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SUMMARY

This is a study of partly submerged breakwaters with a gap between the bottom of the
breakwater and the sea bottom. Mainly fixed breakwaters, built up from the sea bottom

with columns or piles, are treated. Floating breakwaters are also covered to some extent.

The study consists of a theoretical and an experimental part. The calculated and
measured main parameters are: reflected and transmitted waves, forces and moments,

and pressure.

In the theoretical study the structure/fluid interaction problem is solved by assuming a
linear model and a non—viscous fluid. Three solution procedures have been developed;
one for breakwaters with a rectangular cross section, a second for breakwaters with a
rectangular cross section and a protruding bottom plate facing the incident waves and a
third for breakwaters of more general cross section*. The breakwaters are modelled to

be impermeable.

The experimental part deals mainly with a fixed breakwater with rectangular cross
section. For regular wave excitations, transmitted and reflected waves, forces and
moments, and pressure at the bottom of the breakwater were measured. The transmitted
waves were also measured for irregular wave excitations. In addition, the transmitted

waves were measured for the breakwater with a protruding bottom plate.

The generation of irregular waves was performed using a technique in which faster
wave components were successively delayed. This allowed for longer recordings of
responses before the problem of reflected waves arose. '

The measured transmitted and reflected waves agree reasonably well with the calculated
ones. The maximum to minimum values of the horizontal force also agree well with
theory, while the vertical force is significantly contaminated by a double harmonic
(component at twice the frequency of wave generation). The double harmonic

characteristic of the vertical force is especially pronounced for short and steep waves.

* first and second solutions being applications of Principality of Monaco's patented
process "waterwall" (no. PCT/MC/86/00003 and no. F8515938).



ii

It is shown how the wave protection can be significantly improved by using a
breakwater with a protruding bottom plate rather than a rectangular one. This is
confirmed both by potential theory and measurements.
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INTRODUCTION

1.1 Background

Brealkwaters are used in order to protect a certain location from waves, for example
a harbour. The breakwater is meant to prevent the energy of the incident waves
from entering a harbour. This can be effected either by reflecting the energy or
converting it into heat.

The most common type of breakwater is the mound type with a sloped front facing
the incident waves. This structure may be constructed of natural rock, prefabricated
concrete elements or a combination. A typical rubble mound breakwater, placed at
the seabottom and piercing the free water surface, is built with a front slope
inclined about 1:1.5 (Figure 1.1). In deep water the volume of material needed for
such breakwaters is large, and therefore they are expensive to build.

Sea Port

Wave screen

Figure 1.1 Example of a rubble mound breakwater.

In the present study an alternative type of breakwater is studied. The breakwater is
located in the free water surface with a gap between the bottom of the breakwater
and the sea bottom. The concept is presented schematically in Figure 1.2. Such a
concept has been proposed and patented by the Principality of Monaco for its own
Port de la Condamine project, see Bouchet and Manzone (1986). The coast in the
vicinity of the Principality is extremely steep and, even close to the shore, the water

depth is considerable.
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Figure 1.2 Altemative type of breakwater.

In the present study mainly fixed breakwaters, built up from the sea bottom with
caissons or piles according to the patented concept, are treated. To some extent also
floating breakwaters, assumed to be kept in position by mooring systems, are

covered.

The breakwaters are assumed to be impermeable which, according to non-viscous
theory, means that the energy of the incident waves is partly reflected against the
breakwater and partly transmitted through the gap. Since most of the energy in
waves is concentrated to the upper part of the sea, near the free surface, the types
of breakwater discussed can be rather effective in terms of wave reduction, at least

if the wave length is not too long.

1.2 Scope of the study

It has been noted that the choice of cross section of the breakwater significantly
influences the transmission of wave energy. Three different solution procedures
have been developed to solve the hydrodynamic problem of the surface oriented
type of breakwater. Assuming the incident wave has crests parallel with the
breakwater and neglecting the influence from any columns or piles, the problem
can be treated as two—dimensional.



All three solution procedures are two—dimensional. They are based on the linear
wave theory and the assumption that the fluid is non—viscous. The mathematical
formulation of the problem is outlined in Chapter 2.

The first procedure is for a fixed breakwater of rectangular cross section with a
protruding bottom plate facing the incident waves, see Figure 1.3a. The second
procedure is for a fixed or floating breakwater of rectangular cross section, see
Figure 1.3b. In the third procedure fixed and floating 2D structures of more general
geometry are considered, and the formulation also allows the water depth in the
vicinity of the structure to vary, see Figure 1.3.c. In procedures I and II the field
quantities such as fluid velocities and pressure are solved as continuous functions
throughout fluid sub domains whereas in procedure III the boundaries enclosing the
fluid domain are discretized into elements assuming the field quantities to be
constant across each element. The three solving procedures mentioned above are
outlined briefly in Chapter 3. A more detailed description of the procedures is given
in Appendices I, II and II.
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Figure 1.3 Geometries associated with the three solution procedures
presented.

The experimental study presented here is primarily for a fixed breakwater with a
rectangular cross section. For regular wave excitations, transmitted and reflected
waves, forces and moments as well as pressure at the bottom of the breakwater
were measured. The transmitted waves were also evaluated from experiments in
irregular waves. In addition, transmitted waves for the breakwater with a protruding
bottom plate were measured. The performance and methodology of the
experimental study are described in Chapter 4.



In Chapter 5 results obtained from the theoretical study and the experimental study
are presented. Comparisons are made between the different solution procedures as
well as with findings of other authors. It is shown how a breakwater with a
protruding bottom plate significantly reduces the transmission coefficient in
comparison with a rectangular breakwater. Comparisons between theoretical and

experimental data are presented. Agreements and discrepancies are discussed.

Conclusions drawn from the study are summarized in Chapter 6.



2 MATHEMATICAL FORMULATION

2.1 Fundamentals

The mathematical formulation presented below is first reviewed for 3D structures

and subsequently discussed for the 2D case. Both the problem of fixed structures

and floating structures are described.

To justify use of a linear hydrodynamic theory, both small structural motions and

small wave amplitudes are assumed. The structures are assumed to be rigid, and

therefore any motion of the structure can be described by motions in six modes, i.e.

three translations and three rotations. A Cartesian coordinate system, Oxyz, is

defined with its origin in the free mean water surface and its z—axis positive up-

wards and oriented through the center of gravity. The vector of motion is denoted

by x and contains the following elements:

X, = translation in the x—direction
X, = translation in the y—direction
%3 = translation in the z—direction
X4 = rotation about the x—axis
Xs = rotation about the y—axis
Xg = rotation about the z—axis

x Surge  poy

X1Kx&l‘

X5 4
Pitch
X3
’/Swny
Y

T

= surge motion
= sway motion
= heave motion
= roll motion
= pitch motion
= yaw motion

Figure 2.1 Definition of coordinate system and modes of motion.



The fluid is assumed to be ideal (non—viscous) and the flow to be irrotational. The
assumption that the flow can be considered irrotational is important to the formula-
tion of the problem. Generally, the flow is described using the velocity vector, but
when the flow is irrotational it can be described using a single scalar, the velocity
potential ®(x,y,z,t).

For irrotational flow, also called potential flow, a velocity potential exists such that

Vo 2.1)

]

u
where the velocity vector u is given by
u=ui+vj+wk

and the operator, V, by

=it g iRk

where i, j and k are unit vectors along the x, y and z axis respectively.

If the fluid is assumed to be incompressible the continuity equation may be written

Viu=0 2.2)
and if Eq. (2.1) is substituted into Eq. (2.2) one obtains

V2@ =0 @3)

which is the Laplace equation, expressing conservation of fluid mass for potential
flow. From this it is clear that the velocity potential is related to the velocity vector
in a simple way, and in fact it is equally simply related to pressure distribution and
wave elevation. Therefore, the main problem is to solve the Laplace equation with
appropriate boundary conditions.

Consider a regular wave propagating in a direction towards the structure. The
incident wave is disturbed by the presence of the structure and this results in a
diffracted wave. The diffracted wave causes a change in the dynamic pressure
which, integrated over the wet surface of the structure, gives the wave exciting
force. Consistent with the linear theory, even for a floating structure, the wave

exciting force is calculated when the structure is fixed in its equilibrium position.



The problem associated with the wave exciting force is referred to as the diffraction
problem. If the structure is free to move, the wave exciting force will force the
structure to oscillate. The movement forces the fluid mass adjacent to the structure
to accelerate and decelerate and creates a radiated wave. This influence on the
system is accounted for by the hydrodynamic reaction force which, in a linear
formulation, is determined when the structure is forced to oscillate in the absence

of an incident wave. This latter problem is referred to as the radiation problem.

In fact; the diffraction problem and the radiation problems associated with motions
in different modes are mathematically similar. This because the moving boundary
conditions are applied when the structure is in its equilibrium position, which, in

turn, is justified by the assumption of small structural motions.

The formulation below assumes that the solution is time harmonic with the angular
frequency ®. Before proceeding with the boundary conditions for the problems
described above it is convenient to decompose the velocity potential ®(x,y,z,t) into
a spatial component and a time harmonic component. Using complex notation the

decomposition may be set as

o6y = 0wy D0, =126 2.4)

where ¢([)(x,y,z) is the spatial velocity potential associated with the radiation
problem in the /:th mode of motion and

Xl(t) =% e i(:)t?

the structural motion in the corresponding mode. The velocity potential of the

diffraction problem, q>(7) (x,y,2), is simply decomposed by
Oxyz0) = 0Dy, e T 25)

It should be emphasized that complex notation implies that harmonic quantities
such as velocities, pressure, etc., are complex and thereby include information of
both amplitudes and phases. The corresponding physical quantities are simply
obtained by taking the real part of the complex value. The spatial velocity potential
¢(I)(x,y,z) has to satisfy the Laplace equation throughout the fluid domain. At the



boundaries enclosing the fluid domain, various boundary conditions are applied. At
the free water surface both a kinematic and a dynamic boundary condition are
required. The kinematic condition states that the normal velocity of the fluid and
the boundary surface must be equal. The dynamic condition states that the pressure
at the free water surface must be atmospheric. Expressed in terms of the spatial
velocity potential, the two conditions, combined and linearized, give the free

surface condition

2
LN S G 2.6)
dz g

It is consistent with the linear assumption to apply this condition at the mean water
level, i.e. z=0. For further details see, for example, Newman (1977). At the sea
bottom the condition

) _
97 _ ¢ @7
on

is applied, which states that the sea bottom is assumed to be impermeable and
therefore that the velocity normal to the sea bottom equals zero. The surface of the
structure is also assumed to be impermeable and consequently the boundary condi-
tion at the surface of the fixed structure is identical to the sea bottom condition, i.e.

@))
Q;L, =0 (2.82)
T

while for a moving structure the normal velocity of the structure should equal the

normal velocity of the adjacent fluid particle and hence,

o
N on, L6 (2.8b)
on
where
ny= ny= x—component of the normal vector (2.9)

np= ny= y—component of the normal vector
n3= n, = z—component of the normal vector
Ny = yn3— Ziy
fig = Znj — Xy

fig = XNy — ynj



Finally, to give the problem a unique solution, a boundary condition must be
applied at a surface connecting the free water surface and the sea bottom at some
distance from the structure. If the fluid domain is taken to be infinitly large this

radiation condition becomes

4
99" = (— 1 + ik)q)(l), [ (2.10a)
or 2r ‘

where 1 is the polar radius in the horizontal plane and k the wave number given by
the dispersion relation

2
k tanh kh = &~ (2.10b)
g

The radiation condition above assumes that the water depth h is constant for r—=
and states that the waves behave like restricted outwards propagating waves. The
main problem is now to solve the Laplace equation under consideration of the
boundary conditions. It should be pointed out that the only differences between the
radiation problems and the diffraction problem appears in the boundary condition
applied at the surface of the structure.

One of the objectives in the present work is to study how well the horizontal
cylinder works as protection against waves. Therefore we need know how to
calculate reflected waves and transmitted waves respectively. In fact, the free
surface elevation is simply related to the velocity potential by
(=192 ,_9 @.11)
gat

The expression is obtained from the dynamic free surface boundary condition
which states that the pressure is atmospheric at the free surface.

Before proceeding with the next section let us discuss the 2D case when all varia-

tions along the y—axis are omitted as in Figure 2.2.
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Figure 2.2 2D structure with no variations along the y—axis.

For such a geometry the force vector and the motion vector will be reduced and
only contain quantities in surge, heave and pitch. The only change in the
formulation above worth mentioning appears in the radiation condition which

reduces to
0)]
N xz) — ik, 6D=0, 500 (2.12a)
ox
0)]
Qg— @z) + ik, ¢P=0, x- - (2.12b)
X

where kl’ k, are the wave number associated with the water depth far away from the

structure at the left and right side respectively.

2.2  Forces and moments

If we proceed from the Navier—Stokes equation for a viscous fluid, the Bemoulli
equation for irrotational flow can be derived. Expressed in terms of the velocity
potential it becomes

9, lyp.vp+ Py (2.13)
Jt 2 p



11

and gives the pressure throughout the fluid domain. Since we are interested in a

linear solution the second term is neglected. The Bemnoullj equation then becomes

p=9% op (2.14)
Jdt

where the first term represents the hydrodynamic pressure and the second term the
hydrostatic pressure. From the Bernoulli equation the pressure distribution is known
throughout the fluid, and by integrating the pressure over the wet surface of the
structure, forces and moments are cbtained. They can be expressed as

Fj=ff pn;ds, j=12,..6 (2.15)

S

where the elements nj are defined by Eq. (2.9) and

Fy = force along the x—axis
F, = force along the y—axis
F3 = force along the z—axis
F4 = moment about the x—axis
Fs = moment about the y—axis
Fg = moment about the z—axis

The wave exciting force obtained from the solution of the diffraction problem is
calculated directly in accordance with Eq. (2.15) while for the radiation problems
the hydrodynamic reaction force is usually written as

6
Fi= —Z (aij XJ + lexJ)’ i= 1,2, 3
=1
1
(2.16)

where the hydrodynamic coefficients a;; and by; are taken as real and known as the
added mass and damping coefficients respectively. Physically, the added mass
coefficients can be thought of as masses of water being accelerated by the motion
of the structure and the damping coefficients as the effect of damping of the
structure introduced when the motion of the structure creates radiated waves. The
damping is often referred to as potential damping or radiation damping. Expressed
in terms of the spatial velacity potential the hydrodynamic coefficients become
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i b, )
ay+ J=pf ¢Wn, ds @.17)
w
S

Finally, it should be mentioned that the forces of the diffraction problem can be
solved using an alternative approach called the Haskind relation, see Newman
(1962). This relation is a consequence of Green's theorem and makes it possible to
calculate the wave exciting force without having solved the potentials of the
diffraction problem. A form of Haskind's relation is

3 (i) .
F, = iop H {4’(1)”51“4’;@%;]“5 et (2.18)
313
S

where tbl is the spatial velocity potential of the undisturbed incident wave which,

for water of constant depth, is given by

- iga eikx cosh k(z+h)
o cosh kh

o (2.19)

where
a = wave amplitude
k = wave number

h = water depth

The surface of integration S,, is a surface connecting the free water surface and the

sea bottom and is often conveniently chosen far away from the structure.

It should be emphasized that only the wave exciting forces and not the pressure
distribution or the pattern of the diffracted wave, can be obtained using the Haskind
relation. If the pressure or the wave pattern is of interest the velocity potential of
the diffraction problem must be solved. Nevertheless, the Haskind relation is an

excellent tool for use in checking computer codes.

23  Motions
The motions of the structure are calculated from Newton's second law which, if the

generalized force vector includes forces and moments and the generalized
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motion vector includes translation and rotations, becomes

6
Z (mij+aij)5ij+binj+Cinj=Fi, i=l,..,6 (2.20)
j=1

where
m;; = elements of the mass matrix
aj; = elements of the added mass matrix, defined by Eq. (2.17)
bj; = elements of the damping matrix, defined by Eq. (2.17)

¢j; = elements of the hydrostatic matrix

If we only consider the two dimensional horizontal cylinder given in Figure 2.2 the

equation of motion reduces to

z (m,J+a,J)x,+b,]xJ +Cinj=Fi, i=1,3,5 (221)
=135

If it is assumed that the z—axis points through the center of gravity of the cylinder
the only non—zero elements of the mass matrix and the hydrostatic matrix are

my; = m

mys = mz,

ms33 = m

Mgy = sz

- 2

mgs = mrp

33 = pgAy

€35 = PEXAy

Cs3 = —PEXAy

Css = ngzB —mgz, + pgl
where

m = mass of cylinder

z, = center of gravity

fp = pitch radius of gyration

p = density of water

X. = center of gravity of the water plane area

A, = water plane area
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A = water volume displaced by the structure
z, = center of buoyancy
J = moment of inertia at the water plane area about the y—axis

For further insight in the linear theory see, for example, Newman (1977), Sarpkaya
and Isaacson (1981), Mei (1983) and Chakrabarti (1987).
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3. SOLUTION PROCEDURES

The main problem in the theoretical study is to solve the Laplace equation under
consideration of appropriate boundary conditions. There are a variety of solution
procedures to choose among. For structures of simpler geometries the field
quantities such as fluid velocity and pressure can be solved as continuous functions
througout fluid sub domains. This can be achicved using the method of separation
of variables. This method has been used extensively for axisymmetrical
three—dimensional problems, for example by Garret (1971), Yeung (1981) and
Guoping (1987). For two—dimensional problems it has been used, for example, by
Mclver (1986) and Wu and Liu (1988). For structures of more complex geometry
some type of numerical method including discretization has to be used. In a Finite
Element Method (FEM) the fluid domain is discretized into elements while in a
Boundary Element Method (BEM) the boundary enclosing the fluid domain is
discretized. For two—dimensional structures the Finite Element Method has been
used, for example, by Bai and Yeung (1974) and Leonard et al (1983). The
Boundary Element Method seems to be the most common type of method used for
two—dimensional wave/structure interaction problems. In this method Green's
theorem is applied to a source function. Either a fundamental source function can
be used or a more complex Green function that satisfies all boundary conditions
except the one at the surface of the structure. When using a fundamental source
function the surface enclosing the fluid domain has to be discretized, while when
using the more complex Green function only the surface of the structure has to be
discretized. The method of using fundamental source functions has been used for
two—dimensional structures by Bai and Yeung (1974), Ijima et al (1976), Finnigan
and Yamamoto (1979), Jones et al (1979) and Liu and Abbaspour (1982). The
Green's function procedure has been used, for example, by Garrison (1984) and Wu
and Price (1987).

In the present study three different solution procedures have been developed. In two
of the procedures the method of separation of variables is used while in the third
procedure the Boundary Element Method with a fundamental source function is
used. In the present chapter the three solution procedures are briefly outlined. A
more detailed description is given in Appendices I, I and III respectively.

Results obtained from the solutions, including comparisons with the findings of
other authors are presented in Chapter 5.
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3.1  Solution procedure I

The first solution procedure concemns the diffraction problem of a breakwater of
rectangular cross section with a protruding bottom plate facing the incident waves,
see Figure 3.1. The solution gives the field quantities such as fluid velocity, and

dynamic pressure as continuous functions throughout fluid regions.

z
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wave wave
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Figure 3.1 Definition of fluid regions and geometrical properties of solution
procedure L

The fluid domain is divided into four regions. The method of separation of
variables is then applied in each region in order to obtain expressions for the un-
known function, ie. the velocity potential. Expressions valid in each respective
region are obtained as infinite series of orthogonal functions. These expressions are
developed to satisfy all boundary cenditions except those at the common
boundaries between the regions. It then remains to determine a number of unknown
coefficients in the series. This is done by imposing the condition of continuity of
pressure and normal velocity at the common boundary between the regions.
Mathematically, this is fulfilled by matching the potentials and the normal
derivatives of the respective potential. A more detailed description is given in

Appendix L
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3.2  Solution procedure I
The second solution procedure concems the diffraction and the radiation problems
of a breakwater of rectangular cross section, see Figure 3.2.
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Figure 3.2 Definition of fluid regions and geometrical properties of solution

procedure II.

The fluid domain is divided into three regions. The solution procedure applied is
basically the same as in section 3.1. The field quantities such as fluid velocity and

dynamic pressure are obtained as continuous functions throughout the fluid regions.

The difference between the diffraction problem and the radiation problem appears
in the type of excitation applied. In the diffraction problem the excitation is caused
by an incident propagating wave while in the radiation problem the excitation is
introduced by moving boundaries. The solution of the diffraction and the radiation
problems makes it possible to study fixed as well as floating breakwaters. A more
detailed description is given in Appendix II.
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33  Solution procedure II
The third solution procedure concermns the diffraction and the radiation problems of

breakwaters of general cross section. The formulation also allows the water depth

to vary in the vicinity of the breakwater, see Figure 3.3.

Figure 3.3 Definition of fluid regions and geometrical properties of solution
procedure III.

The method used is the Boundary Element Method with fundamental source func-
tions. Green's theorem is applied in a fluid region close to the cylinder (region II).
Outside this region, at each side, the water depth is assumed to be constant.
Analytical series solutions are developed in the outer regions and subsequently
introduced as boundary conditions at the common boundaries S; and Ss
respectively. The resulting integral equation is solved after discretizing the
boundary enclosing region II into elements and assuming the potential to be

constant across each element.

The solution procedure makes it possible to study fixed and floating breakwaters of
complex geometries. In Chapter 5 the quality of the numerical procedure is
analysed by comparisons with solution procedures I and II as well as with findings
of other authors. A more detailed description of the solution procedure is given in
Appendix I
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4 EXPERIMENTAL STUDY

41  General

In the experimental study the main interest was focused on a fixed breakwater with
rectangular cross section (Principality of Monaco's patent no. PCT/MC/86/00003).
The width of the breakwater (along the wave tank) was 615 mm, the draught 154
mm and the water depth 769 mm. When exposed to regular waves, transmitted and
reflected waves, forces and moments as well as pressure at the bottom of the
breakwater were measured. The transmitted waves were also evaluated from
experiments in irregular waves. In addition, transmitted waves were measured in
regular and irregular waves for the type of breakwater with a protruding bottom
plate(Principality of Monaco's patent no. F 85 15938). The width, the draught and
the water depth were the same as for the rectangular breakwater. The height of the
plate was 18 mm and the length of the protruding part either 123 or 246 mm. The
shapes of the structures included in the measuring program are shown in Figure 4.1

123/246
— —

154 i 154
16}
[ 615 S 769 e 615
SIS S 77 7S 7/
Figure 4.1 Geometries included in the test program. Dimensions in mm.

In the present chapter the performance of the experiments is reviewed. The results
of the experiments and comparisons with theoretical results are presented in
Chapter 5.

The experiments were performed in a wave tank, 80 m long, 2 m wide, and with a
maximum depth of 0.95 m. The wave tank was equipped with a wave generator
hinged so that the plane blade could both translate in the direction of wave
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propagation and rotate. A wave absorbing slope was supplied at the end of the tank
opposite the wave generator. The distance between the generator and the slope was
73 m.

{:«. |

Wave generator Wave absorbing

j slope

Figure 4.2 Wave tank.

4.2  Generation of regular waves

The regular waves were generated by giving the piston a sinuscidal input signal.
The piston was connected to the wave blade by a mechanism which allowed the
blade to translate in the direction of wave propagation and also to rotate. The
magnitude of the translation was adjusted so that it increased for longer waves.
Consequently, the wave generator acts as a flap type for deep water waves and

more as a piston type for shallow water waves.

Starting from zero, the magnitude of the input signal was gradually increased to a
final value. A sufficient length of recording was obtained before reflected waves
disturbed the measurements. Experiments were performed with wave frequency, f,
in the range 0.67 — 1.35 Hz and steepness H/L in the range 0.02 — 0.05.

43  Generation of irregular waves

When studying fixed structures, it could be an advantage to perform the
experiments in irregular waves. If the measured quantities are considered
reasonably linear, at least in principle, only a single run is necessary to obtain the
quantities in the desired range of frequencies. This is achieved by frequency

analysis of measured time series.
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Some difficulties arise, however, when performing experiments in irregular waves.
The main problem is that the measuring time should be long enough to give
reasonable conditions for the frequency analysis of the measured time series. When
measuring over a long period, the problem of reflected waves arises. The incident
wave is first reflected by the structure and subsequently by the wave generator. If
the waves are generated for a sufficiently long time, the multiple reflected wave
system between the wave generator and the structure reaches a state of equilibrium,
One possibility of handling the problem of reflected waves is to record the waves
and the responses of interest after equilibrium has been reached. This procedure
then requires an algorithm to separate the waves propagating towards the structure
from those propagating towards the wave generator. This technique has been used
by several investigators, including Kajima (1969), Thornton and Calhoun (1972)
and Yamamoto (1981).

A related problem conceming irregular waves is that the waves consist of several
components propagating along the wave tank at different speeds. If the wave
generator starts at a certain instant at one end of the wave tank, the wave
components with the highest celerities have already been reflected and re—reflected,
and have reached the structure a second time before the components with the
lowest celerities have reached the structure at all. A second concievable method in
which it is not necessary to separate waves travelling in different directions, is to
generate the waves in such a way that the generation of wave components with
high celerities is successively delayed. In the present study this method has been
used. The principle underlaying the method is described below.

The irregular wave train was created from a wave spectrum. Such a spectrum (if
multiplied by a constant) gives the energy content corresponding to a specific sea
state, as a function of frequency. In order to obtain time series of the wave

elevation, the continuous spectrum is discretized using the frequency spacing Af.
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Figure 4.3 Discretization of continuous wave spectrum.

The energy content of the i:th component of the spectrum is then set equal to the
energy content of a regular wave of frequency f; . The time realization of the wave
elevation is subsequently obtained as a series of superimposed regular waves with
different frequencies, f; . Furthermore, if a standard wave spectrum is used, nothing
is known about the phases of the components. A common approach is to assume
random phase angles, uniformly distributed in the interval [0,2r]. We can then

express the wave elevation created from the wave spectrum as

N

L) ='Z a;cos (2ref;t + 6) (4.1)
i=

where

a; = \/E S(f)Af = amplitude of wave component

SH = wave spectrum

Af = frequency spacing

f; = 1Af

6; = phase angle randomly chosen in the interval [0,2m]

N = number of components in spectrum
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It should be pointed out that the time series given above repeats itself at the return

period

!
T, = 57 4.2)

The frequency spacing was chosen so that the return period became equal to the
period of recording, i.e. equal to the period which started when all generated wave
components had reached the measuring point and terminated when the re—reflected

waves caused disturbances.

It is convenient at this point to define a transfer function, R(f), as the ratio between
amplitude of the input signal of the wave generator and the wave amplitude. This
frequency dependent function was originally determined in regular waves and
subsequently adjusted slightly after calibration in irregular waves, see Figure 4.4.

R(f) (Voltaae/m)
°\\ —+-— Regular waves
\
N \\ ——°—-— Irregular waves, TZ=0.99S
X
}( T T* ~ Irregular waves, TZ=1.245

R e R
5 -
£ (Hz)
0 T T T
0.5 1.0 1.5 2.0
Figure 4.4 Ratio between amplitude of input signal fed into the wave

generator and wave amplitude. Water depth h=0.77 m.

When using the transfer function defined above, the time series of the input signal

of the wave generator becomes
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N
{t) = 3. R(fpajcos 2m f;t+6) 4.3)
i=1

The expression given above could be used directly as an input signal to the wave
generator. Theoretically, it then would give the spectrum at the point of generation.
However, we are not interested in the wave condition at the point of generation but

rather at a measuring point some distance from the wave generator.

[ I
= &

Wave generator Wave height meter
5 |
Figure 4.5 Schematically drawn wave elevation a short time after the wave

generator has been started.

Since the fronts of the wave components of the irregular wave propagate at
different velocities the total energy content generated does not reach the measuring
point until the slowest wave component has propagated the distance s, see Figure
4.5. It is not appropriate to start measuring before this instant.

The length of measuring time is limited by the time it takes for the fastest wave
component to be re—reflected and cause disturbances. In order to extend the length
of the measuring period, the faster wave components were successively delayed.
The front of each component was then assumed to propagate at the group velocity
cg. At water of finite depth the group velocity of a regular wave is given by

_1
G =

R 4.4)
sinh (2kh)

where
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c = phase velocity
k = wave number

h = water depth.

The components in the time series were then delayed so that, theoretically they
should reach the measuring point at the same time. This was achieved by using a

delay function defined by

0 for *ti' <0

0(z) = 1 for T, =0 “.5)

where

T =t Ty Ty

Ty = Es_ = time for the i:th wave component to reach the measuring point
gt

] = distance from wave generator to measuring point

Cgi = group velocity of the i:th wave component.

T N = time for the slowest wave component to reach the measuring point

Waves exhibiting this delay characteristic should then be generated using the
following input signal

N
(1) = X 6(t) R(f)a; cos2nf;t + 8) 4.6)

1=

According to theory, if Eq. (4.6) is used as input signal to the wave generator, the
wave components should reach the measuring point at the same time. This means
that there should be no waves at all at the measuring point before the time it takes
for the slowest component to propagate the distance s. In Figure 4.6 a recording of
the wave elevation is shown. The time for the waves to reach the measuring point
was calculated to be 88 s. The time for the fastest wave component to reach the test
object a second time was calculated to be 130 s. Consequently, the period available
for recording, with all wave component present and without disturbances from
re—reflected waves, was calculated to be 42 s. It is clear from the figure that even if
some waves occur before 88 s the energy content is quite small. It is believed that

the proposed method significantly reduces the negative effects of wave reflection. .
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Figure 4.6 Wave elevation at the measuring point as a function of time. The

wave generator has been started at t=0 and the waves should,
theoretically, reach the measuring point at t=88 s.

The irregular waves were created from what is known as an ISSC—spectrum, as
suggested by the International Ship Structures Congress (1964). The spectrum is a
two parameter spectrum determined by the significant wave height H, and the zero
upcrossing period T,. The ISSC—spectrum reads

H,

S0 = 77 -

4.7

From this spectrum the input signal to the wave generator, Eq. (4.6), was created.
The spectrum was truncated for frequencies with a spectral density of less than 5%
of the peak value. In the test program, spectra for two different values of T, were
used, 0.99 and 1.240 s respectively. The wave generation approach previously
described gives available periods of recording of 42 and 35 s respectively, With the
return period set equal to the period of recording this gives a frequency spacing of
0.024 and 0.029 Hz respectively.
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Figure 4.7 Example of measured raw spectrum.

Figure 4.7 shows an example of a spectrum obtained by Fourier analysis of a
recorded wave elevation. The agreement between the measured spectrum and the
one used to create the input signal fed into the wave generator was generally
satisfactory. If the experiments in irregular waves are used to evaluate responses in
a certain frequency range, it is of little importance that the generated spectram
agrees with the original one, as long as the energy content in the frequency range of
interest is not too small. When the experiments are used to directly evaluate
significant values of the response, agreement is of course more important. In the
present investigation the tests in irregular waves were mainly used to measure

responses at different frequencies.

44  Transmission coefficient
The wave elevation was measured using resistance type wave height meters, ie. the
resistance in the water between two parallel electrodes was measured in a

Wheatstone type bridge.
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The wave elevation was measured at a point 37 m from the wave generator. In a
first run the incident wave was measured without any disturbing structure in the
wave tank. The transmitted wave was measured in a second run in which the
structure was placed at position about 2-3 m in front of the measuring point. In
regular waves the transmission coefficient was then simply received as the ratio of

the wave height in the second run to the wave height in the first run.

In irregular waves the procedure of splitting the measurements into two runs is
justified by the fact that the reproducibility of the waves was virtually total. This is
shown in Figure 4.8 where the wave elevation has been recorded for two runs using

the same input signal.

Figure 4.8 The wave elevation measured in two different runs using identical
input signals.
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In irregular waves the measured time series of the incident wave and the trans-
mitted wave were frequency analyzed using a Fast Fourier Transform (FFT). The
analysis gave the wave spectra associated with the incident wave and the
transmitted wave respectively. Before evaluating the transmission coefficients the

wave spectra were made slightly smoother by using

§(fi) =0.25 S(f) + 0.5 S(f) + 0.25 S(fi+1) (4.8)
where

§(f p) = the smooth spectrum of the measured wave

S(f) = the raw spectrum of the measured wave

The transmission coefficients were then evaluated frequency by frequency from

(4.9)

Without this light smoothing, it occasionally happened that the energy content at
some frequency was close to zero and hence gave unrealistic values of the
transmission coefficient. However, this was avoided by using the smoothing
procedure and it became possible process the data in a more efficient and automatic
manner. Figure 4.9 shows an example of raw spectra associated with the incident
wave and the transmitted wave respectively. In Figure 4.10 the transmission
coefficient, evaluated from Eq. (4.9), is plotted. Although only the slight smoothing
effected by Eq. (4.8) was used, the transmission coefficient does not show much
scattering. Note that frequencies below approximately 0.4 Hz and above 1.35 Hz

are of no interest since the input energy was negligible at these frequencies.
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Figure 4.9 Raw spectrum of measured incident and transmitted waves.
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Figure 4.10 Transmission coefficent evaluated from experiments in irregular

waves using Eq. (4.9).
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It might be argued that it would be safer to base the measurements on averaged
spectral values. However, for the present spectra the length of the recording times
at full energy content and without disturbing reflected waves were in the range of
35<T,<42s. This gives a frequency spacing for the spectral values
0.024<Af<0.029 Hz. For a single run and a given measuring period, any averaging
procedure of spectral values will give larger frequency spacing Af. Since the
spectral values of the responses gave values without much scattering, a preference

was given to keeping the frequency spacing small.

The option of using averaging procedures for a number of different runs remains.

This option was, however, not considered necessary.

The principles used for measuring and evaluating the transmission coefficient in
irregular waves are summarized in Figure 4.11.
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Figure 4.11 Principles for measuring and evaluating transmission coefficients

in irregular waves.
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4.5  Reflection coefficient

The reflection coefficient is som=what more complicated to evaluate from experi-
mental data than is the transmission coefficient. The latter is conveniently obtained
using a single wave height meter. In a first run the incident wave is measured with
no structure in the wavetank. Subsequently, in a second run, when the breakwater
has been located in front of the recorder, the transmitied wave is measured. This
simple procedure cannot be used for reflected waves since the reflected wave is
superimposed on the incident wave and it therefore is impossible to measure it in
isolation. Obviously, the two superimposed waves, propagating in opposite

directions, have to be measured and subsequently somehow separated.

For both regular and irregular waves it is possible to separate the two waves using

two fixed wave height meters.

An FFT (Fast Fourier Transform) is used to evaluate amplitudes and phases of the
superimposed waves (or components). This is the key information necessary to
separate the reflected wave from the incident wave. Such a separation technique has
been used in different applications by several investigators, for example Jolas
(1962), Kajima (1969), Thomnton and Calhoun (1972), Goda and Suzuki (1976)
Mansard and Funke (1980), Gaillard et al. (1980) and Yamamoto (1981).

For regular waves a more straightforward approach can be used with a single
movable wave height meter. In this procedure the wave heights in the node and in
the antinode are evaluated from the envelope of the measured time series. The
reflection coefficient is then easily obtained from the following relation

HR (HA - HN)/Z

= = (4,10)
KR HI (HA + H)/Z

where

HR = reflected wave height

HI = incident wave height

H A = Wave height of antinode

HN = wave height of node
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In the present study the method using the Fourier analysis was chosen. This
procedure provides information on energy content in periods other than the one
generated. The method also has the advantage that it can be used both for regular as
well as irregular waves. In the present study the reflection coefficient was evaluated
only in regular waves. The method is outlined briefly below.

Using complex notation the elevation of the incident wave, propagating in the
positive x—direction, can be written
i(ot—kx)

G(xt) = Age (4.11)

where

AI = complex amplitude of the incident wave

® = angular frequency

k = wave number

Similarly, the elevation of the reflected wave propagating in the negative x—direc-
tion is written

Lp(nt) = A (OH) (4.12)
where

AR = complex amplitude of the reflected wave.
The total wave elevation is then given by

Lort) = AR O 4 g HOHH) (4.13)

Now, assume the j:ith measured time series to be time harmonic. It can then be

written in the form
(7 ©=Cje” (4.14)
where the complex amplitude C; is obtained by an FFT (Fast Fourier Transform)

of the time series. Let the x—coordinate of the j:th wave height meter be denoted by
x ;. For x=x; Eq. (4.13) should then be equal to Eq. (4.14) and hence
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—ikx; ikx;
A+ A= (4.15)

Once the complex amplitude of the measured time series is known, Eq. (4.15) con-

tains two unknowns, that is the complex wave amplitudes AI and A]R Conse-

quently, it takes two wave height meters (equations) to solve for the unknowns.

Assuming x;=0 we obtain

C2 - Cleﬂ()(z
= (4.16a)

A

ks iy

Ay=Ci-A (4.16b)

In short, the important steps of the procedure are: first the complex amplitudes of
the time series, C; and C,, are evaluated using an FFT analysis. Second, the
amplitudes of the incident wave and the reflected wave are obtained using Egs.
(4.16a,b)

If more than two wave height meters are used, more equations than unknowns are
obtained. Then the separation can be applied to each pair of meters or altematively
a least square formulation applied. It should be pointed out that the separation
procedure fails if the distance between two wave height meters equals a multiple of
half a wave length. Distances close to these critical values should be avoided, see
for example Goda and Suzuki (1976), Mansard and Funke (1980), and Gaillard et al
(1980).

4.6  Force and pressure measurements

The force measurements were performed with excitations of regular waves.
Compared with the transmitted waves, the forces were of a more non—linear nature
and it was believed therefore that results based on a frequency analysis would not
be meaningful.

The measurements were performed for the breakwater with a rectangular cross

section and dimensions in accordance with Figure 4.12.
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Figure 4.12 Breakwater for which forces were measured (mm).

The breakwater was mounted with six articulated supports, three of them oriented
vertically, two horizontally in the direction of wave propagation and one
horizontally perpendicular to the direction of wave propagation; see Figure 4.13.
All supports except the horizonal one perpendicular to the direction of the waves,
were equipped with force probes.
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Figure 4.13 Experimental set up for force measurements.
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ikxj _ (4.15)

Ae kXA e
R J

1

Once the complex amplitude of the measured time series is known, Eq. (4.15) con-
tains two unknowns, that is the complex wave amplitudes AI and A.R Conse-

quently, it takes two wave height meters (equations) to solve for the unknowns.

Assuming x;=0 we obtain

C, - Cel*2

A]..

— (4.16a)
e—ikxz N ezkxz

A, =Ci-A (4.16b)

In short, the important steps of the procedure are: first the complex amplitudes of
the time series, C; and C,, are evaluated using an FFT analysis. Second, the
amplitudes of the incident wave and the reflected wave are obtained using Eqgs.
(4.16a,b)

If more than two wave height meters are used, more equations than unknowns are
obtained. Then the separation can be applied to each pair of meters or altemnatively
a least square formulation applied. It should be pointed out that the separation
procedure fails if the distance between two wave height meters equals a multiple of
half a wave length. Distances close to these critical values should be avoided, see
for example Goda and Suzuki (1976), Mansard and Funke (1980), and Gaillard et al
(1980).

4.6  Force and pressure measurements

The force measurements were performed with excitations of regular waves.
Compared with the transmitted waves, the forces were of a more non—linear nature
and it was believed therefore that results based on a frequency analysis would not

be meaningful.

The measurements were performed for the breakwater with a rectangular cross

section and dimensions in accordance with Figure 4.12.
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Figure 4.12 Breakwater for which forces were measured (mm).

The breakwater was mounted with six articulated supports, three of them oriented
vertically, two horizontally in the direction of wave propagation and one
horizontally perpendicular to the direction of wave propagation; see Figure 4.13.
All supports except the horizonal one perpendicular to the direction of the waves,
were equipped with force probes.
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Figure 4.13 Experimental set up for force measurements.



The forces were measured for waves with frequencies in the range 0.67 — 1.35 Hz
and steepness, H/L, in the range 0.02 — 0.05. The frequency range corresponds to a
wave length in the range 3.14 — 0.87 m.

The vertical force was obtained by adding together the forces measured with force
probes 1, 2 and 3 at each time step and the horizontal force was similarly obtained
by adding the forces from probes 4 and 5. The moment about the centre of the
bottom of the breakwater was also evaluated

In a first series of experiments only forces were measured. After evaluation of these
experiments, the vertical forces were found to contain a significant component at
twice the frequency of wave generation. This was especially pronounced for short

and steep waves as is further discussed in Chapter 5.

In order to verify the vertical forces it was decided to measure the pressure at the
bottom of the breakwater simultaneously with the vertical forces. This second series
of experiments included two frequencies, 0.81 and 1.15 Hz, corresponding to wave
lengths of 2.33 and 1.17 m respectively. The same steepnesess as before were
tested.

In the first series of experiments the breakwater had a frame structure covered with
plywood walls. The breakwater was partly submerged, with water inside. The
lowest resonance frequency of the breakwater/suspension system was estimated to
be about 10 Hz.

In the second series of experiments, the breakwater was rebuilt, using the same
frame but replacing the plywood walls with PVC, since the pressure transducers
mounted at the bottorn of the breakwater required an interior without water. Six
resistance type pressure transducers were used and were placed in line with the

direction of wave propagation as shown in Figure 4.14.
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Figure 4.14 Pressure transducers.

The pressure transducers were calibrated hydrostatically when mounted on the
breakwater. The force probes were calibrated individually before being mounted
and were subsequently checked using 20 kg masses. No checks gave deviations
larger than 1% from the individual calibrations.

As is shown in Chapter 5, there was excellent agreement between vertical forces

measured directly by force probes and those obtained by integrating the pressure.



5 ANALYSIS OF RESULTS

5.1 Theoretical results

5.1.1 Theoretical validation
In order to check the quality of the solution procedures the result of procedures I
and II are compared with those of procedure Ifl. In addition comparisons are made

with results collected from other authors.

Solution procedures I and M1

In Figure 5.1 the results of procedures Il and I are compared. The breakwater
with a rectangular cross section is defined by h/d = h/b = 2.0. All quantities are
plotted versus kb. In procedure II the number of components in the orthogonal
series is N=10 while the total number of elements in procedure II is Ng=180. In
procedure IIT the number of elements of the boundaries Sy, S,, S, Sy, Ss and Se
was 120, 10, 10, 20, 10 and 10 respectively, see Figure 3.3. At each respective
boundary the size of the elements was equal. The agreement is seen to be quite
satisfactory. When expressed as percentage of the maximum value the deviation, in
the range 0.3<kb<l.3, is less than 0.2% for the reflection and transmission
coefficients, less than 1% for Fy, F3, a;;, asa, byy, bys, less than 2% for Fs, less than
3% for ays, asy, bys, bsy, and less than 4% for ass and bss.

rectangular cross section defined by h/d = h/b = 2.0.

L K
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.0 P 1.0
. 84 2
pﬁi,‘ 0.8
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0.5 1.0 1.5 2.0 0.5 1.0 175 2.0 o
Figure 5.1a Reflection and transmission coefficients for a breakwater with a
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The largest deviations appear for the pitch quantities, i.e. moment, added mass, and
damping in pitch. When the number and length of the elements in procedure HI

were varied it was noticed that the pitch quantities were more sensitive to changes

than the others. However, it seems that all quantities calculated using procedure I

are close to those calculated by procedure II when the number of elements is

Procedure II

Procedure III

increased.
} IFll/cgba 5 0! lF3l/pgba
—— Procedure II
N Procedure III 1.6
1.2 |
\ 0 . 8 ]
0.4
kb
0.5 1.0 1.5 2.0 0.5
Figure 5.1b Forces for a breakwater with a rectangular cross section defined
by h/d = h/b = 2.0.
|F. | /pgbla
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Figure S5.1c Pitch moment for a breakwater with a rectangular cross section

defined by h/d = h/b = 2.0.
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As an additional check of the results, the coupling elements of the added mass and
potential damping matrices can be compared, as the matrices should be
symmetrical, i.e. a;s should equal as; and bys should equal bs;. In Table 5.1 a
comparison of the coupling elements is made for solution procedures II and II.



Table 5.1 Comparison of the coupling coefficients of the added mass and
potential damping matrices. Solution procedures II and III.
Rectangular cross section with h/d = h/b = 2.0.
Solution procedure I (N=10) Solution procedure II (Ng=180)
kb ajs/pVo asy/pV¥b  bys/wp¥h bsympVo| a;5/pVb asy/p¥b bis/wpVb bsy/wpVh
0.030 -0.551 -0.551 -0.034 -0.034 ~0.565 -0.565 -0.035 -0.035
0.080 -0.542 0542 0.111 -0.111 -0.556 -0.556 -0.086 -0.086
0.160 -0509 -0.509 -0.162 -0.162 -0.522 -0.522 -0.166 -0.166
0.340 -0.394 -0394 -0.276 -0.276 -0.404 -0404 -0.282 -0.282
0.385 -0.362 0362 -0.291 -0.291 0371  -0371 -0297 -0.297
0.445 0321 -0.321 0304 -0.304 -0329 -0329 -0310 -0.310
0.525 -0.268 0268 -0.310 -0.310 -0.275 -0275 -0317 -0.316
0.650 0202 -0.202 -0.303 -0.303 -0.208 -0.207 -~0.309  -0.309
0.860 -0.126 -0.126 -0.267 -0.267 -0.130  -0.130 -0.273 -0.272
1.275 -0.063 -0.063 -0.190 -0.190 -0.064 -0.064 -0.192 -0.192
2.235 -0.051 -0.051 -0.087 -0.087 -0.057 -0.057 -0.084 -0.084

From Table 5.1 it is seen that the coupling coefficients of procedure II are

practically identical. The coefficients of procedure II also exhibit excellent

agreement. However, when comparing the coefficients of procedure II with those of

procedure I a slight discrepancy is noted.

A further check of the results can be made using the Haskind relation, Eq. (2.18).

The Haskind relation is a consequence of Green's theorem and existing boundary

conditions which makes it possible to calculate the wave exciting forces having

solved the radiation problems but not the diffraction problem. In Table 5.2 the

wave exciting forces of procedure II are shown, calculated both by solving the

diffraction problem and by using the Haskinds relation.




Table 5.2 The wave exciting forces of procedure II calculated by solving the
diffraction problem and by using the Haskind relation.
Diffraction problem Haskinds relation
Fy 1F3 | Fs | |Fy] | Fs | 1Fs|
kb 1 % 5 1 3 5

pgba pgb% pgba pgba pgba pgb2a
0.340 1.507 1.658 0.378 1.507 1.658 0.378
0.385 1.585 1.582 0.401 1.585 1.582 0.401
0.445 1.649 1.478 0.423 1.649 1.478 0.423
0.525 1.681 1.333 0.439 1.681 1.333 0.439
0.650 1.642 1.126 0.441 1.642 1.126 0.441
0.860 1.482 0.832 0.413 1.482 0.832 0413
1.275 1.174 0.455 0.339 1.174 0.455 0.339
2.235 0.792 0.125 0.220 0.792 0.125 0.220

It is seen that the wave exciting forces of procedure I, calculated in the two
different ways, are virtually identical. The wave exciting forces of procedure il are

presented in Table 5.3. Again excellent agreement is obtained.

Table 5.3 Comparison of forces of procedure T (Ng = 180) calculated by
solving the diffraction problem and by using the Haskind relation
Diffraction problem Haskinds relation
F Fa |Fs| IFy |Fa |Fs]
kb 1 3 b} 1 3 h]
pgba %gEa pgba pgba pgba pgbla
0.340 1.513 1.658 0.385 1.512 1.656 0.385
0.385 1.590 1.581 0.409 1.590 1.580 0.409
0.445 1.655 1.477 0.431 1.654 1.476 0.431
0.525 1.686 1.332 0.447 1.685 1.331 0.447
0.650 1.648 1.125 0.448 1.648 1.124 0.449
0.860 1.486 0.829 0.419 1.488 0.830 0.420
1.275 1.170 0.448 0.342 1.177 0.452 0.344
2.235 0.766 0.111 0.215 0.784 0.121 0.221

It is important to emphasize that when the coupling coefficients or the forces
calculated in the two different ways are compared not much could be said about the
quality of the results. For example, the deviation of the coupling coefficients from
symmetry within procedure III is negligible but when comparing them with those of

procedure I the deviation becomes noticeable. Nevertheless, the above mentioned
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comparisons are important tools for eliminating errors in the derivation of equations

and computer implementations.

Solution procedures I and 111

In Figure 5.2 the results of procedures I and III are compared. The breakwater is
defined by hjy/d=h;/b=2.0, hy/d—hy=20.0, and hj/(b—e)=5.0. In procedure I the
number of components in the orthogonal series is N=12 while the total number of
elements in procedure HI is Ng=180. In procedure III the number of elements at the
boundaries Sy, Sy, S3, S4, Ss and Sg was 120, 10, 10,20, 10 and 10 respectively, see
Figure 3.3. The comparison is made for the quantities obtained from the solution of
the diffraction problem. When expressed as a percentage of the maximum value the
deviation, in the range 0.3<kb<1.3, is less than 0.3% for the reflection and
transmission coefficients, less than 1% for F) and F;, and less than 1.5% for Fs, i.e.
the magnitude of the deviations is similar to that of the comparison between
procedures II and I1.

_ —— ey — Procedure I
b-e

@

Procedure I
e Procedure III 0.2

Procedure III

b kb
0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0
Figure 5.2a Reflection and transmission coefficients for the breakwater with a

protruding bottom plate defined by hy/d=h;/b=2.0, hy/(d-;)=20.0,
and hy/(b-€)=5.0.
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Figure 5.2b Forces for the breakwater with a horizontal protruding bottom

plate defined by hy/d=h/b=2.0, hy/(d—hy)=20.0, and h/(b—e)=5.0.

IF51/09b2a

e Procedure I

0.2, . .
Procedure III
k
L . . ‘ i h;
0.5 1.0 1.5 2.0
Figure 5.2¢ Pitch moment for the breakwater with a protruding bottom plate

defined by hy/d=h/b=2.0, h;/(d—h,)=20.0, and h/(b—e)=5.0.
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A comparison of the wave exciting forces of solution procedure III obtained by
solving the diffraction problem and by using the Haskind relation yields results

similar to those obtained for the breakwater with a rectangular cross section.

Comparisons with results of other authors

The next step in the verification is to compare the results with those of other
authors. It would have been suitable to compare the pitch quantities since they
exhibit the largest scatter in the present work. However, such results are rare in the
literature. Most of the published results only discuss one or a few quantities
included in a solution. Therefore, some of the comparisons below are for added
mass and damping coefficients and others are for transmission and reflection

coefficients.

In Figure 5.3 a comparison is made of the added mass and potential damping for a
rectangular cylinder in heave. The figure is taken from Bai and Yeung (1974). They
contributed two solution procedures, one a finite element solution and the other
using an approach similar to that used in solution procedure III in the present study.
The main difference between procedure III and the approach of Bai and Yeung
appears in the radiation condition applied. They extend the fluid domain
sufficiently far from the structure to allow simple propagating wave conditions to
be applied at the vertical boundaries connecting the free surface and the sea bottom.
(In solution procedure Il complete series solutions are applied at the vertical
boundaries and they could therefore be positioned close to the structure.) Results of
an integral equation solution of Lebreton and Margnac, as cited by Bai and Yeung,
are also shown in the figure.

1. 4.0
b33/mpV 1 ;1
L. b/d =
d h/d =
h h/d =
1. 3.0 Ly 2b
S
+
Lebreton & Margnac 1966
0. 2.0 & o . ~
Bai & Yeung 1974
e .
, 1 +  Bai & ve 97:
69/‘ — Lebreton & Margnac 1966 | +\ ' & yeuns 1974
‘ % e  Procedure III
0.7 ©  Bai & Yeung 1974 ! 1.0 -
Bai & Yeung 1974 2 :
W
¢  Procedure III g b
0.5 1 ! 0.0
0.0 0.5 1.0 1.5 0.0 0.5 1.0
Figure 5.3 Added mass and potential damping coefficients of a rectangular

cylinder in heave. Redrawn from Bai and Yeung (1974).

w
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From Figure 5.3 it is seen that the added mass and potential damping of the
rectangular cylinder in heave agree reasonably well with the results of Bai and

Yeung , and Lebreton and Margnac.

In Figure 5.4 a comparison of the added mass coefficient for a semi—submerged
circular cylinder in heave is shown. The graph is redrawn from Keil (1974) and
also shows the results of Bai and Yeung. The agreement with the results of solution
procedure III is seen to be excellent. The results for the circular cylinder were less
sensitive to a variation of the number of elements than the results obtained for the

rectangular cylinder.

L 23
0.8
Pte
8/+
"
0.6 ,/,,4r“’/
3%
. anl
0.4
0-2 9 ® Procedure III
o + Bai & Yeung 1974
Keil 1974 2
0.0 =2 b
l T T g
0.0 0.5 1.0 1.5
Figure 5.4 Added mass coefficient for a semi—submerged circular cylinder in

heave. From Keil (1974).

Solution procedure III can be used to analyse not only floating structures but also
effects due to variations in water depth. In Figure 5.6 a comparison is made of the
transmission and reflection coefficients of a sea bottom trench according to Figure
5.5.
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Figure 5.5 Geometry of sea bottom trench.

Figure 5.6. is redrawn from Kirby and Dalrymple (1983). They used a method
based on matching of orthogonal series in a similar way as in procedures I and II in
the present study. Results of Kirby and Dalrymple, solution procedure III, as well
as Lee and Ayer (1981) are compared in Figure 5.6. The agreement is satisfactory.

1.00

0.95

0.90¢ Kirby & Dalrymple
o Lee & Ayer

0.85¢L

0.50 e Procedure III

0.40f

0.30¢

Figure 5.6 Transmission and reflection coefficients for a sea bottom trench.
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512 The effect of the protruding bottom plate.

As an illustration of the effect of the protruding bottom plate, the transmission
coefficient of a breakwater with a rectangular cross section is compared with the
transmission coefficient obtained if the front wall facing the incident waves is
moved as indicated in Figure 5.7.

8 16
ot e —— ]

T T — —

10‘{ b N

, 1] 1]

0 50 40 40
Breakwater C Breakwater C2 Breakwater C4

Figure 5.7 Breakwaters included in the comparison performed to illustrate the

effect of the protruding bottom plate. Dimensions in m.

The geometry of the breakwater and the wave characteristics were chosen with the
breakwater concept of Port de la Condamine in the Principality of Monaco in mind.
This means a rather large gap between the bottom of the breakwater and the sea
bottom. The depth of submergence was one—fifth of the water depth. The
reductions of the width of the breakwater at the still water level correspond to 20%
and 40%, respectively, of the total width. In Figure 5.8 the transmission coefficients

are shown. They are plotted versus wave period.
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Figure 5.8 Hlustration of the effect of the protruding bottom plate on the

transmission coefficient.

Breakwaters (C2) and (C4) exhibit clear anti—resonance characteristics. Comparing
(C2) with (C), the transmission coefficient is reduced in practically the whole range
of plotted periods. However, when (C4) is compared with (C2), the transmission
coefficient increases for periods lower than 8.8 but decreases for higher periods.
Consequently, the proper length of the protruding plate should be decided with the

wave climate in mind.

5.2  Experimental results

In the experimental part of the study the prototype breakwaters presented in Figure
5.7 were scaled to model dimensions. The length scale of the models was 1:65 and
the time scale l:(tSS)V2 = 1:8.06, which gives model dimensions as described in
Figure 5.9. The three breakwaters included in the measuring program will be
referred to as C, C2 and C4 respectively.
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Breakwater C Breakwater C2 Breakwater C4
Figure 5.9 Model dimensions in mm of breakwaters included in the

measuring program.

In the following sections, the results of the measurements performed as described in
Chapter 4 are presented. The results are generally presented in prototype quantities
except in a few cases when raw data are presented as they were measured in the
models. In Table 5.4 the wave characteristics for regular waves are listed in both
prototype and model quantities.

Table 5.4 Wave characteristics for regﬁlar waves in prototype and model.
Tys)  Tals) £,(Hz) fu(Hz) Ly(m) Ly(m).
6 0.744 0.167 1.344 56.3 0.866
7 0.868 0.143 1.152 76.4 1.175
8 0.992 0.125 1.008 99.4 1.529
9 L.116 0.111 0.896 124.6 1.917
10 1.240 0.100 0.806 151.1 2.325
11 1.364 0.091 0.733 177.9 2.737
12 1.488 0.083 0.672 204.4 3.145
5.2.1 Transmission coefficient

The measurements included breakwaters C, C2 and C4. For regular waves the
prototype period, Tp, was varied in the range of 6 to 12 s, each period having
steepnesses of 2,3,4 and 5%. The transmission coefficient was evaluated as the ratio
between transmitted wave height and incident wave height. The wave heights were

taken as maximum to minimum values in the time series of the wave elevation.
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The transmission coefficient was also measured in irregular waves. Four irregular
wave trains were selected. The amplitudes of the components of the spectrum were
obtained from the ISSC—spectrum given by Eq. (4.7), which is a two parameter
spectruin defined by H, and T,. Table 5.5 shows the parameters of the irregular
waves used in the study. The parameters were evaluated both directly from the
measured time series and from spectral moments. From the time series H, was
taken as the mean of the one—third highest waves and T, as the mean of the zero

up—crossing periods. From the spectral moments the parameters were evaluated as

H, =4 Ji .1)
my
T,={ my (5.2)
where
m, .—.I £'S(f)df (5.3)

The table also indicates that spectra nos. 1, 2, 3 and 4 were used for breakwater C
and spectra nos. 1 and 4 for breakwaters C2 and C4.

Table 5.5 Parameters of irregular waves
Specitr. Break— Prototype Model
no. water Spectral Time Spectral Time
moments series moments Series
T, H, T, H, T, H, T, H,
1 C,C2, C4 8.03 345 8.47 3.51 1.00 0.053 1.05 0.054
2 C 8.01 332 8.55 2.99 0.99 0.051 1.06 0.046
3 C 10.06  6.57 9.35 6.11 1.25 0.101 1.16 0.094
4 C, C2, C4 1030  4.36 1032 4.03 1.28 0.067 1.28 0.062

In order to get an overall idea of the quality of the breakwaters as wave protectors
the transmission coefficient based on significant wave heights was evaluated. Based
on spectral moments this coefficient becomes

Kr=q— =lm- (5.4)
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where

HST = significant wave height of transmitted wave train

HSI = gignificant wave height of incident wave train

m . = zeroth order spectral moment of transmitted wave train

0T

m, = zeroth order spectral moment of incident wave train

In Table 5.6 the transmission coefficient, K,?., is presented. A significant reduction
is obtained for breakwaters C2 and C4 compared with C. For spectrum no.1, Kf; is

reduced from 0.383 for breakwater C to 0.184 for breakwater C4, and for spectrum
no.4, from 0.562 to 0.375.

Table 5.6 Transmission coefficient based on significant wave height
Breakwater
Spect.
no.
C 2 C4
1 0.383 0.276 0.184
2 0.387 - o
3 0.560 - —
4 0.562 0.481 0.375

It should be emphasized that the transmission for a spectrum with a given zero
up—crossing period, for example T,=10 s, is much higher than the transmission
obtained for a regular wave with the period T=10 s. This is caused by the high
transmission of the low frequency content of the spectrum. A regular design wave
is therefore a poor description of the wave climate when studying transmission
through the gap underneath the breakwaters.

Another characteristic of the transmitted waves is that the zero upcrossing period
increases compared with that of the incident wave. In the tests it increased between
23 and 36%.

The main purpose of running the experiments in irregular waves was to evaluate a
presumed linear response in a range of frequencies. In Figures 5.10, 5.11 and 5.12 a
comparison is made between the theoretically obtained transmission coefficients
and those obtained in irregular and regular wave tests. In the graphs the
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Figure 5.10

transmission coefficient of the regular wave tests is shown for the steepness, H/L=
3%. Figure 5.10 shows the results for breakwater C. For all four spectra, the
agreement between the results of regular and irregular wave tests as well as the
agreement between model tests and theory are satisfactory. Figure 5.11 shows the
results for breakwater C2. The difference between theory and experiments is
somewhat larger than for breakwater C. The difference is most pronounced for long

periods. The agreement between the results of regular and irregular wave tests is

satisfactory.

Transmission coefficients of breakwater C
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Figure 5.11 Transmission coefficient of breakwater C2

Figure 5.12 shows the results for breakwater C4. The theoretical results show a
cancellation period of about 10.5 — 10.6 seconds during which the transmission
coefficient tends towards zero. This anti-vesonance characteristic is hardly
noticeable in the experiments. The deviation between theoretical and experimental
results has now become large in a wide range of frequencies. The agreement

between the irregular and regular wave test results is, however, still satisfactory.

4 Ky
0.8 —— Theory (Procedure I)
————— Spectrum no. 1
0.61 T Spectrum no. 4 g -
¢ Regular waves [
/‘/
H/1L=0.03 4
0.4 _,f/‘f"l
0.2
. ‘ ' Tp(s)

0 .
c.0 2.5 5.0 7.5 10.0  12.5 15.0 17.5

Figure 5.12 Transmission coefficient of breakwater C4.



It is concluded that regular and irregular wave test results are in good agreement
and that the theoretical model is a valuable tool for selecting the profile of the
breakwater. The experiments confirm that, for breakwater C4, the transmission

increases for short periods when compared with C2, see Figure 5.13.

4y
T N
Regular wave tests, H/L = 0.03
0.8}
C
0.6
e
—...._.‘_.—._
0.4
0.21
T (s)
0.0 ] L . )k
0.0 2.5 5.0 15.0 o

Figure 5.13 Transmission coefficient of breakwater C, C2 and C4 when
exposed to regular waves. H/L= 0.03

Finally, in Table 5.7, the transmission coefficients obtained in regular waves are
presented. They are listed for different steepnesses together with the theoretical
values. For breakwater C the dependence on wave steepness is slight and only
noticeable for prototype periods higher than 10 seconds. For these periods the
transmission tends to decrease with increasing steepness. The C2 breakwater
exhibits a similar characteristic for periods longer than 10 seconds. The decrease of
transmission for increasing steepness is somewhat larger. Furthermore, for waves
with periods of 8 and 9 seconds, the transmission tends to increase for increasing
steepness. This is probably associated with the cancellation which appears in the
theory. The ideal situation without viscous effects giving the appearance of
cancellation is probably increasingly disturbed with increasing steepness, thus
giving increasing transmission. This characteristic is even stronger for the C4
breakwater, and is noticeable for virtually all periods investigated. For the periods
10, 11 and 12 seconds the increase in transmission with increasing steepness is

significant.
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Table 5.7 Transmission coefficient obtained from regular wave tests.

Wave steepness H/L ;
Ty(s) 0.01 0.02 0.03 0.04 0.05 Theory

Breakwater C

6 - 0602 002 003 003 0.027
7 - 608 008 008 008 0.079
8 - 0.18 017 017 017 | 0.169
9 - 0.28 026 026 026 | 0.290
10 - 039 038 038 038 | 0420
11 - 050 048 048 046 | 0.538
12 - 060 060 058 054 | 0.633
Breakwater C2
6 - - 002 002 002 | 0014
7 - - 002 002 002 | 0004
8 - 004 005 006 007 | 0047
9 - 6.10  0.11 0.15  0.15 | 0.157
10 024 022 022 024 023 | 0315
i1 0.39 035 034 034 - 0477
12 0.51 0.48 046 044 - 0.610

Breakwater C4

6 = - 004 004 004 | 0.040
7 - - 007 007 0.08 | 0.084
8 - 0.10  0.11 0.11 0.12 | 0.125
9 - 012 012 013 014 | 0.135
10 6.13 015 018 020 020 | 0.082
11 0.15 021 024 026 - 0.056
12 025 032 034 - - 0.267
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5.2.2. Reflection coefficient

In the present study the principle described in section 4.5 was used to separate the
incident wave and the reflected wave. Three wave height meters were placed in
front of the breakwater and an additional meter was placed on the port side, see
Figure 5.14.

Wave Wave height meters nos.
generator 123 4

] o] —

Figure 5.14 Location of wave height meters.

The three wave height meters on the wave—exposed side were used to separate the
incident wave and the reflected wave. Three meters will give three sets of pairs so
that, in each run, it is possible to estimate the incident wave, the reflected wave,
and the reflection coefficient three times. The additional wave height meter on the

port side was used to measure the transmitted wave simultaneously.

Since the results evaluated in this section include an FFT analysis of the measured
time series, the transmission coefficients are not evaluated as those presented for
regular waves in section 5.2.1 (they were evaluated directly from the time series).
In this section, results of transmission measured simultaneously with the reflection
are therefore presented.

The separation technique seems to give reasonsable results for the tested wave
steepnesses. For the steep waves the scatter in the results became somewhat larger.
The method also gave larger scatter if the distance between the meters was equal to
or close to a multiple of half a wave length.

For practical reasons the wave height meters were kept fixed during a series of runs
at different wave periods including Tp=7,8,9, 10, 11, and 12 seconds. Since the
wave length varies for different periods, sometimes the distance between the gauges
became close to a multiple of half a wave length. These results were omitted from
further evaluation. The evaluated quantities in each run were then chosen as the

mean of the remaining estimates. For example, the incident wave for a single run
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was evaluated as the mean of one, two or three estimates depending on how many
estimates had been omitted.

As a quality check of how well the waves were separated the evaluated incident
waves were compared with those measured with no structure in the wave tank
(henceforth referred to as undisturbed incident waves). For breakwater C, the
incident wave and the reflected wave were separated in a total of 25 runs (19 of
thermn with a wave steepness close to 3% and 6 of them with a wave steepness close
to 5%).

The mean of the ratio between the evaluated incident wave and the undisturbed
incident wave was 0.993 for the flatter waves (H/L = 3%) and 0.998 for the steeper
waves (H/L = 5%). The corresponding standard deviation was 0.026 and 0.040
respectively. Consequently, the mean of the ratio was close to 1 for both
steepnesses but the scattering of the results somewhat larger for the steeper waves.

The reflection coefficient and the transmission coefficient, evaluated using the
separated incident wave, are presented in Table 5.8. The coefficients are presented
in terms of mean values and standard deviations for each period and each steepniess.
For the smaller waves the scattering of the coefficients is rather small, especially
for the transmission coefficients. For the steeper waves the number of runs is foo

few to give a reliable view of the scattering.

Table 5.8 Transmission coefficient and reflection coefficient evaluated using
the separated incident wave.

T, H/L N Kvr s KR s I_(.%H—(g

(s) (%)

7 3 3 0.086  0.004 0954  0.025 | 0918
8 3 1 0.181 - 0.926 - 0.890
9 3 6 0.252 0.009 0.918 0.025 | 0.906
10 3 3 0.383 0.009 | 0.827 0.019 | 0.831
11 3 3 0.483 0.007 0.788 0.011 0.854
12 3 3 0576  0.013 0.753 0.025 0.899
9 5 I 0.282 - 0.900 - 0.890
10 5 i 0.360 - 0.775 - 0.730
11 5 2 0.465 0.011 0.745 0.045 | 0.771
12 5 1 0.569 - 0.669 - 0.771
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In the rightmost column the sum of the square of the transmission and reflection
coefficients are given. This quantity should equal 1 if there is no mechanical energy
transformed into heat. For the 3% steepness, the losses vary in the range of 8.2 to
16.9% of the energy of the incident waves. For the steeper waves (H/L = 5%) the
losses are in the range of 11.0 to 27.0%. From the experiments described above it
seems that the reflection coefficient is more dependent on the steepness than the

transmission coefficient.

In Figure 5.15 the measured reflection coefficients (mean value) are compared to
calculated values. For the lower waves the deviation between measurements and
theory was less than 9%, while for the steeper waves it was less than 15%.

K
A R
1.0 +
0.8 [~
+
0.6 +
— Theoretical
0.4
@ Experimental, H/L = 0.03
+ Experimental, H/L = 0.05
0.2 r
T (s)
b (
0.0 l 1 I} I 1 .
-/\/ 7.0 8.0 9.0 10.0 11.0 12.0

Figure 5.15 Measured and calculated reflection coefficients for breakwater C
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In addition to the results obtained above the transmission coefficient was evaluated
using the undisturbed incident wave. The results of this evaluation are presented in
Table 5.9.

Table 5.9 Transmission coefficient based on the undisturbed incident wave.

H/L =3% H/L = 5%
Tp(s) - -

N KT s N KT 8

7 3 0.085 0.006 2 0.087  0.020

8 3 0.166  0.008 3 0.171 0.002

9 6 0250  0.008 1 0.260 -
10 3 0.380 0.005 i 0.369 —
11 3 0.492 0.000 3 0470  0.002
12 3 0.594 0.004 3 0.565 0.003

It is clear from the table that the standard deviation is small for the flatter waves as
well as the steeper ones (except for H/L=5% and Tp=Ts). A dependence on the
steepness is noticed, although it is not very pronounced. The agreement with the
transmission coefficients presented in Table 5.7 is satisfactory.

523 Forces and pressure

The forces were measured for the breakwater of geometry type C. As is discussed
in this section, the forces calculated using a linear theoretical model do not properly
describe all features of the measured forces.

Examples of time series of the measured horizontal forces, vertical forces and
morments about the centre of the bottom of the breakwater are presented in Figures
5.16a, b and c. The time series are given as measured on a 1.99 m long model
section of the breakwater. The left and right columns of the figures correspond to
prototype periods T,=7 and 10 s respectively (model periods T,=0.87 and 1.24 s).

As far as one can see from the figures the oscillation of the horizontal force and the
moment is closely sinusoidal in time, while the vertical force oscillates in a more
complex way. An FFT-analysis confirm that the higher order components of the
horizontal force and of the moment are rather small while the vertical force
contains a component of significant amplitude at twice the frequency of wave
generation.
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Figure 5.16a Horizontal force, as measured on a 1.99 m long model section of
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Tp=10s, Tp=1.24 s.
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The ratio between the amplitude of the second order component and the first order
component of the vertical force increases for short and steep waves. In Figure 5.17
the amplitude spectrum for the vertical force, as measured on a 1.99 m long model

section of the breakwater is shown. The wave characteristics are Tp=7 s, Tu=0.87 s
and H/L=0.04.

4 Amplitude of
80 vertical force (N)

B0

40

20}

f (Hz)

0 ptt 1] L P Lot :

0.0 0.5 1.0 1.5 2.0 2.5 3.0 35
Figure 5.17 Amplitude spectrum of measured vertical force. Ty=7 s

(Ty=0.87 s) and H/L=0.04.

The second—order characteristic of the wvertical force cannot be modelled
theoretically using a linear model. The vorticies shed at the corner facing the
incident waves were generilly small for short waves, when the second—order
characteristics were at their strongest, and therefore concluded not to be the main
reason for a second—order component. Whether a second-order wave/structure
model could accurately simwlate this characteristic has not been investigated.
However, for a ship section in deep water with a draught to width ratio d/2b=0.4
Guoping (1987) found that the ratio between the second order component and the
first order component of the vertical force significantly increases with decreasing
wave period. The same trend has been found in the present experiments.
Preliminary results from a second order solution for a rectangular horizontal
cylinder by Sulisz (1989) als > exhibit the same trends.
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In a second order solution the force consists of three parts, i.e. a linear part
oscillating at the frequency f, a non—oscillating steady part, and a bi—harmonic part
oscillating at the frequency 2f.

In the present study the developed solution procedures concern the linear part of the
problem. It is considered to be outside the scope to investigate wether or not a

second order wave/structure model accurately can simulate the measured behaviour.

In order to get a first idea of the agreement between measurements and theory it is
convenient to compare the maximum to minimum values of the measured forces
with those obtained with the linear theoretical model. In Table 5.10 a, b and ¢, the
maximum to minimum values of the horizontal force, vertical force and moment
about the centre of the bottom of the breakwater are listed together with
corresponding theoretical values. In Figures 5.18a, b and ¢, the same measured
quantities for the smallest steepness H/L=0.02 are illustrated together with
theoretically obtained values.

Table 5.10a Maximum to minimum value of the measured horisontal force
divided by wave height. Scaled to prototype dimensions per metre
breakwater ((kN/m)/m).

Tp(s) 0.02 0.03 0.04 0.05 Theory

6 118 121 114 112 119.9
7 131 133 132 131 138.5
8 154 147 147 144 153.0
9 157 155 153 151 162.1
10 | 161 156 156 151 165.0
11 | 161 155 154 150 162.3
12 | 158 158 153 148 156.2
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Table 5.10b Maximum to minimum value of the measured vertical force,
divided by wave height. Scaled to prototype dimensions per metre
breakwater ((kN/m)/m).

Tp(s) 0.02 0.03 0.04 0.05 Theory

6 | 61 78 88 98 63.2

7 89 100 120 125 97.5

8 134 131 133 147 130.9
9 154 159 158 163 162.1
10 | 189 187 189 181 190.5
11 | 212 202 207 208 215.8
12 | 229 230 214 218 237.8

Table 5.10c Maximum to minimum value of the measured moment about the
centre of the bottom of the breakwater divided by wave height.
Scaled to prototype dimensions per metre breakwater
((kNm/m)/m).

Tp(s)| 002 003 004 005 Theory

6 1118 1138 1135 1100 | 1103
7 1303 1376 1380 1342 1377
8 1690 1656 1627 1668 | 1632
9 1869 1858 1882 1914 | 1840
10 | 1958 1962 2010 1967 | 1970
11 | 2097 2022 2016 2081 | 2021
12 | 2079 2090 2096 2099 | 2009
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Figure 5.18a Maximum to minimum value of measured horizonal force
divided by wave height. H/L=0.02. Scaled to prototype
dimensions per metre breakwater ((kN/m)/m).
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Figure 5.18b Maximum to minimum value of measured vertical force divided

by wave height. H/L=0.02. Scaled to prototype dimensions per
metre breakwater ((kN/m)/m).
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Figure 5.18c Maximum to minimum value of measured moment divided by

wave height. H/L=0.02. Scaled to prototype dimensions per
metre breakwater ((kNm/m)/m).

For small waves, H/L=0.02, the measurements agree well with the theory for all
three quantities. For larger waves, the measured values are still close to the
theoretical values for the horizontal force and the moment, while for the vertical

force the deviation is significant.

The comparison with the vertical force is, of course, questionable especially for
higher waves, since the measured quantities for higher waves contain a component
of significant amplitude at twice the frequency of wave generation. A comparison
which, mathematically, is more appropriate although probably of less practical
interest is the one between the first order component of the measured vertical force
and the amplitude of the force obtained using the linear theoretical model. In Table
5.11 the ratio between the amplitude of the first order component of the vertical
force and the amplitude of the first order component of the incident wave is shown.
Even for short and steep waves the agreement between measurements and theory is
satisfactory. It is concluded that it is not sufficient to calculate the vertical force for

short and steep waves using a linear model.
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Table 5.11 First order component of measured vertical force divided by first
order component of incident wave. Scaled to prototype dimensions
per metre breakwater ((kIN/m)/m).

H/L =
Te(s) 1002 003 004 005 |Theory

7 926 953 937 946 |975
10 | 187.1 1853 187.6 1827 | 1905

Even if a complete second—order solution is not available it is possible to use the
results from the first order solution in a momentumn flux consideration in order to
obtain the steady drift forces, correct to second order in wave amplitude. General
expressions for the surge and sway drift forces were first derived by Maruo (1960)
and subsequently extended to include the drift moment in yaw by Newman (1967).
For 2D structures Longuet—Higgins (1977) expressed the horizontal drift force
directly in terms of the reflection coefficient. The expression by Longuet—Higgins

can be written as

2 .2 2

Fy=E % qek2x2) = E Gk (5.5)

where

cg = group velocity = % 1+ gﬁﬁghﬂzﬁ) c
¢ = phase velocity

B =7 peay

ay = amplitude of incident wave

The second equality in Eq. (5.5) is valid only when there is no energy absorbed or
dissipated, i.e. when Ké-&-K.IZ:»L In Figure 5.19 the horizontal drift force obtained

experimentally is compared with the force obtained with the Longuet—Higgins

expression.
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The drift force is plotted versus kb and made dimensionless by the factor 2Ec,/c.
Since the drift force is equal to the change in momentum the factor equals the drift
force obtained when the incident wave is totally reflected, i.e. when the incident
wave casrries the momentum Ecy/c in the positive x—direction and the reflected
wave carries the same quantity in the opposite direction. Consequently, the
dimensionless drift force should be less or equal to unity. The drift force obtained
experimentally was evaluated as the mean value of the time series of the force. The
length of the times series were adjusted to be equal to an integer number times the
wave period. The experimental results were obtained for steepnesses 3,4 and 5 %.
No dependence on the wave heigth apart from the proportionality to the square of
the wave heigth was identified. Although there are some scatter in the experimental
results the agreement is considered as satisfactory since the drift force is a
second—order effect.

Eq. (5.5)

Experiments

kb

Figure 5.19 Horizontal drift force for breakwater C. Comparison between
experiments and theory (procedure II).

Since the vertical forces measured directly with force probes exhibited a stronger
second—order characteristic than expected, it was decided to verify the force by also
measuring the pressure at the bottom of the breakwater. The force probes and
pressure transducers were calibrated separately. The verification included two
periods Tp=7 and 10 s and each of the 4 steepnesses. In all tested cases the
agreement between integrated pressure and forces measured by force probes were

excellent. Example of comparisons are shown in Figure 5.20.
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Figure 5.20 Comparison of pressure integrated over the bottom of the
breakwater and the vertical force obtained from the force probes.
The results are presented as they were measured on a 1.99 m
long model section of breakwater C.

From the pressure measurements it also became clear that the second—order
characteristics of the force could be traced in the pressure all over the bottom plate
of the breakwater and not only from the transducers located close to the corner
facing the incident waves. In Figure 5.21 the pressure measured by transducers nos.
1,2,4,5 and 6 are presented (their locations can be seen in Figure 4.14, transducer
no. 3 did not work properly and was disregarded from the evaluation).
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Figure 5.20 Comparison of pressure integrated over the bottom of the

breakwater and the vertical force obtained from the force probes.
The results are presented as they were measured on a 1.99 m
long model section of breakwater C.

From the pressure measurements it also became clear that the second—order

characteristics of the force could be traced in the pressure all over the bottom plate

of the breakwater and not only from the transducers located close to the corner

facing the incident waves. In Figure 5.21 the pressure measured by transducers nos.

1,2,4,5 and 6 are presented (their locations can be seen in Figure 4.14, transducer

no. 3 did not work properly and was disregarded from the evaluation).
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6 CONCLUSIONS

6.1  The barrier type of breakwater

For certain dimensions, a barrier—type breakwater of limited draught can
significantly reduce the waves. The geometry of the cross section of the breakwater
strongly influences the size of transmission. For example, a breakwater with a
protruding bottom plate (Principality of Monaco's patent no. F 85 15938) could
significantly reduce the transmission compared with a rectangular cross—section
type of breakwater of the same total width (Pincipality of Monaco's patent no.
PCT/MC/86/00003). This is confirmed both by experiments and potential theory.

6.2. Theoretical gtudy

A linear theoretical model is found to be a valuable tool in the design of a
barrier—type breakwater. Different solution procedures could be selected. A
procedure based on orthogonal series solutions in fluid subregions has the
advantage of not being dependent on any discretization and therefore probably safer
to use. Furthermore, it requires neither much core memory in a computer, nor much
processing time, and is run with simple input data. It is also an excellent tool for
checking numerical models based on discretization. One obvious disadvantage of

the procedure is its lack of generality.

The numerical model based on the fundamental source function formulation agrees
well with the procedures based on orthogonal series solutions as well as results
presented by other authors. A price one has to pay for the generality is the time it
requires, both in terms of time to establish input data and computer processing. For
sharp edge models, the results seem to be sensitive to the discretization, requiring a
more dense discretization close to the comers. This was found to be especially

important for pitch quantities.

6.3 Experimental study

In the irregular wave tests, the technique by which fast wave components were
successively delayed worked satisfactorily. The transmission coefficients obtained
from the irregular wave tests agreed well with those obtained in regular waves. The

reproducibility of the irregular waves was high.

Energy losses increased with increasing wave steepness. The increase in energy loss

affected the reflection coefficients more than the transmission coefficients.
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The anti—tesonance characteristics theoretically obtained for the breakwater with

protruding bottom plate could not be found in the experiments.

The transmission coefficients sometimes decreased for increasing steepness, while
for other geometries and/or periods it increased. This is probably associated with
the cancellation which appears in the theory. The ideal situation without viscous
effects giving the appearance of cancellation is probably increasingly disturbed with

increasing steepness, thus giving increasing transmission.

The maximum to minimum values of the horizontal force and the moment about
the centre of the bottom of the breakwater agreed well with theory. The maximum
to minimum value of the vertical force agreed well with theory for small waves,
H/L=0.02. However, for short and steep waves the oscillation of the force contained
a second—order component of significant amplitude. For these waves the first order
component of the measured force, obtained by using an FFT—analysis, agreed well
with the force obtained from the linear theoretical model. It was considered to be
outside the scope of this. study to investigate whether or not a second—order

wave/structure interaction model could accurately simulate the behaviour.

In the experimental part of the thesis, results have been presented mainly for a
breakwater with a rectangular cross section defined by a draught to water depth
ratio d/h=10/50 and a draught to width ratio d/2b=10/40 (breakwater C). Although
not presented here, transmission past breakwaters with other dimensions has been
investigated. An idea of the span of the dimensions included in the experimental
tests is given by the four breakwaters defined below.

1: d/h=10/50 and d/2b=10/30
2: d/h=10/50 and d/2b=10/50
3: d/h=7/50 and d/2b=7/40

4: d/h=13/50 and d/2b=13/40

For these breakwaters, all with rectangular cross section, the size of the deviations
between the transmission coefficients obtained in regular wave tests, irregular wave
tests, and theoretically are comparable to those obtained for breakwater C. These
additional tests were performed only for a few periods and steepnesses, still they
give an indication of what experimental results one can expect for these

dimensions.
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LIST OF SYMBOLS

wave amplitude
amplitude of wave component
element of added mass mairix

amplitude of incident wave
complex amplitude of incident wave
complex amplitude of refiected wave

water plane area

half width of breakwater

horizontal distance from origin to region I (solution procedure IIT)
horizontal distance from origin to region III (solution procedure I1I)

element of potential damping matrix

phase velocity of wave

group velocity of wave

element of hydrostatic matrix

group velocity of the i:th wave component
breakwater defined in Figure 5.9

breakwater defined in Figure 5.9

breakwater defined in Figure 5.9

complex amplitude of the j:th measured wave

draught of breakwater

distans defined in Figure 3.1

average energy per unit horizontal area
frequency

discrete frequency = iAf

frequency in model dimension
frequency in prototype dimension
element of force vector

horizontal drift force
acceleration of gravity
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water depth

water depth (solution procedure I)

water depth at ocean side (solution procedure II)

water depth at protruding bottom plate (solution procedure I)
water depth at port side (solution procedure III)

wave height

wave height of antinod
inéident wave height
wave height of nod
reflected wave height

significant wave height

significant incident wave height

significant transmitted wave height

unit vector along the x—axis
unit vector along the y—axis

moment of inertia of the water plane area about the y—axis.
wave number

unit vector along the z—axis
wave number at the left side of the breakwater (ocean side)
wave number at the right side of the breakwater (port side)

reflection coefficient
mean value of reflection coefficient

transmission coefficient
mean value of transmission coefficient

transmission coefficient based on significant wave height

wave length
wave length in model dimension

wave length in prototype dimension
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mass of structure
element of mass matrix

zero order spectral moment of incident wave
zero order spectral moment of transmitted wave
generalized normal vector

element of generalized normal vector
number of components in spectrum
number of measurements

number of components in orthogonal series

number of elements in solution procedure III

Cartesian coordinate system

pressure

polar coordinate in the horizontal plane
pitch radius of gyration

input signal to wave generator

wave making coefficient

real value of the complex quantity

inside the braces

standard deviation

distance from wave generator to measuring point
boundary enclosing the fluid domain

vertical boundary at infinity enclosing the fluid domain

boundary according to Figure 3.3
boundary according to Figure 3.3
boundary according to Figure 3.3
boundary according to Figure 3.3
boundary according to Figure 3.3
boundary according to Figure 3.3
wave spectrum

smooth spectrum of measured wave
wave spectrum of incident wave

wave spectrum of transmitted wave
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t time

T wave period

Tn measuring period

Tn wave period in model dimensions

T, wave period in prototype dimension

Ty time for the i:th wave component to reach the measuring point

T, return period of time series

T, zero upcrossing period

u velocity component along the x—axis

u fluid velocity vector

v velocity component along the y—axis

v water volume displaced by breakwater
velocity component along the z—axis

X vector of motion

X, x—coordinate of the center of gravity of the water plane area

X element of the motion vector

xj x—coordinate of the j:th wave gague

xl(t) motion in the 1:th mode as function of time

Zy center of buoyancy

Zg center of gravity

Af frequency spacing

4 wave elevation

& elevation of incident wave

CR elevation of reflected wave

g‘? elevation of the i:th measured wave
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phase angle

delay function defined by Eq. (4.5)
density of fluid

time

spatial velocity potential

spatial velocity potential of incident wave

time dependent velocity potential
angular frequency

differential operator

line integral

surface integral

volume integral



Figure 1.1
Figure 1.2
Figure 1.3

Figure 2.1
Figure 2.2

Figure 3.1

Figure 3.2

Figure 3.3

Figure 4.1

Figure 4.2
Figure 4.3
Figure 4.4

Figure 4.5

Figure 4.6

Figure 4.7

Figure 4.8

Figure 4.9

Figure 4.10

82

LIST OF FIGURES

Example of rubble mound breakwater.
Alternative type of breakwater.

Geometries associated with the three solution
procedures presented.

Definion of coordinate system and modes of motion.

2D structure with no variations along the y—axis.

Definition of fluid regions and geometrical
properties of solution procedure L.

Definition of fluid regions and geometrical
properties of solution procedure 1.

Definition of fluid regions and geometrical
properties of solution procedure III.

Geometries included in the test program.
Dimensions in mm.

Wave tank.

Discretization of continuous wave spectrum.
Ratio between amplitude of input signal fed into
the wave generator and wave amplitude.

Water depth h=0.77 m.

Schematically drawn wave elevation a short time
after the wave generator has been started.

Wave elevation at the measuring point as a

function of time. The wave generator has been started at t=0
and the waves should, theoretically, reach the measuring point

at t=88 s.
Example of measured raw spectrum.

The wave elevation measured in two different runs
using identical input signals.

Raw spectrum of measured incident and transmitted
waves.

Transmission coefficient evaluated from
experiments in irregular waves using Eq. (4.9).

Page

10
16

17

18

19

20

22

23

24

26

27
28

30

30



Figure 4.11

Figure 4.12
Figure 4.13
Figure 4.14
Figure 5.1a
Figure 5.1b
Figure 5.1c
Figure 5.1d

Figure 5.1e

Figure 5.2a

Figure 5.2b

Figure 5.2¢c

Figure 5.3

Figure 5.4

Figure 5.5
Figure 5.6

Figure 5.7

Figure 5.8

Figure 5.9

Figure 5.10

83

Principles for measuring and evaluating
transmission coefficients in irregular waves.

Breakwater for which forces were measured (mm).
Experimental set up for force measurements.
Pressure transducers.

Reflection and transmission coefficients for a
breakwater with a rectangular cross section defined
by h/d=h/b=2.0.

Forces for a breakwater with a rectangular cross
section defined by h/d=h/b=2.0.

Pitch moment for a breakwater with a rectangular
cross section defined by h/d=h/b=2.0.

Added mass coefficients for a brekwater with a
rectangular cross section defined by h/d=h/b=2.0.

Potential damping for a breakwater with a rectang—
ular cross section defined by h/d=h/b=2.0.

Reflection and transmission coefficients for the
breakwater with a protruding bottom plate defined by
hy/d=h,/b=2.0, hy/(d—h;)=20.0, and hy/(b—e)=5.0.

Forces for the breakwater with a horizontal pro—
truding bottom plate defined by hy/d=h;/b=2.0,
hy/(d—hy)=20.0, and h)/(b—e)=5.0.

Pitch moment for the breakwater with a protruding
bottom plate defined by hy/d=h,/b=2.0, hy/(d—h;)=20.0,
and hy/(b—e)=5.0.

Added mass and potential damping coefficients of a

rectangular cylinder in heave. Redrawn from Bai and Yeung (1974).

Added mass coefficient for a semisubmerged
circular cylinder in heave. From Keil (1974).

Geometry of sea bottom trench.

Transmission and reflection coeffients for a sea
bottom trench.

Breakwaters included in the comparison performed
to illustrate the effect of the protruding bottom plate.

Illustration of the effect of the protruding
bottom plate on the transmission coefficient.

Model dimensions in mm of breakwaters included in
the measuring program.

Transmission coefficients of breakwater C.

32

36

36

38

39

40

40

41

42

45

46

46

47

48

49
49

50



Figure 5.11
Figure 5.12
Figure 5.13

Figure 5.14

Figure 5.15

Figure5.16a

FigureS.16b

Figure5.16¢c

Figure 5.17

Figure5.18a

Figure5.18b

Figure5.18¢

Figure 5.19

Figure 5.20

Figure 5.21

84

Transmission coefficient of breakwater C2.
Transmission coefficient of breakwater C4.

Transmission coefficient of breakwater C, C2 and
C4 when exposed to regular waves. H/L=0.03.

Location of wave height meters.

Measured and calculated reflection coefficients
for breakwater C.

Horizontal force, as measured on a 1.99m long
model section of breakwater C.

Vertical force, as measured on a 1.99m long model
section of breakwater C.

Moment about the centre of the bottom of break—
water C, as measured on a 1.99 m long model section.

Amplitude spectrum of measured vertical force. Tp=
Ts (Ty=0.87 s) and H/L=0.04.

Maximum to minimum value of measured horizontal
force divided by wave height. H/L=0.2.Scaled to prototype
dimensions per metre breakwater ((kIN/m)/m).

Maximum to minimum value of measured vertical
force divided by wave height. H/L=0.02.Scaled to prototype
dimensions per metre breakwater ((kN/m)/m).

Mazximum to minimum value of measured moment
divided by wave height. H/L.=0.02. Scaled to prototype
dimensions per metre breakwater ((kNm/m)/m).

Horizontal drift force for breakwater C.
Comparison between experiments and theory.

Comparison of pressure integrated over the bottom
of the breakwater and the vertical force obtained from the
force probes.

Pressure measured at the bottom of the breakwater.
The locations of the transducers are given in Figure 4.14.

56
56
57

59
61

65

66

69

69

70

72

73

74



Table 5.1

Table 5.2

Table 5.3

Table 54
Table 5.5
Table 5.6
Table 5.7
Table 5.8
Table 5.9

Table 5.10a

Table 5.10b

Table 5.10c

Table 5.11

85

LIST OF TABLES

Comparison of the coupling coefficients of added

mass and potential damping matrices. Solution procedures IT and III.

Rectangular cross section with h/d=h/b=2.0.

The wave exciting forces of procedure I1
calculated by solving the diffraction problem and by using the
Haskind relation.

Comparison of forces of procedure Il (Ng=180)
calculated by solving the diffraction problem and by using the
Haskind relation.

Wave characteristics for regular waves in
prototype and model.

Parameters of irregular waves.

Transmission coefficient based on significant wave
height.

Transmission coefficient obtained from regular
wave tests.

Transmission coefficient and reflection
coefficient evaluated using the separated incident wave.

Transmission coefficient based on the undisturbed
incident wave.

Maximum to minimum value of the measured hori—
zontal force, divided by wave height.Scaled to prototype
dimensions per meter breakwater ((kN/m)/m).

Maximum to minimum value of the measured vertical
force, divided by wave height. Scaled to prototype dimensions
per metre breakwater ((kN/m)/m).

Maximum to minimum value of the measured moment
about the centre of the bottom of the breakwater divided
by wave height. Scaled to prototype dimensions per metre
breakwater ((kNm/m)/m).

First—order component of measured vertical force
divided by first—order component of incident wave. Scaled to
prototype dimensions per metre of breakwater ((kN/m)/m),

43

52

53

54

60

62

67

68

68

71



86
LIST OF REFERENCES

Bai, K.J. and Yeung, R.W. (1974): Numerical solutions to free—surface flow problems.
Tenth Naval Hydrodynamics Symposium, Massachusetts, pp. 609633,

Bouchet, R. and Manzone, J.M. (1986): Le mur d'eau dispositif noveau de brise houle
en eau profonde PIANC/AIPCN Bulletin 1986, No. 52, pp 60-77.

Chakrabarti, S.K. (1987): Hydrodynamics of offshore structures. Computational
Mechanics Publications, Southampton.

Finnigan, T.D. and Yamamoto, T. (1979):. Analysis of semi—submerged porous
breakwaters. Proc. Civil Eng. in the Oceans, ASCE, San Fransisco. Vol. I, pp.
380-397.

Garret, C.J.R. (1971): Wave forces on a circular dock. J. Fluid Mech., Vol. 46.

Garrison, C.J. (1984): Interaction of oblique waves with an infinite cylinder. Applied
Ocean Research, Vol. 6, No. 1.

Gaillard, P., Gauthier, M., and Holly, F. (1980): Method of analysis of random wave
experiments with reflecting coastal structures. Proc. 17th Coastal Eng. Conf.
Sydney, pp. 124—125.

Goda, Y. and Suzuki, Y. (1976): Estimation of incident and reflected waves in random
wave experiments. Proc. 15th Coastal Eng. Conf., Hawaii, pp. §28—845.

Guoping, M. (1987): Second—order wave forces on bodies in regular waves. Thesis.
Dept. Marine Hydrodynamics, Chalmers University of Technology, Sweden.

Ijima, T., Chou, C.R. and Yoshida, A. (1976): Method of analysis for two—dimensional
water wave problems. Proc. 15th Coastal Eng. Conf., Honolulu, Vol. I, pp.
2717-2736.

International Ship Structures Congress (1964); Proceedings, Delft, The Netherlands.

Jolas, P. (1962): Contribution & I’étude des oscillations périodiques des liquides
pesants, avec surface libre. La Houille Blance. No. 6, pp. 758-769.



87

Jones, D.B., Lee, J.-J., and Raichlen, F.(1979): A transportable breakwater for

nearshore applications. Proc. Civil Eng. in the Oceans.
Keil, H. (1974): Discussion on the paper by Bai and Yeung (1974).

Kirby, J.T., and Dalrymple, R.A. (1983): Propagation of obliquely incident water waves
over a trench. J. Fluid Mech., Vol. 133, pp. 47-63.

Kajima, R. (1969): Estimation of an incident wave spectrum under the influence of
reflection. Proc. 13th IAHR Congr. Kyoto, pp. 285-288.

Lee, J-J. and Ayer, RM. (1981): Wave propagation over a rectangular trench. J. Fluid
Mech., vol. 110, pp. 335-347.

Leonard, J.W., Huang, M.—C., and Hudspeth, R.T. (1983): Hydrodynamic interference
between floating cylinders in oblique seas. Applied Ocean Research, Vol. 5, No.
3.

Liu, P.L.-F., and Abbaspour, M. (1982): Wave scattering by a rigid thin barrier. J.
Waterways, Port, Coastal and Ocean Division, Vol. 108, No. WW4.

Longuet—Higgins, M.S. (1977): The mean forces exerted by waves on floating or
submerged bodies, with applications to sand bars and wave power machines.
Proc. R. Soc., London.

Mansard, E.P.D. and Funke, E.R. (1980): The measurement of incident and reflected
spectra using least squares method. Proc. 17th Coastal Eng. Conf. Sydney, pp.
154-172.

Maruo, H. (1960): The drift of a body floating on waves. J. Ship. Res., Vol. 4, pp.
1-10.

Mclver, P. (1986): Wave forces on adjacent floating bridges. Applied Ocean Research,
Vol. 8, No. 2.

Mei, C.C. (1983): The applied dynamics of ocean surface waves. Wiley—Interscience
Publication.



88

Newman, J.N. (1962): The exciting forces on fixed bodies in waves. J. Ship. Res., Vol.
6, No. 3, pp. 10-17.

Newman, J.N. (1967): The drift force and moment on ships in waves. J. Ship. Res.,
Vol. 11, pp. 51-60.

Newman, J.N. (1977): Marin: hydrodynamics. MIT Press.

Sarpkaya, T. and Isaacson, M. (1981): Mechanics of wave forces on offshore structures.
Van Nostrand Reinho d, New York.

Sulisz, W. (1989): Private communication. Polish Academy of Sciences, Institute of
Hydroengineering, Gcansk, Poland.

Thorton, E.B. and Calhoun, R.J. (1972): Spectral resolution of breakwater reflected
waves. J. Waterways, Harbour, Coastal Eng. Div. ASCE, 1972. Vol. 98, Ww4,
pp. 443-460.

Wu, J. and Liu, P.L—F. (1988): Interaction of obliquely incident water waves with
to vertical obstacles. /Applied Ocean Research, Vol. 10, No. 2.

Wu, X.—J. and Price, W.G (1987): A multiple Green's function expression for the
hydrodynamic analysis of multiple—hull structures. Applied Ocean Research,
Vol. 9, No. 2.

Yamamoto, T. (1981): Mocred floating breakwater response to regular and irregular
waves. Applied Ocean Research, Vol. 3, No. 1.

Yeung, RW. (1981): Addec mass and damping of a vertical cylinder of finite depth
water. Applied Ocean Research. Vol. 3, No. 3



Al.l

APPENDIX 1

SOLUTION OF THE DIFFRACTION PROBLEM FOR A BREAKWATER WITH A
RECTANGULAR CROSS SECTION AND A PROTRUDING BOTTOM PLATE
FACING THE INCIDENT WAVES

The problem is solved using the method of separation of variables. The fluid domain is

divided into four regions, see Figure Al.l.

z
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I l I
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Figure Al.1 Definition of fluid regions and geometrical properties.

The method of separation of variables is applied in each region in order to obtain
expressions for the unknown function, i.e. the velocity potential. Expressions valid in
the respective region are obtained as infinite series of orthogonal functions. These
expressions are developed to satisfy all boundary conditions except those at the
common boundary between the regions. It then remains to determine a number of
unknown coefficients in the series. This is done by imposing the condition of continuity
of pressure and normal velocity at the common boundary between the regions.
Mathematically this is fulfilled by matching the potentials and the normal derivatives of
the potentials.
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A formulation of the diffraction problem starting from the potentials in each region is

given below.

Let _
®(x,z0) = Re(p (x2)e "}, j=1,2,34

(AL

Applying the method of separation of variables gives the complex valued spatial

potentials in each region expressed in terms of orthogonal series as below

iR ;g e-—ikl(x+b) cosh ky(z+h)) .

P1=0 - —4 cosh kjh

00

+ ~ iR,g ean(1+b) cos o, (z+hy)
® cos Otn“]

n=2

iPg cosh ky(z+hy)
cosh kjh,

25— cos ky(x+e) +

+ 2 iP,g cos Y,(z+hy)
T T @ cos y.hy

cosh y,(x+e)
n=2

igAx  igB, o ig A
b3 =~ -
o et ),

n=2 @

igTy . .. . cosh ky(z+h))
b4 = — ¢ iki(x—b)

+
cosh kih;

. 2 _iTng e”ﬁn(x“b) cios By (z+hy)
@ cos Bph;

[

n=

—— (A" + Bne_x"

(AL.2)

(AL.3)

%) cos Ay(z+hy)

(Al .4).

(ALS)

where the incident spatial potential for a wave with amplitude a is given by

o = iga . ik (x+b) cosh ky(z+h;)
1 W

cosh kh,

(A1.6)
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In region III the eigenvalues are given explicitly while in regions I, II and IV they are
given implicitly by the dispersion relation. We have the following relations

kjtanh kihy = v (Al.7a)
o, tan o hyp = —v, n=273,.. (Al1.7b)
k, tanh kohy=v (Al.8a)
Yo tan Y hy = —v, n=273,.. (A1.8b)
Ay = (n-Drf(h—d), n=1273,... (A1.9)
kytanhkh =v (A1.10a)
Botan Bohy = —v, n=23,.. (AL.10b)
where
V= mz/g

The potentials given above describe the flow in the respective region and satisfy all
boundary conditions except those at the common boundary. For example in region 1 the
potential satisfies the linear free surface boundary condition, the impermeable bottom

condition and the radiation condition when x — —oo,

The remaining problem is mainly to determine the five sets of unknown coefficents
{(Rp, Py, Ay, By, Ty, n=1,2....}. The five sets are found by imposing the boundary
conditions at the common boundaries. The requirements of continuity of pressure and

normal velocity give the following conditions. At x=—b we get

91=¢, , -hy<z<0 (AL.LD)

b1=¢3 , -h)gz<d (A1.12)
99,

a¢l a~x~' ,~h2SZSO

—={ 0 ,-d <z<-h, (A1.13)

ax B(Dz

a—x— ,—hIstvd

and at x=b
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P3=¢4, hSz<-d (Al.14)

a¢4 0 ,"‘dﬁZSO
— =1 <rcd (ALLS)
F

The boundary conditions given above are satisfied over the z interval in a least square
sense by multiplying each side of the boundary condition by a proper set of
eigenfunctions and then by integrating them over the interval in question. Before we
proceed with the evaluation of the matching integrals it is suitable to introduce some
simplifications. Let

oy = —ik;
Y1 = —iky
By = —ik;

and make use of the relation between the cosine function and the hyperbolic cosine
function

cos (—ix) = cosh (x)
The potentials and the sets of eigenfunctions can then be written more comprehensively.
Using the above mentioned simplifications, matching at the common boundaries is

achieved with the integrals below.

Boundary condition 1 (A1.11):

0 0
f 1 {cos Y (zt+hy), m=1,2,...}dz = f ¢ (cos Yu(z+hy), m=1,2,...}dz
—h2 “hZ

(A1.16)
Boundary condition 2 (A1.12):

-d d
f ¢ {cos Ay(z+hy), m=12, ...} dz = f b3 {cos Ay(z+h)), m=1,2,...)dz
—hy —h,

(AL.1T}



Boundary condition 3 (AL.13):

08‘3’1
— [cos Oy, (z+hy), m=1,2,..}dz =
ox
~h,

96,
K’ ~h2Sz <0

=f 0 , —d<z<-h, b {cos op(z+hy), m=1,2,..}dz

hy 993
ai__’ ~h 1SZ<-d

Boundary condition 4 (Al.14):

-d -d

(Al1.18)

f &3 {cos Ay(z+h)), m=1,2,..} dz = f d4 {cos Ap(z+hy), m=1.2,...}dz

~hy ~hy

Boundary condition 5 (A1.15):

0 ody
f — {cos By (z+hy), m=1,2, ..}dz =
g%
~h,
0 0 ,-dsz£ 0
= f (cos Bu(z+hy), m=1,2,.}dz

(AL19)

(A1.20)
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Furthermore, define two matching functions. The first function is defined as
. 7]
E(0y, B, hoc’ hB, zy, 23) = f cos Otn(z-e—h(x) cos Bm(z-&-hB) dz

Z

sin [(o, + Bp)z + ocnhO£ + Bth]
+

20, + By)
3
sin [0 — Bn)z + Onhy — Puhgl ] (A1.21)
2(0y ~ Bw) JZI |

where {0, n=1,2,..} and {B,, m=1,2,.} are two different sets of eigenvalues. The

second matching function is defined as

2
N (o, by 71, 2) = f (cos ey (z +h ) dz

Zy

Zy—Zy , (ln:O
_ sin(20l, (z+h_).zo
= é [(z + ha) + o ] (A1.22)

s

Z

2o, cxn:é()

Now, rewrite the matching integrals, Eqs. (A1.16) to (Al.17) and introduce the
matching functions (A1.21) and (A1.22). The following five sets of equations are then

obtained:
Boundary condition 1:
R PmN(Ymvh2 ,vhz,O)

n
Z [ cos o, E(“m'}’m»hlhz,—‘hz,o)] T TTosYohy cosh y,(e—b)

a E(ol,Yy,hy, hy,—11,0)

cos ouh (A1.23)




Boundary condition 2:

e Rn
Y [soacm: E@amhihy -] - @D ane ™5 + Bue"®) NOG i)

n=
a E(alv)“mahl ,hl,"hl,‘d)

cos o4h, (A1.24)

It

where

-

—1l,m=1

I,m22

Boundary condition 3:
(2), b Aqb
Z [(en A -2 B M) EQ o hyhy—hy,—d) +
n=1

T
+ P oy S0 Ya(e—b) ECta,Om by, —hy,0)] -

N(oy ,hy, -hy,0)

Rmam
N 9,3(]3)51 w555 o h;

cos Ggh; N(oty hy,—hy,0) =
(A1.25)

where

o [p m=1
Ag, m22

9(3)= I,m=1
m O,mz22

Boundary condition 4.

= TnE(ﬁn’?\'m»h yh 9_h s"'d)
Z [ b ] — (Ane™P 4 B e M0 N hy—hy—d) = 0
cos Byh;

n=1

(A1.26)



Boundary condition 5:

Z [(Gr(xZ) Aneknb - }"anc_knb) E(}‘nvgm’hlvhl’—hb—d)]
n=l

TmBm

+ o5 Pk, NBahy~h10) = 0 (AL.27)

In order to find a solution, we must truncate the infinite series of orthogonal functions.
Assume that N is the number of considered orthogonal functions. We then get a system
of SN complex equations and an equal number of unknown coefficients. Organizing the

equations in matrices gives

i

X=F (A1.28)

where
- T
X=®R R R PP P ALALGAGB BB T T T )
(A1.29)
Let the elements in the systern matrix be denoted by Sj; and the elements in the right
hand side matrix by F P where i,j = 1,2,..,5N. The elements in the two matrices are
given by the boundary conditions as follows below, with local indices running

according tonm = 1,2 ... N.

Boundary condition 1:

E(amYm 1h 1 vh2s—h290)

{A1.30a)
e cos oighy
cosh y,(e — b)
Sm(Ner) = — N (Yn:h2,-h2,0) Tcos Yuhy (A1.30b)
3E(a1,'Ym vh 1 ’th_hZ,O)
= (A1.30c)

m cos alhl
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Boundary condition 2:

E(0tp, Ay, by hy—hy—d)

S(N+m)n = cos O hy

_ o) —Ayb
S(N+m)(2N+m)” Gm 3 N(}\.I“,hl‘fhl,—d)
s — MO Ny hy,-hy,-d)

(N+m)(3N+m)

a E(a‘l ’Km 3h 1 ,h],—hl,—d)
N+m) ~ cos oh]

F

Boundary condition 3:

(2)_—Azb

S = en € E (ana‘mshbhh—hl:_d)

(ZN+m)(2N+n)

S(2N+m)(3N+n) -

Tn

S oN+m)(N+n) = Gos Yoy SO0 Tn (6-D) E(Yn,0m h2,01,-h3,0)

n

am
S(2N+m)m == cos o, hy N(0t,h1,~hy,0)

F e 0™ N(owhyhy0)
(2N+m) m cos Ophj bR

Boundary condition 4:

E(ﬁmkm 9h 1 !hh_hli“d)

S aNmyann) = cos Boh;

- _ oMb .
S aN4my2N+m) =~ © N(Agp,hy,~hy,—d)
s — M0 NQhyhyhy—d)

(3N+m)3N+m)

= — Ap €M EQA 00,0y hy,—hy,—d)

(A1.30d)
(A1.30e)

{(A1.30)

(A1.30g)

(A1.30h)

(A1.301)

(A1.30j)

(A1.30k)

(A1.30D)

(A1.30m)
(A1.30n)

(A1.300)



Fisnamy = 0 (A1.30p)

Boundéry condition 5:

2
S(4N+m)(2N+n) = 61(1 ) eknb E()Vmﬁm;hhhls_hl,—d) (Al 30q)
s = — 2, e MP EO B, hyhy—hy—d A1.30
(AN+m)(3N+n) ~ ‘€ (AasPuhphy,—hy,—d) (A1.30r)
B
S(4N+m}(4N+m) = cos Bah; N(Ba,hy,~hy,0) (A1.30s)
Foanam =0 (A1.301)

Solving the complex system of equations gives the unknown coefficients in the

orthogonal series and thereby also the potentials in each respective region.

From the velocity potential in region I, Eq. (A1.2), it is seen that the orthogonal series
consists of both a propagating component and a series of evanescent components. The
evanescent components vanish far away from the structure. Hence, the amplitude of the
reflected wave is given directly from the coefficient of the propagating component, i.e.
R;. Analogously, the amplitude of the transmitted wave is given by the coefficient of

the harmonic component in region IV, i.e. T}.

The forces caused by the waves are calculated by integration of the dynamic pressure
given by the Bemoulli equation. In order to be consistent with the linear formulation

the pressure is given by
p=—p gftig = iop e 1O (A131)

Integration of the complex valued pressure gives the complex valued forces, including

information of both amplitudes and phases.



The horizontal force:

N 3 sin o, (hy-hy) - sin ot(hy—d)
Fi=pg (28,77 + R;) O, cos o h;
n=1
N tan Ynhz
+ P, ———
e Y
n=1
N sin By(hy-d) - sin B,hy
+tpg ) Tu B cos B, (A1.32)
n=1
The vertical force:
sin y,(e-b)
F3=pe Py YnCOS Yn“Z
=
N
+pg [213 b+ 2 X% (Ay+B,) sinh Ab cos xn(hl—d)] (A1.33)

n=2



The moment about x=z=0:

3)
N (a8, +R,) cos aylhi-hy) — cos o (hyd)
Fs=pg Z[ cos ohy ¢ z
nttl o
n=1 n

hy sin ay(hy—hy) — d sin oy(h;—d)

a’n )]

N P, cos yhy + cosh yu(e=b) — 2 b sinh y,(e=b)
+ P8 Z[cos A + )]
nti2
n=1

Ynz 'Yn
2.2 % Aab=1) 4 )
~pE (7 AD” + Z [aBo 5
n=2 n
(Agb+1)

+(ArBy) g &) cos dothy-a])

N Th cos PBphy — cos By(h—d) d sin Byh—d)
RN 2 i e B
n=1 n
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APPENDIX T

SOLUTION OF THE DIFFRACTION AND RADIATION PROBLEMS FOR A
BREAKWATER WITH A RECTANGULAR CROSS SECTION

In the present appendix the method of separation of variables is used to solve both the
diffraction problem, when the fixed structure is exposed to regular waves, and the

radiation problem, when the structure is forced to move in the absence of waves.

IT
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Figure A2.1 Definition of fluid regions and geometrical properties.

Solution of the diffraction problem gives the wave exciting forces in the horizontal and
vertical directions as well as the wave exciting moment. Solution of the radiation
problem in surge, heave and pitch gives the hydrodynamic coefficients, i.e. the added
mass coefficients and the radiation damping coefficients. Once the diffraction problem
and the radiation problems are solved the motions of the structure can be calculated as

well as the reflection and transmission coefficients.

The solving procedure applied is basically the same as the one given in Appendix 1.
The difference between the diffraction problem and the radiation problem appears in the
type of excitation applied. In the diffraction problem the excitation is caused by an

incident propagating wave while in the radiation problem the excitation is introduced by
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moving boundaries. If the motion of the structure is assumed to be small the boundary
conditions for the radiation problem can be applied when the structure is in its equi-
librium position. This assumption makes the mathematical formulation of the diffraction
problem and the radiation problem quite similar, and in fact they differ only in terms of
a non—homogeneous boundary condition. Owing to the mathematical similarities the

solutions of the problems are presented together.

For the structure with a rectangular cross section the fluid domain is divided into three

regions according to Figure A2.1.

The method of separation of variables is then applied in each region in order to obtain
expressions for the unknown function, ie. the velocity potential. Expressions valid in
each respective region are obtained as infinite series of orthogonal functions. These ex-
pressions are developed to satisfy all boundary conditions except those at the common
boundaries between the regions. It then remains to determine a number of unknown
coefficients in the series. This is done by imposing the condition of continuity of
pressure and normal velocity at the common boundary between the regions.
Mathematically this is fulfilled by matching the potentials and the normal derivatives of
the potentials respectively.

A formulation of the diffraction problem as well as the radiation problem for motions in
surge, heave and pitch respectively is given below. The formulation starts from the

potentials developed independently in each region.

Let
) )] =123

D (x,z,t) = Re{¢; (x,z)x,}, =1357 (A2.1)

where x / is the velocity of the I:th mode for the radiation problems and e for the

diffraction problem.

Applying the method of separation of variables gives the complex valued spatial
potentials in each region expressed in terms of orthogonal series as below
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) (iR g ik (x+b) cosh k(z+h)
——e

1I=% "7 “cosh kh™

_ =, iR,g eun(x’*b) cos o, (z+h)
o “cos oLh
n=2

() igAx  igB,

ig _
¢2=—W - w—ﬂs—+£f~-(AneX“x+Bne A

n=2 @

where the particular solution in region two is

0 =1
(z+h)2~ x2 /=3
¢(1) 2(h - d) T
’ ”3x(z+h)2 3 /=5
6(h-d) '~
0 =7

) igTy; . 1y cosh k(z+h)
by = — __071 e ik (x—b) +

cosh kh

= iT.g cos B, (z+h)
+ 2 —— e Pu(x—b) 7" P

= cos Byh

(
The incident spatial potential 6, = 0 except for /=7 when

)
¢

iga . ik (x+b) cosh k(z+h)
)

cosh kh

In region II the eigenvalues are given explicitly while in regions I and III they are given

"%y cos An(zt+h) + ¢

(A2.2)

)
p

(A2.3a)

(A2.3b)

(AZ4)

(A2.5)

implicitly by the dispersion relation. We have the following relations

ktanhkh=v
o, tan Q,h = —v, n=273, ..

An = (n--Dr/(h—d), n=1,23,..

(A2.6a)
(A2.6b)

(A2.7)
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ktanhkh=v (A2.8a)

By tan Byh = —v, n=273,.. (A2.8b)
where

V= mzfg

The potentials given above describe the flow in each respective region and satisfy all
boundary conditions except those at the common boundaries. For example in region I
the potential satisfies the linear free surface boundary condition, the impermeable
bottom condition and the radiation condition when x — —,

The remaining problem is mainly to determine the four sets of unknown coefficents
{(Ry, Ay, By, Ty, n=12...}. It should be pointed out that the units of the coefficients
vary for different modes due to the definition of the spatial velocity potential made in
Eq. A2.1. The four sets are found by imposing the boundary conditions at the cormunon
boundaries. The requirements of continuity of pressure and normal velocity give the
following conditions. At x=—b we obtain

()]

¢ =¢, , -hsz<d (A2.9)
)

8¢Y) Vy ,—d €250

= €} (A2.10a)

ox ¢,

h

where V; is the moving boundary condition for the vertical wall at x=-b. This condi-

tion becomes

1,/1=1
D Joli=3
Va =1, =5 (A2.10b)
0,/=7
At x=b the matching conditions are
o o |
2 =63 ,~h<z<d (A2.11)
Ol
aq)gl) v4 ,-—dSZSO
- Q)
% | 9%, -h Ssz<-d (A2.12a)
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0]

where V4 is the moving boundary condition for the vertical wall at x=b. This
condition becomes

Q)

V, (A2.12b)

ON O
=~
B
~3 W

The boundary conditions above are satisfied over the z interval in a least square sence
by multiplying each side of the boundary condition by a proper set of eigenfunctions
and then by integrating them over the interval in question. Before we proceed with the

evaluation of the matching integrals it is suitable to introduce some simplifications. Let

oy = —ikl
By =ik,

and make use of the relation between the cosine function and the hyperbolic cosine
function

cos (—ix) = cosh (x)

Then, the potentials and the sets of eigenvalues can be written more comprehensively.
Using the simplifications given above, matching at the common boundaries is achieved
by the integrals below.

Boundary condition 1 (A2.9):
—d
0] 0]
f ;1 {cos Ap(z+h), m=1.2, ...} dz = f ¢y {cos Ay(z+h), m=1,2,...)dz

“h h
(A2.13)



Boundary condition 2 (A2.10):

0 8¢1(’)
f — {cos 0, (z+h), m=1,2,..}dz =
X
~h
VD, —dsz<0
0
= f 0 {cos ou,(z+h), m=1,2,..}dz
9¢
- xz , —h<z<—d

Boundary condition 3 (A2.11):

—d —d @

(A2.14)

0]
f ¢, {cos Ay(z+h), m=1,2,..} dz = f 03  {cos Ay(z+h), m=12,..}dz

-h —h

Boundary condition 4 (A2.12):

0. O
903

fm {cos By (z+h), m=1,2, ..}dz =
ox

—h

0 Q)]
Vs o, ~d€z<0
=f ) {cos By(z+h), m=1,2,..}dz
Lo |99

I —hsz<—d

(A2.15)

(A2.16)
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Furthermore, define the following five matching functions,

Zy
E(0ty, By Ny, hg, 21, 22) = f cos oy(z+h ) cos Bm(z+hB) dz (A2.17)
Z]
k%)
N (0, by, 21, 72) = f (cos 0 (z +h ) dz (A2.18)
. .
Zy
Gy 21,2 f(z +h )% cos 0, (z +h ) dz (A2.19)
Zy
)
Gz(an,ha,zl,zz) = f Z cos O, (z + h(x) dz (A2.20)
zZ
Zy
Ga(Onh 2172, = f cos 0y (z + h ) dz (A2.21)
zZ)

where {0, n=1,2,...} and {B,, m=1,2,...} are two different sets of eigenvalues.

Now, rewrite the matching integrals, Eqs. (A2.13) to (A2.16) and introduce the
matching functions (A2.17) to (A2.21). The following four sets of equations are then
obtained:

Boundary condition 1:

) Rn B
Z [_———TCOS o, E(an,M,h,h,“h,Ad)] —_ (9“(11)Ame ;‘mb + Bc;\'mb) N(M,h,'*h,*d)

n=1

"lE

(N
Him (A2.22)
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where

~l,m=1
o(h -

| ,m22

0, I=1

Gy(Ay.h,h,~d) — b%Gs(A, ,h,~h—d) 3
)] Z(h - d) »
lm =

306G (Mg, h,=h,~d) —b° GyOph, hd) s
6(h - d)

iga E(al,k‘m‘h,h,—h,—d) =7
® cos o, h P

Boundary condition 2:

z [—{eﬁz)Ane‘?‘“b — A, B,eMP) E(Kn,am,h,h—h,—d)] +
n=1

Rl N0y, h—h, 0) = 125 (A2.23)
cos ogh |\, g ow :

where

o2 fg m=1
Ag,m 2 2

I,m=1
95;”:{

O,mz2
G3(amvh1—'d10) ,Izl
2y Gi(om,h,h,-d) =3
hH
2m =

2
Gz(am h,—d, 0) . G l(um yh,"gigdz 5)'3 G3(am,h,—h‘{i) y

=5

: (3
ig N(oy,, b, -h,0) -
T Oy ao cos Uyh =7
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Furthermore, define the following five matching functions,

Z
E(0ty, Ba b, by, 21, 22) = f cos a(z+h ) cos Bm(z+hB) dz (A2.17)
Z
2
N (o, hoc’ Zy, 2) = f (cos oy (z + hoc))z dz (A2.18)
Z
Zy
Gy, 21,22 J"(z 1) cos oy (z+h ) dz (A2.19)
Zy
Zy
GolOsh,21,2)) = f z cos &, (z+h ) dz (A2.20)
Z)
Z
G3(cxn,ha,zl,zz,) = f cos o, (z + ha) dz (A2.21)
Zy

where {0y, n=1,2,...} and {B,, m=1,2,...} are two different sets of cigenvalues.b

Now, rewrite the matching integrals, Eqs. (A2.13) to (A2.16) and introduce the
matching functions (A2.17) to (A2.21). The following four sets of equations are then

obtained:

Boundary condition 1:

6o

R, B
Z[ﬁs o E(an,lm,h,h,m,d)] — 0 DALe Aub Be"mb) N(A,h,~h,—d)

fi=

()
-ioy, (A222)
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where

(-1, m=1
oil) =

{ I,mz22

0, I=1

G (Ag.h,h,d) — b°Gy(hy hhod) g
0 7(h = &) b=

} GyOh,hd)

3bG;(Ay, h,~h,-d) — b
6(h — d)

iga E(oy,Ay,h,h,-h,-d)
) cos oh

, =7

Boundary condition 2:

o

z [49&2)Ane”"’"b — A,B,eMD) E(Xn,ocm,h,h—-h,%)] +

n=1

Kl N(o h—h, 0) = 12 14 (A2.23)
cos ogh Oy, 11,11, g o .

where

o@D g m=1
Ag, m 22

6(3)z I,m=1
m O,mz22

G3(&'m’h»“dso) ,/=1

" 2 Gy(a,h,-h,-d) =3

Hom G (0t hy-h,—d) — b2 Ga(o,h,—h,—d)

Gl(anfnh;“dyo) - 2(h - Cj} ,1—-‘75

. (3 B
0, Nt )
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Boundary condition 3:

.~ TaE(Bpn, Ay, h,h,—h,—d) . (D
Z [ T ] — (Age’™® 4 B M0 N b —h—d) = 19 ;.
- cos Byh g
n=1
(A2.24)
where
0 =1
1)
a0 |yt
Hy =) Him . 1=3
H
—Hin,I=5
0 =
Boundary condition 4:
Z [~<e§2) Agetl 3 B M) E(X“,Bm,h,h,—h,—d)]
n=
TuBr i@ €))]
- m N(ﬁnnh’_hao) = gh H4m (A225)
where
€3]
2m s l'- 1
()
o) -
Hy, = o ,1=3
€]
Hy, ,I1=5
0 ,i=

In order to find a solution we must truncate the infinite series of orthogonal functions.
Assume that N is the number of orthogonal functions considered. We then get a system
of 4N complex equations and an equal number of unknown coefficients. Organizing the

equations in matrices gives
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%]
<
g
i

(A2.26)

where
=_ 18 T
X = ® (Ri’RZ’“’RN’ AI’AZ’“'A‘N’ BE,BZ,..,BN, TI,T ""TN)

Let the elements in the system matrix be denoted by S;j and the elements in the right
hand side matrix by F;, where i,j = 1,2,..., 4N. The elements in the two matrices are
given by the boundary conditions as follows below, with local indices running

according ton,m = 1,2,..., N,

Boundary condition 1:

E(aAy b, h,~h,—d)

ma €os dgh (A2.27a)

SaNam) =~ 0! Je b N(Ay,h,~h,~d) (A2.27b)

Sm@N+m) =~ a0 N(Ay,h,~h,—d) (A2.27fc

€
Fu = Hy, (A2.27d)
Boundary condition 2:

S vemyNan) = 9§2)e'}““b E (A, 0ty b, —h,—d) (A2.27¢)

s = An €0 E(A, 0 b —h,—d) A2.276)
(N+m)(2N4n) ~ "0 © (A O 11,11, —h, (A2.

O(’l"ll

SN+mym = cos Ogh N(0m.h,~h,0) (A2.27g)

) |

F(N+m) = Hon (A2.27h)
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Boundary condition 3:

E(Bm)"m 3h ’ h 3 *h’_d)

S @N4m)3Nn) = cos Boh (A2.27i)
- _ oMb : .
Sonemymem) =~ € " Ngh,—h,—d) (A2.27j)
e oMb
SoNemy@iiemy = ¢ " Nhgoh—h,~d) (A2.27k)
)]
Y @N+m) = Him (A2.271)
Boundary condition 4:
_ @ MAb .
S(3N+m){N+n) - en e E(kn,ﬁm,h,h, h,*d) (A227m)
_ —Anb
SENm@nem = M e T BBy hh,—h—d) (A2.27n)
SaNtmyaN+m) =~ Gos Pgh~ NP ~0,0) (A2.270)
H
FaNem) = Ham (A2.27p)

Solving the complex system of equations gives the unknown coefficients in the ortho-
gonal series and thereby also the potentials valid in each respective region.

The forces caused by the motion of the structure or the waves are calculated by
integration of the dynamic pressure given by the Bernoulli equation. In order to be

consistent with the linear formulation the pressure is given by

) .
PP = p 8 s iapy D%, =135 (A2.28)

%) .
7 =0 3 < iopg ¢TI, 1g
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Integration of the pressure over the wet surface of the structure gives forces and
moments associated either with the diffraction problem or one of the radiation

problems. Let us start with the diffraction problem.

Integration of the complex valued pressure gives the complex valued wave exciting
forces including information of both amplitudes and phases.

The horizontal force:

N sin o, h - sin on(h—d
ng(aG(B) + Ry, —Ty) o,cos oh o
n=1
(A2.29)
The vertical force:
N
Fi = pg [2}3 b+ z 7»—3 (A,+B,) sinh A b cos ln{h—d)]
n=2
(A2.30)

The moment about x=z=0:

(aﬂI + R,-T,) cos ozh - cos oy(h—d) d sin og(h—d)

Fs = pg 2[ CoS Giyh ( 2 + o )]
n=1 O
N
A b-1)
2. .2 Ab
—og G A+ ((A,-B,) e
PE (3 A1 Z[ TX
n=2
MabtD) 5
+(An~Bn)—Xj—e nDy cos }Ln(hﬂﬂ]) (A2.31)

The hydrodynamic reaction force associated with the radiation problem can be written
as one part proportional to the acceleration of the structure and one part porportional to
the velocity as follows:
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The coefficients introduced, aj and bﬁl’ are the added mass and radiation damping

coefficients respectively. Integration of the pressure associated with the radiation

problems yields expressions for the hydrodynamic coefficients aj and b31 presented

below.

The surge radiation problem:

N
iby _ sin ozh - sin o (th— d) \
an+ Tn*_ - z Ry —T5) a, cos o h ’ (A2.33)
n=]

N cos ogh - cos an(h-d) d sin o,(h—d)

. ibs; _ _ipg [R - T 1
LIt T T e z cos a,,lr;( ol + o, ]
n=| n

e 2 g Aab-1) 5 ¢
+ 0BG Ap? Z[«An—m?—e n
n=2 n

O‘*nb"‘l) ,_)\'

* (ArBy) e ) cos hnthi-d)]) (A2.34)

The heave radiation problem:

N
ags + 1033 = _ iPg [ZB b+ 2 x% (A,+B,) sinh A,b cos }\n(h—d)]

n=2

3
o 3 - dzzb — b (A2.35)
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The pitch radiation problem:

N .
. . h - cos gy(h—d) d sin oy(h—d)
ibss _  ipg R,-T cos n n
a55+?§)‘""—'(%—2[cos otnl!‘lx( o2 + 0 )}
n=}| n
N
. (A,b-1)
+BEC AR+ Y [(anBy) —7— el
n=2 An
(Apb+1) 23,5
+(A,~By) —7 e Mb) cos Xn(h~d)]) +p 5—%% (A2.36)
n
N
ibis i sin oh - sin ogyh— d)
ais + _03‘15 T 7%& Z Ry = Th) o, cos o h (A237)
n=]

If we are interested in the diffraction forces but not in the reflected and transmitted
waves, it is possible to use the radiation solutions to obtain the diffraction forces. This
is a consequence of Green's second identity and the applied boundary conditions. It is
usually called the Haskind relation, see Newman (1962). Making use of the relation we
obtain the following expression for the diffraction forces:

sinh 2kh
2, oM F TR )
F=-R82 R — =135 (A2.38)
(cosh kh) )

When the diffraction problem and the radiation problems are solved we can apply
Newton's second law to calculate the motions of the structure caused by the waves.
Substituting the wave exciting forces and the hydrodynamic reaction forces into

Newton's law gives the following form of the equation of motion:

Y [Py ay - ioby+cy] xj= Fii=135 (A2.39)
j=1,3,5

where
x; is the complex valued motion of the structure in the j:th mode of motion and m i @ijs
bjj, ¢y are elements in the mass, added mass, radiation damping and hydrostatic matrix,

respectively.
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All non-zero elements in the mass matrix and the hydrostatic matrix are given below

my =m33 =m

mjs = Mgy = sz

2
Mss = miry
¢33 = pg2b
Css = pgVz, —mgz , + pgl

where
m = mass of structure
zZ, = z—coordinate of centre of gravity
rp = pitch radius of gyration

= volume displaced by structure

k4
zy = z—coordinate of center of buoyancy
J

= moment of inertia of the water plane area

Solution of Eq. (2.39) gives the complex valued motion in surge, heave, and pitch
including both information on amplitudes and phases.
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APPENDIX III

SOLUTION OF THE DIFFRACTION AND RADIATION PROBLEMS FOR A
BREAKWATER WITH A CROSS SECTION OF GENERAL SHAPE.

In the prescht appendix the diffraction problem and the radiation problems are solved
for a breakwater with a cross section of general shape. The formulation also allows the
water depth to vary in the vicinity of the cylinder.

Figure A3.1 Definition of fluid regions.

The method used is an integral equation method based on Green's theorem. The integral
equation is applied to a fluid region close to the cylinder (region II), see Figure A3.1.
Outside this region, at each side, the water depth is assumed to be constant. Series
solutions are developed in the outer regions and subsequently introduced in the integral
equation as boundary conditions. The series solutions are simply obtained by separating
the variables in the respective region.

Let
0 0 j=123
@ (x,z0) = Re(¢; (x2)%,] , (A3.1)
I1=13,57
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where

% is the velocity of the /:th mode for the radiation problems and e for the

diffraction problem.

The complex valued spatial velocity potential in region I and region III are then
obtained as

0 O iRg ik (x4by) cosh k(z+h})
e

o =6 ——35 cosh k;hy
_ z iRpg (Oaltb) cos o, (z+hy) (A3.2)
) “cos oghy
n=2
¢gl) _ ig;i‘i . ik3(x—bs) cosh ki(z+h;) .
) © cosh kshgy
> iT,g cos PB,(z+h3)
e N g Py (A33)
= cos Byhs
)
where the incident spatial potential ¢I =0forl=1, 3, 5 and
) i . cosh kj(z+h))
o _iga iky(x+by) " T
cbl =—5c (A34)

cosh kh,

where a is the amplitude of the incident wave. In regions I and III the eigenvalues are
given implicitly by the dispersion relation.

kl tanh klhl =V (A3.5a)
0, tan oghy = —v, n=2,3,.. (A3.5b)
kj tanh kahy = v (A3.6a)
B, tan Bohs = —v, n=23,.. (A3.6b)

where
2
v=0/g
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The potentials above describe the flow in the respective region and satisfy all boundary
conditions except those at the boundaries to region II. For example in region 1 the
potential satisfies the linear free surface boundary condition, the impermeable bottom

condition and the radiation condition when x — —e,

Let us continue the formulation of the problem letting the potential in region I, ¢, be
expressed in terms of potentials of 2D-sources according to Green's theorem. The
potential of a field point (P) inside the fluid region is then given by

2mh,(P) = f [q;zgﬁ Inr— g%; In r] ds (A3.7)
S

where S is the line enclosing the fluid region II and
r=((x -5+ @ - pHl?
is the distance from the source point Q= (£,{) to the field point P= (x,z). Let the field

point coincide with the closed boundary S. The Green's theorem then slightly changes

and becomes

nh,(P) = f [ ¢Zgﬁ Inr— gg’l In r] ds (A3.8)
S

Before we solve Eq. (A3.8) let us introduce the different conditions along the boundary
S enclosing the fluid region II. They are

Q)
3—22 =V, , a$, (A3.9a)
Ny ,I=1
V(I) _ I n, =3
" —(xn, —(z —z)ny), [ =5
0 =7
2

g%’l = ‘g—_ &, ,atS,and Sg (A3.9b)
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’¢'2 = 3

g% _ g«% atg, (A3.9¢)
g?;-z =0 ,at Sy (A3.9d)
$y = ¢

dp; _ 99y ) ,atS (A3.9e)
- gh ’

By substituting the boundary conditions above into the integral equation we obtain

7t¢2(P)=f[¢za (n1) -V, lnr]dS+ f«pz [a (lnr)—gzlnr]ds
on n dn g

Si S,

+f [%gﬁ(mr)—g%imr] ds
S3

+f¢2§-ﬁ(lnt)d8+ f [q)lgﬁ(mr)—g%’lmr] ds

S4 Ss
9 (n )—"’zm ds (A3.10)
¢2[gﬁ r _g—- 1‘] .
Se

The integral equation above is solved numerically by discretising the boundary S into
elements according to Figure A3.2.



z
JR— :N 1 = T =
=N il {kaNG‘/J:‘l xJ N1+11
T Se s, =M
T 1 o=03 |n
i Sy >3] 3
hy ® = oy :55 d=0, £

[ N

L B 1

wn

o~
7
—
[0
=z
L
s
—

j=N4,4-;
Figure A3.2 Discretisation of boundary enclosing region II.

Assuming the velocity potentials ¢, ¢,, ¢3 and ¢I to be constant over the elements, the

integral equation can be written in a discretised form

.
my(P) = Z[%(Q)J 9 (nD) —Vy(Q fmr]ds

S AS
r 2
) ¢2(Q)[ J 9n yas — - J In ds]
S AS AS
r .
+ Z [¢3(Q) J ?ﬁ(ln 1)dS ~g§ﬁ<Q)J lnrdS]
S5 AS AS

.
+ bez(Q)J 9 (nn) ds
S4 AS

+ Y [«MQ) JP 9 (in nds - Q) J Inr dS]

Ss AS AS
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r 2 r
+ Z¢2 (Q)[J gﬁ(lnr)dsuziJ lnrdS] (A3.11)
Se AS AS

If we now apply Eq..(A3.II) to calculate the unknown velocity potential ¢,(P) for the
midpoint of each element we get N equations where N is the number of elements. If we
assume that the number of components included in the series solutions in region I and
region I is truncated at the same number as the number of elements at boundaries S
and S5 respectively, the number of unknown will equal the number of equations. Let us

organise the system of equations in matrices using the notation

SX=F (A3.12)

$2; J= (1,N),(N3*1,Ny),(Ns+1,Ne)
x;={T{N, j=Ny+1.Ns (A3.13)
Rj—N4 J= Ny+1,Ng

Define the following integrals

(&,0)j*1
Eij=f Inr dS (A3.14a)
€.0;
(.0t
Ejj= f gﬁ(lnr)ds (A3.14b)
€.0);

and the following functions

. _dgcos a(z; + hy
Cnl_ ® CO; m— (A315&)
A _ig  cos ay(z; + hy)
C"‘”m O 5" (x; 1 (A3.15b)
D, = 1808 Palz; + h3) (A3.15¢)

! o Cos Ppuhg
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£ B, @S’;%g%;ﬁ—hﬁ (A3.15d)

c¢ | 1SNy or N3+1<isNy or Ny+1<i<N
1 if 2 6

L i=) (A3.16a)
0 else

(A3.16b)
0 else

1 if Ny+1si, j<Ns 160
35.10C

[

\

@ { 1 if Np+1<i, j<N;
/

\0 else

Using the definitions given above, the elements of the system matrix are

(H @ 3)
Sij: —TC [9” + 9,1 D(]"Nz)l + 9” CU—N4)1} + (A3.17)
E;; , ISjsN;
0% L [ N#IgEN,
1 g_ . l N5+1Sj.<.1\16
N3
2, | B ]
D, . E;, - D . Enl , Np+ISjSN
n=§2+1 (j—N2)n n (j-No)n 27 135N

Eij s N3+1.<_jSN4

Ns
Z [CG_M)n Bin— Cj_n,pn End s Na+1gjNs
H=N4+1

Finally, the elements of the exciting matrix become

Ns N
- ()
. ~ AT
F;= [Tt Cii— z(Cm Ey + Cyy Ein)] aVs 2 Vik Ex (A3.18)
n=Ny+; k=1

~ Solving the system of complex equations, (A3.12), gives the unknown velocity potential
along boundaries Sy, S, S4 and S¢ directly while at S; and Ss it can be calculated using
the series solutions Eq. (A3.3) and Eq. (A3.2), respectively.
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Once the velocity potential is known the desired quantities such as wave exciting forces
added masses, potential damping, wave pattemn, and motions are calculated in a

straightforward way following the equations given in Chapter 2.
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