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Model recovery anti-windup control for linear discrete time systems
with magnitude and rate saturation

T. Péni and B. Kulcsár and J. Bokor

Abstract— The paper proposes a model recovery anti-windup
(MRAW) scheme for linear time-invariant and discrete-time
systems under magnitude and rate saturation. The method is a
modified, discrete-time counterpart of the algorithm presented
in [4]. As it is usual in the MRAW framework the AW
compensator contains the exact copy of the plant in order that
the ideal (unsaturated) behavior can be preserved in the states.
The compensator is a controller that aims to push the plant
towards this intended behavior. The design of this control action
can be reduced to a construction of a stabilizing state feedback
acting on the saturated plant. In [4] this feedback is a linear
one, which is designed by convex optimization by enlarging the
ellipsoidal approximation of the invariant domain. This paper
presents a different, set-theoretic approach, which is based on
the precise construction of the maximal control invariant set.
The proposed control is a nonlinear one generated by point
wise convex optimization.

I. INTRODUCTION

Control input limitations are always present in real phys-
ical systems. If the controller is designed irrespective of
these limitations the later appearance of a saturation may
cause undesired behavior in the closed loop: it leads to
performance degradation or even to instability. This effect
is called controller windup.

One possible way to minimize the undesired effects of
controller windup is using an anti-windup compensator. The
concept is straightforward [8]: the controller is designed
by ignoring the input nonlinearities and then a dynamic
compensator is constructed, which modifies the inputs and
outputs of the controller so that the following three criteria
are fulfilled: (1) the closed loop is stable; (2) if there is
no saturation the nominal performance is guaranteed; (3) in
case of saturation the system is driven by the compensator
so that the closed-loop signals return to the domain where
they do not cause saturation and the nominal performance is
recovered as quickly as possible.

The method presented in the paper belongs to the class
of Model-Recovery Anti-Windup (MRAW) compensators.
These approaches are common in that the dynamics of
the compensator are the exact copy of the plant and
the compensation is structured so that the difference
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between the states of the real plant and its copy holds
all information about the ideal (saturation-free) behavior
[6]. The compensator design generally boils down to a
construction of a state feedback controller, which drives
the plant’s copy so that the real system tends towards the
intended behavior. If there is no uncertainty in the system
the MRAW compensator is totally independent of the actual
controller, so it can work with any control method[4], [11].
Though all advantages of MRAW algorithms can be enjoyed
only if the plant is precisely known, there are results for
uncertain systems as well [10], [9].

This paper derives the discrete-time counterpart of the
novel, MRAW compensator proposed for continuous time
systems in [4]. In the paper cited two approaches (plant-
order and extended dimensional) are discussed. They differ
in the handling of the magnitude and rate limited saturation:
the plant-order design considers the saturation as a single,
dynamic nonlinearity while the extended model separates it
into two (magnitude and rate) components. Depending on the
open-loop properties of the plant three different anti-windup
solutions are proposed for both methods. In this paper we
focus only on the extended compensator structure with trade-
off solution, because it can be applied to open-loop unstable
plants and enjoys some certain linearity properties.

Beside the precise formulation of the discrete-time com-
pensation scheme the paper proposes a different, set-theoretic
design method for the compensator stabilization. In [4]
the saturation is inserted into the design framework by a
modified sector condition, linear feedback is constructed and
quadratic Lyapunov function is used to generate ellipsoidal
approximation for the domain of applicability. In contrast
we exploit the advantages of discrete-time formulation and
characterize the guaranteed stability region as a polytopic set.
Over this domain an optimization-based method is proposed,
which can compute an admissible control input at every
point of the entire region. The applicability of the presented
method is demonstrated on a numerical example.

The paper is organized as follows. After the introduction
and problem formulation the concept of model-recovery anti-
windup is presented. Then, the discrete-time compensator
structure is derived in sec IV. A separate section (sec.
V) is devoted to the design of compensator stabilization,
because this is the point where the continuous-time procedure
and its discrete-time version are conceptually differ. The
paper concludes with a numerical example (sec. VI) and the
planned future research (sec. VII).



II. NOTATION AND PRELIMINARIES
This section summarizes the notation and the most impor-

tant theorems used in the paper.
1) The notation is fairly standard. If x is a vector then

its i-th component is denoted by xi. If x is a vector
valued signal generated by a discrete-time process, then
x (without superscript), x+ and x− denote its value at
the current, next and previous time steps, respectively.

2) The vector-valued saturation and dead-zone functions
are denoted by satR(u) and dzR(u) and are de-
fined in the usual way: satR(u)i = max(min(ui, Ri),
−Ri), Ri ∈ R, Ri > 0 and dzR(u) = u− satR(u).

3) The following theorem is taken from [4]. Given any pair
v, y ∈ R and ε ∈ (0, 1), there exists ε ∈ [ε, 2 − ε] s.t.
the following equality holds:

satS(y + v)− y = satSε(v) + σ

where |σ| ≤ |2dzS(1−ε)|. The actual value of ε depends
on the actual argument of the saturation function.

The following definitions and theorems can be found e.g. in
[2]

4) A convex, compact set containing the origin in its
interior is called C-set. The Minkowski function of a
C-set S ⊆ Rn is defined for all x ∈ Rn as Ψ(x) =
inf{λ ≥ 0 : x ∈ λS} .

5) A set is polyhedral if it is defined as an intersection of
finite number of closed halfspaces. The polytope is a
bounded polyhedral set. Polytopes and polyhedral sets
can be given by a set of linear ineqaulities, defining the
hyperplanes. E.g. P = {x | Hx ≤ h}, where ”≤” is
meant element-wise.

6) Let x+ = Ax + Bu be a discrete time system with
state and input constraints x ∈ X , u ∈ U , where
X ,U are polyhedral C-sets. P is a maximal control
invariant set (MCIS) contained in X if P ⊆ X and
for all x ∈ P there exist u ∈ U s.t. Ax + Bu ∈ P . In
case of LTI systems the MCIS is a polytope and can
be computed efficiently by the backward computation
method described in [2] and in section V.

7) A set S is λ-contractive for system x+ = Ax + Bu if
there exists u ∈ U s.t. Ψ(Ax + Bu) ≤ λ for all x ∈
S. If S is λ-contractive then the Minkowski function
Ψ(x) is a control Lyapunov function inside S ([2]). The
stabilizing control input associated with Ψ(x) can be
constructed by on-line optimization. The details of the
algorithm can be found in [2] and in section V.

8) For some λ > 0, the MCIS of x+ = (A/λ)x+ (B/λ)u
is a λ-contractive set of x+ = Ax+Bu.

III. PROBLEM FORMULATION
The problem setup is similar to the one formulated in [4].

The system to be controlled is linear, time invariant and given
in discrete-time state space form, as follows:

x+ = Ax+Buu+Bdd

y = Cyx+Dyuu+Dydd

z = Czx+Dzuu+Dzdd (1)

where x ∈ Rn, u ∈ Rm, y ∈ Rny , z ∈ Rnz are the
state, control input, measured output and performance output,
respectively. (The plant may be open-loop exponentially
unstable, as the method discussed in the paper does not re-
stricted to stable systems.) We assume that an unconstrained
controller has already been designed for the plant:

xc+ = f(xc, uc, r)

yc = g(xc, uc, r) (2)

where xc, uc, r, yc are respectively the controller state, con-
troller input, the reference to be tracked and the controller
output. This general form is used to indicate that the con-
troller can have arbitrary structure, even a nonlinear one. If
there is no saturation, the loop is closed by the following
interconnection:

u = yc, uc = y (3)

We assume that this nominal closed loop system (formed
by (1)-(2)-(3)) is well posed, exponentially stable and all
performance requirements prescribed for z are satisfied for
all possible disturbance and reference signals. This means
that the nominal loop produces the intended behavior.

The saturated system is obtained from (1)-(2) by inserting
the magnitude and rate limited actuator, defined as follows,
between the controller output and plant input:

u = satMR(ν) = u− + satR(satM (ν)− u−) (4)

where

ν = yc (5)

In (4) M = [M1,M2, . . . ,Mm] and R = [R1, R2, . . . , Rm],
Mi, Ri > 0 denote the magnitude and rate limits. The output
of (4) satisfies

−Mi ≤ ui ≤Mi, −Ri ≤ ui − u−i ≤ Ri (6)

for all input ν. Dynamics (4) is one possible model that is
able to mimic the behavior of a rate and magnitude limited
actuator. It can be verified that this discrete time model
has the same advantageous properties than its continuous
counterpart [5].

To distinguish the non-saturated system from the saturated
one, the signals generated by (1)-(2)-(3) will be denoted by
·̂, (x̂, ẑ, etc.)

Our aim is to design an AW compensator to compensate
the unintended effects of control input limitations caused by
the saturating actuator (4).

IV. MODEL RECOVERY ANTI-WINDUP
COMPENSATION FOR DISCRETE-TIME SYSTEMS

In this section we derive the discrete-time counterpart
of the extended, model-recovery anti-windup compensation
proposed for continuous-time systems in [4].

As we have mentioned, the name ”model-recovery” means
that the compensator dynamics are the exact copy of the



plant. In the extended structure the n states given by the
plant is extended with m more state variables, each one
corresponds to one rate limited input:

x+aw = Axaw +Bu(u− yc)
δ = satR(yc − y−c + v−1 ) + δ−

yaw = Cyxaw +Dyu(u− yc)
zaw = Czxaw +Dzu(u− yc) (7)

The compensator input v1 will be determined later. The AW
compensator is connected to the closed loop formed by (1)-
(2)-(4) in the following way:

ν = satM (δ), uc = y − yaw (8)

The block-diagram of the entire structure is depicted in
Figure 1. Consider now the dynamics of the controller and
the state difference x− xaw:

x+ − x+aw = A(x− xaw) +Buyc +Bdd

y − yaw = Cy(x− xaw) +Dydd

z − zaw = Cz(x− xaw) +Dzuyc +Dzdd (9)

x+c = f(xc, y − yaw, r)
yc = g(xc, y − yaw, r) (10)

It is easy to see that (9)-(10) describes the same dynamics as
(1)-(2)-(3), so in case of (x−xaw)(0) = x(0), (i.e. xaw(0) =
0) the trajectory of (9)-(10) coincides with the trajectory of
(1)-(2)-(3), i.e.

yc(k) = û(k) = ŷc(k),

(x− xaw)(k) = x̂(k), (11)
(z − zaw)(k) = ẑ(k)

If the actuator saturates and consequently the state of the
system start diverging from the ideal, unsaturated behavior,
the state difference will carry the information how the
ideal trajectory should look like. Exploiting this property,
the saturation effect can be compensated and the ideal
behavior can be recovered if z is forced to converge to the
ideal output z − zaw, i.e. to make zaw → 0. This is the
goal, which has to be achieved by suitably choosing the
conditioning signal v1.

To this end, we introduce first a new state variable δaw =
δ− yc which is defined to evolve according to the following
dynamics:

δaw = δ−aw + (δ − δ−)− (yc − y−c )

= δ−aw + satR(yc − y−c + v−1 )− (yc − y−c )

= δ−aw + satRε(v−1 ) + σR (12)

where the last equality and the following upper bound are
direct consequences of item 3 of section II:

|σR| ≤ |2dzR(1−ε)(yc − y−c )| = |2dzR(1−ε)(ŷc − ŷ−c )| (13)

The input difference u−yc can also be rewritten in a similar
way:

u− yc = satMR(satM (δ))− yc = satM (δ)− yc
= satM (δ − yc + yc)− yc
= satMε(δaw) + σM (14)

where

|σM | ≤ |2dzR(1−ε)(yc)| = |2dzR(1−ε)(ŷc)| (15)

Using the new state equations - (12) and (14) - the dynamics
of the compensator can be expressed as

x+aw = Axaw +BusatMε(δaw) +BuσM

δ+aw = δaw + satRε(v1) + σ+
R

yaw = Cyxaw +DyusatMε(δaw) +DyuσM

zaw = Czxaw +DzusatMε(δaw) +DzuσM (16)

Note that the external signals σM and σ+
R are upper bounded

by the dead-zone function of the differences û−satM (û) and
(û+ − û)− satR(û+ − û), that is, they estimate the control
input loss caused by the magnitude and rate limited actuator.

The goal is to design the compensator input v1 so that the
states of (16) remain close to zero if σM 6= 0 or σ+

R 6= 0 and
converges to zero at the largest available decay rate when
σM = σ+

R = 0.

satMR(ν)

xaw
+

δ
v1z−1

xaw
δ−

v1
−

z−1

yaw

y

−

yc ν
Controller Plant

MRAW

u

Fig. 1. The structure of discrete-time MRAW compensation.

V. DESIGN OF COMPENSATOR INPUT

Following the concept of [4] we can make the following
assumption on the systems’s behavior in saturating mode:

Assumption. The signals σM , σR have compact support
[0,K], K �∞, that is σM (k) = σR(k) = 0 for all k > K.

In other words, we assume that the system does not
spend too much time in saturating mode. This assumption
makes it possible to consider σM , σR as short time pertur-
bations, which push the state (xaw, δaw) from 0 to some
(xaw(K), δaw(K)). If we neglect the short transient while
the state reaches (xaw(K), δaw(K)) it is enough to focus
only on the time period k > K, i.e. when σM , σR are
zero again. The input v1 has to be designed to steer the
disturbance-free system back to the origin as quickly as
possible. Since v1 is constrained and A can be unstable,
this is possible only if (xaw(K), δaw(K)) is in the maximal



control invariant set of (16). Based on these observations,
it makes sense to define v1 as a suitable trade-off solution
between the following two conditions:

• Make the domain of attraction as large as possible in
order that the compensator converges for large values
of xaw(K), i.e. the compensated loop can tolerate large
input loss.

• Make also the decay rate as large as possible, for the
unconstrained response can be recovered as fast as
possible.

The point where the continuous and discrete time formula-
tions significantly differ is the method chosen for construct-
ing the feedback control v1. In [4] v1 is constructed in linear,
state feedback form v1 = K

[ xaw

δaw

]
, the domain of attraction

is estimated by the ellipsoidal level set of the quadratic
Lyapunov function and the modified sector condition [7] is
used to take the dead-zone nonlinearity into consideration
through the LMI-based design procedure. For the discrete
time case a different, set-theoretic approach is proposed in
this paper. Starting from the saturation-free LTI system

s+ =

[
A Bu
0 I

]
s+

[
0
I

]
v1 = Aaws+Bawv1 (17)

(s ∈ Rn+m), the saturation nonlinearities can be considered
as linear state/input constraints

satMε(δaw) → |δaw| ≤Mε (18a)
satRε(v1) → |v1| ≤ Rε (18b)

which have to be satisfied by (17). Then, picking an
arbitrary 0 < λ < 1 constant, we can construct the
λ-contractive polytopic set P of (17), over which the
Minkowski function serves as control Lyapunov function
and the stabilizing v1 can be computed at each point of P
by on-line optimization (Item 7, Section II)1.

Applying item 8 of Section II the λ-contractive set of (17)
can be determined by computing the MCIS of the scaled
system

s+ =
1

λ

[
A Bu
0 I

]
s+

1

λ

[
0
I

]
v1 = Aaw,λs+Baw,λv1 (19)

Since the λ-contractive set converges to the MCIS of (17)
as λ tends to 1, therefore the algorithm above enables us to
extend to domain of attraction up to the MCIS, i.e. we are
able to give state feedback control for all states, where it
exists at all.

Going into the details, the first step of the controller
design is the construction of the MCIS of (19). This step
can be performed easily by using the following, backward
computation method [2]:

1By definition or by construction all of the sets appearing in the paper
contain the origin in the interior so every set is a C-set.

1) Let P0 = {s|H0s ≤ h0} ⊂ Rn+m be the initial
polytope with

H0 =


In 0
−In 0

0 Im
0 −Im

 , h0 =


xmax · 1n
xmax · 1n
Mε
Mε

 (20)

where xmax is an arbitrary, positive value determining
the domain of interest. It is used to render the initial set
bounded. The constraints on v1 define also a polytope,
which is denoted by U = {v1||v1| ≤ Rε}.

Let k = 1.
2) Compute P̄k from Pk−1 = {s|Hks ≤ hk} as follows:

P̄k := {(s, v1)|s ∈ Pk−1, v1 ∈ U ,

[Hk−1Aaw,λ Hk−1Baw,λ]

[
s
v1

]
≤ hk−1}

3) Pk := ProjsP̄k
4) If Pk−1 ⊂ (1+γ)Pk for some small γ > 0 then STOP,

otherwise k := k + 1 and GOTO 2.

Remark. Although the value of ε depends on the actual
argument of the corresponding saturation function, it is
enough to perform the algorithm above with the smallest
value ε = ε, because it is the case where we get the most
stringent constraints in (18). �

If the algorithm terminates at step k, the set Pk will be
a close approximation of the MCIS P of (19) and thus the
λ∗-contractive set of (17). Here λ∗ is not equal to λ because
of the numerical approximation. Precisely, λ∗ = (1 + γ)λ.
Having determined the contractive set it has to be stored
because it is needed at each time step of control to compute
the actual stabilizing compensator input v1. If at time k
the compensator state is s(k) = [xaw(k) δaw(k)] then
v1(k) can be determined as a result of the following convex
optimization problem [2]:

v1(k) = arg min

 minv1 ξ :
H(Aaws+Bawv1) ≤ ξ · h

v1 ∈ U , ξ > 0
(21)

where P = {s|Hs ≤ h}. The minimization of ξ in (21)
ensures that the control input will provide the largest
possible decay rate at each time step. The stability of (17)
under the control v1 is certified by the Minkowski function,
which is a Lyapunov function for the closed loop (17)-(21).

Remark. Although the applicability of v1 generated by
(21) is proved only for the case when σM = σ+

R = 0, the
algorithm (21) can be applied in practice if σM 6= 0 or
σ+
R 6= 0. During this transient the state (xaw, δaw) is not

necessarily in P so (21) will terminate with ξ > 1. �

Remark. The trade-off between the size of the guaranteed
stability domain and the rate of convergence can be con-
trolled by xmax, which determines the domain of interest.



Larger xmax results in larger contractive set but produces
smaller control inputs, while smaller xmax decreases the
guaranteed stability domain and increases the rate of con-
vergence.

VI. NUMERICAL EXAMPLE

We consider the following two dimensional system, bor-
rowed with slight modifications from the AWAST Toolbox
[1]:

ẋ =

[
−0.5 1
0.8 −0.4

]
x+

[
−0.2
−5

]
u, y = x

The system is discretized first with sampling time Ts = 0.1.
The discrete-time model corresponds to

x+ =

[
0.9550 0.0957
0.0766 0.9646

]
x+

[
−0.0438
−0.4916

]
u = Ax+Buu

The first state variable x1 has to track a reference value,
therefore the following controller has been designed for the
nominal plant:

x+c = xc + [0.1 − 0.1 0]

[
r
uc

]
yc = −19.7698xc + [0 8.0292 1.5811]

[
r
uc

]
(22)

The closed loop behavior without input saturation is depicted
in Figure 2. By inserting the actuator model (4) into the
loop with limits M = 8, R = 0.8 the closed loop becomes
unstable, as it can be seen in Figure 3. It is clear that the AW
compensation is required to recover the stability and tracking
performance. The compensator design starts with the MCIS
algorithm. Setting λ = 0.95, xmax = 40 and γ = 0.04 we
got the polytopic set depicted in Figure 4. It can be seen that
the compensator is applicable over a large subset of states,
i.e. it can tolerate relatively large input loss.

Figure 6 shows the simulation results with the AW com-
pensation in the loop. The computation of v1 by algorithm
(21) takes approx. 0.04s on 2.3GHz, Intel i5 processor, so
it works in real-time. As it is expected, the compensation
slowed down the system but it managed to regain the
stability.

VII. CONCLUSIONS AND FUTURE WORKS

In the paper a model-reference anti-windup solution has
been proposed for discrete-time linear systems. The algo-
rithm follows the concept of the continuous time compensa-
tion proposed by [4]. The proposed method is a set-theoretic
approach using fundamentally different tools than [4]. The
drawback of the method is the increased computational time
required by the on-line optimization at each time instant. The
future research has to be directed towards eliminating this
disadvantageous property. For this, multi-parametric linear
programming can be applied which can provide all solutions
of (21) as a piecewise linear function of the state ([3]).
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