

Modular Software Architecture for Connected

Devices
The Development of a Model for Connecting a Device to the

Android Platform
Bachelor of Science Thesis in Computer Science and Engineering

LOBNA ALHASSANI

MARIA SKÖLDIN GUSTAFSSON

Department of Computer Science and Engineering

CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden, 2012

ii

Abstract

The market is offering an increasing number of network connected devices and it is

predicted that in the next decade a large number of electronic products will have

network connectivity through which they will be monitored and maintained.

Meanwhile the smartphone market is growing rapidly and the range of mobile

applications provided is numerous. The challenge is to find a suitable modular way

to connecting these products to PCs and mobile devices so that it is possible to

access their information and to monitor/control them directly through these

devices. Therefore the purpose of this research was to develop a software

architectural model for connecting such devices, focusing on the modular

characteristics of the architecture. An android application, Ship Detector, was

developed with a connection to an AIS (Automatic Identification System) antenna

that receives AIS signals from vessels and forwards them to the android

application to be displayed to the mobile user. The study resulted in a model that

could be used as a concept for developing similar applications. This model was

demonstrated in a working prototype (Ship Detector) and presented with five

diagram representations of the different perspectives of the application. Various

challenges were encountered which are discussed further in the report.

iii

Table of Contents
1 Introduction .. 1

1.1 Background ... 1

1.2 Problem Statement ... 2

1.3 Purpose .. 2

1.4 Delimitations of study .. 2

2 Method ... 3

3 Theoretical background ... 4

3.1 Mobile platforms - Android OS ... 4

3.2 Software architecture ... 6

3.2.1 Architectural Pattern ... 7

3.2.2 Reference Models ... 7

3.2.3 Reference Architectures ... 7

3.2.4 The Role of Architecture in Software Development 8

3.2.5 Modularity ... 8

3.3 Agile Software Development ... 10

3.4 Automatic Identification System (AIS) ... 12

3.5 Application Programming Interface (API) ... 13

3.6 Cloud Services .. 14

4 Our study .. 16

4.1 Goal ... 16

4.2 Introduction to Ship Detector ... 17

4.3 Methodology and technologies .. 20

4.3.1 Development Environment ... 20

4.3.2 Application Programming Interface (API) .. 21

4.4 Software architecture of Ship Detector .. 22

4.4.1 Application Model .. 22

4.4.2 Server/Client Communication .. 24

4.5 Presentation (Diagram) .. 25

4.5.1 Deployment (physical) Diagram .. 27

4.5.2 Functional (logical) Diagram .. 28

4.5.3 Concurrency (dynamic) Diagram .. 31

4.5.4 Operational Diagram .. 32

5 Result ... 34

6 Conclusion .. 36

iv

6.1 Critical Discussion... 36

6.2 Generalization .. 38

6.3 Future development .. 38

References .. 40

Appendix 1 – AIS Table .. 42

Appendix 2 - Database .. 43

Appendix 3 - Database .. 44

Appendix 4 - Dependencies .. 45

Appendix 5 – Server Class Diagram .. 46

Appendix 6 – Client Class Diagram ... 46

1

1 Introduction

1.1 Background

Today, we are witnessing a development whereby various types of electronic

products are getting network connectivity allowing them to be monitored

and managed through another, possibly remote device. According to

Ericsson1 it is foreseen that in the near future nearly 50 billion devices will

have network connectivity and this will include devices such as kitchen

appliances and other more complex machines.

The challenge we are facing in this development is how to connect these

products to different types of computer devices and platforms in an efficient

and simple way, a way that can be applicable to different types of devices.

Meanwhile, the consumption of smartphones and tablets has grown

massively since smartphones were introduced to the mass market in the

beginning of 2000. Smartphone sales have surpassed PC sales in recent

years, nearly reaching double the sales (Gobry 2012) and according to a

recent article on Business Insider2 by 2016 it is expected that smartphones

will account for two thirds of worldwide mobile phone sales.

Naturally we can expect an increasing demand for applications that

facilitate a connection between mobile devices and other products. The

convenience and efficiency with which a mobile device can obtain and

control data that is generated by another remote product give this area

great growth potential.

EIS Semcon specialises in system architecture, software and hardware

design as well as electrical and electronic architecture. On the initiative of

EIS Semcon, we will develop a general concept for connecting products to

other PCs and mobile devices. This will be manifested in an application that

obtains information from a connected product and present it to the user

through a mobile device.

1http://www.ericsson.com/networkedsociety/media/hosting/Sustainable_Networked_Cities.p

df
2 http://articles.businessinsider.com/2012-02-29/tech/31109577_1_smartphones-pc-sales-

internet

http://www.ericsson.com/networkedsociety/media/hosting/Sustainable_Networked_Cities.pdf
http://www.ericsson.com/networkedsociety/media/hosting/Sustainable_Networked_Cities.pdf
http://articles.businessinsider.com/2012-02-29/tech/31109577_1_smartphones-pc-sales-internet
http://articles.businessinsider.com/2012-02-29/tech/31109577_1_smartphones-pc-sales-internet

2

1.2 Problem Statement

As the number of connected electronic products increases, more

development is required to connect these products to PCs and mobile

devices.

1.3 Purpose

The purpose of this research is to develop a software architectural design for

connecting electronic products to PCs and mobile devices. There will be

focus on the modularity of the architecture and the presentation of this

model in the form of diagrams that describe the software design on different

architectural and technical levels.

To demonstrate the architectural model, a server application will be

developed that enables a mobile device to receive information from an

antenna and display it to the mobile user.

The application in question will be developed for Semcon EIS to be used as a

concept for future development of similar applications.

1.4 Delimitations of study

This study will focus on the architecture of such software. More specifically,

the architectural design will revolve around certain characteristics such as

modularity and modifiability.

There will also be a focus on developing a working prototype.

3

2 Method

The methodology of this study will include developing an architectural

model based on previous work conducted by the Software Architecture group

of the Software Engineering Institute (SEI) at Carnegie-Mellon University

in Pittsburgh (Bass, Clements & Kazman 2007).

Moreover we will be developing an application based on this conceptual

model using the programming language Java in the integrated development

environment (IDE) Eclipse.

In addition, the application model will be presented in diagrams using UML

(Unified Modelling language) with a diagram editor program.

4

3 Theoretical background

There are many aspects to this study and various concepts that are taken

into account. Below is an introduction to these concepts and areas that

make up the background for this research.

3.1 Mobile platforms - Android OS

Mobile phone devices became increasingly popular in the 1990s. Along with

the introduction of the second generation (2G) of mobile platforms, mobile

phones became a true mass market device. These mobile phone systems

offered new forms of communication such as SMS (Short Message Service).

The basic functions of making mobile phone calls and texting became widely

used across all ages amongst the public.

However, in the late 1990s the vast majority of mobile phones had only basic

phone features and as the use of mobile phones increased so did the demand

for accessing the internet as well as other data services through mobile

phones. The market was simply missing a mobile phone device and a

platform that could account for all of these functions. In the long run it was

also clear that 2G phones were not going to be able to meet the demand for

greater data speeds and this is when the third generation (3G) mobile

telecommunication was developed, to cater for such demands.

In the 2000s and onward, a new concept for mobile phones emerged,

namely the “smartphone”. Despite the fact that this definition was used in

the past, the concept of a smartphone was given a new meaning

distinguishing it from the relatively basic “feature phone”. Although this

distinction is vague, the most prominent difference is the supported

advanced application programming interfaces (APIs) for running third-party

applications (smartphone definition from PC Magazine Encyclopedia n.d.).

Early releases of smartphones supported limited web browsing, as was seen

with the first widespread smartphone in North America, Kyocera 6035

(Kyocera QCP 6035 Smartphone 2001). Later attempts included the

Blackberry which became the first smartphone optimized for wireless email

use. By December 2009, The Blackberry line had 32 million subscribers

(2009).

But what truly changed the concept of smartphone was the release of the

iPhone by Apple in 2007. Apart from its impressive hardware features such

http://www.pcmag.com/encyclopedia_term/0,2542,t=Smartphone&i=51537,00.asp
http://www.palminfocenter.com/view_story.asp?ID=1707

5

as the multi-touch capable user interface which started the industry trend

for touch-only mobile devices, iPhone OS Software Development Kit (SDK)

was introduced for Mac OS X, which allowed developers to create third-

party native applications for the iPhone (Helal, Bose & Li 2012). This made

the iPhone a mass market device whose capabilities could be modified,

upgraded and customised using these third-party applications (Helal et al.

2012). The smartphone was no longer regarded as being exclusive to a

certain privileged group of consumers or technical experts (Helal et al.

2012). Apple also released App Store, an application with a collection of all

Apple certified applications developed by certified and uncertified

developers. The concept of App Store became very popular as it offered an

easier access, purchase and installation of iPhone applications.

Apple’s iPhone was dominating the smartphone market for a while being

regarded as far ahead of its competitors and offering innovative technology

and services not available, or available to a lesser extent, by the other

mobile phone and platform manufacturers.

The two other major native mobile platform competitors are Microsoft’s

Windows phone and Google’s Android.

Android is developed and maintained by the Open Handset Alliance3 which

is led by Google. The Open Handset Alliance consists of many major mobile

device manufacturers, chipset vendors, network operators and software

companies. This includes Samsung, Motorola, HTC, Texas Instruments etc.

(Helal et al. 2012).

Google acquired Android in 2005 and since its market launch in 2008 it has

experienced explosive growth. Today, the Android platform runs on over 250

million devices and the number keeps increasing (Helal et al.2012). What

sets Android apart from Apple’s iPhone is that it is open source and can be

developed and run on different devices by several manufacturers. In

addition, Android is also used across a wide variety of mobile devices such

as tablets, personal music players and in-flight entertainment systems.

Android allows anybody to download and customize its source code (except

for the core platform) for their own use without paying any licensing fees or

royalty. Additionally the Android Application Framework provides high

level API (Application programming interface) and access to various

functions of the platform for application development. Java is the

programming language used for developing Android applications although

3 http://www.openhandsetalliance.com

6

they are not fully compliant with the standard Java as there are significant

differences in the user interface libraries.

The anatomy of an Android application can generally be built with 4 types of

components namely: Activity, Service, Content Provider and Broadcast

Receiver. In short, the Activity component (defined by the Activity class)

represents a screen with a visual user interface and is while the Service

component (defined by the Service class) is used for background tasks such

as time intensive tasks or inter-application functionalities which do not

require direct user interaction. The Content Provider component enables

applications to store and share data with other applications and the

Broadcast Receiver component (defined by the BroadcastReceiver class) is

tasked with responding to system-wide broadcast announcements. Android

can broadcast a number of system status messages such as device battery

status or when the camera has just captured a picture (Helal et al. 2012).

In this study, we chose to develop an Android application and the choice of

platform was based on its accessibility to developers and the variety of

devices that it can be run on and in effect reaching a wider range of users.

The rapid evolution of the mobile phone, as a technical device but also as a

mass market device conveys the great potential there is for continuing to

develop mobile services and functions and in turn centralising the mobile

device to becoming a device that caters for a wider range of demands.

3.2 Software architecture

A major focus of this study is to determine a suitable architecture for the

application we are constructing and develop a design model that adheres to

certain characteristics, specifically modularity and modifiability. The aim is

to be able to apply the same conceptual model when developing applications

with similar functions and to easily apply new functions to an existing

application.

The term software architecture is a loose concept and has many definitions

but there are still recurrent terms when describing it. According to Bass et

al. (2007) software architecture of a program or a computing system is the

structure or structures of the system, which comprises software elements,

the externally visible properties of those elements and the relationships

among them.

7

Extensive work has been done on defining software architecture and

developing standards for good software design. A widely accepted definition

is the one that came from a work done in the Software Architecture group of

the Software Engineering Institute (SEI) at Carnegie-Mellon University in

Pittsburgh (Bass et al. 2007).

As described by Bass et al. (2007) software architecture contains

architectural patterns, reference models and reference architectures. These

three concepts are suitable to use when describing software architecture

although they are early decisions for software architecture and cannot by

themselves be presented as architecture.

3.2.1 Architectural Pattern

An architectural pattern, or an architectural style, is a description of

element and relation types together with a set of constraints on how they

may be implemented (Bass et al. 2007). A common pattern is the Client-

Server model which is also the pattern used in the application we are

developing in this study. According to the definition of an architectural

pattern, the server and client are described as the elements of a model while

the set of constraints describe the way they communicate with each other

according to a certain protocol (Bass et al. 2007). The Client-Server pattern

is an informal definition but it is widely used and understood and mainly

indicates that it contains several clients but no more than one server. The

patterns are a very useful concept to use in software architecture but it is

itself not an architecture (Bass et al. 2007). The choice of pattern is one of

the first big decisions that an architect makes, and this is not chosen

randomly, but is picked thoughtfully.

3.2.2 Reference Models

The second concept that Bass et al. (2007) explain makes up a software

architecture is a reference model. A reference model is a tactic to solving a

known problem by dividing the problem into smaller fragments or modules,

each of which account for one part of the problem and cooperatively solve

the problem as a whole.

3.2.3 Reference Architectures

The reference architecture is the third concept that describes software

architecture (Bass et al. 2007). This concept is described as the mapping of a

functionality (the reference model) onto the system decomposition (Bass et

al. 2007).

8

The three concepts mentioned above sum up the notion of software

architecture, but how important are these concepts when putting them in

practice?

3.2.4 The Role of Architecture in Software Development

Nowadays computers can be found in many different environments. More

and more machines and various technical products contain some sort of a

computer, whether it is visible or embedded in a larger system. Along with

the computer there is also software that takes care of the data input and

serves a function. As these systems become larger and more complex,

software architecture becomes more important as it needs to account for

more complex challenges and provide a software model that eventually can

be tested, rebuilt, updated and maintained (Rozanski & Woods 2005). The

architecture also needs to facilitate a coherent software model that

stakeholders can take part of and understand.

According to Bass et al. (2007) there are three main reasons as to why

software architecture is important. The first one concerns the

communication with and among stakeholders. All stakeholders have their

own agenda with different qualities they want to impose on the system, and

it’s partly up to the architect to consider the stakeholders demands and

make it all work together. The presence of good software architecture also

enables different stakeholders to work separately on different parts of the

project while ultimately working towards the same goal. Another important

factor is that architecture facilitates early decision making regarding a

system. These early decisions are the ones that define the system and make

the foremost impact and are the hardest to change later on in the system

development process (Bass et al. 2007). Bass et al. (2007) also emphasize the

importance of software architecture in terms of the possibility to reuse other

design decisions that have been previously built and tested and proven to

work well. In addition, reusing older design methods also saves time as an

architect do not need to develop methods that may already exist.

3.2.5 Modularity

Modularity in software architecture refers to a cluster-based architectural

style by which different clusters, or components, are connected together.

 These components comprise of well-defined functions which together serve

a common function. Modular characteristics facilitate easier addition and

modification of functions within a system without greatly impacting other

parts of the system. Modularity is a part of a broader concept in

architecture, namely modifiability.

9

In system architecture, the attribute modifiability refers to how costly it is

to make a change in a software system (Bass et al. 2007). This type of

change does not refer to the changes that end users and system

administrators can make but rather to the functional changes, such as

adding a new feature or other changes to the source code.

Typically, before such changes can be applied to an existing system, all

necessary specifications must be drawn up and designed to fit into the

existing architecture while at the same time meet the functional

requirements. In addition, the new implementation must be tested and

deployed. Thus, making a functional change to a system requires a lot of

work and can become very time consuming and costly if the system is

designed in a way which would require modification in many other parts of

the system (Bass et al. 2007). This scenario refers to the ripple effect which

is when modifications must be enforced on a module that is not directly

affected of the change (Bass et al. 2007). For example if a feature is added

and some changes must be implemented in module A, a ripple effect on

module B is when alterations must be applied to this module only because of

the changes in module A and not because of the new feature (Bass et al.

2007).

As such the architecture of a system should be structured in a way that

allows cost efficient changes. This can be accomplished by minimizing the

number of modules affected by the changes restricting them to a small set of

modules.

The Importance of Good Documentation

When an architect constructs an architectural model for a software, there

are many aspects and perspectives that are taken into account as well as

different architectural levels that convey different degrees of detail. In

order to explain the model correctly to technical and non-technical

stakeholders good documentation needs to be provided. To have records of a

system that all stakeholders can read and interpret is very important

(Rozanski et al. 2005). When groups of specialists are working on different

parts of the same project separately the documentation is the guide for all

stakeholders to be able to aim in the same direction. A good way to

represent the architecture is with diagrams and pictures that will show

different degrees of depth. Not all stakeholders are interested or can even

understand very detailed diagrams of the system and so perhaps it would be

suitable to provide an overview of the system that conveys the information

they need (Rozanski et al. 2005). For example if a salesperson is going to

10

present a software concept to a new client, there is no point in showing very

detailed presentations of technical terms and concepts to the client that

might not even be a technical person. The technical presentations may be of

interest later on in the sales process when IT professionals get involved.

Today there are some well-known standardised graphic representations of

different architectural concepts. Different components of a software model

can be represented by different symbols and arrows that correctly convey

the design decisions without having to add extensive descriptions in text.

3.3 Agile Software Development

A prerequisite for developing our application was to work in an agile

manner, a developing method which has been widely used in recent years in

the software development practices. The information regarding agile

software development in this section is based on the principles of the

Manifest for Agile Development4.

Agile software development refers to a set of software development

strategies that are based on iterative and incremental development. During

the development process, requirements and solutions evolve through the

collaboration between self-organizing and cross-functional teams.

The principles of the agile development methods are defined by Manifesto

for Agile Software Development, a document that emerged in 2001 when

seventeen software developers were looking for a better way to develop

software. This group of representatives with experience from different

developing disciplines were interested in a new way of developing software

instead of the former traditional documentation driven, heavyweight

software development as they described.

The characteristics of an agile development process specify that in the

beginning of a new project not all requirements are stacked out with a

detailed software architecture. In an agile process the software is developed

in a number of sprints which in this context refers to a period of time by

which certain amount of work has been performed. On each sprint meeting

the requirements for the upcoming sprint is outlined and further executed

during the sprint. Hence after every sprint there should be an existing

software with the specified additional requirements set out on the last

sprint. This way the product will grow as the client gives new requirements

4
 http://agilemanifesto.org/iso/en/

11

in the beginning of every sprint and can see a working software at the end of

every sprint. This enables the client to have more control over the

development process and can decide which requirements to be prioritised

etc. Experience has shown that this way of software development is

preferred by clients.

Agile software development has further been branched into various agile

methods each of which has certain characteristics that may be more suitable

for different developers and different types of software projects. One of those

agile methods is called Scrum and is highly used in the area of software

development.

Scrum

The following section will describe the principles of Scrum and the

procedure when choosing to work with Scrum. The information in this

section is based on the Scrum documentation by Schwaber & Sutherland

(2011). Full references are provided in the reference section.

Scrum is built on the principles of agile development. In Scrum the team

involved consists of three roles; product owner, Scrum master and the

development team. This team decides how the work will be conducted and

this is done without the involvement of an outside management.

The development team adopts a flat structure where everyone is regarded

as a developer, possibly with different skills and expertise but with no

specific hierarchical titles.

The product owner is responsible for the quality of the development team’s

work and the product backlog, which is a list of all requirements that should

be implemented in the software. Furthermore, the product owner ensures

that all requirements are clearly defined, understood and implemented in

the right order by the developers.

The Scrum master ensures that the principles of Scrum are understood

theoretically and practically by everyone in the team and that these

principles are followed through. The master also and looks at the efficacy

and provides support to the development team.

On a more detailed scale, a project that adopts the Scrum developing

method is initiated through a sprint planning meeting. This meeting is the

first event of a sprint and decides the workload of the following sprint. This

meeting discusses two central issues, what to be done and how it will be

conducted. The product owner present items, or tasks, from the Product

12

Backlog which are ranked according to which is the most important at this

time. The developers decide how many items to include in the upcoming

sprint. The whole Scrum team collaborates around the work that will be

executed. Once the number of tasks is selected, the team specifies how the

selected items will compile into the product.

Daily Scrum

In addition to the sprint meeting, there are short meetings held on a daily

basis by the Scrum master. The team decides what will be done during the

day, until the next short meeting. During this meeting the developers go

through what was accomplished since the last meeting, what will be done

for to the next as well as the potential obstacles that can occur.

Sprint Review

In the end of each sprint a sprint review meeting is held to discuss how the

process of the sprint went. The product owner is briefed on what has been

done and a demonstration of the product is made. The development team

address the problems they encountered and discuss future workload etc.

During this meeting important points are discussed that are brought along

to the next sprint planning meeting.

Sprint Retrospective

This meeting is set between the sprint review and the sprint planning

meeting and it addresses the previous sprint with regards to the group

dynamics, in terms of how the team worked together. At this stage a plan is

made up on how to improve the next sprint in terms of how to make the

group of developers more efficient and make it more enjoyable for all

members in the Scrum team.

3.4 Automatic Identification System (AIS)

The information in this section is based on the information provided by the

Swedish Maritime Administration. Full references are provided in the

reference section.

In our study, we are developing a mobile application that will connect to

another device and make use of its data in various ways. As such, this

device will be a local antenna that receives so called AIS (Automatic

Identification System) signals. This section will provide a brief explanation

of AIS signals, the meaning of and the concept behind it.

13

AIS is a system which enables vessels and land based stations to receive

information about other marine vessels and is considered a compliment to

the radar system. The idea behind the AIS system is to provide means for

collision detection among large vessels at sea that are not within the range

of shore-based systems. However, it only determines the risk of collision and

is not used as an automatic collision avoidance system.

AIS signals that are sent from a specific vessel include information about

the vessel such as its unique identity number (MMSI), navigation status,

size, destination, position in longitude and latitude etc. More details about

the content can be found in Appendix 1.

AIS signals use VHF (Very High Frequency) radio channels and send their

content in small data packages. These signals can be received by vessels

that have AIS equipment and are within the range of the VHF radio

transmission. The AIS signals are sent in intervals where signals with

information that frequently changes such as position, course and speed are

sent every 2-10 seconds and information like size, type of cargo and

destination are sent less frequently.

Since 2002, vessels that follow the SOLAS (Safety of Life at Sea)

convention5 and are bigger than 300 tonnes are obliged to implement the

AIS system. In 2007, all vessels trafficking national waters and all

passenger boats in international waters, irrespective of size, implemented

the system.

3.5 Application Programming Interface (API)

An application programming interface (API) is a source code based

specification which is used as an interface for the communication between

software components (Orenstein D. (2000)). An API specification can take

many forms such as a library for a programming language (for example

Java API) or in the context of web development, a set of HyperText

Transfer Protocol (HTTP) request messages along with response messages

formatted in an Extensible markup Language (XML) or JavaScript Object

Notation (JSON). Typically, the http responses and requests vary in content

depending on the type of information being requested as well as which web

service is being contacted. However there are some standards that are

5 “The main objective of the SOLAS Convention is to specify minimum standards for the

construction, equipment and operation of ships, compatible with their safety.” International

Convention for the Safety of Life at Sea (SOLAS), 1974 n.d.

14

required in most web service requests. Usually, a request should contain a

key that is issued by the API provider. Most keys are free and easy to

obtain, and they enable the API provider to keep track of the number of API

users and who is using it. Another typical request specification is which

format the response should be in (e.g. XML).

Web APIs allow the combination of multiple services into new applications

known as mashups. These mashups can generate new information by

combining two or more sources which originally was not provided by either

source.

It is common that Web communities share content and data with other

communities and applications. This content can be dynamically posted and

updated in multiple locations on the web and this is evident on for example

social networks. The Facebook API is often used on other sites, such as

media websites whereby web users can interact with the content of the site

by using their Facebook accounts. Another example is sharing video content

which is embedded on sites served by another host. This is seen in

applications that implement the YouTube video framework to post videos.

Creating an application that gathers information from a connected device

and combining this information with one or two open API sources can

produce unique information that can be useful for private as well as

professional use.

3.6 Cloud Services

Generally, the IT security within companies is very strict limiting incoming

and outgoing communication. This is no exception to the IT security on

Semcon. While this is necessary for network protection, it limits developers

when developing systems that need to freely communicate over the internet.

For this purpose a cloud service was eventually used for our application to

allow such communication without compromising the security risks.

Cloud services offer storage space and computing on a remote device that

can be accessed remotely from another computer device. Cloud services are

becoming increasingly popular amongst private users and companies.

This type of service is typically offered by a company that takes care of the

maintenance of the physical servers as well as network connectivity. Clients

can choose between a range of virtual private servers (VPS) with different

operating systems, different amounts of storage capacity and other relevant

15

features. Even if the server belongs to the provider, the user holds

administrative rights and decides e.g. which programs to install.

The user connects to the VPS through an application that establishes

remote connections. For example, on Windows the user can connect to the

VPS through a program called Remote Desktop Connection where the user

is able to view the graphical interface of the remote server. Telnetting the

VPS is also possible.

Cloud services can optimise the usage of storage space where users can

share hardware and take up the storage space they need. This is

advantageous from an economical as well as an environmental point of view.

16

4 Our study

4.1 Goal

To go back to the purpose of this report, the idea was to develop a software

architectural design for connecting product devices to a mobile platform (or

other types of PCs) focusing on modular design characteristics. This model

was going to be presented in a set of diagrams that describe the software

design on different architectural and technical levels. Additionally, to

demonstrate the architectural model, a software application named Ship

Detector, would be developed that integrates the above features.

Ship Detector is described in detail in the following sections.

17

4.2 Introduction to Ship Detector

The idea of the application Ship Detector is to interpret AIS data taken from

an AIS Encoder and display this vessel information to the end user by

mapping out the vessels on a map on a mobile device.

Ship Detector consists of a server application that runs on a java supported

device and a client application that runs on the Android platform. The

server application receives AIS signals as raw data strings from an AIS

Encoder that in turn fetches these signals from a local antenna installed on

the Semcon Building. The server on Ship Detector can thus access, interpret

and store information about adjacent vessels. The client application contacts

the server for vessel information and stores it in its local database and then

displays a representation of the vessels on a map on the android device as

shown below in Figure 1.

Figure 1 showing markers representing vessels.

18

When vessels are displayed the user is able to tap on any vessel marker and

a popup view will be shown with vessel specific information as shown in

Figure 2.

Figure 2 showing a popup window displaying information about a specific

vessel.

The local database on the Android device is updated periodically with the

help of a timer that sends a request to the server for new information.

Additionally, Ship Detector makes use of three APIs, Västtrafik,

CommuteGreener and Google Maps which enable the user to view the

timetable for urban transport vessels as well as calculate CO2 emissions for

intercity journeys. The user can also mark specific boats as “favourite boats”

to be able to track them. These features are shown in Figure 3, Figure 4 and

Figure 5 below.

19

Figure 3 showing the timetable for the nearest stop for public transport

vessels. This information is taken from the Västtrafik API.

Figure 4 showing the CO2 emissions for a vessel going from Gothenburg to

Fredrikshamn. This information is taken from the CommuteGreener API

and Google Maps API.

20

Figure 5: A user can mark a vessel as “Favourite”. The marker for the

vessel will get a different colour.

4.3 Methodology and technologies

4.3.1 Development Environment
The application was developed with the programming language Java in the

integrated development environment (IDE) Eclipse. Google code was used as

a subversioning tool and for simultaneous development of the application

amongst the group members. Google code was used with the help of a plugin

to Eclipse, Subclipse, which enabled the group members to commit and

download source code from a project on Google code.

In addition, to be able to develop an Android application, several additions

were used which were added to Eclipse including Android Development

Tools (ADT), Software Development Kit (SDK) and Android Virtual Device

(AVD) which is an emulator that simulates an android device.

21

Development method

The application Ship-Detector has been developed in an agile manner partly

using Scrum. To reference back to the Scrum method it was not possible to

use it at its full potential. During the development process there was no

real product owner, the Scrum master and product owner was the same

person (supervisor at Semcon) and the requirements for the application

were put forward from both the product owner and the group members, the

development team. Weekly sprint planning was held in which the product

owner and the development team staked out what had be done during the

upcoming week. For every function or requirement to be implemented a

“ticket” was made which is a task or a user story to be implemented along

with an estimated duration. In addition, the development team held daily

Scrum meetings to plan the daily workload and wrote a diary highlighting

the daily work along with occurring problems and references to useful links.

Automatic Identification System (AIS)

The functionality of Ship Detector relies on AIS signals. These signals are

received by an antenna located on the Semcon building in Lindholmen,

Gothenburg. These signals are further handled by an application, AIS

Encoder, which is placed in a Linux based server. The application receives

AIS signals in binary code and converts the data to strings of characters

that are sent out to connected clients. The Ship-Detector server connects to

the AIS Encoder and receives the strings of raw data. At this point, the

strings of data do not convey any useful information and must be further

converted. To allow this conversion, Ship-Detector has integrated a free

converting application from freeais.org that converts the raw AIS data to

Java objects.

4.3.2 Application Programming Interface (API)
Ship Detector makes use of APIs to obtain additional information about

specific vessels. To obtain this information http requests are sent with a

string of characters that contain information about the address of the web

service and the type of information requested. The response of the request is

received as a string of characters in the structure of JSON. In order to

convert this data, the server application makes use of a JSON library that

converts the string of data to a Java object. The information is then easily

retrieved.

The APIs used in Ship Detector include Google Maps, Västtrafik and

CommuteGreener. Google Maps is used to obtain coordinates of cities and

addresses by sending a request with the name of that city or address.

22

Västtrafik is used to obtain the timetable for a few specific stops around

Götaälv where public transport vessels stop. As for CommuteGreener, a

calculation of CO2 emissions is obtained for a specific vessel based on the

start and end coordinates that are sent in the request. It is worth

mentioning that CommuteGreener only covers urban transport vessels.

4.4 Software architecture of Ship Detector

4.4.1 Application Model

The system architecture has focused on separating the application into

divisions, each of which has consistent and common responsibilities. Ship

Detector adopts the client server model. The client is the source that

establishes a connection with the server and the server in turn responds

back to the client. The server functions as a passive server, being the source

that only responds to the clients. The server allows multi-client connections.

The client adopts a three-tier structure while the server has two tiers. The

client has a graphical user interface, a logic tier and a database tier whilst

the server has a logic tier and a database tier.

In the client- and server application there are two different databases and

these vary in function and structure. The server database must be available

at all time as it functions as the central database which stores all the vessel

information for long periods and is accessible to enquiring clients. The

database on the client side stores information about the vessels locally on

the mobile device and is updated regularly.

Client

The client adopts a three-tier structure to separate the graphic from the

logic and the logic from the data layer. The separation between the graphic

layer and logic layer facilitates structure and enhances modifiability

whereby changes in one layer do not affect all other layers.

Presentation tier

Clearly, the graphic layer is the part of the application that accounts for the

graphical user interaction, translating functions and results to the end user.

This part has been developed for the Android platform. Despite of the

efforts of trying to separate the presentation layer from the rest of the

application many of the essential features of the application, such as Google

map are dependent on the android related source code and so important

23

features of the client application are located in the presentation layer.

Logic tier

All information from and to the graphical layer goes through a single point,

the logic layer, and it is concerned with either collecting AIS data from the

local database or establishing a connection to the server in order to acquire

other information either stored in the server database or collected from an

API (Västtrafik or CommuteGreener).

Data tier

The data layer handles the storage of AIS data on the local android device

using SQLite. SQLite is the only database that can be used. It is possible to

write data on a file and then store this on the device but then the search

possibilities are very limited. The database stores information about vessels

taken from the server database on the server. This database is updated from

the server every few seconds. For the purposes of this particular application,

perhaps a local database was not necessary to implement. The initial

motivation for using a local database is to allow a user to access vessel

information without having network connection even if this information

would not be up to date. Currently, there are three tables of data stored,

“Ships” which contain all vessel related information, “Positions” that stores

the 10 latest positions obtained for a specific vessel and “Favourites” which

contain the vessels that the user has marked as “favourite”.

More details on the client database can be found in Appendix 3.

Server

The server is divided into two layers, a logic layer and a data layer.

Logic tier

The logic layer is concerned with communicating with the external

applications as well as the clients and handling various tasks related to

these applications. Currently there are three rather separate parts within

the logic layer, the “AIS handler”, the “API handler”, and the “Client

handler”. The AIS handler handles the reception of AIS signals, the

conversion of these signals into objects, and the storage of these signals in

the database. The API handler is concerned with the communication with

the external web services, Västtrafik, Google Maps and CommuteGreener. It

receives data in JSON format and converts it to a JSONobject which can be

interpreted in java. The Client handler communicates with the client and

calls the other handlers to acquire information to be sent back to the client.

Another part to the logic layer handles the database logic.

Data tier

24

This layer accounts for the persistent storage of the AIS objects. A relational

database is implemented using Apache Derby 10.8.2.2 with a Derby

Embedded JDBC Driver. There are three tables, “Ships”, ”Positions” and

“Destinations”. These tables are regularly updated as AIS data is received.

The database handler makes use of SQL to simply set and get information

from the database. There is no additional logic to this layer and the idea is

to keep this tier as simple as possible and with a defined functionality. This

makes transitions to other database types easier. There is only on point of

connection to the database from the rest of the application.

More details on the server database can be found in Appendix 2.

4.4.2 Server/Client Communication
The client/server communication is conducted in a uniform manner and is

object-oriented. A threaded connection is implemented to allow multiple

clients to server communication. There is also a restriction of a number of

simultaneous client connections. This is set to avoid performance decline

and also to avoid external attacks which can lead to server overload.

Since the data sent between the client and the server can take many forms

we had to design a system of communication that would allow us to send

strings, integers and a range of different objects. To achieve this we created

a system where objects sent inherited a class we named “Message”.

As described in this section, the design of Ship Detector is based on a

layered structure which enhances the modularity of the application. For

instance, the ripple effect which was discussed in the previous chapter is

taken into account by restricting the communication between the layers to

single points and thus calls for a function does not come from many different

directions. For example, in Ship Detector, the path of communication is

restricted as seen in the design of the client application. All calls from the

graphical interface go through one point to the logic layer, before continuing

to the data layer. On both the server and the client all communication with

the database goes through a single point etc.

In addition, a number of methods and information within each module has

been implemented as private to be able to hide as much information as

possible so that changes can be isolated within each module and prevented

from spreading out to other modules. This ensures that implemented

changes would only affect the specific module that holds the function.

25

4.5 Presentation (Diagram)

One of the many challenges of software architecture is to present the

software model and the vision behind it in a way that is understandable to

both technical and non-technical stakeholders. Different stakeholders have

different perspectives, requirements, levels of information and different

treatment of information (Bass, Clements & Kazman 2007). Accordingly,

five different diagrams have been drawn to present the relevant

characteristics of the software model to the stakeholders involved.

26

Domain-level diagram

The domain level diagram is presented below. It is a high level diagram that

is intended mainly for non-technical stakeholders and is used for explaining

the basic idea behind the application. As shown, the diagram simply

presents the main concept of the application which is the use of a server

application that many clients (mobile devices in our case) can connect to

through an internet connection. The server application is connected to an

application, AIS Encoder which is a receiver for the AIS antenna. The server

has a storage component that stores information that is acquires from AIS

Encoder. The server is also connected to other information sources. The

server is comprised of several modules, each of which handles an

information source. The design idea is that each module has an information

source and related storage space that it handles. This design enables

removal and insertion of additional information sources without affecting

the other modules.

Diagram 1 showing the Domain-level Diagram.

27

4.5.1 Deployment (physical) Diagram
This diagram focuses on the physical environment that the application is

intended to run in. The idea of our model is that a server application runs

on a cloud service where it communicates with different information sources

as well as clients.

For Ship Detector to operate properly the server application needs to run on

a computer device or similar that supports Java. The client application

needs to run on a mobile device and in this case it has to be on an Android

platform (2.1 or higher).

The server application is placed on a cloud service using a VPS and

communicates with the AIS Encoder through internet connection. The same

type of communication is held between the client and the server on a

different port. Additionally, the server communicates with three different

web services, APIs, and this is also conducted through internet connection.

Diagram 2 showing the Deployment Diagram

28

4.5.2 Functional (logical) Diagram
A functional diagram describes the application’s functional elements, their

responsibilities, interfaces and primary interactions (Rozanski et al. 2005).

It can also be seen as the logical viewpoint of the application. UML (Unified

Modelling language) is used to document the functional structure of the

application. As shown in the table below Ship Detector is divided into a

client (pink components) and a server (grey components). In addition, the

external information sources are represented in blue components. The AIS

encoder is an external application that receives and encodes AIS signals to

send them through to Ship Detector. The arrows represent dependencies.

Component Description

Client

User interface

This component represents the classes that handle GUI related functions.

Since this is an Android application, the user interface component contains

a number of activity classes and xml files that make up the GUI.

Client Handler

This component contains classes that handle the connection between the

GUI the database and the server.

Database Manager

This component contains classes that handle the insertion and extraction of

data from the database as well as the connection between the database and

the rest of the client application.

SQLite DBMS

This component represents the actual database management system

SQLite.

Server

AIS Signal Handler

This component receives AIS signals, converts them to java objects and

extracts relevant information before forwarding them to database manager

for storage.

API Handler

This component contains classes that handle requests to and responses from

web services. It receives responses in JSON format and converts them into

java objects before sending them through to the client manager.

29

Client Manager

The Client Manager component handles the connections with the clients,

and also deals with the client enquires. Depending on the type of enquiry,

the Client Manager will contact the API Manager or/and the Database

Manager.

Database Manager

The database manager is responsible for insertion and extraction of data

from the database and also for the logic part of the database system.

Database Derby DBMS

This component represents the actual database management system

SQLite.

External Components

The external components include the AIS Encoder and the web services that

the server application contacts including Västtrafik, CommuteGreener and

Google Maps.

When an end user chooses to view vessel information, the client application

retrieves this information from its local database. This database is

automatically updated from the central database on the server application

at regular intervals.

As depicted in the diagram, the request and response between the client and

the server is passed on from one module to another. Thus, a component only

communicates with the component that is above and below it.

30

 Diagram 3 showing the functional Diagram

31

4.5.3 Concurrency (dynamic) Diagram
This view describes the concurrency structure of Ship Detector. The

application has a few concurrent elements as indicated in the table below

(the parts that are stereotyped as “Thread” indicates concurrency). As

shown in the table, when the application is initiated, two parts run

simultaneously, AIS Reader and Client Connector. AIS Reader, which is the

element of the server application that receives AIS raw data, runs as a

thread. This in turn creates yet another thread of AIS Controller, which is

the part where the system checks if the received AIS message is complete. If

this is not the case it will wait for the remaining part of the message to be

received before passing it on to the next stage.

Client Connector handles the communication with the client part of the

application. It initiates a socket connection on a certain port, and waits for

incoming client connection requests. When this occurs, a client thread is

created that runs concurrently with Client Connector. This is to allow

multiple client connections.

The Java Derby database is threadable and can handle concurrent queries.

On the client side, there are no concurrent elements.

Diagram 4 showing the Concurrency Diagram

32

4.5.4 Operational Diagram
The operational viewpoint describes how an application will be operated,

administered and supported when it is running on its production

environment (Rozanski et al 2005). Ship Detector is written in java, android

related java and SQL. The client and the server run as two separate

applications and require different libraries and development tools.

For the server application, development needs to take place in a java

development tool, with JDK 1.6. A Apache derby dependency needs to be

installed and added to the application in order to manage the derby

database. A JSON library is needed for converting JSON formatted code to

java code. Another dependency is the httpclient, httpcore and commons-

logging for making use of the external web services (APIs).

Diagram 5 showing the server Operational Diagram

33

On the client application, apart from a java development kit JDK 1.6,

Android SDK, software development kit needs to be installed with version

2.1. To make Eclipse a more powerful environment for developing Android

the ADT (Android Development Tools) plugin was installed. Since Ship

Detector makes use of Google maps, this library was added to the

application when creating a project that targets Google APIs. With this the

keystore was included to provide a key to give permission to use Google

maps. A virtual development tool may also be needed for testing the

application (unless a real device is not used). This must also be installed and

requires Google API version 7. The device on which the production

environment is running has to have network connectivity and have

available ports to be used.

Diagram 6 showing the client Operational Diagram

34

5 Result

The smartphone market is growing rapidly and the range of mobile

applications provided is numerous. Meanwhile the market is offering an

increasing number of network connected products and it is predicted that in

the next decade a large number of appliances will have network connectivity

through which they will be monitored and maintained. The challenge is to

find a suitable modular way to connect these products to computers and

mobile platforms in order to be able to access their information and to

monitor/control them directly through these devices.

Accordingly, our aim was to develop a software model for an application that

is able to connect a mobile phone to another device and allow the mobile

user to access information generated by that device. This software model

was to be made modular in order to be used as a concept for similar

applications. Furthermore, the software model was going to be documented

through proper and understandable diagrams clearly depicting the different

technical and design levels of the application.

The study resulted in the development of a working application, Ship

Detector, which is an android mobile application that displays information

about vessels in and around Gothenburg. This vessel information is taken

from AIS signals through an antenna which is localised in

the Semcon building in Lindholmen.

As indicated in the domain level diagram above the application adopts the

client server model whereby the server, which can be run on a computer

device, is the connection point between the AIS Encoder and the mobile

device, the client. Furthermore, the server handles other information

sources, such as APIs from Västtrafik and CommuteGreener.

In terms of the modular characteristics of our software model, the aim was

to be able to reuse this model in order to make other product to computer

device connections. As indicated in the domain level diagram above, on the

server part different information sources are handled separately to allow

insertion of additional information sources and to allow removal of

information sources without affecting one another. Thus, every information

source handler is a separate component. As shown, the AIS handler is

separate from the API handler and so any alterations in either component

will not affect the other.

35

On the client part, we attempted to separate the GUI component from the

logic component so that the GUI is only concerned with displaying the

information, as indicated in the chapter Application model. However, the

client part of Ship Detector is bound to the Android platform as it is written

in java and if is going to be used on other platforms then it has to be

rewritten in their respective programming languages.

To see a detailed description of the software component a class diagram can

be found in appendix 5.

36

6 Conclusion

As indicated in the report we were able to build a model that could be used

as a concept for developing applications that connect electronic products to

PCs and mobile platforms, allowing them to be monitored and controlled

through these devices. This model was designed in a modular way in which

additional products could be easily added, modified and removed without

greatly impacting the rest of the model. Moreover, we demonstrated this

model through developing an application, Ship Detector, that incorporated

these concepts as was described earlier in the report. The design of the

application was presented in five different diagrams depicting its different

technical levels and perspectives.

Several challenges were faced during the development process of this study

and these are discussed in the following section.

6.1 Critical Discussion

Since we already had experience in many aspects of the application that we

developed such as Android development and concepts such as server-client

communication and design it was rather easy to set suitable time

estimations. However we did fail to make realistic time estimates on the

parts of the project that we had little experience on. This resulted in cutting

out some features towards the end. Some of these features are discussed in

the future development section.

The main challenge with this project was to build a good architecture for an

application that connects products to PCs and mobile platforms. But how

would we know what was a good architectural solution? Which

characteristics should our architecture have and which characteristics

should we focus on and why? The questions were addressed by consulting

software architects and other experienced professionals as well as reading

relevant literature. We took into account some of the advice we received as

well as following some design decisions that have been previously built and

tested and proven to work well.

When constructing a software architectural design there are numerous

decisions that must be made. Customarily all these decisions are made

before developers start to develop the system. All documentation is created

in advance to make it possible for stakeholders to see how the end product

37

will look and enable them to contribute with input. This was a rather

difficult task for us as we didn’t have much experience in software

architecture. It also made it hard to balance this type of approach with the

agile development method.

As discussed earlier in the report, agile software development is highly

preferred amongst developers. Agile development allows the team to plan

for one period at a time, thus setting out the requirements, functions and

priorities specific for that upcoming period. This allows flexibility where

clients can change and add requirements to fit their needs during the time

of development. However, to some extent, this goes against the notion of

good architectural design making. It is regarded that the whole system

should be built up before beginning the development process so that all

stakeholders can have their influence and input on the software. But a

Scrum master will let the architecture emerge during the development

process. This is a problem that we had to deal with. How do we create a good

architecture if we take it as it comes? We discovered that by making the

architecture modular as opposed to integrated, adding new functions and

changing priorities did not pose a hinder on the development of the

application. We found that agile development required good architecture

and so we were able to detect whether our architecture was suitable when

the application faced additional requirements and modifications.

As mentioned earlier in this report to demonstrate the architecture we

designed a server-client application that required network communication

between the computer device running the server application and the

Android device running the client application. We realized early on in the

process that the android phones that were connected to mobile networks

would not be able to connect to the server as it was running inside Semcon’s

highly secured network. The IT security in Semcon posed restrictions when

testing the client server communication. We were therefore only able to test

the application with an android emulator and when using the emulator

environment we could not simulate the GPS and other embedded functions

so the application could not be completely tested. This testing problem was

later solved by setting up the server application on a VPS.

When looking back on the process there are some things that we could have

done differently to get a better outcome. The result might not have been

different but the development process could have gone smoother had we

outlined our requirements on the Semcon network and been given

permission from the IT department. With this approach the use of the cloud

service would have been up and running sooner and the testing of the

38

application would had been easier and faster and we could have tested all

features at the same time instead of making alternative testing.

6.2 Generalization

The goal with this project was to develop an application model for

connecting products to computer devices and this model was going to be

used as a concept for applications with similar functions. Therefore the

generalisation of the model was taken into account at the start of the

development process.

It is predicted that more and more appliances will have network

connectivity in the next decade. These devices will include appliances such

as refrigerators and washing machines. By connecting these appliances to

remote computers this can for example allow providers to efficiently monitor

and maintain these appliances from a remote site. These appliances can also

be connected to mobile devices and become accessible at all time, sending

alerts and other valuable information that can be addressed more promptly.

This type of mobile device connection will also enable a more mobile working

environment. Instead of sitting and monitoring a system, employees can

occupy themselves with other tasks or be at other places and still receive

system updates and other relevant information through the mobile device.

6.3 Future development

As mentioned earlier, there were some features that were not implemented

due to time constraints. For example future work can be done on improving

the graphical interface of Ship Detector to make it more user friendly and

marketable.

An additional feature that we did not have time to implement was a

function that allows a user to point at a vessel with the mobile device and

displays its information. This function would require the GPS and compass

features of the phone and possibly a camera if wanting to simulate picture

recognition.

Another feature that could be implemented is mapping all the destinations

of a vessel on Google map by drawing lines between the destinations. There

is currently a database table that persists all the registered destinations for

each vessel.

39

Ship detector is specific to the Android mobile platform, and so a useful area

to explore is how to make the application applicable to different platforms.

Developing the same application for different mobile platforms is time

consuming and costly and therefore cross platform development would make

mobile applications more modular.

At this moment the Ship Detector server adopts a passive server model,

which means that when the server is contacted by a client the server only

responds to the request. Hence the server cannot initiate contact with the

client. If an application that adopts our model was going to have alert

functions or any other features that require the server to contact the client,

there needs to be an implementation of an active server.

Moreover, Ship Detector was development to be used as a concept for

similar applications. Future development in this area would mean using the

principles of this application model and connecting other products that can

provide more useful information.

40

References

Bass, L., P.Clements, R.Kazman. (2007) Software Architecture in Practice,

2nd ed. Boston : Addison-Wesley. (SEi series in Software Engineering)

Beedle M., Bennekum A., Cockburn L., Cunningham W., Fowler M.,

Highsmith J., Hunt A., Jeffries R., Kern J., Marick B., Martin R. C. ,

Schwaber K., Sutherland J., Thomas D. (2001). www.agilemanifesto.org.

http://agilemanifesto.org/history.html (14 Mars 2012)

Ericsson, Networked Society. (2012) Shaping Sustainable Cities in the

Networked Society. http://www.ericsson.com/networkedsociety/.

http://www.ericsson.com/networkedsociety/media/hosting/Sustainable_Netw

orked_Cities.pdf (29 May 2012)

Gobry, P-E. (2012) ANALYST: Smartphone Sales will Dwarf PC Sales this

Year and Reach a Staggering 1.5 Billion per Year by 2016.

www.businessinsider.com. http://articles.businessinsider.com/2012-02-

29/tech/31109577_1_smartphones-pc-sales-internet#ixzz1wLBSqWB5.

(2 May 2012)

Helal, S., Bose, R., Li, W. (2012) Mobile platforms and development

environments. [Electronic] Florida: Morgan & Claypool. (Synthesis digital

library of engineering and computer science. Synthesis lectures on mobile

and pervasive computing ; # 9.)

International Maritime Organization (IMO) (n.d.) International Convention

for the Safety of Life at Sea (SOLAS), 1974. http://www.imo.org.

http://www.imo.org/about/conventions/listofconventions/pages/international-

convention-for-the-safety-of-life-at-sea-(solas),-1974.aspx. (30 May 2012)

Kyocera QCP 6035 Smartphone (2001) www.Palminfocenter.com.

http://www.palminfocenter.com/view_story.asp?ID=1707. (7 May 2012)

Orenstein, D. (2002) QuickStudy: Application Programming Interface (API).

http://www.computerworld.com/.http://www.computerworld.com/s/article/4

3487/Application_Programming_Interface?taxonomyId=11&pageNumber=1.

(30 May 2012)

Rozanski, N.,Woods, E. (2005) Software Systems Architecture : working with

stakeholders using viewpoints and perspective. Upper Saddle River,

http://www.martinfowler.com/
http://www.agilemanifesto.org/
http://agilemanifesto.org/history.html
http://www.ericsson.com/networkedsociety/
http://www.ericsson.com/networkedsociety/media/hosting/Sustainable_Networked_Cities.pdf
http://www.ericsson.com/networkedsociety/media/hosting/Sustainable_Networked_Cities.pdf
http://articles.businessinsider.com/2012-02-29/tech/31109577_1_smartphones-pc-sales-internet
http://articles.businessinsider.com/2012-02-29/tech/31109577_1_smartphones-pc-sales-internet#ixzz1wLBSqWB5
http://articles.businessinsider.com/2012-02-29/tech/31109577_1_smartphones-pc-sales-internet#ixzz1wLBSqWB5
http://chans.lib.chalmers.se/search~S1*swe?/tSynthesis+digital+library+of+engineering+and+computer+science./tsynthesis+digital+library+of+engineering+and+computer+science/-3,-1,0,B/browse
http://chans.lib.chalmers.se/search~S1*swe?/tSynthesis+digital+library+of+engineering+and+computer+science./tsynthesis+digital+library+of+engineering+and+computer+science/-3,-1,0,B/browse
http://chans.lib.chalmers.se/search~S1*swe?/tSynthesis+lectures+on+mobile+and+pervasive+computing+%3B+%23+9.+1933-902X/tsynthesis+lectures+on+mobile+and+pervasive+computing+%23++++9+1933++902x/-3,-1,0,B/browse
http://chans.lib.chalmers.se/search~S1*swe?/tSynthesis+lectures+on+mobile+and+pervasive+computing+%3B+%23+9.+1933-902X/tsynthesis+lectures+on+mobile+and+pervasive+computing+%23++++9+1933++902x/-3,-1,0,B/browse
http://www.imo.org/
http://www.imo.org/about/conventions/listofconventions/pages/international-convention-for-the-safety-of-life-at-sea-(solas),-1974.aspx
http://www.imo.org/about/conventions/listofconventions/pages/international-convention-for-the-safety-of-life-at-sea-(solas),-1974.aspx
http://www.palminfocenter.com/view_story.asp?ID=1707
http://www.computerworld.com/
http://www.computerworld.com/
http://www.computerworld.com/

41

USA:Pearson Education, INC

Schwaber, K., Sutherland, J. (2011) The Scrum Guide, The Definitive Guide

to Scrum: The Rules of the Game. www.scrum.org.

http://www.scrum.org/storage/scrumguides/Scrum_Guide.pdf. (16 April

2012)

Sjöfarstverket (2012) AIS transpondersystem. http://www.sjofartsverket.se

http://www.sjofartsverket.se/Infrastruktur-amp-Sjotrafik/Sjotrafik

information/AIS-transpondersystem/ (12 April 2012)

Smartphone definition from PC Magazine Encyclopedia (n.d.)

http://www.pcmag.com/. http://www.pcmag.com/encyclopedia_

term/0,2542,t=Smartphone&i=51537,00.asp. (11 May 2012)

http://www.scrum.org/storage/scrumguides/Scrum_Guide.pdf
http://www.pcmag.com/encyclopedia_term/0,2542,t=Smartphone&i=51537,00.asp
http://www.pcmag.com/

42

Appendix 1 – AIS Table

message description sending

rate

MMSI unique id x

Navigation status ex "at anchor", "user way

using engine(s)"

x

Rate of turn right or left, from 0 to 720

degrees per minute

x

Speed over ground 0 to 102 knots x

Position Longitude and Latitude x

Course over ground relative to true north to 0.1° x

True heading 0 to 359 degrees x

UTC Seconds seconds ago data were

generated

x

IMO seven digit number 6 min

Radio call sign x 6 min

Name name of the ship 6 min

Type type of ship/cargo 6 min

Dimension of ship to the nearest meter 6 min

Location of positioning

systems (e.g. GPS)

meters aft of bow and meter

port of starboard

6 min

Type of positioning system such as GPS, DGPS or

LORAN-C

6 min

Draught of ship 0.1 meter to 25.5 meters 6 min

Destination max. 20 characters 6 min

ETA (estimated time of

arrival) at destination

UTC month/date

hour:minute

6 min

x: Ship at anchor or moored and not moving faster than 3 knots 3 min

Ship at anchor or moored and moving faster than 3 knots 10 s

Ship 0-14 knots 10 s

Ship 0-14 knots and changing course 3 1/3 s

Ship 14-23 knots 6 s

Ship 14-23 knots and changing course 2 s

Ship >23 knots 2 s

Ship >23 knots and changing course 2 s

Information retrieved from

http://en.wikipedia.org/wiki/Automatic_Identification_System#Message_typ

es [19 March 2012]

http://en.wikipedia.org/wiki/Automatic_Identification_System#Message_types
http://en.wikipedia.org/wiki/Automatic_Identification_System#Message_types

43

Appendix 2 - Database

Server database:

Ships(MMSI, name, ETA, # length, #width, navStat, destination,

#latitude, #longitude, #draught, updated, #rot, shiptype, #cog,

#speed)

Description – Ship table

The Ship table consists of all information that is received from the AIS

signals, every ship consist of one row in the table. When signals are

obtained from a ship that never has been in the database a new row is

created, but if a signal is received from a known ship that ships row is

updated with the new information. The key is used to be able to get

precisely one row and for this the ship's unique identification number

(MMSI) is used.

Positions(ship, #posnr, #latitude, #longitude)

Ship --> Ships.MMSI

Description – Position table

In the Position table the ten latest positions from a ship is stored to be able

to map the direction the ship came from. To get hold of a specific row two

keys must be used because every ship has ten positions. The keys in this

table are the unique identification number (MMSI) of the ship and the order

number 1-10. When a new position arrives the first number is removed and

the new is inserted.

Destinations(ship, ETA, destination)

Ship --> Ships.MMSI

Description – Destination table

The destination table stores all the destinations of each ship. Two keys are

used, the unique identification number (MMSI) and estimated time of

arrival (ETA). This table is currently not in use.

44

Appendix 3 - Database

Client database

Description – Ship table

This table is designed in the same way as Ship table on the server. Only

difference is that the vessel information is updated at fixed intervals so AIS

signals from ships that are not within the range of the antenna will not be

in the database.

Description – Position table

Same as the Position table on the server but only with updated ships.

Description – Favourite table

The Favourite table lists the unique identification number of a ship that the

user has chosen as one of the favourites. “Favourite” marked vessels will be

displayed in another colour.

45

Appendix 4 - Dependencies

Dependencies

Server

httpcore-4.2-beta1.jar

http://hc.apache.org/downloads.cgi

httpclient-4.2-beta1.jar

http://hc.apache.org/downloads.cgi

commons-logging-1.1.1.jar

http://commons.apache.org/logging/download_logging.cgi

derby.jar

http://db.apache.org/derby/derby_downloads.html

json-org.jar

http://www.docjar.com/jar/json-org.jar

Client

SDK

http://developer.android.com/sdk/index.html

ADT

http://developer.android.com/sdk/eclipse-adt.html#installing

http://hc.apache.org/downloads.cgi
http://hc.apache.org/downloads.cgi
http://commons.apache.org/logging/download_logging.cgi
http://db.apache.org/derby/derby_downloads.html
http://www.docjar.com/jar/json-org.jar
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/eclipse-adt.html#installing

46

Appendix 5 – Server Class Diagram

47

Appendix 6 – Client Class Diagram

