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Abstract: Gold nanoparticles possess many unique properties and can, for
example, form strong covalent bonds with certain chemical functionalities,
in particular thiol and amino groups. This mechanism is, in particular, ex-
ploited in the concept for the self-organisation of Au NPs on gold covered
silicon substrates, coated with either dithiol or cysteamine SAMs, which is
the principle subject of this thesis. Specifically, the project, described in
this report, focused on a method for controlling the interparticle repulsion,
and thus the separation between the adsorbed particles, by tuning the ionic
strength. Following functionalisation, the patterned surfaces thus obtained
can, among other things, be used to study the cellular adhesion or, more
generally, the response of cells presented to such nanostructures.

The study began with development of a mathematical model for the method
of depositing one-dimensional gradients of 10 nm gold nanoparticles on pla-
nar surfaces, originally proposed by A. Lundgren [I]. It was, in particular,
shown that this physical situation could be, relatively, accurately described
as an, analytically solvable, diffusion problem combined with a deposition
process, which can be represented with help of the theory of random sequen-
tial adsorption. The same physical model was later implemented in order to
develop experimental setups, with which radially symmetric Au NP gradients
can be achieved. Specifically, the molecular diffusion process inside geome-
tries representing the suggested designs were simulated using the COMSOL
Multiphysics® software, to determine suitable values on the design parame-
ters. From the surface electron microscope, SEM, analysis of the patterned
surfaces, obtained with the final product of this development process, it was
concluded that should be possible to achieve radially symmetric coverage
profiles with experimental setups based on the proposed concept.



Sammanfattning: Guld nanopartiklar d4ger en kombination av unika egen-
skaper och kan, exempelvis, inga i starka kovalenta bindingar med vissa typer
av molekyler, i synnerhet sadana som innehaller thiol- eller aminogrupper.
Det &r denna interaktionsmekanism som utgér grunden for den metod for
att fa guld nanopartiklar att spontant arrangera sig i bestdmda monster pa
guldbeklddda kiselsubstrat, vilka técks av enskilda lager av antingen dithiol-
eller cysteaminmolekyler. Det projekt som beskrivs héri, har, i synnerhet,
fokuserat pa ett koncept for att kontrollera repulsionen, och dérmed &ven,
avstandet mellan de ytadsorberade partiklarna genom att dndra jonstyrkan.
Efter att ha funktionaliserats, kan sadana ytor anvindas for att studera,
blandat annat, inbindning av celler eller, mer generellt, hur celler reagerar
pa forekomsten av sadana nanostrukturerer.

Studien ifraga inleddes med utvecklandet av en matematisk modell for den
teknik som tidigare anvants, av A. Lundgren, for att adsorbera endimen-
sionella gradienter av guld nanopartiklar pa slita ytor [1]. Det kunde, i
synnerhet, pavisas att detta skeende kan representeras som ett, analytiskt
l6sbart, diffusions problem f6ljd av en deponering process, vilken i sin tur kan
beskrivas inom ramen for den sa kallade RSA, "Random Sequential Adsorp-
tion”, modellen. Samma metodik anvéndes senare for att ta fram en exper-
imentel uppstéllning, &mnad fér att deponera en gradient av nanopartiklar,
med radiell symmetri, pa ett plant substrat. Mer specifikt utnyttjades COM-
SOL Multiphysics® programvara for att bestdmma hur virdena pa diverse
nyckelparametrar ldmpligen skulle véljas. De monstrade ytor, som skapats
med hjélp av den design som utgjorde slutprodukten fran denna desginpro-
cess, analyserades sedan med ett svepelektronmikroskop. Med utgangspunkt
fran detta resultat drogs slutsatsen att det, mycket riktigt, dr mojlig att
astadkomma radiellt symmetriska tackningsprofiler genom att tillampa upp-
stallningar konstruerade i enlighet med det foreslagna konceptet.

Keywords: Gold nanoparticles; Nanoparticle adsorption; Coverage gradients;
Patterned surfaces; Self-organisation; self-assembled monolayer; Concentra-
tion gradients; Molecular diffusion; Fick’s laws; DLVO theory; random se-
quential adsorption; Numerical simulations; Scanning electron microscope.
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Chapter 1

Introduction

The aim of this introductory chapter is to provide a context for the project.
Specifically, both the background as well as formulations of specific goals and
limitations will be presented, in that order.

Due to the similarity in size between on one hand nanomaterials, such as
nanoparticles, or NPs; and on the other biological molecules, such as proteins
and DNA, it is possible to create hybrid systems with unique and novel
features as is detailed in a recent review by Willner and Willner [2]. A key
functionality of many such systems is the ability to self-assemble into different
types of ordered structures. For example, Lundgren, Bjorefors, Olofsson
and Elwing have presented a method for obtaining uniform distributions
of charged-stabilized gold nanoparticle on octanedithol monolayers using a
procedure based on self-assembly [I]. In particular, this technique is referred
to as the Nano Particle Binary Chemistry, NPBC, method. Utilizing such a
procedure another research group, Lundgren et al, created arrays of similar
macromolecule and nanoparticle hybrids on a PEG background [3]. Here, the
aim was to use the obtained architectures to study the interaction between
the macromolecules and a cell surface and how this binding is affected by,
for instance, the molecular spacing.

Studies, such as those described above, are made possible by the fact that the
previously mentioned assembly method allows the interparticle distance to be
controlled. As a result of continuing research, this technique has been further
refined by Lundgren and his colleges [4]. Specifically, these researchers have
reported that they have been able to create gradients of nanoparticles on suit-
able substrates. The surfaces thus obtained have, furthermore, supposedly
been successfully used to study cell adhesion [5]. According to Lundgren,



such nonuniform nanopatterned surfaces are very attractive for exploring the
cellular response to different types of nanoscopic systems [5].

It is important to note that the average distance between the Au NPs is
controlled by Debye-screening and hence by, among others, the concentration
of electrolyte [I]. It is thus possible to make the nanoparticles self-assemble
into a particular pattern, for example a one-dimensional gradient, by setting
up a salt gradient in a uniform nanoparticle suspension. This should lead to
the formation of a NP mono layer on the substrate, with the highest coverage
being achieved on the areas of the surface that are in contact with the regions
of the solution containing the greatest number of ions. Still, the fact that
this ionic gradient must evolve in time, and eventually disappear, makes
studying the underlying diffusion process, for different geometrical setups, a
highly relevant issue for continuing research.

One possible route to obtain data pertaining to the time evolution of chemi-
cal gradients is the implementation of numerical calculations. In particular,
quantitatively important results could be ascertained by creating suitable
models of physical systems of interest and then simulating the diffusion of
ions. For this research to be relevant, the model systems that are initially
considered should be simple enough that accurate experimental data is avail-
able. Specifically, this should allow the numerical method, or methods, used
to be tested before moving on to more complex geometries. This work could
potentially result in refined estimates of key parameters that are related not
only the computations but also the experimental procedure. The simulations
should, more precisely, make it possible to quantify the time and salt content
needed to achieve a certain gradient of nanoparticles in a particular geome-
try. It will perhaps even be possible to find an optimum with regards to the
choice of the two former variables.

Once a sufficiently accurate methodology has been developed the next step
would be to consider more complex systems, which could possibly be regarded
as more practically important. With help of the same type of methods as
before, simulations can be performed for a variety of geometries with different
dimensionalities to yield predictions how the NP patterns evolve with time.
Again, it might even be possible to find the amount and mode by which
the salt should be added and how long time these ions should be allowed to
diffuse to achieve a particular gradient.



1.1 Task

This diploma work will, to a large extent, involve using the computer soft-
ware COMSOL Multiphyisics® to simulate the diffusion of counterions, in
this case citrate, in various geometries. Initially, the aim will be to con-
sider one-dimensional problems for which comparable experimental results
are already available. It should hence be possible to directly compare the
calculations with reference data, and thus optimize the models used in the
simulations. Another goal with this part of the project will be to try and
determine the time and salt content required for a certain concentration pro-
file and thus a particular nanoparticle gradient to develop, since such data is
not available at the present. Thereafter, the work ought to primarily involve
extending the computer simulations to more complex systems with higher di-
mensionalities. Concomitantly, efforts will be made to obtain measurements
that are comparable to the computed data. This should, more precisely, be
achieved by using experimental setups that mirror the model systems.

Though this project will primarily be theoretical in nature, and mainly be
focused on the earlier mentioned computer simulations, some experiments are
also meant be performed. This part of the work should , for instance, involve
using different analytical tools, such as SEM, in order to extract relevant
data from empirical studies. To put these results into context, efforts will
also be made to gather information about the underlying physical mechanism
as well as possible applications for this self-assembly process. The former
type of knowledge should, in particular, be important in order to be able to
understand the limitations of the method and thus the types of structures
that provide suitable model systems.

Though the exact nature of the model systems that are to be analysed, as part
of this project, has not yet been established, the aim is to consider at least
two three-dimensional systems. One geometry of interest is an experimental
setup with which it is possible to create nanoparticle gradients, on a substrate
surface, that are radially symmetric. Specifically, one part of the project
will involve designing, constructing, testing and simulating a system that is
suitable for this purpose. An additional goal is to examine some type of gel
system, made up by fibres onto which gold nanoparticles can be deposited.
Though the ultimate goal would be to consider a geometry in which it is
possible to obtain truly three-dimensional gradients of NPs experimentally,
the inherent complexity of gel systems makes this a daunting prospect.

In order to deduce what is required of the gel in order for the deposition to
proceed as expected, the process by which nanoparticles diffuses through such



systems must first be researched. This should provide enough background
information to allow simulations to be performed. Moreover, it should at
least be possible to obtain comparable experimental data by studying the
transport of ions through a suitable setup, even if the attempts at patterning
the structure with nanoparticles should fail. Specifically, it ought to be noted
that the development of models that describe the diffusion of nanoparticles
through gel-like structures is the subject of current research, as is concluded
by both Cu and Saltzman as well as Cai, Panyukov and Rubinstein [0, [7].
Therefore, it is by no means certain that a suitable system can be found
within the time frame for this project.

1.2 Boundaries and Limitations

Though mechanism governing the diffusion of the nanoparticles and the ions
are in principle the same, no efforts will be made to simulate the transport of
the NPs, the absorption of such particles on surfaces nor the coupling between
these processes. All these subjects will be thoroughly discussed in the report,
however. With regards to the model systems used for the experimental part
of the project, these are only supposed to be used to obtain measurements
comparable to the computed data. Even if potential applications might be
mentioned in the final report, these systems, or modified versions of them,
will not be further studied. In particular, no efforts will be made to use these
setups for biological research, which is otherwise one of the fields of science
where surfaces modified with nanoparticles have many important uses, as is
discussed by Lundgren et al [1].



Chapter 2

Mathematical Modelling.

This chapters details three specific aspects of the development of the dif-
ferent mathematical models that were used as part of this project. In the
first sections, some of the general types of transport phenomena that are
applicable for the systems of interest will be discussed. This will be followed
by presentation of two distinctive formulations of the 1D diffusion problem,
which represents the physical situation described in section [3.1.1] to which
analytical solutions can be found. In the final part of this chapter, mean-
while, a pair of key concepts, in the form of the DLVO theory and the RSA
model, will be presented. As is further explained in section these are,
specifically, used to relate the calculated citrate concentration with a certain
particle coverage.

2.1 Molecular Transport Phenomena

For a given electrolyte solution there will exist a certain number of forces,
which completely govern the transport within the system. Since the origin
of the underlying mechanisms can differ greatly, this also holds true for the
mathematical expressions that are used to describe them. In some cases there
even exists several competing models, which may be based on contrasting
approximations or even completely different theories.

For ions that are dissolved in an aqueous medium, the primary forces of
interest can be separated into two types. Firstly, there may exist one or
more forces originating from outside the system. Common examples include
gravitational and electromagnetic fields as well as pressure gradients. While



the presence of an external electrical potential should only affect the motion
of the ions, a non-uniform density distribution should result in convective
currents within the entire fluid medium. Since the system considered in this
work were assumed not to be affected by external forces, these will not be
further discussed, however. Many different types of intrinsic interactions will,
additionally, exist between the individual molecules and particles that make
up the system. Due to the microscopic origin of these internal forces, these
are not explicitly included in the statements of the, macroscopic, transport
equations, provided in section [2.1.1f Even so, this type phenomena will
contribute to the motion of both the solvent and solute molecule as well as
any particles suspended in the liquid. As will be explained in section [2.1.2]
however, the concept of Brownian motion can be regarded as an indirect
result of these interactions. In the remainder of this section, only the key
formulas, for describing the transport of molecules and particles in liquid
media, will be presented. Readers that are more keenly interested in the
underlying theories ar therefore highly recommended to seek out the excellent
literary sources that are referenced in the text.

2.1.1 Fick’s Laws of Diffusion

In a dilute solution of inert and uncharged colloids the only forces of inter-
est will, given that there are no external force fields present, originate from
collisions with the solvent molecules [§]. Under such conditions the parti-
cle transport can be adequately described by the Fickian diffusion equations
[9]. Specifically, Fick’s first law can be derived within the framework of the
random walk model, which is described in section[2.1.2] According to this for-
mula, the flux J;, of a species 7, is directly proportional to the concentration
gradient, V¢;, so that

where D; is the diffusion constant [0}, [§]. If this relation is combined with the
statement of mass conservation

8Ci
—=_-V-J, 2.1.1.2
: ( )
Fick’s second law,
Je;
Y _y. (D:Ve), (2.1.1.3)



is obtained. Given proper statements of the boundary and initial conditions,
this differential equation can be solved in order to determine the concentra-
tion at every point in space r and time ¢, ¢;(r,t), for each species 7.

Generally, it is necessary to consider both convection, diffusion as well as
migration effects when formulating the equations, which describe the macro-
scopic motion of charged particles, or molecules, in a fluid medium [10, 9] [11].
As was explained earlier, these three transport mechanism result from gra-
dients in either the pressure or the density, the concentration and the elec-
trical potential respectively. In this work, however, only the diffusive motion
will be taken into account. Even so, the COMSOL Multiphysics® interface
“Transport of Diluted Species”, which has been developed for solving physical
problems of this type, allows all three phenomena to be simulated. As was
mentioned in section [3.2.3] this is achieved by providing the program with
explicit expressions for any velocity and electric fields that might be present
as well as the rate laws for all chemical reactions, involving the molecules
of interest [10]. Accordingly, the mass balance equation, for each species i,
takes on the form

dCZ‘

where D;, ¢;, Z; and pu; are the diffusion coefficient, concentration, valency
and electronic mobility, respectively. While the third term, on the left hand
side, represents the convection, due to the velocity field v, the fourth corre-
sponds to the migration, which is driven by the electrical potential V. The
Faraday constant Fj, meanwhile, is defined as Fy = eN4, where e is the
elementary charge and N4 is the Avogadro constant. Even though physi-
cal situations considered in this project are influenced by the effects of both
convection, migration and chemical reactions as well as diffusion, the chosen
model only takes the latter of these mechanisms into account. This is equiv-
alent to setting V =0, v = 0 and R; = 0, V7, in the continuity equation,
(2.1.1.4]), which returns Fick’s second law, (2.1.1.3)).

2.1.2 Brownian Motion

The random movements of particles suspended in a liquid, which is due to
the statistical nature of the interactions with the solvent molecule, is if often
referred to as Brownian motion [8]. Though first discovered by sir Robert
Brown, in the 1820s, it was Einstein who developed the mathematical for-
malism required for describing this process mathematically [8]. In particular,



he introduced the so called “random walk” concept, in the beginning of the
20" century. This model describes the motion of a diffusing particle as a
series of equally long, yet uncorrelated, steps, which directions are randomly
chosen [8, [6].

By modelling the diffusion process as a random walk, Einstein managed to
deduce the following formula for the diffusion coefficient,

(22)

D. o= TS (2.1.2.1)
which appears in Fick’s first and second laws, as the equations and
respectively show [8, [6]. Here, the nominator represents the average
of the squared distance that the particles move during a certain time ¢ [8]
6]. In accordance with the notation adopted by Cu, the subscript ¢ — 0
indicates that this relation, strictly, only holds in the limit of infinite dilution
[8,6]. Although the movements of the individual particles have no preferred
direction, there will, in the presence of concentration gradients, be a net
motion towards the more dilute regions [6]. Given that the colloids are not
subjected to any external forces, these will, thus, gradually spread out until,
t = oo, at which time the distribution is entirely uniform [6].

Einstein is also derived an alternative expression for D, based on the assump-
tion that the diffusion process is exclusively determined by the hydrodynamic
drag force [6]. As a result of these efforts, he arrived at the equation

Dy = F2L (2.1.2.2)
Cy

This expression is often referred to as the Einstein relation, where kg is the
Boltzmann constant, T" the absolute temperature, measured in Kelvin, and
CY is the frictional drag coefficient [6]. As was discovered by Stokes, the latter

parameter is, in the case of spherical particles moving through a continuous

liquid, a function of the hydrodynamic radius of the particle, anyq, as well as

the viscosity of the surrounding medium, g,

Cf = 67T,uahyd. (2123)
If this formula is substituted into (2.1.2.2)), the familiar Stokes-Einstein equa-
tion,

kT

Dc—)O = >
OT puanyq

(2.1.2.4)

is obtained.



2.2 Analytically Solvable 1D Models.

In this section the one-dimensional model of the experimental setup, de-
scribed in section will be introduced. Specifically, two different mathe-
matical formulations of this molecular transport problem, which can be solved
analytically, will be presented in the first two subsections. Note that all the
numerical results, that can be obtained by introducing the proper parameter
values into these models, can be found in section [4.1]

In short, the task at hand involves modelling the diffusion of a single species,
with a certain concentration c¢(z,t), in one dimension. As was discussed in
section [2.1], the governing equation for this process is Fick’s second law,

Jc Foute
—=D— 2.2.0.
ot ox?’ (2205)
that is obtained by combining Fick’s first law
dc
J=—-D— 2.2.0.6
ox’ ( )
with the continuity equation
ac oJ
— =—— 2.2.0.7
ot ox’ ( )

which have all been stated under the assumption that the diffusion coefficient
has no spatial dependence. Though the same equation, (2.2.0.5)), is solved in
each of the cases presented below, the applied initial and boundary conditions
differ.

2.2.1 Infinite domain.

In the simplest model considered, the domain is assumed to have an infinite
extension with the interface between the two liquid phases positioned at
x = 0. It is also assumed that the concentration profile initially takes the
form of a step function with ¢(z,0) = ¢ for x < 0 and ¢(z,0) = 0 for x > 0.
The most appropriate boundary conditions for this geometry, defined by the
interval z €] — 00,00], are to let ¢(x,t) — ¢o and ¢(x,t) — 0 when x — —o0
and x — oo respectively. Mathematically, the task is thus to find a solution



to the problem

which represents the system that is schematically depicted in figure Note
that this is the same problem that is consider by Lundgren [5].

Figure 2.1: Tllustration of the system represented by the initial and boundary value prob-
lem inequation (|2.2.1.1}), which describes the diffusion of a single species in one-dimensional

Ax
! lim, . c(z,t) =0
%c(az,t) S D%Tc(x,t)
¢(z,0)=0, x>0
c(z,0)=cg, <0
lim, . c(z,t) = ¢y

domain that extends from —oo to +oo.

A convenient method for handling the above partial differential equation,
PDE; is to first apply a suitable transform to reduce it to an ordinary differ-
ential equation, ODE. In this case there are two possibilities. One conceivable
method is to apply a Fourier transform with respect to the spatial coordi-
boundary conditions to get rid of the second derivative,
& /0x?. Alternatively, the equation can be Laplace transformed in order to
time dependence, specifically the derivative 0/0t, which

nate xz and use the

remove the explicit

10




is achieved with help of the the initial condition. Before proceeding with the
latter approach it is convenient to first give a short summery of the charac-
teristic features of this specific transform.

According to Folland, the Laplace transform is a special case of the Fourier
transform which is applicable for functions f(t) that are piecewise continuous
on the half-line, ¢t € [0,00[ and satisfy the inequality

LF()]] < Ce™, (2.2.1.2)

where C' > 0 and v €] — 00, 0o are some constants [12]. The same mathemat-
ical formalism is also applicable for cases where f(t) is defined on ¢t €] —o0, 00|
provided that f(¢) = 0 for ¢ < 0. Specifically, the Laplace transform of the
f(t) is defined as the function

Flo) =2 0} ) = [ reat, (2.2.13)

where w is a complex variable such that f(w) is analytical, that is differen-
tiable, in the domain Re(w) > v. Equally, f(¢) can be obtained from f(w)
using the inversion formula

f(t) = 2! { f(w)} (1) = lim —— /b o F(t)e*tdw, (2.2.1.4)

r—oo 271 ir

provided that b > v, and i = /—1. It is entirely possible to derive the
explicit form of the Laplace transform, or indeed its inverse, for a particular
function from the above definitions together with complex variable calculus.
Yet, it is often more convenient to use a suitable table with specific transform
formulas, such as the one provided by Rade and Westergren [13].

The first step, in this derivation, will be to transform the PDE in (2.2.1.1))
with respect to t. Specifically, given the definition

drxw) =ZLA{c(zt)} (zw), (2.2.1.5)

and by introducing the explicit Laplace transforms tabulated in the mathe-

11



matical handbook by Rade and Westergren it can be shown that [13]

&z {%c(m,t)} (rw) =2 { %c(w t)} (z.w)

@{3 {CLAW) + Cafo(D)} (W) = CLf(w) + Cafa(w), (2.2.1.6)
L0} ) =wf(w) - lim f(2)} (22.1.7)
Swé(r,w) — tl_l)IOIl_ c(xt) = D@dx,w)
& w 1
@c(aj w) — Dc(a:,w) ) 1t1_1>r0n_ c(x,t). (2.2.1.8)

Due to the initial condition, which has the form of a step function, it is
convenient to solve separately in each of the two domains = €|—00,0]
and = €]0,00[. This requires, however, that additional boundary conditions
are defined, specifically by demanding that the solution is continuous and
smooth at x = 0 so that

lim ¢(z,t) = lim c(z,t)

0Ty U, (2.2.1.9)
i gyete) = Jg et

For the case x < 0, equation (2.2.1.8)) can be seen to take on the following

form

Fox w 1
= é - <
502 é(rw) — Dc(x,w) o) tli%l c(zt), x <0
& {2.2.1.1 = 1tl_i}ron_ C<x7t)‘x§o = Co}
Fox w Co
— C =——, < 2.1,
52 é(rw) — Dc(x,w) o T 0. (2.2.1.10)

It can be easily seen that the general solution to the homogeneous form of
this linear differential equation,

&

Wc(w w) — ;E(;E,w) =0,z <0, (2.2.1.11)
i
is given by

Chom(z.w) = CeVD¥ + C_e VB” 1 <0, (2.2.1.12)

12



since

6822 [C’+e\/_ O e ﬁ] e [C’+e\/_ T Ce \/3]

_ w Vor (. [Y —~VBr| _ Y Ve —/Be
[(,/D) C.e +( ,/D) C e = [C+e YO e
Yo eVEr L Yo o VB Yo oVEr Yo o VB =

DC'+e + DC'_e DC'+e DC’_e 0.

Meanwhile, the particular solution can be assumed to have the form

épar<l‘,W) = CI$2 + CHLL' + CIII, r < 0. (22113)
When substituted into (2.2.1.10)), this formula yields the equation
—C—O = 82 (CII + CHQZ + CIII) - = (Cﬂl? + CHZC + CIII)
D Ox? D
0 - Yo - Lo - Lo
g D =D 1@ D nr pm
¢
=4 50 = BC’x + = CH.’L' + = CIH — 201, (22114)
which is only satisfied, for all x <0, 1f
Ci=0
Cnu=0 . (2.2.1.15)
Cmm=2
In other words,([2.2.1.14]) takes on the form
Comr(20) = 2, 2 <0, (2.2.1.16)
w

which, in turn, means that
¢(,w) = Chom(T,wW) + Cpar(z,w) = {(2.2.1.12)),(2.2.1.16) } (2.2.1.17)
= d(zw) = CheVP* 4 Ce Vi + 2 <0, (2.2.1.18)
w

On the positive z-axis, meanwhile, the ODE of interest can be seen to be to
be identical to the homogeneous equation (2.2.1.11]) since

{m}:>82 é(rw) — Dc(xw) — lim ¢(x,t), 2 >0

t—0—
& {2.2.1.1 = lim c(x,t)|, o = O} (2.2.1.19)
o
o sirw) - %5@:,@ =0,z > 0. (2.2.1.20)

13



Given that (2.2.1.11)) has the solution (2.2.1.12)) it must therefore be con-
cluded that

Hrw) =CleVB® +C e VBT 2 >0, (2.2.1.21)

wherefore

é(zw) = CoeVBo 4 Ce VB o 1< (2.2.1.22)
clx,w .
CleVBe 4+ e V", x>0,

The coefficients, C, C_, C’_ and C”, in this expression can be determined
with help of the Laplace transform of the boundary condition,

om0 Jim_ o)} (20) = 2 {an} &)

Z 4 lim c(x,t)} (x,w) =0,

T—r00

@{, L1} (w) = é} (2.2.1.23)

C o
lim é(zw)=—
& { womoo w o (2.2.1.24)
lim é(z,w) =0
T—00

In particular, when the formula (2.2.1.22) is introduced in these equations,
the following result is obtained

lim (C’Jre\/T +C_e” \/gx c):@, <0

r——00 w
lim (Cﬁre\/_x +(C"e \/;:”) =0 x>0
Xr—r00
C, lim eVB* 4+ O lim e VB* =0, £<0
700 vy —o0 , (2.2.1.25)
C’. hrne\/_x+0’ lim e~ \/;$—0 x>0
1'*)00 Xr—r 00

which can only be satisfied provided that C_ = 0 and C’, = 0. Thus ([2.2.1.22)
takes on the form

(2.2.1.26)

R VIS S

The next step is to use the Laplace transforms of the additional boundary

14



conditions, (2.2.1.9),
£ hI(I]l c(x,t)} (xw) = ﬁf{ lim c(:r,t)} (r,w)

r—0— z—0+
.0 .0
Z xlil%l_ %c(x,t)} (zw) =% {xlif& %c(x,t)} (x,w)
lim é(z.w) = lim é(z,w)
Ty T , (2.2.1.27)
xllgl— a—xC(.T,W) - xllgl—&- a—xC(ZE,W)

together with equation ([2.2.1.26|) to determine C; and C”

lim <C+e\/%z + C—O> = lim (C”fef\/%m>

z—0— w rz—0+

lim 9 <C’+e\/%x + @> = lim 9 (Cle_\/%””)

z—0— O w =0+ O

o _ v
@{C_;.-i-w c"

V50 = —/5C

C, =—«l
@{ LR (2.2.1.28)

(2.2.1.29)

In order to obtain an expression for ¢(z,t), it is necessary to apply the inverse

Laplace transform to (2.2.1.29)). Once again, it is convenient to make use of
the list of transforms provided by Rade and Westergren, with help of which
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it is possible to show that [13]

c(x,t) = L Hé(z,w)} (o,t)

- (@219} =4 ,°

(2.2.1.30)
—Z 2 <0
for v = { x‘/ﬁ }
7D’ z>0
_ —Serfc —%ﬁ) +cy, <0
Serfc (\%ﬁ , x>0
co—c—oerfc<— . ), r <0
& elat) =1 f2 ) 2Dt (2.2.1.31)
Serfe (2\/[)7) , x>0

Here, erfc(y) is the complementary error function, which is related to the
error function erf(y) via

erfe(y) = 1 — erf(y), (2.2.1.32)

that is in turn defined as [13]
erf(y) = 2 /y eV dy (2.2.1.33)
7. : 2.1.

It has thus been concluded that the solution to the problem (2.2.1.1)) is given
by the formula

c(a,t) = %erfc <2L\/ﬁt> - %0 (1 —erf <2L\/ﬁt>) , (2.2.1.34)

for > 0. Furthermore this expression is identical to formula (eq. 6.2) in
Lundgrens thesis, which according to the author yields predictions that are
reasonably consistent with experimental data [5].
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2.2.2 Semi-infinite domain.

A more physically accurate model for the problem at hand can be formulated
by making suitable changes to the boundary and initial conditions defined
in (2.2.1.1). In princip, the solution is constrained to the positive half-axis,
so that it is defined only for x € [0,00,[. Still, the model system will, as
before, consist of two domains. One of these, namely x € [0,l,,], represents
the part of the cuvette that contains the buffer solution, which is assumed
to have been filled up to a height [, and have a concentration ¢y. The region
above, z €|l,00[, is, on the other hand, assumed to contain the gold sol, in
which the citrate concentration equals co, < ¢g, initially. It is, furthermore,
appropriate to set the flux J to zero at x = 0. According to Fick’s first law,
, this is equivalent to demanding that the concentration gradient
vanishes at the same boundary. In other words, the reformulated version of

the problem ([2.2.1.1]) is

%c(m,t) = D%c(x,t)
co, x €0,
Coos T EJlp,00[ | (2.2.2.1)

as is also illustrated in figure [2.2]

The steps required to find the solution to (2.2.2.1) will largely be consis-
tent with the ones described in section 2.2.1] In particular, since the PDEs
in (2.2.2.1) and (2.2.1.1)) are identical, the ODE obtained by Laplace trans-
forming Fick’s second law is has the same form as ,

&

~ w 1 .
@c(:ﬁ,w) — Ec(:c,w) =-3 tl_l)Igl_ c(x,t). (2.2.2.2)

Due to the different initial conditions, however, the right hand sides of equa-

tions (2.2.1.8)) and ([2.2.2.2)) are similar but not identical. In particular, by
introducing the expression for ¢(z,0) in (2.2.2.1) into (2.2.2.2)) one can de-

duced that

& w —4 0<z <,
—c(rw) — =c(zw) = ’ - 2.2.2.3
atr) - pitawy =B 2= 2223

This equation can be seen to have the same form as the ODE (2.2.1.10)), in
each of the intervals 0 < x < [, and [, < x < oo respectively. Hence, the
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00 lim, . c(x,t) = oo

%c(x, t) = D(%gc(a:, t)

C(x,()) = Cxy T > lh

Figure 2.2: Illustration of the system represented by the initial and boundary value
problem inequation ([2.2.2.1f), which describes the diffusion of a single species in a semi-
infinite and one-dimensional domain.

solution must be given by (|2.2.1.18]), provided that the factor ¢y in the third
term is substituted for ¢, in the this case,

é(rxw) = (2.2.2.4)

CreVBr 40 eVE 42 0<a<l,
CleVBr 4 Cle VB 4o I <r<oo

The formula ([2.2.2.4)) shall now be simplified with help of the Laplace trans-
forms of the original boundary conditions, which are stated in (2.2.2.1))

Z 4 lim gc(x,t)} (xw) =0

z—0 (995

Z < lim c(x,t)} (xw) = Z{co} (W),

T—r00

& {@21.6), @2.1.23)}

lim gé(:{;,w) =0

& { @0 0 o - (2.2.2.5)
lim é(z,w) = =
T—r00 w
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In particular, when ([2.2.2.4]) is substituted into (2.2.2.5|) the result is
hm—[C’Jre\/_x—i—C’ e VBT 4 ] =0

x—0
lim [’LC’ Ve +C e _\/_x ool _ G0
T—00 w w

{\/_C+ VEC_ =0

C’ lim e\/; +C" lim e~ \/EI—O

T—00 T—00

- {gf —C sz 2226
+ p—

( \/%Mre*\/%x)Jrc—”, Osz<in
w L (2227)

=c(rw) = VB e, I, < 2 < 00

In order to determine C_ and C’, it is, as earlier, necessary to introduce
extra conditions on c¢(z,t). In particular, these will be the same as those
found in (2.2.1.9). The only exception is that in this case they apply at the
interior boundary, x = [, rather than at x = 0, and are hence given by the
limits,

h];n clxt) = h]lm c(x,t)
T S : (2.2.2.8)
S gpe) = lim ppelad)

In accordance with ([2.2.1.27)), these have the following Laplace transforms

)

Z < lim ¢(z, t)} (zw) = f{ lim ¢(x, t)} (x,w)

z—lp— x—lp+
0 0
\.,2” xl_l)%l %c(ac t)} (xw) =2 {xgrz&r 8—xc(x t)} (x,w)
hgn é(xw) = lillrn é(xw)

Y S T g . (2.2.2.9)

xgrlil— _LKC(:E W) N xEIZ?Jr %C(-’E W)

By substituting the solution (2.2.2.7)) into (2.2.2.9)), it is, in particular, found
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that

(2229), @227)}
lim [C- (V37 +eVE) + 2] = lim [C e VB L]

T—lp— z—lp+
[0 (V) 2] D

e O A
VBV Bl — \/%e*\/%ﬂ — —/2Ce VBl
re VBl 4 foamt = (I_ (e\/%lh + e‘\/%lh>
= e VB — (e\/%lh _ ef\/%lh> : (2.2.2.10)

From the latter equality in (2.2.2.10)), the following relation between the
coefficients C_ and C” can be deduced

_C'_e_\/%lh =C_ (e\/%lh — e_\/%lh>
a0 —_C (e\/%zh _ e,\/gzh) VBl (2.2.2.11)

which, as is shown below, can be substituted into the former of the two
equations to yield an explicit formula for C_

CLe VBl - D=2 = 0 (VB 4o VB )
&-2==_c (eVBh 4o VEI) — e VB & (@2211))
@_co;coo_c <\/_zh+e \/_zh)
+ 0 (VB — e VBN VBl VD

RS —CO — Ceo =C_ (e\/%lh + e_\/glh + e\/%lh — e_\/%lh>
o _CO — Cxo _ ZC,G\/%Z}L

oV
P R . (2.2.2.12)
2 w

Next, an expression for C’ can be obtained by simply inserting (2.2.2.12)
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into (2.2.2.11)), with the result [13]
/e
O =— (_CO — Cxo € \/;h> (e\/%lh — e_\/%lh> e\/%lh

- 2 w

o = S C VBl — o=V Bl

- 2 w

(2.2.2.13)

Given the explicit formulas for the coefficients C_ and C’, (2.2.2.12)) and
(2.2.2.13) respectively, the Laplace transform of the concentration, &(z,w),
can be determined by substitting these equations into ([2.2.2.7)), which yields

_cogcooe_\/glh ( \/_$+e \/;z) CD 0<l‘<lh
o ST >
0—Coo e\/%lh—ei\/;lh \/_JJ coo
\ 2 w
(C_O e ef\/%(lhfx) N ef\/g(a:+lh)

w 2 w w ’

Si(rw) = B {e\/g(zzh) VBt

Y

Cﬁ_i_CO Coo

w 2 w w

], Ih <x <o

(2.2.2.14)

\

From this relation, the concentration profile ¢(x,t) can be obtained by apply-
ing the inverse transform, (2.2.1.4)),

c(zt) = L Hé(zw)} (2,0)
& {(]2.2.1.6|), @-2.1.23), [@.2.1.30) for{

~

SIS

'U:h ’U:x+lh, OS.TSlh}

v = , U=

co — 5 [erfc (% + erfe ( ] 0<z <,
Coo + 57 [erfc (x_lh> —erfc( hﬂ , I <x <o

(2.2.2.15)

Sc(zt) =

S
LS

In conclusion, the citrate concentration will, according to the model (2.2.2.1}),
follow the profile

Co — Coo x — 1 $+lh>:|
c(x,t) = coo + erfc —erfc | —— ||, 2.2.2.16
(z.1) 2 { ( v Dt ) ( VDt ( )

for x €]l},,00[. As will be shown in the result section, the agreement between
the predictions that can be made using this equation and numerical simula-
tions is very good. Though the deviation from the experimental data is more
significant, it is still comparatively small.
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2.3 The DLVO Theory & The RSA Model.

The DLVO theory and the RSA model, which are the main subjects of this
section, represent fundamental concepts for modelling colloid suspensions.
Specifically, the former, which shall be first be presented, provides the for-
malism needed to describe the interactions that exist between, charged, col-
loids. The second subsection, meanwhile, is centred around the version of
the RSA method that can be used to model the adsorption of such particles
on, flat, surfaces.

2.3.1 The DLVO Theory.

The DLVO theory states that the potential arising from the pairwise inter-
actions between colloidal particles is given by the sum [14]

Utot (T) = UBorn (T) + Uyaw (1) + uq1. (7). (2.3.1.1)

Higashitani further explains that the first term, ugem, represents the so called
Born repulsion, which arises when the electron clouds of the particles begin
to overlap. This author, moreover, suggests that it is most convenient to
assume that this potential becomes infinitely large, and positive, at very
short surface-to-surface separations, d. He, specifically, states that

+OO, r S Tlim
UBorn\T) = y 2.3.1.2
Bom(") {0, > Tlim ( )
for,
d < dyy =4A (2.3.1.3)
=7 < T = {r =d+2a,} =4A+2.5A (2.3.1.4)
=7 < TPim = 14 A, (2.3.1.5)

Yet, in this project only the terms that represent the, attractive, van der
Waals forces, uyqw, and the, repulsive, electric double layer interaction, uq,.
have been taken into account. Specifically, these contributions can, respec-
tively, be calculated from the formulas

Ag 2a? 2a? r? — 4a?
wan) = (g () @sas)
p
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and

kpT 1,
uq.(d) —47ra§Y2( Z ) 17 00.° . (2.3.1.7)

where d = r — 2a, is the surface-to-surface separation and r the center-to-
center distance. Moreover,

. 1
y — stanh [ -<¥ , (2.3.1.8)
sl )y 2t e (e
+ N (kap+1)* an 4dkpT
while
1 ereokpd
S [ e 2.3.1.9
|:100062NA2I:| ’ ( )
is the Debye screening length and
1 2
1= Z e Z2. (2.3.1.10)

the ionic strength.

The typical form of the total potential, u., as a function of the interparticle
distance, is schematically depicted in figure 2.3, This diagram indicates,
in agreement with the discussions by, among others, Guozhong as well as
Higashitani, that both the van der Waals and the electric double layer terms
vanish at sufficiently large, or strictly speaking infinite, separations [15] [14].
As is argued by the former author, the lack of overlap between the electrical
double layers in this regime should mean that there is no repulsion [15].
The only interaction of interest should, in other words, be a weak attraction
resulting from the van der Waals forces [I5]. Provided that the counterion
concentration is high enough, so that the double layer repulsion is effectively
screened, a minima in the interaction energy may, therefore, appear. If this,
so called, secondary minimum is present there is a significant chance for
the particles to combine into aggregates through a process normally referred
to as flocculation. As can be seen from figure this is not always the
case, however. This diagram, specifically, shows the interaction potential
for the case when gold nanoparticles of size 2a, = 10 nm and with an,
assumed, surface potential 1)y, = —50 mV are suspended in a cc; = 10 mM
buffer solution H For comparison, one could inspect figure in section

"When calculating the ionic strength, it was assumed that the system had a pH of 4.
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3.2 which shows an SEM image of a functionalised gold substrate that has
been immersed in a Au NP suspension. Yet, if the interparticle distance
is further decreased the ion clouds surrounding the particles will begin to
overlap. This should, in turn, lead to an increased repulsion between the
individual colloids. As a result, the potential energy curve typically displays
a primary maximum, uge*, which is known as the repulsive barrier. This
terminology stems from the fact that it is only if the thermal energy, kgT,
is of the same order of magnitude as the barrier height that the particles
can come into close proximity to one another. According to Guozhong, there
is only likely to occur if the maximum value up* 2 10kgT. Due to the
deep minimum in the potential, which appears at very small interparticle
distances, there is, however, a significant chance that the particles will start
to agglomerate, if this criterium is reached.

Total DLVO potential: ugoy = upgpy +UyqW + Ud.1.
u/kgT t

Primary maximum
umax/ksT ymaxmmum. ) u

Secondary minimum

T d=r—2a,

1 . ..
<—Pr1mary minimuam

Figure 2.3: Schematic diagram that illustrates the typical dependence of the total inter-
action potential between two colloidal particles, o, on the surface-to-surface distance, d
as predicted by the DLVO theory. The corresponding graph, in the form of the black solid
curve, has, in accordance with (2.3.1.1), been calculated by summing (2.3.1.2)), (2:3.1.6)
and . The individual contributions from the Born repulsion, red dotted curve, van
der Waals attraction, blue dash-dotted curve, and electric double layer interaction, green
dashed curved, have also been plotted.
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Plot of uyq¢(d) for ¢s = =50 mV, ¢y = 10 mM and @, = 5 nm

301
tot
20 o Ugom
''''' Usaw
Yy,
10+
2z
S o
=~
~
3
_10»
_20»
-3

0 0.5 1 15 2 2.5 3 35 4 4.5 5
d [nm]

Figure 2.4: Diagram showing the total interaction potential between two colloidal parti-
cles, utot, as a function of the surface-to-surface distance, d, predicted by the DLVO theory.
The corresponding graph, in the form of the black solid curve, has, in accordance with
, been calculated by summing (2.3.1.2), (2.3.1.6)) and (2.3.1.7) for 2a, = 10 nm,
s = =0 mV and cg; = 10 mM. Moreover, the individual contributions from the Born
repulsion, red dotted curve, van der Waals attraction, blue dash-dotted curve, and electric
double layer interaction, green dashed curved, have also been plotted.

2.3.2 The RSA Model.
Combining the DLVO Theory with the RSA Model.

The random sequential adsorption, or RSA, model, is a crude but effective
Monte-Carlo type method for simulating adsorption processes. According to
Adamczyk, Nattich and Batbasz as well as Adamczyk and Warszynski, it is,
in its most basic form, based on the following scheme [16], [17]:

1. A virtual adsorbing particle is generated, with a random initial position
and orientation.

2. Provided that the, randomly, selected area is unoccupied, the virtual
particle will, according to the “localized and irreversible adsorption pos-
tulate”, stick to the surface with unit probability and, furthermore,
remain at this location throughout the entire deposition process.

3. If an overlap exists between the newly arrived and previously deposited
particles then the adsorption criterion is not fulfilled and no adsorption
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occurs. Instead a new, unbiased, attempt is made, in accordance with
the earlier procedure.

4. This process is continued until no more particles can be placed on the
surface. At this point, the so called jamming, or maximum packing,
limit has been reached and the substrate should be regarded as being
“completely covered”.

The relatively simple version of the RSA model described above can be made
more general by combining it with the DLVO theory. In particular, doing
so allows the presence of interparticle interactions to be taken into account,
which effectively extends the range of applicability of the former beyond
the limiting case of adsorbing hard spheres. The aim is, more precisely,
to describe how the presence of such forces can be taken into account by
introducing an effective particle radius, within the framework of the RSA
model.

According to Semmler, Mann, Ricka and Borkovec as well as Lundgren, it is
possible to show that the saturation coverage is, in this case, related to the
theoretical jamming limit via the formula [5, 18]

2
o — g <%) . (2.3.2.1)

p

In agreement with Lundgrens study, it shall be assumed that agﬁ is defined
by the equation

eff
Uar(20y) _ 1 (2.3.2.2)
kgT A

where ugo; is the total pairwise interaction potential [5]. While the parameter
A has no specific physical interpretation, its inverse 1//, consequently, rep-
resents the interaction potential for an interparticle separation of d = Qa;iﬁ.
Unsurprisingly, its value, while confined to the interval 1 < A < exp(1), is
most often chosen so as to give the best possible fit between the calculations
and the experimental data. Here, it shall, specifically, be assumed that

exp(l) — 1

A= :
2

(2.3.2.3)
in agreement with Lundgrens thesis work. Yet, one should note that different
values have been used in other studies, primarily depending on the nature of
the particles and substrates used in the experiments. Semmler, Mann, Ricka
and Borkovec for example chose A = exp(1) [19].
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The results presented in this report, as well as Lundgrens study, have been ob-
tained with help of numerical calculations and by assuming that the pairwise
interaction potential is given by the sum of the contributions from (2.3.1.6)
and (2.3.1.7). Before moving on, it shall be noted that several alternative
techniques exist for simulating the absorption of interacting nanoparticles.
This not only includes contrasting extensions of the RSA model, but also
methods based on entirely different concepts.
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Chapter 3

Experiments & Simulations.

The first part of this section will detail the different experimental setups
that have been developed, for the purpose of obtaining substrates with well-
defined, yet non-uniform, particle coverage. This presentation shall, initially,
focus on the setup used by Lundgren to cover functionalised gold surfaces
with one-dimensional nanoparticle gradients [5]. This will be followed by a
description of the development of methods for immobilising Au NPs in radi-
ally symmetric patterns. The purpose of the next section, on the other
hand, is to introduce the reader to the instruments and computer programs
implemented in this project. Firstly, the scanning electron microscope and
the ImageJ® software will be presented, in that order. The final part of this
section, meanwhile, is dedicated to the, perhaps, most important tool used
in this project, namely the COMSOL Multiphysics® software.

3.1 Experimental Setups

As was mentioned earlier, the description of the experimental setups has been
separated into two distinctive parts. In the first of the two following subsec-
tions, an effectively one-dimensional geometry shall, specifically, be consid-
ered. It shall be noted, however, that none of the experiments, performed as
part of this study, are related to this geometry. Instead, the measured data
presented in section was originally obtained by Lundgren and his colleges
[1]. For obvious reasons, the presentation of the setups, which were designed
for creating radially symmetric particle gradients, that follows thereafter is
more detailed. In particular, not only does this subsection give a complete
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description of the final geometries, it also includes detailed discussions of the
alternative designs that were considered during the development process.

3.1.1 Setup for Creating 1D Gradients

In his PhD thesis, Lundgren presents the so called backfilling approach for
coating dithiol covered gold substrates with one-dimensional gradients of gold
nanoparticles [5]. As can be seen from the schematic depiction of this method
found in figure [3.1], the first step involves immersing the substrate in a cuvette
filled with a sol of Au NPs, with a low ionic strength. Since the latter are
negatively charged, due to layers of citrate ions bound to the surfaces of
the individual colloids, these will repel one another. This effect will, due to
screening, be especially strong at such low citrate buffer concentrations. As
Lundgrens research has shown, the strength of the double layer repulsion is,
moreover, directly related to the spacing between the immobilised particles.
Specifically, smaller interparticle distances and a more complete coverage is
achieved at higher ionic strengths.

The backfilling method is, as Lundgren states, based on the prospect of
controlling the separation between the surface adsorbed colloids by tuning
the electrolyte concentration [5]. Specifically, the above discussion implies
that the initial particle pattern, which is typically uniform, can be made
denser by increasing the buffer concentration. In particular, the injection
of a concentrated solution of citrate buffer below the, lighter, nanoparticle
suspension will compel the ions to diffuse from the lower to the upper phase.
The decrease in the buffer concentration with the distance from the interface
can, thus, be modelled as a one-dimensional gradient. As a result, a coverage
profile, with a similar shape, should develop on the surface of the substrate,
which is immersed in the Au NP sol. In other words, the number of adsorbed
particles per unit area should be highest at the bottom of the substrate and,
moreover, decrease continuously along its length. This statement is verified
by the experiments by Lundgren and his co-workers, as can be seen from
their, as of yet unpublished, paper [20].

As a final step in the experimental procedure, one must somehow halt the
particle deposition process. In order to hinder the highly concentrated buffer
solution and the nanoparticle suspension from mixing, the cuvette should,
according to Lundgren, be emptied from the bottom before the substrate is
removed [5]. Otherwise, it is likely that the gold colloids, in the suspension,
start to coagulate and that the pattern, formed by the immobilised nanopar-
ticles, is ruined. In spite of the relative simplicity of this concept, Lundgrens
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Figure 3.1: A sequence of illustrations, which shows the method, developed by Lundgren,
for depositing Au NP gradients on, functionalised, gold surfaces. This procedure involves
filling a cuvette with a buffered gold nanoparticle suspension before the substrate is lowered
into position. Next, a concentrated citrate buffer is inject at the bottom of the container
until the interface reaches the lower edge of the sample. It is, specifically, the deposition
process that follows, thereafter, that is schematically depicted in this figure. From left to
right, the images shows the system at t = 0, moments after the preperatory steps have
been completed, for some ¢ > 0, during the diffusion process and at t = end, just after the
liquid contents have been removed, respectively.

research shows that highly reproducible and practically applicable results can
be achieved by following the procedure described above. The fact that the
same author has shown that it is possible to treat several samples simulta-
neously, using this technique, can be seen as further evidence of the success
of this approach. As can be seen from figure this is achieved by placing
the substrates in parallel inside a single channel which is then filled with the
Au NP suspension before the concentrated buffer is injected.

3.1.2 Setup for Creating Radially Symmetric Gradi-
ents

In this section different experimental setups for coating flat surfaces with
radially symmetric nanoparticle gradients, which are conceptually similar to
the design sketched in figure [3.3 will be presented. When possible, this will
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Figure 3.2: Photograph showing the simultaneous coating of multiple surfaces with gradi-
ents of Au NPs. Specifically, the brightly and darkly coloured vertically placed substrates
correspond to gold coated glass and silicon substrates respectively. It is, moreover, possi-
ble to distinguish a bluish region between the upper nanoparticle suspension, which has
a deep red colour, and the, relatively, clear concentrated buffer found at the bottom of
the container. Specifically, this intermediate layer is formed due to the coagulation of the
particulate matter, which in turn is a result of the high buffer concentration.

include specifications of the suitable components as well as detailed descrip-
tions of how these should be interconnected. It shall be noted that these have
been chosen so that they can, almost exclusively, be attached to one another
via QUICKFIT® joints. The shapes and sizes of the cone and the socket
that make up each joint are specified in terms of a so called NS number,
which like the key dimensions for other types of glassware, can be found in
the product catalogue from Fisher Scientific [21]. As an aid when trying to
interpret these values it is advisable consult the table and the sketch found
on page 7 in the product catalogue from Lenz Laborinstrumente, [22].

The next step in the development process was find an appropriate set of com-
ponent, available from Fischer Scientific, with which the concept illustrated
in figure [3.3] could be realised. After having reviewed the relevant product
catalogue, it was inferred that an appropriate setup, in the form of “Setup
1”7 in figure [3.4] could be constructed from the following products, which are
listed from top to bottom.

1: (F) Funnel with NS cone (“Tratt, Scilabware, Lenz, QUICKFIT®”). For
more information, see page 806 in the Fisher Scientific product cata-
logue for 2011/12 or page 92 in the laboratory glassware catalogue from
Lenz Laborglasinstrumente [21], 22].
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Figure 3.3: Original sketch of a plausible setup, with which a gold substrate, placed near
the funnel opening, can be coated with Au NPs. Specifically, by opening the valve to the
tube filled with a concentrated buffer solution, the electrolytes should begin to diffuse from
the opening in the upper stop cock. This should result in the development of a radially
symmetric coverage profile on the bottom face of the sample.

2: (C) Connectors with stopcock (“Sammanbinding med kran”). For more
information, see page 63 in the laboratory glassware catalogue from
Lenz Laborglasinstrumente [22].

3: For example:

(T) Test tube, ground socket (“Provrér, Scilabware, QUICKFIT® med
normalslipning f6r glaspropp”). For more information, see page
640 in the Fisher Scientific product catalogue for 2011/12 [21].

(R) Round-bottom flasks with conical ground joint (Kolvar, Rundkolv
med slipning, Scilabware, QUICKFIT®, Lenz). For more infor-
mation, see page 391 in the Fisher Scientific product catalogue
for 2011/12 or page 32 in the laboratory glassware catalogue from
Lenz Laborglasinstrumente [21], 22].

As can be seen from the leftmost illustration in figure [3.4], the upper part
of the “Setup 1” is made up of a funnel (F), with a height 125 mm and an
angle 60°, that is attached to a connector (C) via a QUICKFIT® joint. In
addition to the socket, to which the funnel is connected, this component also
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Figure 3.4: Two possible designs, which, hypothetically, could be used to coat substrates
with nanoparticle gradients that are radially symmetric. These designs were, in particular,
developed so as to be constructable from products supplied by Fischer Scientific.

features a stopcock as well as a cone. If necessary, the default stopcock of
the NS 14/23 connector, which has inner hole diameters of 2.5 mm can be
replaced with one featuring a somewhat larger bore hole, specifically 4.0 mm.
Specifically, both this plug and the two distinctive glass stopcocks found on
page 24 in the product catalogue from Lenz have a NS number of 14.5 [22].
The cone end of this middle component should, meanwhile, be attached to
some sort of vessel that can hold the concentrated buffer solution. One could,
for example, use either a test tube or a round bottom flask, with a suitable
volume, given that it features a matching NS socket. Thought there are
other possible choices, these two represent relatively simple geometries and
are therefore suitable for modelling purposes.

A list of components, similar to the one above, for the alternative geometry,
which is labelled “Setup 2”7 in figure [3.4] can be found below.

1: (F) Funnel with NS cone (“Tratt, Scilabware, Lenz, QUICKFIT®?”). For
more information, see page 806 in the Fisher Scientific product cata-
logue for 2011/12 or page 92 in the laboratory glassware catalogue from
Lenz Laborglasinstrumente [21], 22].

2: (A1) Adapters, straight (“Adapter, Lenz, rak modell med hylsa och slan-
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ganslutning”). For more information, see page 478 in the Fisher Scien-
tific product catalogue for 2011/12 or page 62 in the laboratory glass-
ware catalogue from Lenz Laborglasinstrumente [21, 22].

3: (A2) Adapters with NS stopcock, straight (“Adapter, Lenz, rak modell
med kérna och kran i glas, plugg 2,5mm”). For more information, see
page 478 in the Fisher Scientific product catalgue for 2011/12 or page 62

in the laboratory glassware catalogue from Lenz Laborglasinstrumente
[21], 22].

4: For example:

(T) Test tube, ground socket (“Provror, Scilabware, QUICKFIT® med
normalslipning for glaspropp”). For more information, see page
640 in the Fisher Scientific product catalogue for 2011/12 [21].

(R) Round-bottom flasks with conical ground joint (“Kolvar, Rund-
kolv med slipning, Scilabware, QUICKFIT®, Lenz’). For more
information, see page 391 in the Fisher Scientific product cata-
logue for 2011/12 or page 32 in the laboratory glassware catalogue
from Lenz Laborglasinstrumente [21], 22].

The connector, which was the central part of the previously described setup,
has, in this case, been replaced by a pair of tube adapters. As earlier, a
QUICKFIT® joint connects the funnel (F) with upper of the two (A1). The
latter component is, in turn, attached to the lower adapter (A2), which fea-
tures a stopcock together with a cone rather than a socket, via a piece of
tubing. Similarly to the connector, it ought to be possible to replace the
2.5 mm stopcock with one featuring a 4.0 mm bore hole. The cone end of the
lower adapter, meanwhile, is, as in the previous case, attached to a container,
for the citrate buffer.

Both of setups described above are, as can be seen from figure [3.4] based on
the same experimental procedure. Specifically, all glass components, below
the stop cock, are first filled with the concentrated citrate buffer. Once this
has been achieved the valve is closed and the upper part of the setup is rinsed
clean. Next, a silicon substrate is placed in the funnel, with the gold coated
surface facing down, before a sufficient amount of the nanoparticle suspension
is added so that the sample completely immersed. The final step is to open
the stop cock so that the citrate ions can be allowed to diffuse into the dilute
region above the interface. This should give rise to a spherically symmetric
concentration gradient, which, when it eventually reaches the lower face of the
substrate, should result in a particle coverage profile with a radial symmetry.
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Since both “Setup 1”7 and “Setup 2” were later proven to be unsatisfactory,
due to the issues detailed in section [4.4] two other geometries were developed
and, eventually, tested. In contrast to the former two cases, the relative
positions of the two liquid phases were shifted in the alternative design that
was first considered. Thus, the samples are prepared by first placing the
gold substrate flat down on the bottom of a glass container, which is then
filled with enough gold nanoparticle suspension so that the former is, well
and truly, submerged. The concentrated citrate buffer is, thereafter, injected
into a piece of tubing, with help of a syringe, until a well defined and nearly
flat air-to-liquid interface is formed at the open end of the tube. Next, this
tube end is allowed to make contact with the surface of the suspension, at
a point directly above the substrate. Since the glass vessel is placed on a
platform with an adjustable height, this can be achieved by slowly raising
container until the, firmly fixated, tube dips into the solution. Due to the
sharp concentration difference the buffer species should, as earlier, diffuse
radially outwards from the point of contact between the two phases. This
ought to result in a spherically symmetric gradient , which, once it reaches
the gold surface, leads to the formation of the sought nanoparticle pattern.
As is further explained in section the attempts to apply this approach in
practice, unfortunately, failed.

The final, and by far the most successful, design is similar to the original
sketch, as a comparison between the figures[3.5and [3.3|reveals. A contrasting
feature, however, is that the two liquid phases are not separated via valves
in the former case. Instead, this setup relies upon the use of a syringe to fill
up the funnel, from below, first with the Au NP suspension and then with
the concentrated buffer. The first step is, therefore, to insert a tube into the
lower half of the funnel, which is made up of a glass colon. Specifically, one
end should be situated a few millimetres above the opening, to the conical
part. Next, the substrate is placed vertically above the tube opening. As
was explained earlier, a sufficiently large volume of colloid suspension, for
the sample to become fully immersed, is then supplied with help of a syringe.
An adjustable clamp, which has previously been fastened to the piece of
tubing, is then used to hinder the gold sol from pouring out during the next
step in the preparation procedure. This, more precisely, involves replacing
the empty syringe with one filled with concentrated citrate buffer, which is
then carefully injected into the system. If the exactly the right amount of
solution is added a sharp liquid-to-liquid interface should form at the end
of the tube, which is situated directly underneath the gold coated substrate.
Such a result is not easily achieved in practice, however. The main reason
for this is that the mainly because the view of the tube opening is obscured,
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since it is situated inside the conical part of the funnel. This fact should
be apparent from in figure and especially the photograph in part (b),
which zooms in on the upper half of the setup. Once the two liquids have
been brought into contact, the system is left to fend for itself until the buffer
gradient has been deemed to have reached the functionalised surface and a
radial gradient of Au NP:s has been deposited. At this point, the syringe is
withdrawn, which should allow both the buffer and the suspension to pour
out of the tube. Only thereafter should the substrate be removed from the
funnel and rinsed with water.

Substrate

cold sol

Liguid interface

Adj ustable clamp é

Liguid interface

Adjustable Clamp

Citrate buffer Cltrate buffer

Sy ringe

(a) (b)

Figure 3.5: Sketches of the final designs for the experimental setup, both of which is made
up of a glass funnel into which bottom a rubber tube has been pried. This length of tubing
also features a syringe as well as a clamp, which have been inserted into the free end and
attached to its mid-section respectively. The difference between the two variants, depicted
in part (a) and (b), is that the tube extends into the conical section in the former case
but not in the latter. During a typical experiment, a sufficient amount of the nanoparticle
suspension is first injected into the system in sufficient amounts that the substrate, which
is, thereafter, lowered into the funnel with the gold surface facing down, is going to be
entirely submerged. Next, the clamp is tightened before the syringe is removed and refilled
with the concentrated citrate buffer. After the latter has been reinserted into the tube, the
clamp is loosened and the buffered solution is slowly injected, specifically, until the liquid-
to-liquid interface reaches the end of the tube, which is situated directly underneath the
substrate. Following this procedure, the system is left to tend to itself for a given period
of time, whereafter the diffusion process is interrupted by removing the syringe and letting
the liquid pour out.
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(a) (b)

Figure 3.6: Photographs of the experimental setup schematically depicted in figure
While part (a) displays all of the components, (b) gives an enlarged view of the conical
section of the funnel, inside which both the substrate and the top end of the tube are
situated.

3.2 Experimental and Computer Generated
Data

Here, the methods, which were used to examine the nanoparticle coated gold
surfaces, fabricated using the techniques described in section [3.1.2] as well
as the data thus acquired, will be presented. In particular, the first part
outlines some general features of scanning electron microscopes, or SEMs,
since such an instrument was used to image the samples. In order to quantify
the obtained coverage, these images were processed and analysed with the
ImageJ® program, which is the subject of the second subsection. Finally,
the COMSOL Multiphysics® software package, which was used to simulate
the experiments described in section [3.I} will be introduced. This implies
that the required input for the ImageJ® and COMSOL Multiphysics® have
fundamentally different origins, namely experimental measurements, in the
form of SEM images, and a predefined computer models respectively. Even
so, the two programs can produce comparable data sets, in the form of the
surface coverage at different positions on the functionalised gold surface, as
should be evident from the discussion that follows.
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Imaging Surfaces with SEM

Since detailing the underlying physics for electron microscopes is beyond the
scope of this report, only a brief introduction shall be given. Readers that
are keen to learn more, are advised to study the excellent reference litera-
ture, for example the textbooks by Petty, Zangwill and Ohring respectively
[23, 24, 25]. Generally, the aim of all microscopes is to image any sample as
faithfully as possible. For the case of SEMs, this is achieved by scanning an
electron beam in a, so called, raster pattern over the substrate. Concomi-
tantly, the secondary electrons, which are emitted from the surface due to the
collisions between the electrons in the beam and on the surface respectively,
are detected. An image of the sample is, hence, successively built up, pixel
by pixel. Moreover, the brightness is, at any given point, directly related to
the intensity of the stream of electrons that is emitted when the beam swept
over the corresponding position on the sample.

Because the wavelengths of the incident are much lower than that of, for
example, visible light, much greater resolution can be achieved than with an
optical microscope. In particular, Petty claims that electrons, which are ac-
celerated over a voltage of 100 kV, have a wavelength of about 3.7 - 1073 nm.
The diffraction limit is, therefore, sufficiently narrow that objects with the
atomic sizes can be disting