris 1.6 + 0.0005i 4–12 circumscribing sphere [25]
Calcite flakes birefringent 2–10 volume [28]
Clay flakes 1.603 + 0.0i 2–10 volume [28]
Spheroids 1.6 + 0.0005i 2–12 circumscribing sphere -
Prisms 1.6 + 0.0005i 2–12 length -
Large-vesicle ash 1.55 + 0.002i 2–12 volume [12]
Small-vesicle ash 1.55 + 0.002i 2–12 volume (inc. vesicles) [12]
Cluster of spheres 1.6 + 0.0005i 2–12 volume -
Mie spheres 1.6 + 0.001i 2–12 n.a. -
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