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PREFACE

Stormwater quantity and quality has been a wmajor research
subject at the Department of Sanitary Engineering, Chalmers
University of Technology since around 1970. The research started
at the department but Tlater became an integrated part of the
research effort made by the Urban Geohydrology Research Group,
which was formed in 1972.

The work presented in this report is based on a study made
between 1978 and 1982. The project was in practice a continu-
ation of an earlier study on the quality of runoff from mixed
urban watersheds made between 1975 and 1977. The reason for
starting a new project in 1978, looking at small urban water-
sheds, was the difficulties we had to generalize our findings.
It was my belief that it would be»possible to predict urban
runoff quality from detailed knowledge of runoff quality from
small watersheds. Another reason for the project was the need
for an urban runoff quantity simulation model. At the onset
of this work, urban runoff quantity modelling had left its
infant stage and was widely used in practice. However, the
analysis of urban drainage systems will be incomplete as long as
the runoff quality modelling is lacking or based on very simple
assumptions.

This thesis deals with the modelling of solids and heavy metal
(cadmium, copper and lead) transport in runoff from small urban
watersheds. The model has developed within the framework of this
thesis, but has not reached a commercial level. It is written in
common FORTRAN and is available at the Gothenburg University
Computing Centre.

It is my hope that the results of my work will be useful for the
ongoing work to improve urban drainage simulation models.

Goteborg in September 1987

Gilbert Svensson
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SUMMARY

This thesis deals with the problem of modelling solids and heavy
metals concentrations in urban runoff. A solids transport model
has been developed which is based on sediment transport theories
and a metals transport model based on investigations of solids
associated metals in urban runoff. The developed models were
verified with data from a database consisting of some thirty
observed storm events. The observations were made for a roof, a
parking lot and a street. The verification showed good agreement
between observed and simulated concentrations as well as ob-
served and simulated masses.

The concern for stormwater quality and its impact on receiving
waters started to grow around 1970 and there are several assess-
ments of stormwater quality from this period. The well known
Sartor & Boyd study in USA dates back to 1972 and in Sweden
there are the studies of Soderlund & Lehtinen (1970) and Lisper
(1974). These studies established knowledge of the level of
concentration of different substances found in stormwater. It
was vrealized that stormwater could transport considerable
amounts of pollutants to receiving water bodies. The two main
reasons for stormwater being an important transport path for
pollutants are:

- During the passage of rainwater or snow through the
atmosphere and over urban surfaces there is an
uptake of soluble substances, which will be trans-
ported by the runoff.

- Raindrops hitting a surface are a very good erosive
agent thus creating the possibility of the runoff
transporting particulate substances accumulated from
atmospheric fallout and local sources.

Urban runoff quality modelling started parallel to the studies
of pollutant concentration levels. The models were either based



on a pollutant buildup function for the urban surfaces and an
exponential washoff function during runoff, or a constant
concentration for each substance linked to the stormwater flow.
Later, several attempts were made to develop more deterministic
models, thus vreducing the need for calibration evident in the
early models. These models are not, however widely used. Still,
the buildup-washoff concept dominates among the models used.

The main objectives of the present study were to obtain more
basic knowledge of the washoff and transport of pollutants from
urban watersheds and to improve the simulation models for
stormwater quality.

The substances choosen to study in the runoff from three differ-
ent types of areas (a roof, a parking lot and a street) were:
suspended solids, cadmium, copper, lead and zinc. In all, five
events from the roof, nine from the parking lot and 15 from the
street were recorded. Discrete samples were taken with a time
resolution of three to five minutes. A comparison between the
studied watersheds and some mixed watersheds, which had been
investigated earlier, showed that the concentration levels met
the expected levels. The solids associated metal concentrations
varied both within storms and between different storms. The
dissolved metal concentrations were lower and varied less than
the solids associated concentrations for lead and for those
events with a high pH-value also for cadmium and copper. The
dissolved fraction had a marked increase at lower pH-values for
cadmium and copper. The solids associated metal concentrations
were also analysed for different particle size fractions and
found to be highly correlated to the surface area of the
solids. A model with the particle diameter as the independent
variable was investigated and was shown to fit the observed
solids associated metal concentrations.

A solids transport model for one surface, based on sediment

transport theories for non-urban surfaces, was developed. The

main features of the model are the balancing of the solids
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detachment rate by the transport capacity for different particle
size fractions and the mass balance for the surface load of
solids. This model was partly verified with data from a small
laboratory surface without any rainfall impact.

The model was extended to be able to simulate surface runoff and
solids transport from two surfaces connected to one gutter. The
length of the gutter was the same as the width of the surfaces.
This improved model was, with respect to solids transport,
basically the same as the first developed model. Using the
database of observed storms from the street and the parking lot,
this model was verified and found to simulate both masses and
concentrations in agreement with those observed.

The next step in the model development was to incorporate the
solids associated metals model into the solids transport model,
thus creating a model for the simulation of solids and metal
transport in urban runoff. Once again the database of observed
storms was used for the verification of the metals transport
model. For all the verifications, storms were used which had not
been used earlier for model development. The simulation of the
metals transport proved to be good as long as the simulation of
the solids transport was good. The transported load had to be
balanced by the surface load of the catchment, otherwise too
high concentrations and thus, too high Toads were simulated.

The following conclusions were drawn from the work presented
here:

- Solids concentration curves for urban runoff can be
simulated using theories on sediment transport in

open channels.

- The sediment transport rate is determined by either
the detachment rate or the transport capacity.

- The transport capacity of solids is strongly depend-
ent on particle size.
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- The solids supply of a surface can be a limiting
factor for the tranport of some particle size
fractions.

- A first flush effect is logical and 1is caused by
small particles which are readily transported but
Timited in supply.

- There 1is a Tinear relationship between the solids
associated metal concentrations and the surface area
of the particles.

It should be investigated if the sediment detachment and trans-
port equations of the model presented can be simplified.The
model presented should also be tested for larger catchments with
a simplified areal description. An integration of the developed
model in an urban drainage planning and analysis model has to be
done to make the model suitable for practical applications.
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1. INTRODUCTION

1.1 The urban water cycle

Urban areas, that 1is areas where the man made environment
dominate over the natural environment, are from a hydrological
point of view still a part of the hydrological cycle. Comparing
a rural area to an urban area in terms of precipitation, evapo-
transpiration and runoff shows less evapotranspiration, more
runoff and less ground water production in an urban area. The
runoff process is much more rapid in urban areas, giving higher
maximum flows and thus having a high potential of transporting
particulate substances and substances bound to particles. The
interaction between urban areas and the atmosphere is outlined
in Fig. 1.1, which shows that there is not only a deposition of
substances from the atmosphere but also an uptake of substances
produced within the area.
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Figure 1.1 Interactions between the atmosphere and an urban
area.



The Tocal hydrological cycle is to a great extent disturbed by
man made structures. In sewered areas the water balance is more
or less controlled by man. In principle there are two water
cycles in urban areas: One is concerned with the production and
distribution of drinking water, which becomes sewage during the
passage through the urban area with the later being discharged
into a receiving water. The other is the rainfall-runoff process
which is a part of the natural hydrological cycle. Both are
outlined in Fig. 1.2, where some interactions between the two
systems are also marked. For example the yearly storm water
volume 1is of the same order of magnitude as the yearly infil-
trated volume of ground water due to leaky sewers for many urban
areas in Sweden.
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Figure 1.2 Water cycles of urban areas.

This thesis will deal only with the rainfall runoff process in
urban areas and the transport of substances by stormwater.
Stormwater transports considerable amounts of physical, chemical
and biological substances to the receiving waters via wastewater

treatment plants, combined sewer overflows and storm sewer



outfalls. To a minor extent ground water aquifers also receive
stormwater through exfiltration from sewers and infiltration or
percolation of stormwater into the ground.

To get an impression of the magnitudes of the mass flows in the
urban rainfall runoff process, an example from the City of Lund
in the southern part of Sweden, (Hogland, 1986), is shown in
Fig. 1.3.
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Figure 1.3 Yearly mass balance of Pb for the City of Lund, after
Hogland (1986).

1.2 The recognition of storm water as an important

transport path for urban pollution

The sources of the substances found in storm water can be
divided into atmospheric sources and surface bound sources. Both
can be further subdivided, as by Malmgvist (1983). A reproduc-
tion of this subdivision is made in Fig. 1.4
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Figure 1.4 Factors influencing the quality of storm water,
(after Malmqvist (1983)).

There are two main reasons why storm water is an important
transport path of substances in the urban environment. The first
is the fact that rainfall or snow passes through the atmosphere
over an urban area and hits every part of the area at least some
times every year. As water is a good solvent for many substances
this causes a transport of soluble substances from the atmos-
phere and from urban surfaces by the runoff. The second reason
is that raindrops, when hitting a surface, are a very good
erosive agent, thus creating the possibility of transporting
particulate substances. However, this cannot be done without the
runoff having a sufficient transport capacity, which will vary
with the runoff intensity, the topology of the area etc. Saying
that the transport capacity varies within an area, implies that
a substance can be transported from one part of an area to
another, not necessarily reaching the receiving water during a
single rainfall event.

An outline of the transport paths in a sewered urban catchment
is shown in Fig. 1.5. A1l parts of the area accumulate substan-
ces between runoff events. During runoff, however, some parts
will be washed, thus having less accumulated substances after
the runoff event and some parts will act as a sink, thus having
more accumultated substances after the event. An example of a
part acting as a sink is a catch basin, which not only accumu-




late substances, but also affects the composition of the storm
water through processes going on between runoff events,
(Morrison (1985)).

% —» Transport path
$ Sink

Figure 1.5 Transport paths and sinks for substances found in

storm water.

1.3 Effects of storm water discharges

The physical, chemical and biological substances in stormwater
may be harmful to the aquatic 1ife in receiving waters. Looking
at background concentrations of receiving waters, stormwater
most often increases these concentrations, thus stormwater can
be regarded as a polluter. However, wether the stormwater is
harmful or not depends on the concentration levels and if they
are critical for aquatic life or not.

When discussing concentration levels it is essential to distin-
guish between acute toxic effects and long term effects. The
acute toxic effects are related to soluble or weakly bound
substances, which are available for organisms and can be taken
up rapidly. The long term effects are related to substances,
which tend to accumulate in organisms and in plants.



The discussed effects of storm water on the aquatic 1ife are the
primary effects of storm water discharges. A secondary effect on
the receiving water is the combined sewer overflow, where the
flow increase during a storm event causes the overflow, and the
mixture of sewage and stormwater overflowed causes the environ-
mental effect. Similary stormwater discharges to sewage treat-
ment plants often disturb the treatment process, thus effecting
the quality of the effluent from the treatment plant.

1.4 Scientific_and engineering needs of understanding

the transport of substances by stormwater

The reason of studying transport of substances by storm water is
mainly the environmental effects of stormwater discharges, which
must be taken seriously. Even if acute toxic effects seldom are
reported, storm water discharges are responsible for the poor
water quality of many small streams and rivers. One of the most
crucial substances in the industrialized world is cadmium, which
is known to accumulate in plants and in organisms. The accept-
able human intake of cadmium without permanent effects is known
and can be reached during the next century if the use of cadmium
is not reduced.

From a scientific point of view the interactions between storm
water and surfaces or basins during the passage through an urban
area is of interest. Basic knowledge of these interactions is
the only source of understanding, when effects are seen in a
receiving water, a treatment plant or in a ground water aquifer,
which calls for an explanation.

From an engineering point of view a basic knowledge of availabi-
lity and transport mechanisms for different substances is
essential. The engineering task is to reduce the pollution of
receiving waters and to choose the most appropriate receiving
water for the pollution load under both technical and economical
restrictions. To solve this problem, the engineer needs reliable
tools for the simulation of transport of pollutants by storm

water.



2. STORMWATER QUALITY MODELLING - A BACKGROUND

2.1 Assessment of stormwater quality

It was not until around 1970 the quality of the urban runoff was
discussed and looked upon as a potential polluter of rivers and
lakes. The two main reasons for this was: Firstly the concern of
the quality of the receiving waters which had improved treatment
of wastewater and made possible construction of many new waste-
water treatment plants. Secondly the separation of stormwater
and sanitary sewage. The technique of transporting stormwater
and sanitary sewage in separate pipes developed parallel to the
more extensive treatment of the wastewater.

In Sweden the first paper on stormwater quality dates to 1950
and was authored by Akerlindh (Akerlindh (1950)). His paper
discusses the impact on receiving waters from urban runoff with

respect to organics and nutrients.

The next step came not until the late sixties when Soderlund and
Lehtinen made investigations of the quality of runoff from
several urban areas with respect to organics, nutrients and
heavy metals, Soderlund et al, (1970).

The investigation of SOderlund were followed by Lisper, who
investigated a heavily polluted highway in GOteborg, Lisper
(1974).

Typical for these early studies were that they established
knowledge of the levels of concentration of different substances

found in stormwater.

A compilation of the data from Sdderlund”s and Lisper”s work was
made by Malmgvist and Svensson (Malmgvist et al, 1974), which
was the first Swedish assessment of the stormwater quality.



In USA the interest in stormwater quality dates to the same
time, the late sixties. An investigation from Chicago made by
the American Public Works Association (APWA (1969)) looked not
only at the stormwater quality but also the accumulation of
solids on the wurban surfaces. The accumulated solids were
regarded as the main source of stormwater pollution.

This study was later followed by the well known investigation by
Sartor and Boyd, (Sartor et al. (1972)) who reported on data

from ten cities.

The established knowledge of stormwater quality in the early
seventies was based on these early investigations. It was
recognized that stormwater in general had lower concentration of
nutrients and organics than treated wastewater but higher
concentrations of certain heavy metals as for example Pb, Cu and
In.

2.2 The early stormwater quality simulation models

Following the early investigations in the USA, models developed

there tend to be based on some buildup function for the accumula-
tion of solids on urban surfaces and an exponential washoff

function. For example the Stormwater Management Model (SWIM),

whose first version was presented 1971, (Metcalf & Eddy, Inc. et

al. (1971)). This was a single event model for the design and

analysis of combined and separated sewer networks.

Later the SWMM was followed by the Storage, Treatment, Overflow,
Runoff-Model (STORM), which is a model for continous simulation

of urban runoff, (Roesner et al. (1979)).

Both models used a Tlinear buildup function according to Eq.
(2.1) and an exponential washoff function according to Eq.
(2.2).

P=a (2.1)

Po— P =Pyl —¢ ™) (2.2)



In Europe the NIVA-model was developed in Norway with a first
version presented in 1972, Lindholm (1978). The model was
developed for the analysis of combined sewer networks and
included a quality model based on constant concentrations for
the sanitary sewage and a power function of the discharge for
the urban runoff according to Eq. (2.3).

P=t1c,’l" (2.3)

In Germany the Dorsch Consult Developed the Quantity, Quality
Simulation model (QQS) 1in the mid seventies. A model for the
continous simulation of urban runoff impact on receiving waters,
Geiger (1975). The quality modelling concept of QQS was to use
unit pollutographs for the calculation of wurban runoff
concentrations of different substances. The unit pollutographs
are derived for different land uses and a calibration technique
is applied to achieve as accurate unit pollutographs as
possible.

Parallel to the work with model development the investigations
of urban runoff and combined sewer overflow quality continued.

In Sweden Malmgvist investigated the stormwater pollutant
sources (Malmgvist (1983)) and made a compilation of all investi-
gations in the Scandinavian countries. Hogland made a mass
balance for the city of Lund including both combined and
separate sewers, Hogland (1986).

In Munich an extensive investigation of combined sewer runoff
was made, Geiger (1984).

The Nationwide Urban Runoff Program (NURP), EPA (1983) in the
USA has compiled urban runoff quality data from some 30 cities.

It has been realized that the simulation of urban runoff quality
includes so many uncertainties that a credible result demands
some means of calibration, which have been achieved by the
compilation of urban runoff quality data in several countries.
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2.3 Towards a more deterministic modelling concept

In the late seventies several attempts were made to build more
physically based urban runoff quality models. The main reason
was the evident need for calibration of the early models for
each application.

The idea was to apply sediment transport models for rural areas
to urban areas. Simons et al., (1977b) presented this idea
followed by Sutherland et al. (1979). Sutherland made a complete
model for urban solids transport but did not include other
substances than the carrier, the solids. Price et al. (1978)
made a similar attempt for solids.

These deterministic models have however not been widely used
because of the lack of data on substances attached to the
solids.

A summary by Huber (1986) on operational urban runoff quality
models does not include any of these more physically based
models but only the buildup-washoff type of models, see Table
2.1,

Table 2.1  Operational urban runoff quality models (from Huber
(1986)).

Model Year Number of Simulation Reference
originated Pollutants type

DR3M-QUAL 1982 4 C, SE Alley et al. (1982)
FHWA 1981 13 SE Dever et al. (1983)
HSPF 1976 10 C, SE Johansson et al. (1980)
QQs 1975 2 C, SE Geiger (1975)

STORM 1974 6 C Roesner et al. (1974)
SWMM 1971 10 C, SE Huber et al. (1981)

C = continous simulation

SE = single event simulation

10



Including the operational models used in Scandinavia, i.e. the
MOUSE-model (Lindberg et al. (1986) and the NIVANETT-model
(Lindholm (1978)) does not make any change. These are also based
on constant or runoff related concentrations, which have to be

calibrated.
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3 THE PRESENT STUDY

3.1 Objectives

The main objectives of this study were to obtain more basic
knowledge of the washoff and transport of pollutants from urban
surfaces during storm runoff. Most of the research that was
carried out before this study was initiated in 1977, had been of
the black box type. That is, establishing relationships between
input and output without trying to describe the underlying
physical and chemical processes. This technique can be proven
very successful but is based on large databases, which represent
the variation of climatic factors and physical and chemical area
specific factors. Since the build-up of these databases was very
slow and costly, it was thought to be interesting to look into
the processes involved in the washoff and transport of pollu-
tants with surface runoff.

An important objective was not only to gain more knowledge of
the above mentioned processes but also to express this knowledge
in mathematical forms. The study should contribute to the
process of improving simulation models for storm water quality.
The latter objective was in fact a first priority objective, but
it was believed not possible to fulfill without the former
objective.

The study was planned to contain laboratory experiments with
particle transport by surface flow and field observations of
surface runoff quantity and quality for small uniform water-
sheds. Parallel to the laboratory work and field observations
the construction of a process based simulation model was made.

3.2 Operation and limitations

The restrictions of the study both in time and money made it
neccessary to limit the study to substances in storm water,

13



which were believed to be important from an environmental point
of view. The substances which were choosen are: Suspended
solids, cadmium, Tead, copper and zinc.

The work was divided into six parts, some of which could be
carried out parallel and some sequentially. The order they are
presented below gives roughly the chronological order.

A Tlaboratory study was made to investigate the possibility of
using particle erosion-transport equations primarily developed
for naturally vegetated surfaces. To this part a small labora-
tory surface was constructed with a surface cover similar to an
asphalt surface. Experiments were made with particles in the
same size range as particles found on urban surfaces and were
evaluated by a simple erosion-transport model.

The main part, considering time and money, was the field observa-
tions of rainfall intensity and runoff from three small uniform
catchments. Three typical types of areas were included: A part
of a street, a parking lot and a roof. Approximately 80 % of the
runoff volume in an urban area comes from these three types of
areas. The observations were made from June to November during
two years and included rainfall intensity, surface flow and
discrete sampling throughout the storm events.

Parallel to the field observations, the physico-chemical labora-
tory work was carried out. The work included separation of the
samples into a solid phase and a dissolved phase. The analyses
made for both phases were solids concentration, metal concentra-
tion, pH and conductivity. To separate the two phases both
filtration and centrifugation were used. Some storms were
treated more extensive and the samples separated into the two
phases for different particle size ranges.

Based on the laboratory particle transport experiments and the

analysis of the field observations, relationships were estab-
Tished between; a) particle transport and hydraulic parameters

14



and b) particle concentrations for different particle sizes and
metal concentrations. This was the base of the simulation model
for particle and metal transport with surface runoff. The
appropriateness of the model was evaluated with the data from
the field observations.
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4. PARTICLE TRANSPORTATION WITH SURFACE RUNOFF

4.1 Approach to the problem

4.1.1 Surface runoff

Surface runoff can be characterized as a shallow gravity flow.
The runoff is produced by rainfall andthe water depth is gover-
ned by the slope and the roughness of the surface. A natural
drainage area consists of areas or planes with different slopes
and roughnesses. For this reason it is neccessary to divide the
drainage area into several planes each of them with uniform
slope and roughness. The problem is then reduced to treating a
plane with uniform slope and roughness. Each plane has two
inflows: The rainfall evenly distributed over the plane and the
upstream inflow. The only outflow is the downstream one. These
planes are linked together in a certain way which has to be
described by the model. The Tinks will either be non-point, that
is one plane discharges to another or physically existing as
open channels or closed conduits.

L L L L
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R R R u R R R
T
w
T w
E
R
0
R
S S
L = Length P R R
R= Roughness | W
S = Slope P
W = Width E
L L

Figure 4.1 OQutline of an urban catchment as a surface runoff
model sees it.
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There are several different techniques used to convert rainfall
to runoff. One theory which realistically represents the physics
of surface runoff is the kinematic wave theory, see for example
Lyngfelt (1985). This theory is an approximation of the equa-
tions of continuity and momentum and has successfully been used
to simulate surface runoff, Lyngfelt (1985).

4.1.2 Sediment transportation with surface runoff

Sediment transportation with surface runoff is a process of
particle detachment and particle transport by erosive agents.
The particles will be detached partly by rainfall and partly by
overland flow. Once detached the particles will be transported
downstream with the overland flow. Each particle will either
continue to be transported or begin to settle depending on the
flow conditions. If a particle begins to settle, it will be
transported downslope again when the flow conditions have
changed and are favourable for transport instead of settling.

In theory each individual particle has its own critical flow

conditions which governs when the particle begins to settle. In

practise, however, it is necessary to lump the particles together
into groups, which will be characterized by the geometric means

of the individual particle sizes and the density.

The total particle yield is a function of supply and transport
capacity. The supply for transport is governed by detachment by
raindrops and by flow. The transport capacity is governed by the
flow conditions. From time to time during a stormevent condi-
tions will change between supply and transport as the governing
factor.

4.1.3 Application to urban areas

Sediment transport with surface runoff from areas of unprotected
soil is an important problem 1in many countries. Considerable
research effort has been put into this problem and as a result



theories have been established which describe sediment transport
with surface runoff, river flow and channel flow, (Kinori et al.
(1984)).

The total solids Toad in stormwater from urban areas originate
however seldom from unprotected soil but from impervious urban
surfaces. Several processes are involved, as 1illustrated in
Fig.4.2, in the transport. The total yield from an urban area is
of a different magnitude compared to the yield from a rural
area. Still, a physically based theory for sediment transport
will be applicable to both problems.

Precipitation

1 !

Detachment of 4 Surface Runoff

Accumulated Solids

Y

Compare

Detgched Detac hment Runoff_ Transport
Solids for to { Capacity of
Transport Solids

Transport

Solids Mass Transport
Equals the Limiting Part

Figure 4.2 Processes involved in the particle transport by
surface runoff in urban areas.
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The analogy between the two problems 1is obvious. Surface runoff
caused by rainfall is the erosive agent in both cases. The most
important difference is the distribution of particles over the
ground and the total mass of the load. In the urban case the
particle load 1is Tlimited and unevenly distributed over the
surfaces while the rural case has an unlimited supply of partic-
les which are more or less evenly distributed over the surfaces.

The processes involved in the particle transport by surface
runoff for urban areas, illustrated in Fig. 4.2, are: Transport
capacity, flow detachment and detachment by raindrops. Limiting
factors are the available supply and armoring effects of the

surface.
4.2 Basic principles of surface runoff
4.2.1 Rainfall and initial losses

Rainfall is ususally denoted by i. The rainfall intensity is
time and space dependent and should therefore be written,
i(t,x), where t is the elapsed time from the beginning of the
rainfall and x a coordinate. However, the space dependent
variation is normally dignored for small urban catchments, why
the rainfall intensity is written, i(t).

For sewered urban areas the runoff from the impervious surfaces
produces the major part of the runoff. Only at special occasions,
for example at snowmelt or a long period of rainfall, does the
runoff from the impervious surfaces pay an important role in the
rainfall-runoff process. The runoff process for pervious sur-
faces will not be further discussed in this thesis.

The rainfall losses for the impervious surfaces will be limited
to wetting of the surface and ponding. These losses have been
estimated from several investigations to be less than 1 mm of
rainfall, Arnell (1982). The effective rainfall, 1e’ can then be
written:
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i1 = i(r) = ipl0) (4.1)

where ip(t) is the intensity of ponding and wetting of the
surface.

4.2.2 Surface runoff

The surface runoff is denoted by 9. The runoff is time depen-
dent, and is written as qr(t). Fig. 4.3 shows a section of a
small catchment with an upstream inflow, 1u(t), and a qr(t),

which will vary with the x-coordinate along the surface.

REE RN EEEEEEEE R R B

Figure 4.3 Schematic view of a surface runoff area.
Since qr(t) equals iu(t) + ie(t) and the term iu(t) is zero for
a surface with no inflow from upslope, the average runoff can be
written:
L
g,(1) :j () dy =i L (4.2)
0

The runoff volume, the yield, is calculated through the integra-
tion of Eq. (4.3) for the duration of the rainfall.
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D D
= Wf g, (1) di = WLJ i) di (4.3)
0 0

Yw = the runoff volume

W = the width of the area

L= the Tength in direction of slope
D = the duration of rainfall

However, this concept does not take into account the traveltime
over the surface. It is a fair approximation for small surfaces,
i.e. short length in the direction of slope.

A more general expression for the surface runoff has to take the
traveltime into account. A most commonly used set of equations
is the kinematic wave approximation of the equation of motion.
This was presented by Lighthill and Witham (1955) and has later
been discussed by Woolhiser and Liggett (1967) and Lyngfelt
(1985). The kinematic wave equations are written:

Sp—=5=0 (4.5)

where y is the water depth, Sf the friction slope (i.e. the
slope of the water surface) and SO the bottom slope.

Eq. (4.5) is the uniform flow form of the momentum equation,
which also can be written:
g, = K\/§ v (4.6)

friction parameter

o X
i

= exponent dependent on the friction relation used
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For a segment of an overland flow catchment as shown in Fig.
4.3, but with no upstream inflow, the continuity equation (Eq.
4.,5) can be written:

fa o (4.7)
using that the only lateral inflow is the rainfall excess.

The roughness parameter, K, in Eq. (4.6) equals 1/n using the
Manning formula and equals (8g/f)% using the Darcy-Weissbach
formula. Now rewriting the momentum equation (Eq. 4.6) using
either of the two friction relations gives:

The Manning formula

| R IE
(/,A___T\/ SO v (4 . 8& )

n = Manning roughness coefficient

and the Darcy-Weissbach formula

8g a0
g, = —;<&,;~' (4.8b)

g = acceleration of gravity
f = Darcy Weissbach friction factor

4.2.3 Channel flow

The kinematic wave equations given in Chap. 4.2.2 are also
applicable to channel flow. But for channel flow it is more
appropriate to talk of the flow rate, Q. That is the cross
sectional area is defined by the channel shape and the water
depth, thus giving the total flow.
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The continuity and momentum equations are then written:

A
ol

o

|

0,

Cx

=4, (4.9)

(1]

Sf“SCZO (410)

Using the Manning formula to express the friction relation
gives:

Q:%VI’S‘T VR g (4.11a)
B = channel width
S = channel slope

and using the Darcy-Weissbach formula gives:

0- /%8s \rp (4.11b)

For a prismatic channel, B is the physical width and y is the
depth. However, for triangular channels, as for example a gutter
will be, the corresponding width and depth has to be calculated
from the geometry of the channel.

T-So

Figure 4.4 A triangular channel, as for example a gutter.
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Using the notations in Fig. 4.4 the wetted perimeter and the
area of the channel can be written:

P=TSy+ T + (TS’ (4.12)

channel width of water surface

©- -~
i

wetted perimeter

A=T250 (4.13)
A = cross section area

Thus the hydraulic radius, R will be:

So (4.14)

Rz%zr :
2Sy+ 1+ 53

Now the friction relation can be expressed in terms of the
channel sidewall slope, SO. Using the Manning or the Darcy-

Weissbach formula to express the momentum equation gives:

a) The Manning formula for channel flow:

0=-L/s R 4 (4.15)

Inserting (4.14) and rearranging gives

S 5 o
o=+ by P s 4 (4.16)

which can be used to calculate the flow, knowing the cross
sectional area, for a gutter.



b) The Darcy-Weissbach formula for channel flow:
0= %&JE\;E 4 (4.17)
Inserting Eq. (4.14) and rearranging gives

8 4 Sy 2o s
0= /7 " )P 5T (4.18)
- So+ 1+ Sy

Eq. (4.17) and (4.18) are the friction relation of a triangular
channel with one vertical sidewall and one sidewall with the
slope So’ the same slope as of the connecting catchment.

4.2.4 The transformation of a rainfall hyetograf to an
overland flow hydrograf

The transformatioon of rainfall to runoff using the kinematic
wave equations can be made using different numerical methods.
The difference between the metods have been discussed elsewhere,
for example Lyngfelt (1985). Here a finite difference method,
(Li et al (1975) and Simons et al (1977)), is applied to discuss
the properties of the hydrograph when the water leaves the
surface and enters the gutter and when it leaves the gutter.

Fig. 4.5 gives a schematic view of the transformation process.
The hydrographs at the end of the surface, g(t) and at the end
of the gutter, Q(t) will be discussed with respect to slope and
rainfall intensity.

Using an area with a slope length, L=35 m and a width W=12.5 m
and varying the rainfall intensity and the slope of the surface,
shows the range of water depths and velocities which are nor-
mally present at runoff, see Fig. 4.6,
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Figure 4.5 Schematic view of the transformation of rainfall to

runoff.
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Figure 4.6 Water depths and velocities present at surface
runoff with a slope length of 35 m.

The same demonstration can be done for the gutter, as shown in
Fig. 4.7. The rainfall intensity was 10 mm/h through these
calculations.

To demonstrate the variation in velocity throughout a runoff
event the rain event in Fig. 4.8 has been choosen. The runoff is
calculated for the same catchment (one plane and a gutter) but
only for one set of slopes (30:0“01 and SC=O.02)°
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Figure 4.7 Water depths and velocities present at gutter flow
with a gutter length of 12.5 m.

Looking at the hydrographs at the entrance to the gutter and at
the outlet gives evidence of the continous process of decreasing
the peak flows and increasing the duration of runoff. Fig. 4.8
shows that the peak is decreased with a factor of 0.3 over the
surface but only slightly reduced while passing the gutter.

2+ B R L EEEREERTERE Rain .

W
f : i Plane outtet
;{: : Gutter outlet
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® :
2 ;
£ 4 \ ;
0.5--f--- AN NG R T PRTR
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v T T T T
0 10 20 30 40 50

Time in minutes

Figure 4.8 Hydrographs for overland flow and gutter flow for
one rainfall event.

The velocities, shown in Fig 4.9, are relatively small for the

surface thus giving the largest reduction of the peak over the

surface.
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Figure 4.9 Velocities at the entrance of the gutter and at the
outlet for the rainfall event in Fig. 4.8.

By these examples it is shown that the velocity is sensitive to
both slope and rainfall intensity. Thus, for a specific plane
and a specific gutter, the velocity is only sensitive to the
rainfall intensity.

4.3 Basic principles of sediment transport with surface
runoff
4.3.1 Detachment of sediment

The amount of sediment of an impervious urban surface available
for transport is dependent on the detachment of particles by
raindrops and by overland flow. Only particles which have been
detached from the sediment supply will be available for trans-
port during runoff.

The nonporous volume per unit of time of sediments available for
transport, VSa can be written as the sum of the volume per unit
of time detached by raindrops, Vsr’ and the volume per unit of

time detached by overland flow, st, according to Eq. (4.19).

V:a'—‘:Vsr_*"st (4.19)
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Detachment of particles by raindrops

Raindrops are a primary source of kinetic energy for detaching
soil from a surface with a sediment supply. The erosive capacity
can be directly related to a power function of the rainfall
intensity, given among others by Meyer {1971). Other factors are
the sediment supply conditions with respect to erodibility and
the distribution of the sediments over the surface.

The equation of the detachment by raindrops can be written:
Ve = DALW( — @14, (4.20)

where Dr is a constant describing erodibility of the sediment
supply, @ is the porosity of the sediments and As is the frac-
tion of the surface area which is covered with sediments. The
power constant, a, has been discussed by Meyer (1971), who
suggests a value of 2.0.

To make it possible to interpret the detachment coefficient by a
physical property, a rainfall intensity constant, id’ is intro-

duced. When the rainfall intensity equals i the detached non

d)
porous volume will equal the detachment coefficient for a unit

area with sediment. Eq. (4.20) can then be written:

Vo = D, (“oPLw(l - ¢)4, (4.21)

;
I
The detachment coefficient, Dr’ is then the depth to which the
rainfall intensity id penetrates the sediment layer per unit of
time.

Meyer (1971) suggests values of Dr in the range of 0.02 to 0.03.

This means a penetration depth of 20 to 30 mm/h at the unit
rainfall intensity, id = 25.4 mm/h.
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Figure 4.10 The detached volume by raindrops for a unit area as
a function of rainfall intensity and detachment
rate.

In Fig. 4.10 the detached volume by raindrops is shown for
different values of Dr'

Detachment of particles by overland and gutter flow

The detached volume by flow, per unit time, st, is dependent on
the transport capacity of the flow. If the transport capacity
for a particle size is zero or if the transport capacity is
occupied by particles detached by rainfall, there will be no
detachment by flow.

The expression for the detachment rate by flow can be written:

VJif = Df Vs = V) (4 .22 )

where VSt is the total sediment transport capacity of the flow
and Df is the detachment coefficient for flow. The detachment
coefficient ranges between 0 and 1.0. If, for example, the
sediments always are loose it should be unity and if the sedi-
ments are protected in some way it should be zero. In between,

Df depends on the surface roughness, the flow conditions and the
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soil erodibility. However difficult to estimate from a theoreti-
cal discussion, it should be empirically determined.

4.3.2 Overland flow particle transport

There are two overland flow particle transport mechanisms, a) a
balance between 1ift forces and settling forces which, if the
1ift forces dominate, yields a suspended load and b) shear
stress from the flow acting on the sediment layer which trans-
ports particles near the sediment layer.

Taking particle size as a charachteristic parameter, the sedi-
ment yield of the surface flow can be divided into three groups.
The wash Tload, which consists of the finer size fractions, is
kept in suspension from the moment the particles are detached
from the sediment layer. This means that the wash load is seldom
limited by transport capacity but by availability. The suspended
load consists of coarser particles in suspension. As the flow
conditions changes the suspended load will change. The bed load
consists of the coarsest particles. These are transported along
the sediment layer and are really never suspended.

Sediment transport with vrunoff from impervious urban areas
is accounted for mainly by the wash load and the suspended load,
which 1is the total suspended Tload. From a transport point of
view the bed load is not very important, but the mechanisms near
or in the sediment layer related to bed load transport make
particles available to be suspended.

An outline of the three forms is made in Fig. 4.11.

The bed load transport

According to modern concepts of bed load transport mechanisms,
particles on the sediment Tlayer will begin to move when a
critical shear stress level 1is reached. However, the first
attempts to establish a relationship between the movement of the
bed and some hydraulic parameters, have related the movement to
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Figure 4.11 Outline of different particle transport mechanisms
during surface runoff.

the mean velocity. A critical velocity was introduced for the
incipient motion of particles and Hjulstrom (1935) presented a
graph showing the relation between critical velocity, Vc’ and
the particle size. The graph is reproduced in Fig. 4.1Z2, which
also demonstrates the border zone between transportation and

deposition.
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Figure 4.12 Critical velocity of incipient motion, after
Hjulstrom (1935).
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An example of the critical shear stress approach is the widely
used Shields' diagram for incipient motion, shown in Fig. 4.13.
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Figure 4.13 Shields' diagram of incipient motion, after Shields
(1936).

According to the related development of particle incipient
motion concepts, the early bed load transport rate equations
were based on the critical velocity concept.

The Schoklitsch formula (1934), Eq. (4.23), is one example of
the early formulas developed, which is in good agreement with
formulas based on the critical shear stress concept.

M, = 7000 S;’: g~ g, (4.23)
MS = bed load discharge (kg/s,m)
9 = critical flow (1/s,m)
dS = particle diameter {(mm)
S = hydraulic gradient

The equation was developed for a wide stream which is why the
discharges are related to the unit width of the bed and further
the particle size 1is expressed in mm. For particles with a
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specific density of 2.65, Schoklitsch gives the expression of 9%
as:

d
-5 Y
g. =194 10 =R (4.24)

Fig. 4.14 is a reproduction of a comparison made by Shulits
(1968) between the Schoklitsch formula and Tlater developed
formulas.
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Figure 4.14 Comparison between different bed load transport rate
formulas, after Shulits (1968).

However, the shear stress type of bed load equations have been
favoured more and more. There have been several developed, but
one of the most used is the Meyer-Peter and Miller (1948)
formula. Also, the Meyer-Peter and Miiller fofmu1a has been
applied to surface runoff from land surfaces by Simons et al.
(1978).

The original formula is given by the authors as:
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7.2

¥ Vs~ ‘ 9, " 3p :
Ah(“f“)l” (_’L____)~/3 qu2b/3 - (_‘_][_)_)(_%_)/ yvS — Byly, — 7)d; (4.25)

g s

Ab = constant

BS = constant

n, = Manning coefficient for bed roughness
ng = Manning coefficient for grain roughness
9, = bed Toad discharge

Ap = suspended bed load discharge
specific weight of water

-
it

specific weight of sediments

<
il

The factor qb/q was introduced to take into account the effects
of the side walls in small channels and the factor can be
eliminated for surface flow. The bed roughness coefficient, Ny
and the grain roughness coefficient, n_ can also be set equal
for overland flow. The original formula now can be rewritten 1in

the more common form:
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Ish = Kplt —7,) (4 .26)
Kb = constant, Eq. (4.29)
T = shear stress
T T critical shear stress
where
T =7S (4.27)
.= By(y, — 7)d, (4.28)

Ky = BRI EE— (4.29)
Vo3 s T 0203
Ab(“*g ) ('———;,S )

The two coefficients Ab and BS are often used as calibration
constants for different streams, but Meyer-Peter and Miller
suggested: Ab=0.25 and BS=O.047.
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The suspended load transport

The part of the sediment load carried in suspension is influen-
ced by two forces. Gravitational forces cause the particles to
constantly fall  towards the bottom. This force 1is however
balanced by turbulence forces. Using diffusion theory it can be
shown that the upward turbulent diffusion rate is proportional
to the concentration gradient, dc/dy. The settling rate is
proportional to the settling velocity, w, of the particles.
Balancing these two rates by setting them equal gives the
expression:

o (4.30)

kyw + ks de
“dy

where k1 and k2 are constants.

Integrating Eq. (4.30) and introducing the relative depth y/d
and a reference level, y=a, at some distance from the bed gives
the following expression, which was first introduced by Rouse
(1937).

L e

Ca CF d—a

) (4.31)

where . is the concentration at the distance a from the bottom
z = wW/x ug. The exponent z is a function of the settling
velocity, w, the shear velocity, u, and the von Karman constant,
k, which has a value of 0.40 for clear water. The variables used
are also shown in Fig. 4.15.

To obtain the suspended sediment discharge, Qg the concentra-

tion profile given by Eq. (4.31) has to be integrated from the
reference level, y=a, to the water surface. That is:

i
T
=

Gy (‘Ud)' (4,32)
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Figure 4.15 Diffusion and settling forces acting on particles in
suspension.

Assuming a logarithmic velocity distribution (Einstein (1950)
according to Eq. (4.33):

45,75 log(30.2-) (4.33)
LN = k,
k_ = roughness height

U, = (g y 5)0'5 = shear velocity due to grain
roughness

Eq. (4.32) can be rewritten:

d i — v - v
Gss = _[ et d - g ) 37 ux logl30.2 %) o (4.34)
AT

Introducing dimensionless ratios of the depths, y'a= a/d and y's
y/d Eq. (4.34) becomes:

|
G = ( cudy’ (4.35a)

S

. o=y Py—y
m‘=:575r.uxd(~4Li~4‘[log(302J) J (”*pl“fdv/+(l434[ _— )lnj'dr} (4.35b)

. oo
_l' E - ¥ a
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Finally to be able to solve this integral numerically, Einstein
(1950) transformed it to the following expression which consists
of two integrals. Einstein solved these separately and presented
the results in graphs. Li (1974) has later given a numerical
method of solving these integrals.

gy = 1161, ¢, (2303 log(222L) 1) 4 1y) (4.36)
]_,L:~H 1 1 =1 .
I, =0216 — — J (———)a 4.37
(1= Vi ¥ ( )
‘.,{:—H 1 1=y .
L=0216 —f—r J (=) In y'dy’ (4.38)
-y Jo

Total sediment transport capacity

The total sediment transport rate, dgt is the sum of the bed
load transport rate and the suspended sediment transport rate,
which can be written:

Q51 = Gsh + Gss (4.39)

According to Einstein (1950) there has to be some movement of
particles near the bed to get a suspended Toad. He formulated
the relationship as a relation between the bed load transport
rate and the concentration at the reference level, y=a:

_ b
““Tl6u.a (4.40)

The meaning of this is that if there is no bed load transport
there can be no suspended sediment transport.

4.4 A simple model for overland flow particle transport

The simple model treats one watershed, which is described by its
size, slope in the direction of flow, surface roughness and
particle load on the surface, see Fig 4.16. The particle Toad is
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described by its particle size distribution curve, which is
divided into a limited number of particle size intervals, each
represented by its geometrical mean value.

The particles are transported by the overland flow, which is
calculated from the average rainfall intensity for the watershed
using the equations given in Chap. 4.2.2. The flow calculations
give the average depth and the average velocity, which are used
for the particle transport calculations.

The particle transport is based on a continuity equation which
literally can be expressed as: The change in particle transport
over the surface has to be balanced by the change of particle
mass both 1in the water and on the surface plus the lateral
inflow of particles during one time increment. The equations for
the particle transport capacity are given in Chap. 4.3.2.

i(t)

IR AR RN NN ANy

i/; = Detachment by rain

::> Qg = Sediment transport
®> = Detachment by flow capacity

Figure 4.16 An outline of the simple surface runoff particle
transport model.

However, the transport capacity can be limited by the sediment
supply, both according to detachment of particles from the
surface and to the total supply. The expressions for the detach-
ment of particles by flow and raindrops are given 1in Chap.
4.3.1. As for total supply the accumulated transport has to be
compared to the original supply on the surface.
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A1l the calculations are made separately for each particle size
interval, represented by 1its geometrical mean value. A flow
chart for the calculations is given in Fig. 4.17, describing the
loop which is run through as many times as there are particle
sizes. The calculations are based on a computer programme
originally published by Simons et al (1977a).

For each time
increment

Calculate average depth and velocity from
the constant rainfall intensity

¥

For each particle size interval calculate
the mass transport

/\\

Calcul ate bed-load Calculate detachment rate
transport capacity by rainfall according to
according to Eq. 4.26 Eq. 4.21

Calcul ate suspended-load Calculate detachment rate
transport according to by surface flow accarding
Eq. 4.36 to Eq. 4.22

Sum up to total transport Sum up to total detach-—
capacity ment rate

R

Limiting part gives sediment
mass transport

i

Compare the transported load during this
time increment to the remaining surface load

¥

If the remaining surface load < the transported
load then the transported load ecuals the
remaining surface load

¥

Calculate the total mass transport by summing up
for each particle size interval

i

Calculate the solids concentration by
dividing the total load by the flow

Next time
increment

Figure 4.17 Flow chart for the simple surface runoff particle
transport model.
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To obtain some knowledge of the sensitivity of the model to
changes in the input parametres, numerical experiments with the
model were carried out. The parametres choosen for the experi-
ments were: Slope, detachment coefficients of rain and flow (Eq.
(4.21) and Eq. (4.22)), and surface roughness coefficient.

As seen from Fig. 4.18, the model is sensitive to variations in
slope, detachment by rain and surface friction. The model
responds positively to an increase in the detachment by rain or
the slope. The slope is easily obtained for a surface but the
detachment by rain coefficient has to be experimentally veri-
fied. Negative responses are obtained for the surface friction
and thus the shear stress coefficient. The former can be esti-
mated for impervious urban surfaces with good accuracy, the
latter however, has to be derived from experiments.

100

# Plane slope

0O Surface friction

Sediment conc. in mg/l

20
@ Detachment by overland flow

O Detachment by rain

Relative value

Figure 4.18 Sensitivity analysis for slope, surface friction,
detachment by rain, and detachment by flow.
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5 LABORATORY INVESTIGATION

5.1 Aim of the investigation

This experimental work was made to improve the understanding of
the detachment and transport of particulate matter with surface

runoff.

It was believed that the simple one-plane particulate transport
model derived in Chap. 4 could be verified by a simple labora-
tory setup. Furthermore the experiments would give an under-
standing of the sensitivity of transport due to changes in
slope, surface roughness, particle size and water depth.

5.2 A small physical model of an urban surface

5.2.1 The experimental setup

The experimental setup is shown in Fig. 5.1. The area was 4.3 m2
and the length from where the water entered the surface to the
outfall was 3.50 m. The slope of the plane could be changed from
0.055 m/m to a horisontal plane. The surface was made of Mazo-
nite covered by a polyester resin.

The water was supplied from a storage tank. It then passed
through a broadcrested curved weir in order to obtain a short
transition zone. The actual flow was measured by a rotameter
with a range of 0 to 1.20 1/s. The outfall was formed as a
channel with a higher capacity than the maximum incoming flow to
avoid backwater effects. ‘

The Mazonite surface was supported by a large number of beams at
a distance of approx. 100 mm from each other. This made it
possible to avoid deflections of the surface, which otherwise
could have affected the water depths.
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Depth measurement sections

2

Inlet xS
Storage tank

Overflow

Excess water overflow I
Slope adjustment

Outlet

DU W

Figure 5.1 The laboratory setup.

The surface was made to simulate an urban asphalt surface by
mixing the polyester resin with fine gravel. Only the fractions
between 1.6 mm and 3.2 mm were used and evenly distributed over
the surface. Throughout all the experiments the surface func-
tioned well and gravel losses were negligable.

5.2.2 Instrumentation and measurement equipment.

At the inlet a rotameter measured the flow which was passed
through the weir at a constant head. The inlet, is shown in Fig.
5.2 as well as the inflow distribution pipe.

INLET OUTLET

Constant

%‘J
\éé/Sampling

Figure 5.2 Details of the inlet and outlet of the experimental
laboratory setup.
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At the downstream end the overland flow could be measured and
samples taken at the outlet pipe from the channel, shown in Fig.
5.2.

=
]

C

2 3 2 Storage tank

3 Overflow S-shaped DIAL INDICATOR

4 Excess water

overflow

5 Slope adjustment

6 Outlet

7 Turbidity meter

M1-MS5 : Measurement
sections

\ME

M3 DETAIL OF
WATER DEPTH MEASUREMENTS,

Mé&

N
4R

Figure 5.3 Locations of water depth measurements.

Water depths were measured at 15 to 20 Jocations distributed
over the surface, see Fig. 5.3. The water depth at each location
was measured as the distance from the bottom surface to the
water surface. Two measurements were consequently taken at each
location. A dial indicator designed to measure small deflections
was used to measure the surfaces levels. The dial indicator was
fixed to a transverse beam which could be moved from one section
to another. A detail is shown in Fig. 5.3.

The sediment concentration in the surface runoff was measured by

filtering a sample taken at the outlet from the downstream
channel. The filter was a standard filter for suspended solids.
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5.2.3 Hydraulic properties of the laboratory surface

It is essential to be sure that stationary conditions can be
achieved at the laboratory surface for later experiments. The
surface was observed at three different slopes ranging from
0.001 to 0.055 and at three different flows for each slope.

During each experiment water depths were taken at 15 to 20
locations distributed over the surface. The flow was constant
during each experiment.

From these experiments it was possible to calculate the friction
factor for the surface. Also the Reynolds' number and the Froude

number were calculated.

The fricton factor was calculated according to the Darcy-
Weissbach equation, which for stationary overland flow is
written (Eq. (4.8b)):

S=8gi 20 (5.2)

The water depth used for the calculations is the arithmetic mean
of all the observed depths for each flow. The hydraulic
properties of the experiments are tabulated in Table 5.1, where
the Reynolds™ number is calculated according to Re:qr/v and the
Froude number according to F = qr/y gy .
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Table 5.1 Hydraulic properties of the laboratory experiments
for a surface without sediments.

qr SO F Re £ Depth Measurements
y [of N kly
1/s,m mm mm mm
0,11 0,001 0,083 100 1.041 5.59 0.98 15 0.36
0.46 0,001 0.233 392 0.147 7.24 0.76 15 0.27
0.82 0.001 0.273 712 0.107 9.72 0.84 15 0.21
0.26 0.027 0.512 228 0.823 2.99 0.32 15 0.67
0.46 0.027 0.671 392 0.478 3.58 0.37 15 0.56
0.82 0.027 0.786 712 0.349 4.80 0.46 15 0.42
0.26 0.055 0.610 228 1.181 2.66 0.35 15 0.75
0.46 0.055 0.738 392 0.806 3.36 0.45 15 0.60
0.82 0.055 0.975 712 0.463 4.16 0.55 15 0.48

0 = standard deviation

Looking at the depths along the surface, Fig. 5.4 to 5.6 i1lu-
strate the depth profiles. Except for the 0.001 slope the depths
correspond to stationary flow with the water surface parallel to
the bottom. The 0.001 slope shows a retardation at the upper
half of the surface, which gives an increase in the water depth.

12W

10

Depth in mm

Legend
. FLOW 014 L/$
FLOW 0.65 L/S

=<

0 T T
0.5- 1 1.5 2

Length in Flow Direction in m

Figure 5.4 Depth profile for the 0.001 slope.
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Figure 5.5 Depth profile for the 0.027 slope.
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Figure 5.6 Depth profile for the 0.055 slope.
Depth flow relationships of the three slopes are shown in Fig.
5.7. They are all straight 1line relationships, which was ex-
pected according to the Darcy-Weissbach equation (Eq. (5.1)).
Using these average depths, i.e. a single depth corresponding to

a single flow for each slope, the friction factor f was calcu-
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(5.2). The variations

factor are illustrated in Fig. 5.8.

lated according to Eq.

of the friction

10 4
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Figure 5.7 Depth-Flow relationship for the laboratory surface.
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Figure 5.8 The friction factor f variation for the laboratory

surface.
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The variation of the friction factor f with the Reynolds' number
has been investigated by many amongst them Nittim (1977). Nittim
investigated an asphalt surface without a rainfall, only surface
runoff. His results are illustrated in Fig. 5.9 together with
the results from the CTH Taboratory surface.

i
L0t Nittim ;
.03 Nittim
.06 Nittim
.001CTH
.027 CTH
.055 CTH

o dd
O
.]
o o o O O ©
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Friction factor — f
od
5
rh®
O
an
)

0.01 T T TirTm T T TTTTd T TTT
10 100 1000 10000

Re

Figure 5.9 The friction factor variation with Reynolds' number
of an asphalt surface, Nittim (1977) and of the
laboratory surface.

Compared to Nittim's observations the friction factor is higher
for the laboratory surface. The surface was built up with gravel
of the diameters between 1.6 mm and 3.2 mm. The relative rough-
ness of the surface is calculated to be between 0.21 and 0.75
which is less than that for Nittim's asphalt surface.

Phelps (1975) made similar experiments. The surface was covered
with glass spheres and the tests made for relative roughresses
between 0.23 and 0.55. Phelps' results ave illustrated in Fig.
5.10 and compared with those from the iaboratory surface.
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Figure 5.10 Effects on the friction factor by the relative
roughness. Data from Phelps (1975) and the CTH
laboratory surface.

The results from the CTH laboratory surface show the same
pattern as do the results of Phelps.

5.3 Experiments with sediment transport

5.3.1 Experimental scheme

Experiments with the laboratory surface have been made for
three slopes and two or three runoff intensities for each slope.
The runoff intensities have been varied between 197 mm/h and 820
mm/h and thus the cross-sectional mean velocity have been in the
range 0.063 - 0.177 m/s.

The runoff intensities may appear high but they correspond to
the intensities achieved for a surface 50 metres downstream of a
catchment with a precipitation intensity in the range 15 - 60
mm/h.

The hydraulic conditions of the experiments are tabulated
in Table 5.2.
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Table 5.2  Hydraulic conditions of the experiments of the
laboratory surface with sediments.
Q i s y
1/s mm/h mm m/s
0.55 451 0.001 7.2 0.063
0.90 738 0.001 9.7 0.076
0.32 262 0.027 3.0 0.082
0.24 197 0.055 2.1 0.094
0.55 451 0.027 3.6 0.125
0.55 451 0.055 3.4 0.134
1.00 820 0.027 5.8 0.171
0.90 738 0.055 4.2 0.177

Each experiment was preceded by the distribution of 300 g of a
particulate material over the surface. The material was distri-
buted in dry phase over a dry surface. In between the experi-
ments all remaining material was washed off the surface and the
surface dried to achieve the same initial conditions for all
experiments. The particle sizes of the material were approxi-
mately evenly distributed between 2 and 150 um. An illustration

of the particle sizes is given in Fig. 5.11.
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0.001 0.01 0.1
Particle size (mm)
Figure 5.11 Particle size distribution for the material used

in all experiments.
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The experiments began by flushing of the surface at the predeter-
mined discharge and then waiting for the water to reach the

outlet. At this moment the runoff was defined to start and time

set to zero. The time elapsed from the start of the flushing to

the start of the runoff varied between 20 and 60 seconds depend-

ing on slope and discharge.

Sampling of the sediment concentration began a few seconds after
the start of the runoff to avoid sampling before steady state
conditions were reached.

The experiment ended when the output concentration had reached a
nearly constant level, which was checked with a turbidimeter.

5.3.2 Observed sediment transport at the experiments

Since each experiment was carried out at stationary conditions
it would be expected to get a constant sediment transport rate
as a result. The basis for this expectation is an unlimited
supply of particles in each particle size fraction or a sediment
of only one particle size. These experiments were made using a
graded sediment according to Fig. 5.11. The supply of each
particle size fraction is of fimportance when examining the
resulting sediment concentration curves.

The supply of sediment for certain particle size fractions is
calculated in Table 5.3 from Fig. 5.11 and the total amount of

particulate material, 300 grams, used for each experiment.

Table 5.3  Supply of sediment for each particle size fractions.

Particle 0 - 0,004 - 0.006 - 0.012 - 0,025 - 0.040 ~ 0.074 - 0.150
sizes (mm)

Supply (g) 15 15 30 60 90 30 60
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The observed sediment concentrations are drawn in Fig. 5.12 and
Fig. 5.13 and sorted by the mean velocity. In Fig. 5.12 the
concentrations for velocities less than 0.1 m/s are shown and in
Fig. 5.13 the concentrations for velocities greater than 0.1

m/s.
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Figure 5.12 Observed sediment concentrations for velocities less
than 0.1 m/s.
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Figure 5.13 Observed sediment concentrations for velocities

greater than 0.1 m/s.
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To illustrate the importance of the sediment supply Table 5.4
has been made. The two finest fractions of sediment which had a
supply of 15 grams each, will be removed completely within the
times given in Table 5.4.

Table 5.4 Times in seconds to remove all particles of less
than 0.006 mm diameter at different transport
capacities.

Transport capacity (g/1)

Discharge

(1/s) 0.1 1.0 10.0
0.5 300 30 3
1.0 150 15 1.5

The reason for the rapid decrease in sediment concentrations,
especially for the experiments shown in Fig. 5.13, is a lack of
supply according to Table 5.4. The constant concentrations at
the end of each experiment should correspond to the transport
capacity of those particle sizes left.

5.4 Verification of the basic equations for sediment
Lransport
5.4.1 Constants and variables used at the verifications

The verifications were made using the FORTRAN-programme described
in Chap. 4.4. The constants described here refer to the equations
for sediment transport given in Chap. 4.3.

The physical conditions; i.e. slope, slope length, width and
runoff intensity were modeled as close as possible to those of
the experiments.

The value of the friction factor, f, was evaluated from each
experiment, (Table 5.1). These values were used to calculate the
values of Kg’ (Eq. (4.6)), using the Reynolds'number of each
particular experiment.

55



A summary of the the constants and variables of each experiment
used to verify the model is given in Table 5.5.

Table 5.5 Summary of constants and variables for the

verifications.

Q q s Re £ K v
(1/s)  (17s,m) © & (m/s)
0.30 0.25 0,001 215 0.650 139
0.55 0.46 0.001 392 0.147 58 0.063
0.90 0.82 0.001 712 0.107 76 0.076
0.32 0.26 0.027 -228 0.823 187 0.082
0.55 0.46 0.027 392 0.478 187 0.125
1.00 0.82 0.027 712 0.349 250 0.171
0.32 0.26 0.055 228 1,181 269 0.094
0.55 0.46 0.055 392 0.806 316 0.134
1.00 0.82 0.055 712 0.463 330 0.177

The detachment of overland flow, Df, (Eq. (4.22)) and the
parameter Bs (Eq. (4.28)) of the expression for critical shear
stress have to be evaluated from the experimental data. The

values are given in Table 5.6.

Table 5.6 Evaluated values of the parameters Df and BS for
the laboratory surface.

Detachment by overland flow Shields criteria
B
Df s
0.01 0.10
5.4.2 Comparison between simulated and observed depths,

masses and concentrations

The simulated and observed data have been compared with respect
to water depths, transported sediment masses and sediment
concentrations, Fig. 5.14, Fig.5.15 and Fig. 5.16. The compari-
son between simulated and observed depths for the laboratory
surface, shown in Fig. 5.14, gives evidence of a well working
model with regard to surface runoff. Simulating realistic
depths, thus simulating realistic velocities is necessary to be
able to simulate the sediment washoff from the surface.
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Figure 5.14 Simulated water depths compared to observed for the
laboratory surface.

A straight forward comparison between observed and simulated
sediment masses, shown in Fig. 5.15, implies that the mode]

overestimates the sediment masses washed off the surface.

The simple model, described in Fig. 4.18, however, balances the
transport capacity and the detachment rate and determines the
transporting rate from the smallest of the two. With respect to
the laboratory experiments, these were made without any rainfall
over the surface. This means that the detachment rate will be
the same as the detachment rate by overland flow, Eq. (4.22).
The equation says that if there is no detachment of sediments by
rain, the detachment by flow will be a Tlinear function of the
sediment transport capacity. The detachment coefficient, Df,
which is in the range between 0 and 1.0, tells which fraction of
the transport capacity, that will equal the detachment rate.

The experimental procedure with a distribution of dry sediments

over a dry surface makes it likely to belejve that Df should be
close to 1.0, when the flushing of water over the surface

57



started. This means a sediment transporting rate equal to the
sediment transport capacity. When the sediments after a few
seconds were wetted the detachment coefficient should decrease

to a more realistic value for natural surfaces.

The conclusion is, that for the experiments, with respect to
sediment transport, should the first part of the flushing be
governed by the transport capacity and the later part be govern-
ed by the detachment rate. In between the two parts there has to

be a transition zone between the two phases.
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Figure 5.15 Comparison between simulated and observed sediment
masses during the phase when transport capacity is
governing

A comparison between observed and simulated sediment concentra-
tions 1is expected to show an overestimation of the simulated
concentration since 1in practice not all sediments will be
detached and thus not will be available for transport. The
concentration versus time graphs shown in Fig. 5.16 are all in
agreement with this assumption. Graphs for all the experiments
are shown in Appendix 4.
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The detached sediment concentration, shown in Fig. 5.16 and in
Appendix 4, is close to the observed concentration during the
later part of the flushing for a majority of the experiments.
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Figure 5.16 Simulated and observed sediment concentrations for
the 0.001, 0.027 and 0.055 slopes.
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The verification of the simple one-plane model for sediment
transport was successful in the following respects:

- The sediment transport capacity equations were
proven to give realistic concentrations, as shown
by the first phase of each experiment

- The detachment rate with a Df = (0.0l gave a good
agreement with the observed concentration for the
later phase of the flushing of the surface

However, the simulated concentrations are not in agreement with
the observed concentrations throughout the whole flushing event.
The reason for this is the difficulties to estimate a Df—va1ue
for the transition zone between the two phases.
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6 FIELD INVESTIGATIONS

6.1 Aim and limitations of the field experiments

The field experiments were carried out to obtain a better
understanding of the chemical processes and transport mechanisms
involved in the transport of pollutants during surface runoff.

Also the data obtained from the field observations should serve
as a database for the verification of different pollutant
transport models.

It was believed that the pollutant transport is a two phase
transport with a solid phase and a dissolved phase. The experi-
ments were consequently directed towards the observation of
solids transport and pollutants associated with solids.

The study was however limited to the observation of suspended
solids and certain heavy metals (lead, cadmium, copper and zinc)
which from an envircnmental point of view are most interesting.

The investigations were carried out during 1979 and 1980, with a
first period between August and November, 1979 and a second

period between June and November, 1980.

6.2 Catchment characteristics and instrumentation

The catchments, all situated within the University grounds were:

* A roof area; a 170 m2 roof connected to one
downpipe

* A parking lot; a 450 m2 car park connected to one
catch basin

* A street area; a 1200 m2 part of a street connec-
ted to one catch basin
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Figure 6.1 Photographs of the catchment areas.

Rainfall intensity, stormwater flow and heavy metal concentra-
tions were observed for all three catchments. Rainfall and
runoff were observed continously and the concentrations were
obtained from discrete samples.

62



/
%

Figure 6.2 Map of the University grounds showing the catchments.

6.2.1 The Roof Area

The roof catchment, see Fig. 6.3, is a part of the roof of the
hydraulics laboratory. The runoff is collected in a roof gutter
at the downstream end and is connected to the storm sewer by a
vertical pipe passing through the hydraulics laboratory.

It is a rather flat roof. The pollutants washed off by the
runoff originate from atmospheric fallout. The only materials
that the runoff came in contact with was the asphalt roof and
the PVC-downpipe.

Table 6.1 Catchment characteristics of the roof area.

2
Area (m ) 170
Impervious Area (%) 100
Average Slope (m/m) 0.050

A flow measuring device was connected to the downpipe inside the
hydraulics laboratory.
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Sampling was made prior to the water passing through the flow
measuring device. The sampler was activated by a rise in flow.
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Figure 6.3 Outlay of the roof catchment.

6.2.2 The Parking Lot

The parking lot, see Fig 6.4, is comprised of an asphalt car
park and road and a cobble stone sidewalk. The runoff from the
surface drains to a roadside gutter which drains to one catch
basin.

Pollutants washed off by the runoff may originate from corrosion
of metals, from vehicular sources, deposited road dust and road

surface material in addition to general atmospheric fallout.

Table 6.2  Catchment characteristics of the parking lot.

2
Area (m") 450
Impervious Area (%) 100
Average Slope (m/m) 0.018

A flow measuring device was installed in the catch basin and all
the runoff was made to pass the device before leaving the basin.
The sampling was made just below the inlet grating prior to the
runoff entering the flow measuring device.
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The samples flowed under gravity to the basement of the hydrau-
lics laboratory, where they were collected.

Legend
1 Steep grassed slope

e Catchment border
— — Contour lines (contour T
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Figure 6.4 Outlay of the parking Tot catchment.

6.2.3 The street area

The street area, see Fig. 6.5, is a part of a street through the
University ground. One catch basin drains the 1200 m2 street
catchment which 1is rather steep compared to the other two
catchments. The street is covered with asphalt.

Pollutants washed off the surface during runoff may originate

from vehicular sources, deposited road dust, road material and
general atmospheric fallout.
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Table 6.3 Catchment characteristics of the street area.

2
Area (m) 1200
Impervious Area (%) 100
Average Slope (m/m) 0.060

Asphalt
—--— Catchment border

~=—=Contour lines lcontour
interval 0.2m)

Scale
S
0 10 20m

Figure 6.5 Qutlay of the street catchment.
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In a grassed area approximately three metres from the catch
basin, a sampling device chamber was buried in the ground. The
chamber was connected to the catch basin through a 50 mm PVC-
pipe. The sampled water flowed by gravity through a rubber hose
inside the PVC-pipe.

The flow measuring device was installed in the catch basin and
the runoff was sampled prior to the water passing through the
flow measuring device.

6.2.4 Flow Measuring Device

Three identical flow measuring devices developed by the Univer-
sity of Lund, Sweden, (Falk et al (1979)), were used. The
runoff, passing through a 30 degree V-notch weir, was monitored
and the V-notch height measured by the decrease in resistance
between two electrodes submerged in a saline solution. The
electrode chamber 1is separated from the V-notch by a durable
moving rubber membrane, thus causing the saline solution to vary
with the V-notch water level. The device is shown in Fig. 6.6.

The V-notch heights for all the three catchments were recorded
on the same 12-channel chart recorder, which was placed in the
basement of the hydraulics laboratory. A calibration curve was
made for the V-notch height against the flow passing through.
The relationship between measured height and flow was plotted
and an equation derived (Eq. {6.1)). The same equation has been
used for all three devices.

0 =303.94>" (% =0.99) (6.1)

Q=Flow (1/s)
h=V-notch height (mm)
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Figure 6.6 Catch basin flow measuring device. (Photo Thomas
Ericsson)

6.2.5 Rainfall measurements

One raingauge was installed between the parking lot and the
street area. The Tlocation is seen in Fig. 6.2. The observed
rainfall intensities from this raingauge have been used for all
three catchments. A second raingauge at a distance of 100 metres
from the catchments was used if the first instrument had failed
for some reason.

The gauge works on the tipping bucket principle and was developed
by the University of Lund, Falk et al (1979). The volume resolu-

tion is 0.035 mm per tipping with a funnel area of 0.0423 mz.
The allowable intensities are between 0.035 mm/min and 4.2

mm/min.
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The calibration curve for the raingauge is expressed as a
relationship between the number of tippings per minute and the
rain intensity. The following nonlinear equation expresses the

relationship for the instrument used:

i = 0.03537N, 0762 (6.2)
i = rainfall intensity (mm/min)
Nt = number of tippings per minute

The accumulated rainfall volume was recorded by the same 12-
channel chart recorder as was used for the runoff flows. The
procedure of recording the accumulated rainfall volume instead
of the digital reading of the intensity was choosen to make it
possible to record all signals on one chart. By this means no
time lag between the recordings from the different catchments
would be introduced. However, this made intensities below 0.05

mm/min difficult to read.

6.2.6 Data collection

The runoff flows (i.e. the V-notch heights) and the rainfall
intensities were recorded on the same 12-channel chart recorder
placed in the basement of the hydraulics laboratory.

The signals from the sensors were transferred by cable and each
piece of equipment was calibrated to account for the length of
the cable. An outlay of the data collection system is shown 1in
Fig 6.7.

The chart recorder had a turn around time of one minute. Three
channels were however used for each signal to obtain a 20
second interval between each dot for a single signal. Charts
were taken out at either a speed of 240 mm/h giving a resolution
of 3 dots per 4 mm or a speed of 150 mm/h with a resolution of 6
dots per 5 mm. The height of the chart was either 250 mm, which
means that the scale factor between the V-notch height and the
chart height was about 1, or 150 mm yielding a scale factor of
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Figure 6.7 The Data collection system.

0.75. To allow for evaporation from the flow measuring device
during dry periods the chart zero-level was offset by +10%.

Rain 1intensities were recorded as the accumulated rainfall
volume with 225 mm recorded height corresponding to 10.4 mm

rainfall height.

6.2.7 Sampling device

Sampling of water was made prior to the runoff passing the flow
measuring device (Fig. 6.8). A special spoon sampler was con-
structed to sample water from the runoff before entering the
catch basin just below the inlet grating. The sample was trans-
ported by gravity through a rubber hose to a sample collector
with 24 bottles (Fig. 6.9), each of the volume of one litre.

70



Figure 6.8 Spoon sampler for installation in a catch basin.
(Photo Thomas Ericsson.)

The spoon sampler was motor driven. Two sampling intervals were
used. During 1979 a 25 ml sample was taken every fifth of a
second thus filling up a bottle in three minutes. During 1980
the samples were taken every ten seconds and the bottles were
shifted every five minutes.

The sampling procedure was activated by a level sensor. When the
V-notch level raised above the zero-level the sampling began and
continued until either the 24 bottles were filled or the V-notch
starting level was reached again.

The materials used for the equipment were stainless steel for
the spoon sampler, natural rubber for the hoses and polyethylene
for the bottles. The natural rubber hoses were choosen because
of evidence that metal leached from the polyethylene hoses that
were originally used.
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Figure 6.9 Sampling collector with 24 bottles. (Photo Thomas
Ericsson.)

6.3 Experimental procedures

During the observation periods the rainfall gauge and the flow
measuring device were running continously. The equipment was
maintained regularly. The maintenance included cleaning of the
spoon sampler, the V-notch and the rubber hose to the sample
collector. The V-notch zero-level was checked and if needed the
chart recorder was readjusted. The normal procedure was to first
check the zero-level and than to close the V-notch and fill up
with water to the maximum Tevel. Occasionally the flow calibra-
tion curve was checked with water from a fire hydrant or with
tap water at one V-notch Tevel.

The sample equipment was triggered for sampling in the beginning
of each week and samples taken from the first occuring storm.
The samples were taken to the laboratory for analysis less than
12 hours after they had been filled. During some events, the
full bottles were immediately replaced with empty ones making it
possible to sample longer storms.
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6.4 Analytical work

6.4.1 Developement of an analysis scheme

A programme for physico-chemical analyses was developed to give
concentrations of suspended solids and heavy metals both solids
associated metals and metals in free form.

Each sample was analysed for the total concentrations of:

pH

conductivity

suspended solids

turbidity

lead

cadmium (Parking lot and Street area)
copper

zink (Roof Area)

A centrifuge was used to separate the solids from the liquid
phase. After this separation the liquid phase was analysed for:

lead
cadmium
copper

The solids associated metal concentrations were calculated as
the difference between the total concentration and the liquid

phase concentration.

6.4.2 Physico-chemical analyses

A1 analyses work was carried out at the laboratory of the
Department of Sanitary Engineering, Chalmers University of

Technology.

pH
pH was analysed according to the Swedish Standard SIS 028122, an
electropotentiometric method in which a pH meter with a combina-

tion electrode is used.
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Conductivity
Conductivity was analysed according to SIS 028123, using a
Tetramatic, 4-electrode meter.

Turbidity

Turbidity was analysed using a Turner Nephelometer instrument
which gives the turbidity in Nephelometric Turbidity Units
(NTU).

Suspended solids

Suspended solids were analysed according to the gravimetric
method SIS 028112. In this method, the sample is filtered
through a fiberglass filter which is dried at 105 ¢ and weighed.

Lead, Cadmium, Copper and Zinc

These heavy metals were analysed by atomic-absorption spectro-
photometry. The water samples were concentrated by evaporation 5
times because of the generally Tlow concentrations of these
metals. Detection limits varied but were usually around 25 g
Pb/1, 0.2 ug Cd/1, 10 ug Cu/1 and 10 wg Zn/7.

6.4.3 Separation of solids from the liquid phase

The separation of solids from the liquid phase was made by using
a centrifuge. Two samples of 30 ml each were taken from the
stormwater sample and then centrifuged for 30 minutes at a speed
of 9000 r/minute. The two parallel samples were both analysed
for Pb, Cd and Cu in the 1liquid phase. The result was given as
the arithmetic mean of the analysed concentrations.

6.5 Data processing

The data processing has produced a database of all observed
storms. It consists of a time series of rainfall intensities,
runoff flows and concentrations for the physico-chemical proper-
ties for each storm observed.
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The database was developed in three steps, -beginning with
digitizing of the recorded charts. The digitized data was taken
care of by a FORTRAN-programme which produced rainfall and
runoff intensities with a time resolution of one minute. Accumu-
lated rainfall and runoff volumes were also calculated.

The second step was to produce physico-chemical concentrations
at the same time resolution of one minute as the hydrographs.
This meant that a concentration of a sample was always assigned
to several consecutive timesteps. The shortest time resolution
of the concentrations was three minutes and in general between
three and nine minutes depending on where in a storm the sample
was taken.

The third step was to merge the hydrographs with the concentra-
tions, which was done by another FORTRAN-programme. In the same
step mass flows of suspended solids and heavy metals were also
calculated.

As a summary for each storm a written output and a plot was
produced.

A separate dataset was produced for the concentrations of
dissolved and solids associated metals. This was completed with
pH, suspended solids concentrations and accumulated solids.

Another separate dataset was produced for the concentrations of
the fractioned samples.

A1l subsequent analysis of the datasets was made using the

Statistical Analysis System (SAS) programme available at the
Gothenburg University Computing Centre.
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6.6 Results
6.6.1

The Roof area

Summary of observed storms

A summary of the observed runoffs from the roof is shown in Fig.
6.10 and Fig. 6.11. Tables with time series data from each storm

are found in Appendix 1.

The storms are of medium intensity and a major part of each
sampling both with regard to volume

storm has been covered by
and duration.
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Figure 6.10 Summary of rain intensity, runoff volume and runoff

duration for observed storms from the roof area.
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The concentrations shown in Fig. 6.11 for the roof area are low

for both solids and metals. This was expected since the major
source of metals and solids for the roof is deposits from the

air.
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Figure 6.11 Maximum and average SS, Pb, Cu and Zn concentrations

for each observed runoff from the roof area.

The Parking lot

A summary of the observed runoffs from the parking lot is shown
in Fig. 6.12 and Fig. 6.13. Tables with time series data for

each storm are found in Appendix 1.
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The storms are of low intensity with one exception, the storm 2
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The high rainfall intensities of 2 Sep. 79 correspond to high SS
concentrations but not to high metal concentrations. The oppo-
site situation is seen for 11 Sep. 79a and 28 Aug. 80 where the

metal
rainfall
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The Street area

A summary of the observed runoffs from the street area is shown
in Fig. 6.14 and Fig. 6.15. Tables with time series data for
each storm are found in Appendix 1.

The storms are of low to medium intensity. The storms have for
the most part been covered by sampling both regarding volume and
duration. In general a smaller part of each of the longer and/or
larger runoffs have been covered by sampling.

Street Area 1979,1580 Streat Area 1979, 13980
Dbsarved Storms Coserved Storns
Nate Date
19 AG 79 19 AK 79
21 RIC 79 21 AKG 79
2 SEP 733 2 SEP 79a | wzzzzzzau
2 $EP 7% 2 SEP TS | rzmmmrmzen te————
11 SEP 79 11 SEP 79far
17 SEP 79a 17 SEP 79a @t
17 SEP 7% 17 SEP 7%h j@e
31 0T 79 31 0CT 79
6 NIV 79 6 NOV 79 | zarmmmmmmyy
16 NOV 79 16 NV 78 jmaps———
26 NOV 79 26 NDV 79 | oy
2 JN & | ermmrmzza .
15 S!LE g 2 Total 16 ALK 80 | By CoMaximm
28 A 80 Duration 28 A 80 fac==2 Intensity
17 SEP 80 lad 1?7 SEP 80 wao——————mommTs BZ4Rverage
Duration i L 4 Intensity
a S 10 13 D 25 ]
Rain Intensity in mah
Streat Rrea 1979,1980
(osarved Storms
Date
19 A 79 jezcD
21 AC 79 jea
2 SEP 79a
2 SEP 7%
11 & 79
17 SEP 79a
17 SEP 7%
3T 79
& NIV 79
16 MV 79
26 NOV 79 jeze
2 e ol
28 AL 8 |immm— Volure
17 SEP &0 1
A i L Volura
¢} 5 10 15 aD

Figure 6.14 Summary of rain intensity, runoff volume and
runoff duration for observed runoffs from the street

area.
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The high metal and SS concentrations cannot be explained simply

by high rainfall

intensities. The average rainfall

intensities

are in the same order of magnitude as those for the parking lot.

However, the street area is much steeper than the roof or the

parking lot. Sediments of the same particle size are transported

at lower intensities at the street than at the two other areas.
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Figure 6.15 Maximum and average SS, Pb, Cd and Cu concentrations

for each observed runoff from the street area.
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6.6.2 Comparison with other areas

The small watersheds at the Chalmers University Site has been
compared to other areas in GOteborg, which have been reported
earlier by Malmqvist (1983). A mixed watershed, for example a
residential area contains several of these small watersheds and
one would expect the small watersheds to show larger variations
than a mixed watershed.

A short characterization of the mixed watersheds is given in
Table 6.4.

Table 6.4 Characterization of some mixed watersheds in
Goteborg. (Malmgvist (1983)).

Vegagatan Mellby- Bergsjo- Floda

leden svédngen
Total area, (ha) 5.8 15.6 4.8 18.0
Impermeable area, (ha) 3.1 6.1 2.2 3.5
Roof area, (ha) 1.0 1.6 1.1 1.5
Street area, (ha 2.1 4.5 1.1 2.0
Copper areas, (m ) 1250 1700 5 0
Population density, (p/ha) 250 115 85 22

Both Vegagatan and Mellbyleden have more streets than roofs and
thus the small street watershed should correspond to these areas
with respect to lead. Neither of the small watersheds have any
copper surfaces, thus they should correspond to the copper
concentrations of Bergsjosvangen and Floda.

As shown in Table 6.5 the lead levels of the street corresponds
to those of Vegagatan while the lead levels of the parking lot
corresponds to those of Bergsjosvéngen. The Tlead level of the
roof is lower than for any of the mixed watersheds which also
would be expected. The copper Tlevels of all three Chalmers
watersheds corresponds to those of Bergsjosvangen and Floda.
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Table 6.5 Comparison between the Chalmers watersheds and some
mixed watersheds in Goteborg.

Area SS Pb Cd Cu Zn
(mg/1) (ug/1) (ug/1) (ug/1) (ug/1)

Roof~CIH  mean 4.7 17 n.a. 23 55
max 12 37 29 97
Parking mean 49 128 1.7 57 n.a.
Lot~CTH max 69 308 5.0 126
Street- mean 122 321 1.9 55 n.a.
CTH max 237 999 3.7 146
Vegagatan mean 100 340 n.a. 260 390
max 650 1680 960 2220
Mellby- mean 58 120 5.2 170 290
leden max 680 670 - 700 940
Bergsjo~ mean 53 150 n.a. 26 230
svadngen max 310 570 110 750
Floda mean 68 63 n.a. 23 170
max 1050 340 89 470
n.a. = not analyzed
6.6.3 The separation between dissolved and solids

associated metals for the street area

The analysis of dissolved and solids associated metals is based
on five events from the street area. Two events from the parking
Jot and two from the roof area were also analysed with respect
to dissolved and solids associated metals. It has not however
been possible to create separate datasets for these areas due to
lack of data. The analysis is thus limited to the street area.

A summary of some properties of the analysed events is given in
Table 6.6.

Looking at a 18 year Tlong time series of rain events from
Goteborg (Arnell et al. (1979)), the September event belongs to
a class of events which 80 % of all events during one year
belong to. The November events belong to a class which 18 % of
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all events belong to. The June event belongs to a class of
events which only 2 % of all events belong to.

Table 6.6 Description of the analysed events with respect to
rainfall intensities and volumes.

Date Mean intensity Max. intensity Volume
(mm/h) (mm/h) (mm)
17 Sep 79 1.43 5.7 2.2
6 Nov 79 2.80 10.2 4.0
16 Nov 79 1.80 10.2 13.6
26 Nov 79 2.32 17.6 3.9
2 Jun 80 9.42 12.6 1.4
16 Jun 80 - - -

An impression of what each event represents is given by the
following figures. The metal concentrations for consecutive time
intervals during each runoff are given in Fig. 6.16 (the event
26 Nov. 79) and Fig 6.17 (the event 16 Nov. 79).

Graphs for all the events are shown in Appendix 5.

As shown in Fig. 6.16, the dissolved fraction of the total metal
concentration is relatively small for all metals and is almost
constant throughout the runoff event. This is typical when the
pH-value 1is higher than 6.0, which it is during the entire
event.

The event 16 Nov. 79 in Fig. 6.17 is showing another pattern
which is typical at lower pH-values. The dissolved fractions is
much higher, especially for cadmium and copper. The dissolved
lead fraction is to a minor extent affected by the lowering of
the pH-value.

The concentrations vary 1in general both within events and

between events. Dissolved concentrations appear to vary less
than solids associated concentrations.
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The arithmetic mean of all concentrations given in Table 6.7 and
Table 6.8 summarizes these experiences. The standard deviation
can be regarded as a measure of the variation.

Table 6.7 Arithmetic means and standard deviations of dissolved
Pb, Cd and Cu concentrations for six events from the
street area.

Pb cd Cu
(ug/1) (ug/1) (ug/1)

Arithmetic mean 65,1 0.94 27.2
Standard deviation 44,3 0.41 21.6
Number of samples 22 17 22

Table 6.8 Arithmetic means and standard deviations of solids
associated Pb, Cd and Cu concentrations for six
events from the street area.

Pb cd Cu
(Ug/1) (ug/1) (ug/1)

Arithmetic mean 490 0.72 37.4
Standard deviation 890 0.63 37.2
Number of samples 22 17 22

Compared to the variations of the solids associated metals the
dissolved concentrations will be regarded as constant for
modelling purposes.

To explain the variations of the solids associated concentra-
tions these have to be converted to weight per weight concentra-
tions, that is ug metal per mg solids. This derived variable is
given in Table 6.9 together with the solids concentrations.
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Table 6.9 Solids associated metals expressed as weight per
weight, solids loads and solids concentrations.
Data from street area.

Date Time Pb Cd Cu SS Accumulated
SS
(min)  (ug/mg) (ug/mg)  (ug/mg) (mg/l) (g)
17SEP79 [3 3.39 - 0.29 82 0.20
17SEP79 13 2.90 0.0011 0.24 87 6.80
17SEP79 27 3.29 0.0069 0.28 72 12.80
17SEP79 43 2.07 - 0.30 99 15.00
17SEP79 50 3.90 - 0.33 63 20.00
17SEP79 67 4,05 - 0.46 39 25.00
6NOV79 6 4,97 0.0027 0.20 890 0.10
6NOV79 23 2.67 0.0050 0.12 120 900,00
6NOV79 80 2.56 0.0044 0.20 250 1220.00
16N0V79 10 2.36 0.0000 0.23 280 550,00
16NOV79 30 2,00 0.0017 0.14 300 860.00
16NOV79 46 2.03 0.0010 0.22 210 1100.00
16NOV79 73 2,08 0.0043 0.18 115 1470.00
26NOV79 16 2.17 0.0115 0.29 156 36.00
26NOV79 40 2.39 0.0077 0.31 155 140,00
26NOV79 60 2.94 0.0080 0.35 113 190.00
26N0V79 80 3.00 0.0085 0.33 94 220.00
2JUN8O 5 1.03 0.27 260 3.90
2JUN8O 10 1.7% 0.0069 0.25 130 21.00
16JUNBO 15 2.92 0.0250 0.00 12 -
16JUN8BO 45 3.00 0.0083 0.13 24 -
16JUN8BO 75 3.92 0.0125 0.04 24 -

Simple plots of solids associated metal against SS show that
there is some relationship between these two variables. Examples
of this kind of plots are shown in Fig. 6.18.

A new variable name 1is now introduced, MESS (i.e. PBSS, CDSS,
CUSS, ZNSS) which is the solids associated metal expressed as
weight per weight.

The data implies that high solids concentrations do not
correspond to an increase of solids associated metals. Through
regression analysis relationships between MESS and different
expressions derived from the SS concentration have been investi-
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Figure 6.18 Plots of solids associated metals against SS.

gated. The models and the r2 values are given in Table 6.10. The
best fits are obtained with models which include accumulated
SS (ASS), but still there are large variations around the

regression line.

Table 6.10 Regression analysis of relationships between MESS
and SS or ASS.

2

Metal Model r N

PBSS A+B*1og(SS) 0.05 17
PBSS A+B*ASS 0.32 14
PBSS A+B*10g(ASS) 0.50 14
CDSS A+B*10g(SS) 0.56 14
CDSS A+B*ASS 0.15 13
CDSS A+B*10g(ASS) 0.10 13
cuss A+B*1og(SS) 0.05 17
CUss A+B*ASS 0.45 14
CUss A+B*10g(ASS) 0.25 14
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Other models have been investigated but those reported in Table
6.10 are the best set of models with the original data.

It was observed however that high SS concentrations did not
contribute as much as Tlower SS concentrations to the solids
associated metals. The original SS concentrations were for this
reason recalculated according to Eq. (6.3). The background of
this equation was that it was observed that SS concentrations
exceeding approximately 400 mg/1 did not contribute to the
solids associated concentrations.

SSIDZ
SS = — 6.3
§ =S58 - =i (6.3)

A continued regression analysis with ASS as the independent
variable gave the equations in Table 6.11. These are the equa-
tions which give the best fits using this approach.

Table 6.11 Regression equations of MESS as a function of ASS or

Tog(ASS).
2
Metal Model r N
PBSS 6.33-0.64*10g(ASS) 0.64 13
CDSS 0.,0087-3.5E~6%ASS 0.42 10
Cuss 0.367-1.5E-4%*ASS 0.62 13

Plots of the regression equation and observed MESS against ASS
are shown in Fig. 6.19.

Another approach is to look at mechanisms related to the surface
area of the particles. The solids associated metal concentra-
tion, MESS (wug/mg), can be expressed as a constant metal load
per unit area, MESSA (ug/mmz), times a variabel X, as in Eq.
(6.4).

MESS = MESSA x X (6.4)
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Figure 6.19 Plots of regression equations for MESS as a
function of ASS or Tog(ASS).

Dimension analysis of the equation, gives the variable X the
dimension of (mmz/mg), which is the particle specific area, SA.
Eq. {6.4) is then written:

MESS = MESSA x SA4 (6.5)

The specific area does not vary for samples of the same particle
size distribution, which would be the case for solids from, for
example, a street surface. However, when the solids are trans-
ported, the particle size distribution will vary according to
the transport capacity of different particle sizes. Samples of
storm water runoff will have different particle size distribu-
tions depending on the transport capacity. The SS concentrations
of the storm water are related to the transport capacity since
an increase of transport capacity gives an increase of SS
concentration.
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A relationship between SS and SA can be derived. Assuming that
all particles are spheres gives the following expression for the
specific area (SA) as a function of particle size diameter.

= L

S4=334— (6.6)
SA = specific area (mmZ/mg)
d = particle size diameter (mm)

The events in Table 6.9 can be used to simulate, with the solids
transport model, the .SS-loads of different particle size frac-
tions for the same time intervals as in Table 6.9. The surface
area in each of these fractions can be calculated with Eq. (6.6)
thus giving the specific area of the composite sample.

Plotting this calculated specific area against SS gives Fig
6.20. A trend curve which is of the form k/¥5S is drawn together
with the plotted points. Choosing a k-value of 4000 is giving
the plotted Tine in Fig. 6.20.
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Figure 6.20 Plot of specific area against SS with a trend
curve SA=4000/v5S.
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Now regression 1lines can be made for the solids associated
metals as a function of specific area, Eq. (6.5), using the
calculated values of SA. The regression analysis gave the models
reported in Table 6.12, using the SA-values derived by simula-
tions with the solids transport model.

Table 6.12 Regression equations of solids associated metals as
a function of simulated specific area using the
events in Table 6.9.

Metal Model T N
PBSS 0.0097*SA 0.85 19
CDSS 0.000019*SA 0.71 14
Cuss 0,00092*SA 0.85 19

The regression analysis gave the models reported in Table 6.13,
using the SA-values derived by calculations with SA=4000v5S.

Table 6.13 Regression equations of solids associated metals as
a function of specific area, calculated with

SA=4000v5SS.
2
Metal Model T N
PBSS ' 0.0052%SA 0.78 22
CDSS 0.000017*SA 0.86 17
CUSS 0.00060*5A 0.83 20

According to Eq. (6.5), the estimate of the regression parameter
should be interpreted as the metal load per unit area, MESSA
(ug/mmz). In other words, if solids associated metals are
plotted against specific area and a straight 1line fits the
points, the metal load per unit area could be estimated with the
slope of the line.

The observed values of MESS are plotted against calculated and
simulated specific area together with the regression lines of

Table 6.13 in Fig. 6.21. The models in Table 6.12 were not used
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for the further model development since the simulated specific
areas were dependent on the quality of the solids transport
model.

6.6.4 Solids associated metals dependent on particle size
for the parking lot

The dataset of solids associated metals and particle sizes
contains three stormwater runoffs from the parking lot. The
concentrations are arithmetic means of three parallell samples
taken from a container with a mixed sample from the entire
runoff. The procedure for the separation of a sample into
different particle size fractions is described in Chap. 6.4.

The particle size fractions are represented by the geometrical
mean particle sizes: 0.010, 0.025, 0.050, 0.100, 0.200 mm.
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Describing the solids associated metals in terms of weight per
weight concentrations is giving the bar charts in Fig. 6.22. A
marked tendency is the decrease of solids associated metals with
the increase of particle size. This 1is consistent with the
discussion in Chap. 6.6.3 where it was found that increasing
specific area, that is smaller particle size, gave higher weight
per weight concentrations.

The solids associated concentrations can be described in terms

of weight per specific area of the particles if the specific
areas are known, see Eq. (6.6).
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Figure 6.22 Solids associated metals concentrations in mg/g

for three stormwater runoffs from the parking lot.
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The metals concentrations in weight per unit area of the partic-
les are given in the charts in Fig. 6.23. There are variations
between particie sizes and between storms, but no clear
tendency 1is evident. A most believable assumption is that the
concentrations are constant and that the variation is due to
sampling and analyzing errors.
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Figure 6.23 Solids associated metals concentrations in ug/mm2
for three stormwater runoffs from the parking lot.

The arithmetic means of the concentrations per unit area have

been calculated for all samples and fractions together. These
can be compared to the constant concentrations per unit area
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calculated in Chap. 6.6.3. There are differences between the two
datasets but the street concentrations fall within the range of
the concentrations of the parking lot. Considering lead a higher
concentration is expected for the street than for the parking
lot. (See Table 6.14)

Table 6.14 Means and standard deviations of solids associated
metals concentrations in ug/mmg.

Pb Ccd 9 Cu Zn
(ug/mm )
Arithmetic mean 0.0011 0.000057 0.0066 0.0022
Standard deviation  0,0009 0.000087  0.,0059 0.0025
Number of samples 15 15 15 10
Calculated from 0.0052 0.000017 0.0006 -

street data

A regression analysis of the data, assuming that the solids
associated concentration is an inverse function of the particle
size diameter, was made. The analysis gave fairly good r2 values
except for cadmium. The regression equations are reported in
Table 6.15.

Table 6.15 Regression equations of solids associated metals as
functions of particle size, d (um).

Metal Model r N
PBSS 7.19 * 1/d 0.84 15
CDSS 0.126% 1/d 0.53 15
Cuss 29.4 * 1/d 0.77 15
ZNSS 6.69 * 1/d 0.94 10

Since the solids associated concentration is the product of the
Toad per unit area and the specific area, the load per unit area
can be calculated from the estimated constant of the regression
equations in Table 6.15. Using Eq. (6.6) as the expression of
specific area, the loads per unit area are calculated to the
values reported in Table 6.16.
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Solids Assoclaled Pb (mg/g)

Solids Assoclated Cu (mg/g).

Table 6.16 Three estimates of metal load per unit area derived

from data from the street area and the parking lot.

Pb

Cd

Cu

(ug/mmz)

Zn

Parking lot, samples
for different size
fractions
Estimated from
regression Eq.
Arithmetic mean
Street area, samples for
mixed size fractions
Calculated

0.0022

0.0011

0.0052

0,000038

0.000057

0.000017

0.0088 0.0020

0.0066 0.0022

0.0006

These three estimates

of load per unit area have been used to

calculate the three curves which are plotted together with the

original data in Fig.
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6.6.5 A model for solids associated metals.

The different expressions for solids associated metal concentra-
tions derived in Chap. 6.6.3 and Chap. 6.6.4 are in principal of
two types. One based on pure regression analysis and one based
on a deterministic model which has been evaluated by regression
analysis. The pure regression equations naturally fits the
observed data best. The deterministic based equations are
however more general, since they reflect a real relationship
between the variables and can be used for deterministic modell-
ing. The quality of the deterministic based equations must be
evaluated and found acceptable. If this 1is the case, a
deterministic based equation will be preferred to a regression
equation even if the regression equation fits the observed data
better.

The analyses in the two previous chapters has given a logical
based equation for the calculation of solids associated metals
concentrations. The form is given in Eq. (6.7) and includes the
specific area and the metal load per unit area of solids.

MESS = MESSA x SA (6.7)

MESS
MESSA
SA

solids associated metal (ug/mg)

]

metal load per unit area (ug/mm")

]

specific area (mm”/mg)

The metal load per unit area has to be known and is regarded a
constant. Values of MESSA have been evaluated both out of data
from the street area and the parking lot. These are tabulated in
Table 6.16.

There are two methods of calculating MESS demonstrated. In
Chap. 6.6.3, SA is calculated for a sample of several
particle size fractions and then multiplied with MESSA. The
other method, demonstrated in Chap. 6.6.4, is to calculate MESS
for each particle size fraction and then sum up for a mixed
sample. SA is calculated for each particle size fraction.
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The former method will probably give better results, when
verified with the stormwater runoffs not included in the ana-
lysis in Chap. 6.6.3. The reason is that this method is based on
a much larger data base than the latter method.

Both methods are verified and evaluated in Chap. 8 with the part

of the data base that has not been included in the analyses so
far.
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7. AN IMPROVED MODEL FOR THE SIMULATION OF SEDIMENT
TRANSPORT WITH SURFACE RUNOFF

7.1 Introduction
7.1.1 Model1ing concept

A model appropriate for urban areas has to describe the most
frequent surfaces fairly well. Most of the urban surfaces which
contribute to stormwater runoff, i.e. connected to a storm water
pipe system, can be described by two planes and a channel. A
simple example is the pavement, the street surface and the
gutter. An outline of this model concept is made in Fig. 7.1.

Figure 7.1 Simplified sub-catchment description of an urban
area.

The model also has to have the ability to transform a historical
rainfall to vrunoff with a resolution 1in time of about one
mihute. The reason to this is that the time of concentration for
these sub-catchments can be as 1ittle as 2-3 minutes.

The sediment transport cannot be simulated without accounting
for different particle sizes, as has been shown in Chap. 5. To
match the findings of Chap. 6 concerning metal transport, each
particle size fraction has to be treated separately.
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The simple model presented in Chap. 4 has the ability of treating
different particle size fractions separately but not the ability
of treating a channel nor the ability of handling a variable
rainfall intensity over time.

A model with the desired features was developed for rural areas
at the Colorado State University, see Simons et al. (1977). This
model has been further developed and applied to urban areas in
the framework of this thesis. Below 1is a description of the
model with references to the description of surface runoff and
sediment transport theory in Chap. 4.

7.1.2 Verification of the improved model

The aim of this chapter is to verify the improved sediment
transport model. Data on sediment transport with surface runoff
(see Chap. 6) collected for the street area and the parking lot
is used for the verifications. The database of observed storm
events 1is divided into one part for calibration of some con-
stants and one part for verification purposes.

7.2 Description of the sediment transport model

The model has the ability to describe two planes and a channel,
The surface runoff from the planes feeds the channel, which is
supposed to be connected to a catch basin. An outline of the
physical characteristics described by the model is given in Fig.
7.2.

Each plane is described by its length in the direction of flow,
L and its slope, SO. The channel is described by its length, W,
which also determines the width of the planes, and its slope,
Sc' The cross section of the channel is given by the slope of
one of the planes and a vertical border of the other plane,

which is explained in detail in Fig. 7.2.
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Figure 7.2 Particle transport model sub-catchment description.

The sediment yield from the sub-catchment s modeled in
principal in the following way. Sediment rests on the two planes
and will do so until it is made available for transport by rain
detachment and flow detachment. The detached sediment is cal-
culated separately for each given particle size fraction.
However, there has to be some transporting capacity to produce a
sediment yield from the planes. The transporting capacity is
calculated from the surface flow and properties of the sediment.
Depending on which of the two, i.e. the detached sediment volume
for each size fraction or the transport{ng capacity, that is
1imiting, the yield is calculated from the smallest of them.

The yield from each plane together with what is detached by
channel flow is calculated as the total detached sediment, thus
available for transport by channel flow. The transporting
capacity of the channel flow is calculated and compared to the
total detached sediment. The sediment yield of the sub-catchment
is again the smallest of the two.
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A short description of the processes involved is given in Fig.
7.3. The processes are:

Overland flow, which is calculated according to Eq.
(4.7) and Eq. (4.8)

Gutter flow, which is calculated according to Eq.
(4.9) and Eq. (4.18).

Detachment by rain, which is described in Chap.
4.3.1. The equation is Eq. (4.21).

Detachment by flow, that is both overland flow and
gutter flow. The equation used is Eq. (4.22).

Transporting capacity, which is calculated in the same
manner for the planes and the gutter. The equations
are described in Chap. 4.3.2 and are Eq. (4.26) for
bed Toad and Eq. (4.36) for suspended load.

D¢ IAD, D, D |

PLANE 1

P
GUTTER LANE 2

D¢
>
b
GUTTER

Figure 7.3 Processes included in the sediment transport model.

A flowchart for the model is given in Fig. 7.4. It should be
noted that all calculations are made for each given particle
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Figure 7.4a A flowchart for the sediment transport model.
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Figure 7.4b A detailed flow chart for the detachment and trans-
port part of the sediment transport model.

size fraction, that is the geometrical mean of the particle size
range. The time resolution is one minute, that is both sediment
and water 1is routed over the surfaces and through the gutter
with a time resolution of one minute.

7.3 Calibration of some model constants

Most of the variables and constants used in the model correspond
to a physical property, as for example slope, length and width
of the planes, surface roughness, density of the particles etc.
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However, there are some constants which cannot be obtained from
data about the catchment. These have to be derived from experi-
ments and may therefore be regarded as calibration constants. In
the absence of experimental data, data from the literature can
be used.

The constants, whose values must be determined are:

The detachment by rain constant, D, in Eq. (4.21).
The detachment by flow constant, Df, in Eq. (4.22).
The critical shear stress constant, Bs, in Eq.
(4.28).

From the database of runoffs from the street catchment and the
parking lot, three runoffs were choosen for calibration of the
detachment and critical shear stress constants. The three
runoffs were all from the street and belonged to the same group
of runoffs as those used for the developement of the model for
solids associated metals.

Table 7.1 gives the values of the calibration constants and in
Fig. 7.5 simulated sediment volumes are compared to observed

volumes.

Table 7.1 Values of the detachment and critical shear stress
constants used for all simulations.

Detachment by Critical shear stress
Rain  Overland flow Channel flow Plane ’ Channel
D D D B B

r £ £ s s
0.001 0.0001 0.003 0.10 0.10

As seen from Fig. 7.5 the simulated sediment volumes are in good
agreement with those observed.
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Figure 7.5 Simulated sediment volumes for the street catchment
compared to observed volumes for three diffferent
runoffs.

7.4 Sensitivity analysis

A sensitivity analysis was made for the constants in Table 7.2.
Each constant was varied in the range 0.1-10 and the others were
held at the given value.

Table 7.2 Constant values used for the sensitivity analysis.

Plane slope 0.010
Channel slope 0.010
Channel friction 0.40

Detachment by overland flow 0.0001
Detachment by rain 0.001
Detachment by channel flow 0.003
Channel shear stress 0.10

A1l simulations were made with a constant rainfall intensity of
10 mm/h. The response was recorded as the runoff sediment
concentration. Fig. 7.6 shows the variations in runoff sediment
concentration when changing the constants one by one. The figure
shows, that with regard to the planes the runoff sediment
concentration 1is most sensitive to the detachment by rain
constant. With regard to the channel, the sediment concentration
is most sensitive to the channel shear stress constant. Also if
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the slope becomes too flat, i.e. slopes less than 0.01, the
sediment concentration decreases rapidly.
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Figure 7.6 Sensitivity of the sediment transport model.
It is also found from the figure, that with regard to the
planes, the detached sediment volume determines the yield, while

the transport capacity determines the yield from the channel.

7.5 Verification for selected rainfalls

A set of six runoff events were choosen for the verification,
four from the street catchment and two from the parking lot. In
Table 7.3 some characteristics for these rainfalls are described.

Table 7.3 Description of selected rainfalls used for the
verification of the simulation of sediment yield.

Date Rainfall Characteristics Type
Volume Mean Intensity Max. Intensity
(mm) (mm/h) (mm/h)

2SEP79 0.30 5.60 6.40 Street
11SEP79 0.30 1.19 3.40 Street
6NOV79 3.70 2.80 10.20 Street
28AUG80 0.50 1.25 6.00 Street
6NOV79 3.40 2.80 10.20 Parking lot
17SEP80O 4,80 1.90 14,70 Parking lot
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Simulated sediment yield was compared to observed sediment yield
with respect to total mass, time from the beginning of the
runoff to the peak and peak value. The results are shown in Fig.
7.7, Fig. 7.8 and Fig. 7.9.
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Figure 7.7 Simulated sediment mass compared to observed mass for
four runoffs from the street and two from the parking
Tot.

As seen from Fig 7.7 there is a good agreement between simulated
mass and observed mass. However, looking at the peak value and
the time of occurence, the precision is not as good as for the
mass. Still, both peak value and time to peak are fairly well
simulated by the model, as can be seen from Fig. 7.8 and Fig.
7.9.
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Figure 7.8 Simulated peak sediment concentrations compared to
observed peak concentrations for four runoffs from
the street and two from the parking lot.
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To demonstrate the goodness of the fit between the simulated
concentrations and the observed concentrations, two runoff
events, one from the street and one from the parking lot have
been choosen. It is seen from Fig. 7.10 and Fig. 7.11 that the
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Figure 7.10 Simulated and observed concentrations for the street
runoff 6 Nov. 79.
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peaks are hit but that the simulated peak values are greater
than the observed ones. One explanation may be that the observed
concentration curve has a time resolution, which is as short as
three minutes and most often around six minutes.

Looking at the fraction graphs in Fig. 7.10 and Fig. 7.11, the
simulated curve and the observed curve follow each other well.
They also demonstrate that for this kind of storm about 75% of
the sediment mass is transported during the first 25% of the
runoff duration.
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Figure 7.11 Simulated and observed concentrations for the
parking Tot runoff 17 Sep. 80.
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8. AN IMPROVED MODEL FOR THE SIMULATION OF HEAVY METAL
TRANSPORT WITH SURFACE RUNOFF

8.1 Simulation of dissolved heavy metals

According to Chap. 6.6.3 the observed dissolved metal concentra-
tions show different concentration levels for different storms.
Within storms, however, the concentration levels are relatively
constant. The variation between storms can partly be explained
by variations in the pH-value. The lower the pH-value is the
higher the dissolved metal concentration will be. Plotting
observed dissolved metal concentrations versus pH-value gives,
however, no distinct picture of this relationship, which is
shown in Fig. 8.1.
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Figure 8.1 Dissolved metal concentrations of Pb, Cd and Cu
plotted versus pH-value.

Since the dissolved metal concentrations are relatively constant
compared to the solids associated concentrations within storms,
the dissolved metal concentrations are treated as constants for
simulation purposes. The dissolved concentrations used are given
in Table 8.1.
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Table 8.1 Dissolved metal concentrations of Pb, Cd and Cu used
for simulation purposes.

Pb cd Cu
(ug/1)  (ug/l) (ug/1)
20.0 0.60 25.0

An improvement of the simulation model would be to incorporate a
relationship between pH and dissolved metal concentration.
However, forecasting of pH-values is difficult and simulations
affected by changes 1in pH-value would be interesting when
simulating annual loads for example. The storms could in this
case be ranked according to pH-value.

8.2 Solids associated metals

8.2.1 Developement of a model

The analysis in Chap. 6 of the observed runoffs from the street
and the parking lot gave, as a result, suggestions of how to
simulate solids associated metals.

In principal, it has been shown, that the concentrations of
solids associated metals, expressed as mass of metal per mass of
solid, can be explained by using a constant metal load per unit
area of solids and assuming spheric particles. The general
equations derived are Eq. (6.6) and Eq. (6.7). They are written
below in a form which allows for calculations for different
particle sizes.

SA,=334- (8.1)
- e 2
SA; = specific area (mm=/mg)

d. = mean diameter of the i:th particle

fraction (mm)
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MESS; = MESSA x SA4; (8.2)

MESSi=so]ids associated metal (ug/mg)
MESSA=metal Toad per unit area (ug/mmz)

The constant MESSA have been estimated in three different ways,
which are described in Table 6.16. Three storms from the parking
Tot were collected and the solids separated into size fractions.
These particle size dependent data have been used to determine
MESSA by regression and by calculating the arithmetic means for
all data, thus disregarding the size fractions. The third method
of calculation was by regression analysis of six storms from the
street. These samples were mixed with respect to particle sizes.

The three sets of MESSA-constants are used for the further
simulations and referred to as Model 1, Model 2 and Model 3. The
constants are tabulated below Table 8.2 with the appropriate
reference.

Table 8.2 Estimates of metal Toad per unit area, MESSA, for
Model 1, Model 2 and Model 3.

Data from Pb Cd 9 Cu Zn
(ug/mm")

Parking lot  Model 1 0.0022 0.000038 0.0088 0.0020
- - Model 2 0.0011 0.000057 0.0066 0,0022
Street area  Model 3 0.0052 0.000017 0.0006 -

8.2.2 A subroutine for solids associated metals

The vroutine for calculation of solids associated metal
concentrations uses Eq. (8.1) and Eq. (8.2), thus making a
calculation for each particle size choosen. However, the runoff
and solids transport calculations are time dependent. The solids
concentration will vary with time and so will the metal con-
centrations. This time dependency is reflected in Eq. (8.3),
which is the equation for the calculation of metal concentration
for one particle size fraction.
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MEC{(t) = MESSA x SA x SS{1) (8.3)

MECi(t)=t1me and particle size dependent metal
concentration (mg/m3)

The total concentration is achieved by summing up for all
particle sizes.

MEC(@) = ZMEQ(;) (8.4)
MEC(t)=time dependent metal concentration (mg/m3)

To obtain the metal mass flow it is necessary to introduce the
runoff flow, Q(t), which is done in Eq. (8.5).

MEM(1) = Q(1) x MEC(f) (8.5)

MEM(t)=time dependent metal mass flow (mg/s)
Q(t) =runoff flow (m3/s)

For the runoff event, the transported metal mass is calculated
by integration over time.

MEM:JMEMmm (8.6)
MEM=total metal mass for the event (mg)
A flow chart for the solids associated metals subroutine is

given in Fig. 8.2. The equations used for the calculations are
the equations given in this chapter.
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Figure 8.2 Flow chart for the solids associated metals
subroutine.

8.3 A model for simulation of total concentrations

The total concentrations, mass flows or event masses are
achieved simply by adding dissolved metal to solids associated.

The model for total metal concentrations is described by the

flowchart in Fig. 8.2. The only difference is that the dissolved
concentrations are added.
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8.4 Verification for selected rainfalls

8.4.1 Dependent runoff events with respect to metals

Model 3, for which the solids associated metal constant was
derived from six runoff events from the street, have been
checked towards these events. The events are given in Table 8.3
together with some charecteristics of the rainfalls.

Table 8.3 Characteristics of six runoff events, which are
dependent with respect to solids associated metals.

Date Rainfall Characteristics Type
Volume Mean Intensity Max. Intensity
(mm) (mm/h) (mm/h)
17SEP79a 0.60 1.98 5.70 Street
17SEP79% 0.70 1.11 3.30 Street
6NOV79  3.70 2.80 10.2 Street
16NOV79  3.70 1.80 10.2 Street
26NOV79  2.70 2.32 17.6 Street
2JUNBO0  0.60 9.42 12.6 Street

Fig. 8.3 shows that there is good agreement between observed and
simulated sediment yield for these runoff events.
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Figure 8.3 Simulated and observed sediment mass for six
runoff events from the street.



The simulated metal masses are also close to the observed
masses, which is seen from Fig. 8.4. With respect to total
masses the model reflects what has been observed.
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Figure 8.4 Simulated and observed metal masses for six dependent
runoff events from the street.

The time dependent simulated and observed concentrations have
been plotted in Fig. 8.5 to see if the model is capable of
simulating the dynamics of a runoff event.

The comparisons between observed and simulated masses as well as
observed and simulated concentrations demonstrate that the model
reflects the physical processes with respect to solids and
metals. However, the metal load per unit area of solids was
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Figure 8.5 Simulated and observed concentrations for the
runoff event 26 Nov. 79.

derived from the same set of rainfalls, as the simulations were
made with. A true verification has to be made with independent
rainfalls, which is described below.
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8.4.2 Independent runoff events with respect to metals

It has been possible to select five independent runoff events
from the database of observed runoffs. Three from the street and
two from the parking lot. The rainfalls and their characteristics
are described in Table 8.4.

Table 8.4 Characteristics of five rainfall events from the
street and the parking Tot. A1l of them independent
with respect to solids and metals.

Date Rainfall Characteristics Type
Volume Mean Intensity Max., Intensity
(mm) (mm/h) (mm/h)

16AUGBO  0.90 1.28 16.6 Street
28AUGB0  0.50 1.25 6.0 Street
17SEP80  5.30 1.90 14.7 Street
16AUGBO0  0.70 1.46 16.6 Parking lot
17SEP80  4.80 1.90 14.7 Parking lot

The verification is made for Model 1, Model 2 and Model 3
separately and the results with respect to masses are compared
metal by metal. It is expected, that Model 1 and 2 would not
give as good results for the street as for the parking lot,
since the metal loads per unit area are derived from runoffs
from the parking lot for these models. Fig. 8.6 and Fig. 8.7
verify this. In conclusion, Model 1 and Model 2 underestimate
the Pb masses and overestimate the Cd and Cu masses for the
street. The masses from the parking lot are well simulated
except for Cu, which is overestimated.

Model 3, derived from observed runoffs from the street, gives
the best agreement between observed and simulated masses for all
metals and for both surfaces. The Cd masses are simulated with
an accuracy which is better than +/- 10%. The Pb and Cu masses
are simulated within +/- 30%, which is acceptable.
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Figure 8.6 Comparison between simulated and observed masses of
Pb for Models 1, 2 and 3.
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Figure 8.7 Comparison between simulated and observed masses of
Cd and Cu for Models 1,2 and 3.

A demonstration of how well Model 3 reflects the dynamics of the
runoff event is given in Fig. 8.8 and Fig. 8.10, where the same
runoff event, 17 Sep. 80, is shown for both areas.
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Figure 8.8 Simulated and observed graphs for the street area
17 Sep. 80. Simulations with Model 3.

As seen from Fig. 8.8, the solids are poorly simulated. There
seems to be some timing error, which cannot be explained. The
fraction graphs in Fig. 8.9 give the same message, too Tow
simulated concentrations in the beginning of the runoff and to
high later during the runoff event. The simulated solids mass is
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overestimated with a factor of 1.4. The conclusion is, that if

the solids are poorly simulated, the metals will also be poorly

simulated.
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Figure 8.9 Fraction graphs for the street runoff event 17

Sep. 80.

The parking lot event in Fig 8.10 displays a good simulation of

solids. The peak value is overestimated compared to the observed

peak value. This is however partly expected due to the sampling

procedure, which did not allow for better resolution than 3-9

minutes. The second and the third peaks are not showed by the

observed curve, but these are contained in one sample each.
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The metals are also well simulated, the highest peak is hit on
time, but for Pb and Cu the peak value is overestimated.
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Figure 8.10 Simulated and observed graphs for the parking lot
17 Sep. 80. Simulations with Model 3.
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Fraction of SS mass

Fraction of Pb mass

The fraction graphs in Fig. 8.11 give, compared to Fig. 8.9, an
impression that the difference between the simulations for the
two runoff events is neglectable. This type of graph is useful
as a compliment to the comparison of masses. Given that the
masses correspond, the fraction graph gives a good view of the
dynamics of the runoff event.
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9. DISCUSSION

9.1 A synthetic rainfall for the discussion and analyses

of particle transport

To be able to point out the difficulties with particle transport
modelling and differences between modelling approaches two
synthetic rainfall events were derived. Both of them with the
same volume, duration and peak intensity but with different
shapes. The rainfall events are described in Table 9.1 and shown
in Fig. 9.1. They are simply called: Rain 1 and Rain 2 and
labeled R12 (Rain 1 followed by Rain 2) or R21 (Rain 2 followed
by Rain 1).

Table 9.1 Characteristics of two synthetic rainfall events.

Rain 1 Rain 2

Volume  (mm) 6.67 6.67
Duration (min) 60 60
Peak Intensity (mm/h) 25.0 25.0
30— Synthetic Rainfall R12 ————
£ B :
£ :
20.—«.\ O
£ s
£ :
> :
= :
7] .
- 10~ et o RLETEETEE P RPETREPITY FETEE A PR
o :
e :
£ :
0 7 i T

T I
0 20 40 60 80 100 120
Time in minutes

Figure 9.1 Description of the synthetic rainfall events Rain 1
and Rain 2, labeled R12.
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The simulations are carried out for two different particle size

distributions.

The normal one which has been used for all the

simulations described in Chap. 7 and Chap. 8 and a special one

with fewer small particles. Both are given in Fig. 9.2.
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Figure 9.2 Description of two particle size distributions

9.2 Effects of particle size distribution on transported
solids
9.2.1 Solids loads and concentrations for the synthetic

rainfall events

The derived solids and metal transport model does not take into
account any limitations of the surface solids load. However, the
simulation results reportedin Chap. 7 and Chap. 8, are believed
This is

because the storms with long duration before sampling started

not to be affected to a great extent by this fact.

have been excluded. The surface solids load should not for this

reason be a limiting factor for these storms.

The

transport for different particle size fractions

capability of the model to calculate solids and metal

can however

prove to be very important to the simulation results.
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A simulation with the two synthetic rainfall events for the
normal particle size distribution is shown in Fig. 9.3. Looking
at the concentrations the same peak concentrations are met for
both events but Rain 2, whose peak has a longer duration, gives
higher concentrations with a longer duration.
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Figure 9.3 Solids concentrations for the synthetic rainfall
events Rain 12 and Rain 21.

The higher concentrations for Rain 2 are also reflected in the
loads, as shown in Fig. 9.4. For all fractions Rain 2 gives
higher loads than does Rain 1 give, despite the fact that the
rain events have the same characteristics. Obviously the dura-
tion with the high intensity for Rain 2 is not compensated by
the higher intensity before and after the peak for Rain 1.

The importance of being able to simulate the transport capacity

of different particle size fractions is demonstrated in Fig.
9.4. Looking at the finest fraction the difference between the
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two event loads is only about 30 %, but for the coarsest frac-
tion the difference is about 100 %. If for example the intensi-
ties were too low to transport particles coarser than 0.063 mm,
the difference between the two rain events would have been
ignored.
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Figure 9.4 Solids loads for different particle size fractions
for the two synthetic rainfall events.

Also, as seen both from the concentrations and the loads, the

order of the rainfall events makes no difference. This would not
be expected since there is no limitation of surface load.
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9.2.2 Comparisons between the developed model and SWMM.

The Storm Water Management Model (SWMM), Huber et al. (1981)
uses an exponential decay function for calculating the runoff
mass flow. It is often written in the form given in Eq. (9.1).

Py— P = Pyd(l — ¢~k (9.1)
P = mass of solids on surface
t = time
k = coefficient
r = runoff rate (depth/time)
A = availability factor

The availability factor is an equation of the form:
A=a+br¢ (9'2)

where a, b and c are constants. For solids the following
formula is given: A = 0.057 + 1.4 rl'l. An assumption often used
is that 0.5 inch (12.7 mm) of rainfall causes 90 % reduction of
solids on the surface. This gives a k-value of 4.6 per inch.

Using Eq. (9.1) and the constants given here together with an
original load of 5.0 g/m2 produces mass flows for the synthetic
rainfalls as shown in Fig. 9.5. The calculations are made for
the vrainfall intensity dinstead of runoff intensity, which
affects the shape of the mass flow curve, but not the main
features of it.

The mass flow curve produced for the normal particle size
distribution, also shown in Fig. 9.5, is in agreement with the
SWMM-curve for the first event but not for the second one. When
the large peak comes first the difference is more marked. The
reason is that SWMM calculates the wash off according to the
surface load, which surely is reduced when the second event
comes. The herein developed model has the potential to estimate
too high mass flows for the second event since the surface load
will be a limiting factor for this kind of events.
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However, with the same conditions, except for the particle size
distribution, the same exercise is made again. Now with the
special particle size distribution, which has less small partic-
les. The result is shown in Fig. 9.6, which displays the same
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Figure 9.5 Solids flow curves for the synthetic rainfall events
derived by the developed model and the SWMM-model.

SWMM-curve as before but lower mass flows for the developed
model. Now the best agreement is achieved for the second event.
The SWMM-curve shows mass flows that are too high for the first
event, because SWMM takes into account only the total surface
Toad, which 1is the same for both cases, and not the particle
size distribution.

Simulations with the SWMM-form solids transport relationship
would give mass flows in agreement with the developed model for
moderate rainfall intensities, when only the finest particle
size fraction is moved. However, if followed by a high intensity
rainfall, the SWMM relationship would fail to reflect the
increase in mass flow which would be expected.
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Figure 9.6 Solids flow curves derived by the developed model
and the SWMM-model for the special particle size
distribution.

A model with a dynamic particle size distribution would reflect
reality better. This means that as solids are washed off the
surface the particle size distribution changes for the remaining
solids and should be reflected by a model.

9.3 Effects of limited surface load

9.3.1 An improved model with surface load masss balance

The model developed has been modified with respect to the
particle size distribution, which has been made dynamic, see
Fig. 9.7. At the beginning of a rainfall event the normal
distribution is used for the solids resting on the surface.
During the washoff of solids the distribution is corrected in a
way that it always reflects the distribution of the remaining
surface load.
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A simulation with the two synthetic rainfall events for a
surface load of 5.0 g/m2 results in solids concentrations, which
are decreasing as the event proceeds. In Fig. 9.8 the simulated
solids concentrations are shown for Rain 1 followed by Rain 2
and vice versa. The difference between the first and the second
peak is more marked when Rain 2 comes first, since Rain 2 has a
greater solids transport than Rain 1 has. The surface load is
obviously a limiting factor in both cases for the second peak.
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Figure 9.8 Solids concentrations simulated with the modified
model for two synthetic rainfall events.

The transported solids loads for the different particle size
fractions are shown for the two cases in Fig. 9.9. In the case
of Rain 1 coming first, between 35 % and 70 % of the total
transported load is removed by the first event. Almost 100 % of
the finest fraction is transported during the total event but
nothing of the two coarsest fractions. The other case of Rain 2
coming first removes from 70 % to 80 % of the total solids Tload
during the first part of the event. Again almost all of the
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finest fraction 1is removed while nothing of the two coarsest
fractions is moved. The total transported load does not differ
between the two cases partly because of the limited supply of
solids for the finer fractions.

Transported Masses for a
Sunthetic Rainfall Event
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Figure 9.9 Transported solids loads for the different particle
size fractions simulated by the improved model.
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As seen from Fig. 9.9 the more limited the supply is, the more
reduced the transport will be. To investigate the effect of the
limited supply another simulation was made with a total surface
load of 10.0 g/mz, The solids concentrations are shown in Fig.
9.10, which has a larger second peak compared to the simulation
with 5.0 g/m°.
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Figure 9.10 Simulated solids concentrationé for a surface load
2
of 10.0 g/m".

Looking at the loads, shown in Fig. 9.11 in the case of Rain 1
coming first, this peak removes only between 15 % and 40 % of
the total load. In the case of Rain 2 coming first the corre-
sponding figures are 20 % and 45 %. There are still solids on
the surface in every fraction after the total event.
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Transported Masses for a
Synthetic Rainfall Event
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Figure 9.11 Transported solids loads for

size fractions simulated for

g/mz.

The difference between the two surface loads is better described

by Fig. 9.12, where Rain 1 1is compared

Rain 2 and Rain 2 compared to Rain 2 preceeded by Rain 1.
there were no changes of the particle size distribution during
height. This is not the
case since the particle size distribution of the surface load is

the event the bars should be of the same

changed due to the transported solids. However, with increasing

surface load, both totally and for each
the effect is less noticeable.
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Figure 9.12 Comparison between transported solids loads for a

single rain event and the same event preceeded by
another event.

9.3.2 Comparisons between the improved model and SWMM

Using the improved model with a surface load of 5.0 g/m2 and the
normal particle size distribution to simulate the solids mass
flow for the the two rainfall events, produces the graphs shown
in Fig. 9.13. As a comparison, again the solids mass flow
calculated with the SWMM-formula is also displayed in Fig. 9.13.

The model developed here gives lower mass flows for the second

peak than does the SWMM-formula give. The mass flows of the
SWMM- formula are however much higher for the first peak, which
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could be adjusted by the calibration coefficients in the SWMM-
formula. The availability factor could for example be reduced.
This could bring the SWMM-curve to match the curve of the
developed model.
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Figure 9.13 Simulated mass flow with the developed model and
with SWMM for two synthetic rainfall events.

A small change of the particle size distribution is reflected by
the developed model but not by the SWMM-formula, which leads to
a larger difference between the two simulation curves. The
simulation with the special particle size distribution is shown
in Fig. 9.14.

Another way of changing the mass flow of solids is to simulate
an area with a different slope. The parking Tot is not as steep
as the street and will give particle transport mainly for the
finest fraction. The SWMM-formula will however give the same
mass flow irrespective of the change in slope, which is shown in
Fig. 9.15
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Figure 9.14 Simulated mass flow with the developed model and
with SWMM for the special particle size distribution.
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Figure 9.15 Simulated mass flow with the developed model and
with SWMM for the parking lot.
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9.4 Simulations with the improved model for some observed
storms

Simulations were made for the observed storms and compared to
the observed concentrations in Chap. 7 and Chap. 8. To compare
the simulation results of the improved model to those of the

originally developed model, a few storms will be displayed
again.

The runoff from the street 6 Nov.79 was displayed in Fig. 7.10
and showed good agreement between observed and simulated con-
centrations except for the first peak which was overestimated.
The improved model simulates the variations of the concentration
graph better, shown in Fig. 9.16, but the total surface load has
to be increased to 60 g/m2 to get a very good fit.
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Figure 9.16 Simulated and observed concentrations with the
improved model for the street runoff 6 Nov. 79.

In Chap. 8 the storm of 17 Sep. 80 was displayed both for the
street area and the parking lot area, Fig. 8.8 and 8.9. The
simulations for the parking lTot are good but for the street area
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the simulated curve has a completely different form than the

observed one.

The cause could be a limited supply of solids,

which causes the observed solids concentration to decrease even

if the runoff intensity is increasing.

New simulations are made by the improved model which are dis-
played in Fig. 9.17 for the street area and Fig. 9.18 for the
parking lot. The variations for the street area in the observed
curves both for solids and metal concentrations are much better
simulated in this case.
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Figure 9.17 Simulated and observed concentrations with the
improved model for the street runoff 17 Sep. 80.
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For the parking

lot the differences

between

the originally

simulated curves and the curves simulated by the improved model
are small. The fit is still good.
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Figure 9.18 Simulated and observed concentrations with the
improved model for the parking lot runoff 17

Sep. 80.
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With regard to loads the differences between the two models are
tabulated in Table 9.2

Table 9.2 Observed and simulated solids and metals loads for the
originally developed model and the improved model.

Date Type Model Surface Ss Pb Cd Cu
load obs. sim. obs. sim. obs. sim. obs. sim

(g/m™) (®) (mg) (mg) (mg)

6NOV79 S OM - 930 860 -~ - - - - -

IM 5.0 930 470 -~ - - - - -

IM 60.0 930 1100 - - - - - -

17SEP80 S OM - 480 1200 1700 2600 12.0 12.0 300 440
IM 5.0 480 520 1700 770 12.0 5.8 300 230
17SEP80 P OM - 63 91 180 240 2.7 2.0 53 81
IM 5.0 63 90 180 240 2,7 2,0 53 81

Street Area OM = Originally Developed Model
Parking Lot IM = Improved Model

]
L]

9.5 Recommendations on further research and development

The model devloped in the context of this work should be further
tested. One area that has not been investigated is simulations
with simplified sediment transport equations and the effect on
the simulation results. Another area 1is the application of the
model for larger catchments through a simplified areal descrip-
tion of a catchment. This will probably affect the simulations
seriously since the sediment transport is very sensitive to the
simulated velocities and these can be expected not to be simu-
lated as accurate for a large catchmenf with a rough areal
description as for a small one.

To make the model appropriate for use in urban drainage planning
and sewer network analysis it has to be integrated in an urban
runoff and sewer network simulation package. This can be done as
long as the overland flow simulation routine feeds the sediment
transport model with water depths and velocities.

147



The simulation of sediment transport in sewers and through
different hydraulic structures, 1J.e. overflows, detention
basins, is an area where improved simulation models will come.
Simulation with the model developed here will serve as an input
to simulations with sewer network sediment transport models.

In the area of substances associated to solids there has to be
further research to establish relationships between solids and
other substances than Pb, Cd and Cu which have been investigated
here.
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10 CONCLUSIONS

Urban runoff solids concentration curves can be simulated using
theories on sediment transport in open channels. The simulations
require an overland flow model based on the kinematic wave
theory as an input to the solids concentration calculations.

Particles are detached from the ground by raindrop energy input
and overland flow shear forces. The potential transport rate is
governed by flow conditions and particle properties. The Timi-
ting one of the detachment rate and the potential transport rate
determines the actual transporting rate.

The potential transport rate over a given surface is strongly
dependent on the particle sizes. Each particle size has its own
critical flow above which it will be transported. As the flow
varies the potential transport rate will vary.

The solids particle size distribution curve can be represented
by the geometrical mean particle size of a number of size
fractions.

The solids supply of a surface can be a limiting factor for some
particle size fractions. Since the smaller particle sizes always
are transported, if there is a runoff, the surface will for some
storms run out of supply for these particle sizes.

The original particle size distribution curve for a surface at
the beginning of a runoff event has to be corrected continously
during the vrunoff with respect to the transported mass of
particles.

A first flush effect for a runoff event is logical and is caused
by small particles which are readily transported but Timited in

supply.
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There is a linear relationship between solids associated metal
concentrations and surface area of the particles. The particle
shape can be approximated by a sphere, thus creating an inverse
relationship between solids associated metal concentrations and
particle diameter.

The dissolved metal concentrations vary less than do the solids
associated metal concentrations and can be approximated by a
constant concentration. The variations in the dissolved concen-
trations can only partly be explained by changes of the pH-
value.

Simulations of solids transport using the Storm Water Management
Model reflect the limited supply of small particles. The SWMM
gives reasonable results for not too steep areas and low to
moderate runoff intensities, when only the smaller particles are
transported.
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LIST OF SYMBOLS

The system of units used throughout the text is the SI-system,
if not outwritten.

2)

A cross section of flow (L
A availability factor

Ab constant in bed Toad formula
A surface area fraction covered with sediment
ASS accumulated mass of suspended solids (M)

a distance of reference plane from the bed (L)
a constant

B width of channel (L)

Bs constant in the critical shear stress formula
b parameter in the momentum equation of flow

b constant

CDSS  solids associated cadmium, weight per weight (M/M)
CUSS  solids associated copper, weight per weight (M/M)
local concentration (M/L3)

C

c constant

s concentration at distance a from bed (M/L3)

D duration of rainfall (T)

Df detachment coefficient for overland or guttter flow
Dr detachment coefficient for rainfall

d water depth (L)

di geometric mean diameter of i:th particle fraction (L)
dS particle diameter (L)

F Froude number

f Darcy-Weissbach friction factor

g acceleration of gravity (L/TZ)

h V-notch water depth (L)

i rain intensity (L/T)

1d rain intensity constant (L/T)

i effective rain intensity (L/T)

ip ponding intensity (L/T)

1u upstream inflow intensity to a catchment (L/T)

K friction parameter
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constant in bed load formula

o

friction parameter due to grain resistance

w

constant

roughness height (L)

1 constant in suspended load equation
9 constant in suspended load equation

R x xR R R

length in direction of flow (L)

MEC metal concentration (M/L3)

MEM total metal mass for an event (M)

MESS solids associated metal Toad (M/M)

MESSA  solids associated metal load per unit area (M/LZ)

M bed load discharge (M/T L)

MEC. metal concentration for i:th particle fraction (M/L3)
MESSi solids associated metal Toad for i:th particle fraction

(M/M)
N number of observations
n Manning roughness coefficient
n, Manning coefficient for bed roughness
ng Manning coefficient for grain roughness
P wetted perimeter
P mass of solids on a surface (M)
P0 mass of solids on a surface at the start of an event (M)
PBSS  solids associated lead (M/M)
Q flow (L3/T)
q water discharge (LZ/T)

ap bed load discharge (M/T L)

critical water (LZ/T)

runoff rate (LZ/T)

Agp suspended bed load discharge (M/T L)
suspended load discharge (M/T L)

zi total suspended load discharge (M/T L)
hydraulic radius (L)

Ry hydraulic radius with respect to the bed (L)

Re Reynolds' number

r runoff intensity (L/T)

regression coefficient
slope (L/L)
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suspended solids concentration (M/L3)

specific surface area (LZ/M)

channel slope (L/L)

friction slope (L/L)

surface slope (L/L)

specific surface area for i:th particle fraction (Lz/M)
channel width at water surface (L)

time (T)

velocity (L/T)

shear velocity (L/T)

velocity

critical velocity

total detached sediment volume per unit of time (L3/T)
sediment volume detached by flow per unit of time (L3/T)
sediment volume detached by rain per unit of time (LB/T)
width (L)

settling velocity (L/T)

coordinate (L)

runoff volume (L3)

depth (L)

relative depth, y/d (L/L)

relative depth, y/a (L/L)

parameter in suspended load transport equation,= w/k u,
specific weight of water (F/L3)

specific weight of sediments (F/L3)

von Karman constant

kinematic viscosity (LZ/T)

density of sediment (M/L3)

density of water (M/L3)

standard deviation

shear stress (F/L2)

critical shear stress (F/Lz)

porosity of sediment
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APPENDIX 1

intensity for some events 0.0

is the rainfall

1
which means not observed. In the case of a substance having the

In Appendix

value -1.0 this means not analysed.
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Appendix

observed storms

2.1 Street area total and dissolved concentrations for

Date Time fr. Pb Cu Cd pH
start Tot. Dis. Tot. Dis. Tot. Dis.
min. ug/1 ueg/1 pe/l

17SEP79 3.0 330 52 41 17 1.1 - 5.7
17SEP79 10.0 310 58 L6 25 1.5 1.4 5.8
17SEP79 20.0 280 43 36 16 1.5 1.0 6.0
17SEP79 - 270 65 L6 16 1.3 = 5.9
17SEP79 - 310 64 34 13 0.7 - 6.1
17SEP79 - 200 L2 27 9 1.3 - 6.1
06NOV79 3.0 4500 75 230 49 3.9 1.5 5.9
06NOV79 18.0 500 180 40 26 1.7 1.1 4.1
06NOV79  76.0 800 160 103 54 2.1 1.0 4.3
16NOV79 5.0 720 59 81 18 1.3 1.3 5.6
L6NOV79 25,0 770 170 78 35 1.6 1.1 4,0
16NOV79 43,0 490 64 64 18 1.3 1.1 4,7
16NOV79  70.0 270 31 30 9 0.9 0.4 6.3
26NOV79 8.5 370 32 54 8 2.1 0.3 6.5
26NOV79  33.5 410 39 59 11 1.5 0.3 6.6
26N0OV79 53.5 370 38 49 10 1.3 0.4 6.5
26NOV79  75.0 320 38 43 12 1.3 0.5 6.5
02JUNBO 2.5 320 51 170 100 - - 5.7
02JUNBO 7.5 280 47 82 49 2.4 1.5 6.0
16JUNSO - 75 40 33 33 1.3 1.0 4,6
16JUNBO - 110 38 31 28 1.0 0.8 5,1
16JUNBO - 140 L6 43 42 1.5 1.2 5.2

Appendix 2.2 Parking lot total and dissolved concentrations for
observed. storms

Date Time fr. Pb Cu Cd pH
start Tot. Dis. Tot. Dis. Tot. Dis.
min. ug/l Hg/1 yg/l
06NOV79 3 160 66 27 27 - - 4.5
06NOV79 30 35 21 12 6 0.8 0.5 3.5
06NOV79 65 51 27 8 7 0.9 0.4 4,0
16JUNBO - 86 9 18 13 0.8 0.4 5.3
16JUN8O - 38 10 26 20 6.9 0.5 4.8
16JUN8O - 45 10 16 16 0.9 0.5 4.7
16JUNBO - 69 19 24 17 0.8 0.6 4.6
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APPENDIX 2

Appendix 2.3 Roof area lot total and dissolved concentrations for
observed storms

Date Time fr. Pb Cu cd pH
start Tot. Dis. Tot. Dis. Tot. Dis.
min. ug/l Ug/1 Hg/l
01AUG79 1.5 35 26 29 29 - - 4.8
01AUG79 4.5 49 36 18 18 - - Lol
01AUG79 8.5 49 44 36 18 - - [N
01AUG79 11.5 4t 35 - - - - L4
01AUG79 15.0 41 38 46 20 - - Lok
09AUG79 1.5 4t 29 50 35 - - 4.5
09AUG79 8.5 46 43 52 26 - - 4.2

Appendix 2.4 Parking lot total and dissolved metals concentrations
for different particle size fractions.

Date Particle Pb Cd Cu Zn
size Tot. Dis. Tot. Dis. Tot. Dis. Tot. Dis.
um ug/l ug/1 Heg/l ug/1
01NOV82 10 37.0 16.00 0.86 1.15 29.0 27.0 248 228
01NOV82 25 36,0 17,00 0,70 1.16 27.0 26.0 256 248
01NOV82 50 42,0 16.00 4,00 0.82 30.0 26.0 280 256
0lNOV82 100 55.0 17.00 1,04 0.95 29.0 30.0 284 248
01NOV82 200 42,0 20.00 1.02 1.42 27.0 27.0 248 248
17NOV82 10 18.0 5,00 3,18 2,50 258.0 101.,0 218 195
17NOV82 25 25.2 4,90 3,10 2,28 320.0 93.0 226 191
17NOV82 50 28,0 4,70 3.22 2,28 366.0 105.0 218 188
1L7NOV82 100 29.6 4,50 3,16 2.34 370.0 106.0 218 180
17n0V82 200 30.8 3.80 3.90 3.30 365.0 87.0 188 164
22N0V82 10 16.9 4.00 1.58 1,42 81.0 55,0 164 164
22N0V82 25 18.3 4,10 1,50 1.70 66.5 50.5 94 110
22N0V82 50 19.9 4,10 1.64 1.46 82.0 60.0 117 110
22NOV82 100 20.9 4,30 1.50 1,18 82.0 55.0 110 102
22NOV82 200 20,5 3.80 1.36 1,12 71.0 49.5 62 78
06DEC82 10 71,0 8,20 1.22 1,00 253.0 104,0 264 226
06DEC82 25 79,0 7.50 1.46 1,00 272.0 103.0 280 234
06DEC82 50 77.0 7,20 1.54 1,18 280.0 131.0 288 234
06DECB2 100 79.0 8.75 1.08 1.12 286.0 132.0 288 250
06DEC82 200 76.0 7.00 1,08 0,90 272,0 101.0 250 202
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Appendix 2.5 Parking lot solids associated metals concentrations
for different particle size fractions. Weight of metal

per weight of solids.

Date Particle Pb Cd Cu Zn

size

um Ug/mg Hg/mg Ug/mg Ug/mg
17NOV82 10 0.433 0.0227 5.23 0.767
17N0OV82 25 0.178 0.00342 1.71 0.293
17NOV82 50 0.0625 0.00250 0.708 0.000
17NOV82 100 0.0333 0.0000 0.0556 0,148
17N0V82 200 0.03654 0.000000 0.26923 0.00000
22N0V82 10 0.92143 0.011429 1.85714 0.00000
22N0V82 25 0.07647 0.000000 0.00000 0.00000
22N0V82 50 0.07619 0.018095 0.28571 1.09524
22N0V82 100 0.03810 0.006667 0.23810 0.04762
22N0V82 200 0.00526 0.000000 0.00000 0.00000
06DEC82 10 1.06441 0.003729 2,52542 0.64407
06DEC82 25 0.14032 0.003871 0.32258 0.12903
06DEC82 50 0.,00000 0.000000 0.00000 0.11111
06DEC82 100 0.00511 0.000000 0.05682 0.00000
06DEC82 200 0.00000 0.003014 . 0.23288 0.1369¢9

Appendix 2.6 Parking lot solids associated metals concentrations

for different particle size fractions. Weight of
metal per solids surface area.

Date Particle Pb Cd Cu Zn
size 2 2 9 2
Jm Hg/mm Ug/mm Vg/mm Hg/mm
17R0V82 10 0.00130 0.000068 0.01572 0.00230
17NOV82 25 0.00134 0.000026 0.01284 0.00220
17NOV82 50 0.00093 0.000037 0.01057 0.00000
17NOV82 100 0.00101 * 0.000000 0.00168 0.00449
17NOV82 200 0.00219 0,000000 0.01612 0.00000
22NOV82 10 0.00277 0.000034 0.00558 0.00000
22NOV82 25 0.00058 0.000000 0.00000 0.00000
22NOV82 50 0.00114 0.000270 0.00426 0.01635
22N0V82 100 0.00115 0.000202 0.00721 0.00144
22NOV82 200 0.00032 0.000000 0,00000 0.00000
06DEC82 10 0.00320 0.000011 0.00758 0.00193
06DEC82 25 0.00106 0.000029 0.00243 0.00097
06DEC82 50 0.00000 0.,000000 0.00000 0.00166
06DEC82 100 0.00016 0.000000 0.00172 0.00000
06DEC82 200 0.00000 0.000180 0.01394 0.00820
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Appendix 3.1 Street area mean concentrations for observed

Date Duration SS cd Pb Cu Zn
min. mg/l  ug/l e/l ug/1 ug/1
19AUG79 16 56 - 129 39 155
21AUG79 46 91 - 223 52 211
02SEP79 23 189 - 998 145 =
02SEP79 26 106 - - - -
11SEP79 23 124 - 541 80 -
11SEP79 30 92 - 320 56 .
17SEP79 26 71 1.50 264 36 -
17SEP79 30 L5 1.00 207 26 -
310CT79 30 42 - 607 82 -
06NOV79 80 236 - - - N
16NOV79 80 197 1.20 480 55 -
26NOV79 80 139 1.62 376 53 -
02JUNBO 15 162 3.00 288 101 -
16AUGBO 47 - 1.43 129 29 -
28AUGBO0 22 39 3.66 702 91 -
17SEP80 120 77 2.16 284 49 -

Appendix 3.2 Parking lot mean concentrations for observed

Date Duration SS Cd Pb Cu
min. mg/1 pg/1 ug/1 ug/l
02SEP79 20 69 1.04 104 56
11SEP79 30 19 5,00 184 61
11SEP79 43 10 2.16 66 19
17SEP79 30 37 3.00 110 39
06NOV79 76 15 - - -
16AUG80 25 - 5.33 540 200
20AUGB0 120 - - 24 14
2BAUGBO 42 13 3.25 310 130
17SEP80 115 22 1.05 68 22

Appendix 3.3 Roof area mean

concentrations for observed

Date Duration SS Cd Pb Cu Zn

min. mg/1 Hg/1 ug/1 ug/1 ug/1
01AUG79 33 4.0 - 37 20 84
02AUG79 20 8.0 - 21 22 97
08AUG79 80 2,2 - 17 29 47
19AUG79 26 11.0 - 10 3 45
21AUG79 33 1.0 - 9 5 31
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