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Abstract—In this paper we revisit existing methods for measuring 
the shielding effectiveness of material samples using nested 
reverberation chambers. These methods have the advantage of 
exposing the sample with a more realistic environment than other 
methods that are based on single plane wave excitation. That is, 
in the reverberation chamber the sample is exposed to fields with 
different incidence directions and polarizations resulting in that 
the average shielding effectiveness can be measured. We show by 
comparison with aperture theory that the measured shielding 
effectiveness corresponds to the theoretical value. We show also 
by measurements that a corrugation or choke on the periphery of 
an aperture can be used for increasing the shielding effectiveness 
for a narrow frequency range. 

Shielding effectiveness; nested reverberation chambers; 
aperture attenuation; chokes; corrugations 

I.  INTRODUCTION 

In EMC applications there is often a need for determining 
shielding properties for materials. Examples are materials for 
use in shielding gaskets, conductive meshes for use in displays 
and ventilation panels, composite materials and conductive 
paints for cases and housings for electronic equipment, to 
mention only a few. Normally we quantify the shielding 
properties in terms of the shielding effectiveness (SE) which is 
defined as the ratio of the transmitted power through the 
material to the incident power, i.e., 

 dB 10SE 10log t
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where tP  is the transmitted power and iP  the incident power. 
In principle, SE can be determined either by numerical 
modeling or measurements. However, practical materials used 
for shielding purposes have often a structure that is very 
complex, and it might also be irregular. This requires a detailed 
numerical model which has the disadvantages of being difficult 
and time consuming to solve. Therefore is numerical modeling 
in general not a feasible method for determining the SE and 
measurements are consequently used instead. 

Existing measurement techniques for determining the SE 
are normally designed to give SE for far-field conditions, i.e. 
the case of uniform plane wave incidence. There exist also 

methods that give SE for near-field conditions, such as the dual 
TEM cell method [1] but also other methods such as those 
discussed in [2]. In the present paper we consider only SE 
measurement methods for far-field conditions. The far-field 
measurement method in [3] is intended for characterizing 
shielding enclosures, but very often is the same methodology 
used also for measuring SE of material samples. Then the test 
sample is placed in an aperture in the enclosure and linearly 
polarized antennas are used to generate the incident power 
density as well as for measuring the power density on the other 
side of the test sample. The idea is to expose the test sample 
with a linearly polarized plane wave, and consequently only a 
limited set of incidence directions and polarizations can be 
tested in practice. There is therefore no guarantee that neither 
the minimum nor the maximum SE is found when using this 
kind of methods. It can also be argued that in real-life, 
equipment is seldom exposed to a single plane wave, instead 
some kind of multipath excitation is a more realistic scenario 
and therefore the average SE is the relevant measure. The 
average SE can be obtained by exciting the test sample with 
many plane waves with random incidence directions and 
polarizations, measure the power levels on both sides of the 
sample, repeating for a new set of incident waves a sufficient 
number of times and taking the average. As it turns out this is 
exactly what is done when using reverberation chamber 
methods. 

The reverberation chamber is basically a cavity that is large 
in terms of the wavelength. Since it is large and the Q-value is 
finite we excite many modes at each frequency, and since each 
mode can be shown to correspond to up to eight plane waves 
[4] we have many plane waves coming from different 
directions and having different polarizations inside the 
chamber. Now, if we alter the mode configuration, e.g. by 
moving a metallic plate to a new position, we have created a 
new set of plane waves. If we do this a sufficient number of 
times, and the chamber is good, we are able to create a rich 
isotropic multipath environment with a well-defined average 
power level. In fact, the standard deviation of the average 
power level decreases as one over the square root of the 
number of independent samples, where each sample represents 
a power sample for a given stirrer position (assuming each 
position gives an independent sample). In a good chamber, we 
can quite easily achieve a standard deviation ( 2 ) better than 



1 dB. By using a nested chamber configuration, e.g. by having 
one small chamber inside a bigger one, we can measure the 
average SE for a sample placed in an aperture in the small 
chamber. It should here be pointed out that in doing this we 
need to stir the modes in both chambers so that both the 
transmitted and the incident powers in (1) represent average 
power levels. 

In this paper we revisit the nested reverberation chamber 
methods described in [5]-[6]. As is exemplified in [6] some 
currently used methods give for certain conditions a nonzero 
SE when performing a measurement without a sample in the 
test fixture. Of course, the SE should be zero without a sample 
and in order to get rid of this deficiency a modified approach is 
proposed in [6]. We show in this paper that the modified 
method presented in [6] gives not only the correct zero SE 
without a sample but also the correct value when we have a 
sample in the test fixture. We do this by comparing measured 
values for apertures of different sizes with calculations using 
aperture theory. A method for increasing the SE in a narrow 
frequency band by the use of corrugations or chokes is also 
presented. 

II. REVERBERATION CHAMBER MEASUREMENT METHODS 

In Fig. 1 is shown the basic setup for measuring SE using 
nested reverberation chambers. In the outer chamber we use 
two antennas, one for injecting the power and the other for 
measuring the power level. Similarly, we use one antenna in 
the inner chamber for measuring the power level on the other 
side of the test sample. It is convenient to use a vector network 
analyzer (VNA) and connecting the transmitting antenna to 
port 1 and in turn the other two antennas to port 2. Then the SE 
is given by, 
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where the powers ,oc sP  and ,ic sP  are defined in Fig. 2,  21, ,io sS

and 21, ,oo sS  represent transmission from the transmitting 

antenna in the outer chamber to the receiving antennas in the 
inner and outer chamber, respectively. The subscript s denotes 
that the test sample is in place. The bars over the measured 
quantities denote ensemble averages obtained from a large 
number of stirrer positions, of the stirrers in both chambers. 
 

 
Figure 1.  Basic nested reverberation chamber setup for measuring SE. 

If we have no sample in the aperture in the inner chamber we 
expect to get a zero SE. In Fig. 2 is shown an example of 

measured SE without a sample, and as can be seen the basic 
method gives a non-zero SE. 

 
Figure 2.  Examples of measured SE using basic and Q-compensated 

methods. 

A. Basic Method with Compensation for Q-factor in Inner 
Chamber 

Since the basic method might give a non-zero SE without a 
sample, it is in the standard [5] proposed to add a correction 
factor. Then the SE is given by, 
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The correction factor in (3) is basically a compensation for the 
Q-factor in the inner chamber and is defined as, 
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where the powers are defined in Fig. 3. 
 

 
Figure 3.   Setup for measuring the correction factor CF in (3). 

As can be seen in Fig. 2 the addition of the correction factor 
changes the situation, but still we get a non-zero SE for the 
case without a sample. It should here be pointed out that the 
shortcomings of the two methods discussed so far are due to 
that these methods do not correctly account for aperture and 
cavity sizes and loading effects. This is recognized in the 
standard [5] and for cases when the methods fail the method 
discussed in the next section is recommended. 
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B. Method Proposed by Holloway et al. [6] 

In [6] Holloway et al. derive a method that guarantees that 
the SE is zero without a sample. They show that the SE can be 
expressed as the ratio between two effective cross sections, one 
for the aperture in the inner chamber without the sample and 
the other with the sample in place. Thus, the SE is given by, 

 10dBSE 10log s
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where ns  and s  are the average cross sections without and 
with the sample in place, respectively. It is readily seen from 
(5) that the SE becomes zero with no sample since then

s ns  . In order to measure SE according to (5) we need to 
measure the same power quotients as for the previously 
discussed methods but in addition also for the case without a 
sample in place. From [6] and using the same notation as 
defined in Fig. 1 and 3, the expression is, 
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from which it also readily can be seen that the SE reduces to 
zero for the case of no sample. If we use a NVA and measure 
the S-parameters the expression reduces to, 
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since the two last ratios in (6) are equal to 
2

21, ,ii nsS  and 
2

21, ,1 ii sS , respectively. We know that this method gives the 

correct 0 dB SE when we have no sample, but still it remains 
to show that it gives the correct value also for other cases. This 
will be addressed in the following sections. 

III. ATTENUATION IN APERTURES 

In order to verify that the measurement method described in 
section II-B gives the correct SE we need to perform 
measurements on samples for which we can determine the SE 
with some other method. Our choice is to simply use circular 
apertures of different sizes for which we have theoretical 
formulas. As can be seen from (5) the SE is given by the ratio 
of two cross sections. The cross section ns  represents the 
aperture in the inner chamber when no test sample is mounted. 
In our measurement setup this is a quadratic aperture with a 
side length of 0.3 m, see section IV. The other cross section, 

s , represents the test sample and is in our case, as already 
mentioned, a circular aperture. 

In general, aperture theory can be subdivided into three 
cases, when the aperture is small, comparable to, and large in 
terms of the wavelength. Here we will only consider the cases 
when the aperture is small and large in terms of the wavelength 
since for these cases we can find simple expressions for the 
cross section. For the intermediate region the theory becomes 

more complicated and we are normally forced to use numerical 
methods [7]. 

A. Apertures of Arbitrary Shape 

When the aperture is electrically large we can use the 
geometrical optics approximation from which it is found that 
the cross section is independent of frequency, polarization and 
azimuth of the incident field. It is however a function of the 
incident elevation angle but since we here are only interested in 
the average cross section this dependence is averaged out and 
the expression becomes [8], 

 2A   (8) 

where A is the aperture area. 

When the aperture is electrically small we can use 
polarizability theory [7], [9] which states that the transmitted 
field can be determined as the fields from electric and magnetic 
dipole moments. It can be shown that the cross section has the 
following frequency dependence, 

 4Cf   (9) 

where C is a constant that depends on the aperture size and 
shape.  

B. Circular Aperture 

By using (8) the cross section for an electrically large 
circular aperture can be written as, 

 2 2a   (10) 

where a is the radius of the aperture. For an electrically 
small circular aperture it is possible to find the constant C in 
(9), the result is [7]-[9], 
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where 0c  is the speed of light in vacuum (or in the media 
filling the aperture). 

In fact, it is also possible to find analytical expressions for 
the intermediate frequency region for circular apertures, but we 
will not pursue this here. Instead we will for simplicity use (10) 
and (11).  

C. Corrugations to Increase SE 

As can be seen from (8) the cross section will for high 
frequencies be determined by the physical aperture area and is 
constant. This means that the SE will be constant, and for EMC 
applications the value will often be too low. It is therefore of 
interest to be able to increase the SE in some way. One idea is 
to provide a soft boundary condition [10]-[11] around the 
periphery of the aperture. This can be realized by the use of a 
corrugation or choke as shown in Fig. 4. This is similar to what 
was shown to work well for a circular waveguide feedthrough 
in [12] and for slots in [13]. 
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Figure 8.   Measured SE for circular apertures with radii 7.5 and 15 mm, 

respectively. Solid black lines represent theoretical values. 

Fig. 8 shows the SE for the two smallest apertures. As can 
be observed both apertures are small in terms of the 
wavelength in the whole frequency range since the SE 
decreases with frequency in the whole range. It can also be 
observed that the agreement is not as good as before, and the 
agreement is worse for the aperture with the smaller radius. 
This can be explained by that the aperture theory presented in 
section III is strictly valid for apertures in infinitesimally thin 
planes. For the measurements the apertures were made in 
aluminum plates with a thickness of 3 mm. This explanation is 
proved in Fig. 9 where the smallest aperture is measured also 
for a plate with a thickness of 1 mm. The agreement becomes 
better for the thinner plate. As also can be seen in Fig. 8 we 
have problems with the dynamic range for the smallest aperture 
and low frequencies, the SE flattens out as it should not do. 
However, we made no attempt to approve the dynamic range 
by e.g. using an amplifier.  

 
Figure 9.  Measured SE for circular aperture with radius 7.5 mm and depth 1 

and 3 mm, respectively. Solid black line represents theoretical values. 

In order to test if a corrugation or choke around the 
periphery of a circular aperture (see section III-C) would give 
an increase of the SE close to the design frequency we 

manufactured a test sample and performed a measurement. The 
design frequency is 3.26 GHz corresponding to a corrugation 
depth of 23 mm. The width of the corrugation was selected to 
be 24 mm and the radius of the circular aperture was 60 mm. 
The measured result is shown in Fig. 10 and as can be seen the 
SE is increased close to the design frequency. The gain in SE is 
about 15 dB but it should be possible to gain more by 
cascading several corrugations. It should also be possible to 
make it more broadband by cascading several corrugations 
with different depths.  

The reason for the increase in SE for low frequencies is the 
added depth to the circular aperture. We verified this by short 
circuiting the corrugation with copper tape, although this 
measurement is not shown in Fig. 10. 

 
Figure 10.  Measured SE for circular aperture with radius 60 mm with and 

without corrugation, respectively. 

VI. CONCLUSIONS 

We have measured the average SE for five circular 
apertures with radii in the range 7.5 to 120 mm by using the 
nested reverberation chamber method proposed by Holloway et 
al. in [6]. The agreement between measured values and those 
obtained by the use of aperture theory was found to be very 
good. The discrepancies for small apertures were found to be 
due to the finite thickness of the metallic plates in which the 
apertures were made. By using a thinner plate the agreement 
between measured and calculated values became better.  

From this we draw the conclusion that the method proposed 
in [6] gives the correct SE, not only for the case without a 
sample as was already shown in [6] but also for real samples. 

 We also showed by an example that it is possible to 
increase the SE in a narrow frequency range by using 
corrugations around the periphery of the aperture. Although 
only shown for a circular aperture it should be applicable also 
for apertures with other shapes.   
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