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Abstract: Gold nanoparticles possess many unique properties and can, for
example, form strong covalent bonds with certain chemical functionalities,
in particular thiol and amino groups. This mechanism is, in particular, ex-
ploited in the concept for the self-organisation of Au NPs on gold covered
silicon substrates, coated with either dithiol or cysteamine SAMs, which is
the principle subject of this thesis. Specifically, the project, described in
this report, focused on a method for controlling the interparticle repulsion,
and thus the separation between the adsorbed particles, by tuning the ionic
strength. Following functionalisation, the patterned surfaces thus obtained
can, among other things, be used to study the cellular adhesion or, more
generally, the response of cells presented to such nanostructures.

The study began with development of a mathematical model for the method
of depositing one-dimensional gradients of 10 nm gold nanoparticles on pla-
nar surfaces, originally proposed by A. Lundgren [1]. It was, in particular,
shown that this physical situation could be, relatively, accurately described
as an, analytically solvable, diffusion problem combined with a deposition
process, which can be represented with help of the theory of random sequen-
tial adsorption. The same physical model was later implemented in order to
develop experimental setups, with which radially symmetric Au NP gradients
can be achieved. Specifically, the molecular diffusion process inside geome-
tries representing the suggested designs were simulated using the COMSOL
Multiphysics R© software, to determine suitable values on the design parame-
ters. From the surface electron microscope, SEM, analysis of the patterned
surfaces, obtained with the final product of this development process, it was
concluded that should be possible to achieve radially symmetric coverage
profiles with experimental setups based on the proposed concept.



Sammanfattning: Guld nanopartiklar äger en kombination av unika egen-
skaper och kan, exempelvis, ing̊a i starka kovalenta bindingar med vissa typer
av molekyler, i synnerhet s̊adana som inneh̊aller thiol- eller aminogrupper.
Det är denna interaktionsmekanism som utgör grunden för den metod för
att f̊a guld nanopartiklar att spontant arrangera sig i bestämda mönster p̊a
guldbeklädda kiselsubstrat, vilka täcks av enskilda lager av antingen dithiol-
eller cysteaminmolekyler. Det projekt som beskrivs häri, har, i synnerhet,
fokuserat p̊a ett koncept för att kontrollera repulsionen, och därmed även,
avst̊andet mellan de ytadsorberade partiklarna genom att ändra jonstyrkan.
Efter att ha funktionaliserats, kan s̊adana ytor användas för att studera,
blandat annat, inbindning av celler eller, mer generellt, hur celler reagerar
p̊a förekomsten av s̊adana nanostrukturerer.

Studien ifr̊aga inleddes med utvecklandet av en matematisk modell för den
teknik som tidigare använts, av A. Lundgren, för att adsorbera endimen-
sionella gradienter av guld nanopartiklar p̊a släta ytor [1]. Det kunde, i
synnerhet, p̊avisas att detta skeende kan representeras som ett, analytiskt
lösbart, diffusions problem följd av en deponering process, vilken i sin tur kan
beskrivas inom ramen för den s̊a kallade RSA, ”Random Sequential Adsorp-
tion”, modellen. Samma metodik användes senare för att ta fram en exper-
imentel uppställning, ämnad för att deponera en gradient av nanopartiklar,
med radiell symmetri, p̊a ett plant substrat. Mer specifikt utnyttjades COM-
SOL Multiphysics R© programvara för att bestämma hur värdena p̊a diverse
nyckelparametrar lämpligen skulle väljas. De mönstrade ytor, som skapats
med hjälp av den design som utgjorde slutprodukten fr̊an denna desginpro-
cess, analyserades sedan med ett svepelektronmikroskop. Med utg̊angspunkt
fr̊an detta resultat drogs slutsatsen att det, mycket riktigt, är möjlig att
åstadkomma radiellt symmetriska täckningsprofiler genom att tillämpa upp-
ställningar konstruerade i enlighet med det föreslagna konceptet.

Keywords: Gold nanoparticles; Nanoparticle adsorption; Coverage gradients;
Patterned surfaces; Self-organisation; self-assembled monolayer; Concentra-
tion gradients; Molecular diffusion; Fick’s laws; DLVO theory; random se-
quential adsorption; Numerical simulations; Scanning electron microscope.
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Chapter 1

Introduction

The aim of this introductory chapter is to provide a context for the project.
Specifically, both the background as well as formulations of specific goals and
limitations will be presented, in that order.

Due to the similarity in size between on one hand nanomaterials, such as
nanoparticles, or NPs, and on the other biological molecules, such as proteins
and DNA, it is possible to create hybrid systems with unique and novel
features as is detailed in a recent review by Willner and Willner [2]. A key
functionality of many such systems is the ability to self-assemble into different
types of ordered structures. For example, Lundgren, Björefors, Olofsson
and Elwing have presented a method for obtaining uniform distributions
of charged-stabilized gold nanoparticle on octanedithol monolayers using a
procedure based on self-assembly [1]. In particular, this technique is referred
to as the Nano Particle Binary Chemistry, NPBC, method. Utilizing such a
procedure another research group, Lundgren et al, created arrays of similar
macromolecule and nanoparticle hybrids on a PEG background [3]. Here, the
aim was to use the obtained architectures to study the interaction between
the macromolecules and a cell surface and how this binding is affected by,
for instance, the molecular spacing.

Studies, such as those described above, are made possible by the fact that the
previously mentioned assembly method allows the interparticle distance to be
controlled. As a result of continuing research, this technique has been further
refined by Lundgren and his colleges [4]. Specifically, these researchers have
reported that they have been able to create gradients of nanoparticles on suit-
able substrates. The surfaces thus obtained have, furthermore, supposedly
been successfully used to study cell adhesion [5]. According to Lundgren,
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such nonuniform nanopatterned surfaces are very attractive for exploring the
cellular response to different types of nanoscopic systems [5].

It is important to note that the average distance between the Au NPs is
controlled by Debye-screening and hence by, among others, the concentration
of electrolyte [1]. It is thus possible to make the nanoparticles self-assemble
into a particular pattern, for example a one-dimensional gradient, by setting
up a salt gradient in a uniform nanoparticle suspension. This should lead to
the formation of a NP mono layer on the substrate, with the highest coverage
being achieved on the areas of the surface that are in contact with the regions
of the solution containing the greatest number of ions. Still, the fact that
this ionic gradient must evolve in time, and eventually disappear, makes
studying the underlying diffusion process, for different geometrical setups, a
highly relevant issue for continuing research.

One possible route to obtain data pertaining to the time evolution of chemi-
cal gradients is the implementation of numerical calculations. In particular,
quantitatively important results could be ascertained by creating suitable
models of physical systems of interest and then simulating the diffusion of
ions. For this research to be relevant, the model systems that are initially
considered should be simple enough that accurate experimental data is avail-
able. Specifically, this should allow the numerical method, or methods, used
to be tested before moving on to more complex geometries. This work could
potentially result in refined estimates of key parameters that are related not
only the computations but also the experimental procedure. The simulations
should, more precisely, make it possible to quantify the time and salt content
needed to achieve a certain gradient of nanoparticles in a particular geome-
try. It will perhaps even be possible to find an optimum with regards to the
choice of the two former variables.

Once a sufficiently accurate methodology has been developed the next step
would be to consider more complex systems, which could possibly be regarded
as more practically important. With help of the same type of methods as
before, simulations can be performed for a variety of geometries with different
dimensionalities to yield predictions how the NP patterns evolve with time.
Again, it might even be possible to find the amount and mode by which
the salt should be added and how long time these ions should be allowed to
diffuse to achieve a particular gradient.
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1.1 Task

This diploma work will, to a large extent, involve using the computer soft-
ware COMSOL Multiphyisics R© to simulate the diffusion of counterions, in
this case citrate, in various geometries. Initially, the aim will be to con-
sider one-dimensional problems for which comparable experimental results
are already available. It should hence be possible to directly compare the
calculations with reference data, and thus optimize the models used in the
simulations. Another goal with this part of the project will be to try and
determine the time and salt content required for a certain concentration pro-
file and thus a particular nanoparticle gradient to develop, since such data is
not available at the present. Thereafter, the work ought to primarily involve
extending the computer simulations to more complex systems with higher di-
mensionalities. Concomitantly, efforts will be made to obtain measurements
that are comparable to the computed data. This should, more precisely, be
achieved by using experimental setups that mirror the model systems.

Though this project will primarily be theoretical in nature, and mainly be
focused on the earlier mentioned computer simulations, some experiments are
also meant be performed. This part of the work should , for instance, involve
using different analytical tools, such as SEM, in order to extract relevant
data from empirical studies. To put these results into context, efforts will
also be made to gather information about the underlying physical mechanism
as well as possible applications for this self-assembly process. The former
type of knowledge should, in particular, be important in order to be able to
understand the limitations of the method and thus the types of structures
that provide suitable model systems.

Though the exact nature of the model systems that are to be analysed, as part
of this project, has not yet been established, the aim is to consider at least
two three-dimensional systems. One geometry of interest is an experimental
setup with which it is possible to create nanoparticle gradients, on a substrate
surface, that are radially symmetric. Specifically, one part of the project
will involve designing, constructing, testing and simulating a system that is
suitable for this purpose. An additional goal is to examine some type of gel
system, made up by fibres onto which gold nanoparticles can be deposited.
Though the ultimate goal would be to consider a geometry in which it is
possible to obtain truly three-dimensional gradients of NPs experimentally,
the inherent complexity of gel systems makes this a daunting prospect.

In order to deduce what is required of the gel in order for the deposition to
proceed as expected, the process by which nanoparticles diffuses through such
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systems must first be researched. This should provide enough background
information to allow simulations to be performed. Moreover, it should at
least be possible to obtain comparable experimental data by studying the
transport of ions through a suitable setup, even if the attempts at patterning
the structure with nanoparticles should fail. Specifically, it ought to be noted
that the development of models that describe the diffusion of nanoparticles
through gel-like structures is the subject of current research, as is concluded
by both Cu and Saltzman as well as Cai, Panyukov and Rubinstein [6, 7].
Therefore, it is by no means certain that a suitable system can be found
within the time frame for this project.

1.2 Boundaries and Limitations

Though mechanism governing the diffusion of the nanoparticles and the ions
are in principle the same, no efforts will be made to simulate the transport of
the NPs, the absorption of such particles on surfaces nor the coupling between
these processes. All these subjects will be thoroughly discussed in the report,
however. With regards to the model systems used for the experimental part
of the project, these are only supposed to be used to obtain measurements
comparable to the computed data. Even if potential applications might be
mentioned in the final report, these systems, or modified versions of them,
will not be further studied. In particular, no efforts will be made to use these
setups for biological research, which is otherwise one of the fields of science
where surfaces modified with nanoparticles have many important uses, as is
discussed by Lundgren et al [1].
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Chapter 2

Mathematical Modelling.

This chapters details three specific aspects of the development of the dif-
ferent mathematical models that were used as part of this project. In the
first sections, some of the general types of transport phenomena that are
applicable for the systems of interest will be discussed. This will be followed
by presentation of two distinctive formulations of the 1D diffusion problem,
which represents the physical situation described in section 3.1.1, to which
analytical solutions can be found. In the final part of this chapter, mean-
while, a pair of key concepts, in the form of the DLVO theory and the RSA
model, will be presented. As is further explained in section 3.2.2, these are,
specifically, used to relate the calculated citrate concentration with a certain
particle coverage.

2.1 Molecular Transport Phenomena

For a given electrolyte solution there will exist a certain number of forces,
which completely govern the transport within the system. Since the origin
of the underlying mechanisms can differ greatly, this also holds true for the
mathematical expressions that are used to describe them. In some cases there
even exists several competing models, which may be based on contrasting
approximations or even completely different theories.

For ions that are dissolved in an aqueous medium, the primary forces of
interest can be separated into two types. Firstly, there may exist one or
more forces originating from outside the system. Common examples include
gravitational and electromagnetic fields as well as pressure gradients. While
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the presence of an external electrical potential should only affect the motion
of the ions, a non-uniform density distribution should result in convective
currents within the entire fluid medium. Since the system considered in this
work were assumed not to be affected by external forces, these will not be
further discussed, however. Many different types of intrinsic interactions will,
additionally, exist between the individual molecules and particles that make
up the system. Due to the microscopic origin of these internal forces, these
are not explicitly included in the statements of the, macroscopic, transport
equations, provided in section 2.1.1. Even so, this type phenomena will
contribute to the motion of both the solvent and solute molecule as well as
any particles suspended in the liquid. As will be explained in section 2.1.2,
however, the concept of Brownian motion can be regarded as an indirect
result of these interactions. In the remainder of this section, only the key
formulas, for describing the transport of molecules and particles in liquid
media, will be presented. Readers that are more keenly interested in the
underlying theories ar therefore highly recommended to seek out the excellent
literary sources that are referenced in the text.

2.1.1 Fick’s Laws of Diffusion

In a dilute solution of inert and uncharged colloids the only forces of inter-
est will, given that there are no external force fields present, originate from
collisions with the solvent molecules [8]. Under such conditions the parti-
cle transport can be adequately described by the Fickian diffusion equations
[9]. Specifically, Fick’s first law can be derived within the framework of the
random walk model, which is described in section 2.1.2. According to this for-
mula, the flux J i, of a species i, is directly proportional to the concentration
gradient, ∇ci, so that

J i = −Di∇ci, (2.1.1.1)

where Di is the diffusion constant [6, 8]. If this relation is combined with the
statement of mass conservation

∂ci
∂t

= −∇ · J i, (2.1.1.2)

Fick’s second law,

∂ci
∂t

=∇ · (Di∇ci), (2.1.1.3)
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is obtained. Given proper statements of the boundary and initial conditions,
this differential equation can be solved in order to determine the concentra-
tion at every point in space r and time t, ci(r,t), for each species i.

Generally, it is necessary to consider both convection, diffusion as well as
migration effects when formulating the equations, which describe the macro-
scopic motion of charged particles, or molecules, in a fluid medium [10, 9, 11].
As was explained earlier, these three transport mechanism result from gra-
dients in either the pressure or the density, the concentration and the elec-
trical potential respectively. In this work, however, only the diffusive motion
will be taken into account. Even so, the COMSOL Multiphysics R© interface
“Transport of Diluted Species”, which has been developed for solving physical
problems of this type, allows all three phenomena to be simulated. As was
mentioned in section 3.2.3, this is achieved by providing the program with
explicit expressions for any velocity and electric fields that might be present
as well as the rate laws for all chemical reactions, involving the molecules
of interest [10]. Accordingly, the mass balance equation, for each species i,
takes on the form

dci
dt

=∇ (−Di∇ci − ZiµiF0ci∇V + civ) = Ri (2.1.1.4)

where Di, ci, Zi and µi are the diffusion coefficient, concentration, valency
and electronic mobility, respectively. While the third term, on the left hand
side, represents the convection, due to the velocity field v, the fourth corre-
sponds to the migration, which is driven by the electrical potential V . The
Faraday constant F0, meanwhile, is defined as F0 ≡ eNA, where e is the
elementary charge and NA is the Avogadro constant. Even though physi-
cal situations considered in this project are influenced by the effects of both
convection, migration and chemical reactions as well as diffusion, the chosen
model only takes the latter of these mechanisms into account. This is equiv-
alent to setting V = 0, v = 0 and Ri = 0, ∀i, in the continuity equation,
(2.1.1.4), which returns Fick’s second law, (2.1.1.3).

2.1.2 Brownian Motion

The random movements of particles suspended in a liquid, which is due to
the statistical nature of the interactions with the solvent molecule, is if often
referred to as Brownian motion [8]. Though first discovered by sir Robert
Brown, in the 1820s, it was Einstein who developed the mathematical for-
malism required for describing this process mathematically [8]. In particular,
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he introduced the so called “random walk” concept, in the beginning of the
20th century. This model describes the motion of a diffusing particle as a
series of equally long, yet uncorrelated, steps, which directions are randomly
chosen [8, 6].

By modelling the diffusion process as a random walk, Einstein managed to
deduce the following formula for the diffusion coefficient,

Dc→0 =
〈x2〉
2t

, (2.1.2.1)

which appears in Fick’s first and second laws, as the equations (2.1.1.1) and
(2.1.1.3) respectively show [8, 6]. Here, the nominator represents the average
of the squared distance that the particles move during a certain time t [8,
6]. In accordance with the notation adopted by Cu, the subscript c → 0
indicates that this relation, strictly, only holds in the limit of infinite dilution
[8, 6]. Although the movements of the individual particles have no preferred
direction, there will, in the presence of concentration gradients, be a net
motion towards the more dilute regions [6]. Given that the colloids are not
subjected to any external forces, these will, thus, gradually spread out until,
t =∞, at which time the distribution is entirely uniform [6].

Einstein is also derived an alternative expression for D, based on the assump-
tion that the diffusion process is exclusively determined by the hydrodynamic
drag force [6]. As a result of these efforts, he arrived at the equation

Dc→0 =
kBT

Cf
. (2.1.2.2)

This expression is often referred to as the Einstein relation, where kB is the
Boltzmann constant, T the absolute temperature, measured in Kelvin, and
Cf is the frictional drag coefficient [6]. As was discovered by Stokes, the latter
parameter is, in the case of spherical particles moving through a continuous
liquid, a function of the hydrodynamic radius of the particle, ahyd, as well as
the viscosity of the surrounding medium, µ,

Cf = 6πµahyd. (2.1.2.3)

If this formula is substituted into (2.1.2.2), the familiar Stokes-Einstein equa-
tion,

Dc→0 =
kBT

6πµahyd

, (2.1.2.4)

is obtained.
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2.2 Analytically Solvable 1D Models.

In this section the one-dimensional model of the experimental setup, de-
scribed in section 3.1.1, will be introduced. Specifically, two different mathe-
matical formulations of this molecular transport problem, which can be solved
analytically, will be presented in the first two subsections. Note that all the
numerical results, that can be obtained by introducing the proper parameter
values into these models, can be found in section 4.1.

In short, the task at hand involves modelling the diffusion of a single species,
with a certain concentration c(x,t), in one dimension. As was discussed in
section 2.1, the governing equation for this process is Fick’s second law,

∂c

∂t
= D

∂2c

∂x2
, (2.2.0.5)

that is obtained by combining Fick’s first law

J = −D∂c

∂x
, (2.2.0.6)

with the continuity equation

∂c

∂t
= −∂J

∂x
, (2.2.0.7)

which have all been stated under the assumption that the diffusion coefficient
has no spatial dependence. Though the same equation, (2.2.0.5), is solved in
each of the cases presented below, the applied initial and boundary conditions
differ.

2.2.1 Infinite domain.

In the simplest model considered, the domain is assumed to have an infinite
extension with the interface between the two liquid phases positioned at
x = 0. It is also assumed that the concentration profile initially takes the
form of a step function with c(x,0) = c0 for x ≤ 0 and c(x,0) = 0 for x > 0.
The most appropriate boundary conditions for this geometry, defined by the
interval x ∈] −∞,∞[, are to let c(x,t) → c0 and c(x,t) → 0 when x → −∞
and x→∞ respectively. Mathematically, the task is thus to find a solution

9



to the problem 

∂
∂t
c(x,t) = D ∂2

∂x2
c(x,t)

c(x,0) =

{
c0, x ≤ 0

0, x > 0

c(x,t) −−−−→
x→−∞

c0

c(x,t) −−−−→
x→+∞

0

, (2.2.1.1)

which represents the system that is schematically depicted in figure 2.1. Note
that this is the same problem that is consider by Lundgren [5].

x

c(x, 0) = 0, x > 0

c(x, 0) = c0, x ≤ 0

limx→∞
c(x, t) = 0

limx→−∞
c(x, t) = c0

∂
∂t
c(x, t) = D ∂2

∂x2
c(x, t)

0

∞

−∞

Figure 2.1: Illustration of the system represented by the initial and boundary value prob-
lem inequation (2.2.1.1), which describes the diffusion of a single species in one-dimensional
domain that extends from −∞ to +∞.

A convenient method for handling the above partial differential equation,
PDE, is to first apply a suitable transform to reduce it to an ordinary differ-
ential equation, ODE. In this case there are two possibilities. One conceivable
method is to apply a Fourier transform with respect to the spatial coordi-
nate x and use the boundary conditions to get rid of the second derivative,
∂2/∂x2. Alternatively, the equation can be Laplace transformed in order to
remove the explicit time dependence, specifically the derivative ∂/∂t, which

10



is achieved with help of the the initial condition. Before proceeding with the
latter approach it is convenient to first give a short summery of the charac-
teristic features of this specific transform.

According to Folland, the Laplace transform is a special case of the Fourier
transform which is applicable for functions f(t) that are piecewise continuous
on the half-line, t ∈ [0,∞[ and satisfy the inequality

‖f(t)‖ ≤ Ceυt, (2.2.1.2)

where C ≥ 0 and υ ∈]−∞,∞[ are some constants [12]. The same mathemat-
ical formalism is also applicable for cases where f(t) is defined on t ∈]−∞,∞[
provided that f(t) = 0 for t < 0. Specifically, the Laplace transform of the
f(t) is defined as the function

f̃(ω) = L {f(t)} (ω) =

∫ ∞
0

f(t)e−ωtdt, (2.2.1.3)

where ω is a complex variable such that f̃(ω) is analytical, that is differen-
tiable, in the domain Re(ω) > υ. Equally, f(t) can be obtained from f̃(ω)
using the inversion formula

f(t) = L −1
{
f̃(ω)

}
(t) = lim

r→∞

1

2πi

∫ b+ir

b−ir
f(t)eωtdω, (2.2.1.4)

provided that b > υ, and i =
√
−1. It is entirely possible to derive the

explicit form of the Laplace transform, or indeed its inverse, for a particular
function from the above definitions together with complex variable calculus.
Yet, it is often more convenient to use a suitable table with specific transform
formulas, such as the one provided by R̊ade and Westergren [13].

The first step, in this derivation, will be to transform the PDE in (2.2.1.1)
with respect to t. Specifically, given the definition

c̃(x,ω) = L {c(x,t)} (x,ω), (2.2.1.5)

and by introducing the explicit Laplace transforms tabulated in the mathe-
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matical handbook by R̊ade and Westergren it can be shown that [13]

L

{
∂

∂t
c(x,t)

}
(x,ω) = L

{
D
∂2

∂x2
c(x,t)

}
(x,ω)

⇔
{

L {C1f1(t) + C2f2(t)} (ω) = C1f̃1(ω) + C2f̃2(ω), (2.2.1.6)

L {f ′(t)} (ω) = ωf̃(ω)− lim
t→0−

f(t)
}

(2.2.1.7)

⇔ωc̃(x,ω)− lim
t→0−

c(x,t) = D
∂2

∂x2
c̃(x,ω)

⇔ ∂2

∂x2
c̃(x,ω)− ω

D
c̃(x,ω) = − 1

D
lim
t→0−

c(x,t). (2.2.1.8)

Due to the initial condition, which has the form of a step function, it is
convenient to solve (2.2.1.8) separately in each of the two domains x ∈]−∞,0]
and x ∈]0,∞[. This requires, however, that additional boundary conditions
are defined, specifically by demanding that the solution is continuous and
smooth at x = 0 so that lim

x→0−
c(x,t) = lim

x→0+
c(x,t)

lim
x→0−

∂

∂x
c(x,t) = lim

x→0+

∂

∂x
c(x,t)

. (2.2.1.9)

For the case x ≤ 0, equation (2.2.1.8) can be seen to take on the following
form

∂2

∂x2
c̃(x,ω)− ω

D
c̃(x,ω) = − 1

D
lim
t→0−

c(x,t), x ≤ 0

⇔
{

(2.2.1.1)⇒ lim
t→0−

c(x,t)
∣∣
x≤0

= c0

}
∂2

∂x2
c̃(x,ω)− ω

D
c̃(x,ω) = −c0

D
, x ≤ 0. (2.2.1.10)

It can be easily seen that the general solution to the homogeneous form of
this linear differential equation,

∂2

∂x2
c̃(x,ω)− ω

D
c̃(x,ω) = 0, x ≤ 0, (2.2.1.11)

is given by

c̃hom(x,ω) = C+e
√

ω
D
x + C−e−

√
ω
D
x, x ≤ 0, (2.2.1.12)
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since

∂2

∂x2

[
C+e
√

ω
D
x + C−e−

√
ω
D
x
]
− ω

D

[
C+e
√

ω
D
x + C−e−

√
ω
D
x
]

=

[(√
ω

D

)2

C+e
√

ω
D
x +

(
−
√
ω

D

)2

C−e−
√

ω
D
x

]
− ω

D

[
C+e
√

ω
D
x + C−e−

√
ω
D
x
]

=
ω

D
C+e
√

ω
D
x +

ω

D
C−e−

√
ω
D
x − ω

D
C+e
√

ω
D
x − ω

D
C−e−

√
ω
D
x = 0.

Meanwhile, the particular solution can be assumed to have the form

c̃par(x,ω) = CIx
2 + CIIx+ CIII, x ≤ 0. (2.2.1.13)

When substituted into (2.2.1.10), this formula yields the equation

−c0

D
=

∂2

∂x2

(
CIx

2 + CIIx+ CIII

)
− ω

D

(
CIx

2 + CIIx+ CIII

)
⇔ −c0

D
= 2CI −

ω

D
CIx

2 − ω

D
CIIx−

ω

D
CIII

⇔ c0

D
=
ω

D
CIx

2 +
ω

D
CIIx+

ω

D
CIII − 2CI, (2.2.1.14)

which is only satisfied, for all x ≤ 0, if
CI = 0

CII = 0

CIII = c0
ω

. (2.2.1.15)

In other words,(2.2.1.14) takes on the form

c̃par(x,ω) =
c0

ω
, x ≤ 0, (2.2.1.16)

which, in turn, means that

c̃(x,ω) = c̃hom(x,ω) + c̃par(x,ω)⇒ {(2.2.1.12),(2.2.1.16)} (2.2.1.17)

⇒ c̃(x,ω) = C+e
√

ω
D
x + C−e−

√
ω
D
x +

c0

ω
, x ≤ 0. (2.2.1.18)

On the positive x-axis, meanwhile, the ODE of interest can be seen to be to
be identical to the homogeneous equation (2.2.1.11) since

{(2.2.1.8)} ⇒ ∂2

∂x2
c̃(x,ω)− ω

D
c̃(x,ω) = − lim

t→0−
c(x,t), x > 0

⇔
{

(2.2.1.1)⇒ lim
t→0−

c(x,t)
∣∣
x<0

= 0

}
(2.2.1.19)

⇔ ∂2

∂x2
c̃(x,ω)− ω

D
c̃(x,ω) = 0, x > 0. (2.2.1.20)
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Given that (2.2.1.11) has the solution (2.2.1.12) it must therefore be con-
cluded that

c̃(x,ω) = C ′+e
√

ω
D
x + C ′−e−

√
ω
D
x, x > 0, (2.2.1.21)

wherefore

c̃(x,ω) =

{
C+e
√

ω
D
x + C−e−

√
ω
D
x + c0

ω
, x < 0

C ′+e
√

ω
D
x + C ′−e−

√
ω
D
x, x > 0,

. (2.2.1.22)

The coefficients, C+, C−, C ′+ and C ′−, in this expression can be determined
with help of the Laplace transform of the boundary condition,

{(2.2.1.1)} ⇒


L

{
lim

x→−∞
c(x,t)

}
(x,ω) = L {c0} (ω)

L
{

lim
x→∞

c(x,t)
}

(x,ω) = 0,

⇔
{

(2.2.1.6), L {1} (ω) =
1

ω

}
(2.2.1.23)

⇔

 lim
x→−∞

c̃(x,ω) =
c0

ω
lim
x→∞

c̃(x,ω) = 0
. (2.2.1.24)

In particular, when the formula (2.2.1.22) is introduced in these equations,
the following result is obtained lim

x→−∞

(
C+e
√

ω
D
x + C−e−

√
ω
D
x +

c0

ω

)
=
c0

ω
, x ≤ 0

lim
x→∞

(
C ′+e
√

ω
D
x + C ′−e−

√
ω
D
x
)

= 0 x > 0C+ lim
x→−∞

e
√

ω
D
x + C− lim

x→−∞
e−
√

ω
D
x = 0, x ≤ 0

C ′+ lim
x→∞

e
√

ω
D
x + C ′− lim

x→∞
e−
√

ω
D
x = 0, x > 0

, (2.2.1.25)

which can only be satisfied provided that C− = 0 and C ′+ = 0. Thus (2.2.1.22)
takes on the form

c̃(x,ω) =

{
C+e
√

ω
D
x + c0

ω
, x ≤ 0

C ′−e−
√

ω
D
x, x > 0

. (2.2.1.26)

The next step is to use the Laplace transforms of the additional boundary
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conditions, (2.2.1.9),
L

{
lim
x→0−

c(x,t)

}
(x,ω) = L

{
lim
x→0+

c(x,t)

}
(x,ω)

L

{
lim
x→0−

∂

∂x
c(x,t)

}
(x,ω) = L

{
lim
x→0+

∂

∂x
c(x,t)

}
(x,ω)

⇔

 lim
x→0−

c̃(x,ω) = lim
x→0+

c̃(x,ω)

lim
x→0−

∂

∂x
c̃(x,ω) = lim

x→0+

∂

∂x
c̃(x,ω)

, (2.2.1.27)

together with equation (2.2.1.26) to determine C+ and C ′−
lim
x→0−

(
C+e
√

ω
D
x +

c0

ω

)
= lim

x→0+

(
C ′−e−

√
ω
D
x
)

lim
x→0−

∂

∂x

(
C+e
√

ω
D
x +

c0

ω

)
= lim

x→0+

∂

∂x

(
C ′−e−

√
ω
D
x
)

⇔

{
C+ + c0

ω
= C ′−√

ω
D
C+ = −

√
ω
D
C ′−

⇔

{
C+ + c0

ω
= −C+

C ′− = −C+

⇔

{
C+ = − c0

2
1
ω

C ′− = c0
2

1
ω

(2.2.1.28)

Using these conditions (2.2.1.26) can be rewritten onto the form

c̃(x,ω) =

{
− c0

2
1
ω

e
√

ω
D
x + c0

1
ω
, x ≤ 0

c0
2

1
ω

e−
√

ω
D
x, x > 0

. (2.2.1.29)

In order to obtain an expression for c(x,t), it is necessary to apply the inverse
Laplace transform to (2.2.1.29). Once again, it is convenient to make use of
the list of transforms provided by R̊ade and Westergren, with help of which
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it is possible to show that [13]

c(x,t) = L −1 {c̃(x,ω)} (x,t)

=

L −1
{
− c0

2
1
ω

e
√

ω
D
x + c0

1
ω

}
(x,t), x ≤ 0

L −1
{
c0
2

1
ω

e−
√

ω
D
x
}

(x,t), x > 0

= {(2.2.1.6)} =

−
c0
2
L −1

{
1
ω

e
√

ω
D
x
}

(x,t) + c0L −1
{

1
ω

}
(x,t), x ≤ 0

c0
2
L −1

{
1
ω

e−
√

ω
D
x
}

(x,t), x > 0

=

{
(2.2.1.23), L

{
erfc

(
υ

2
√
t

)}
(ω) =

1

ω
eυ
√
ω, υ > 0,

(2.2.1.30)

for υ =

{
− x√

D
, x ≤ 0

x√
D
, x > 0

}

=

−
c0
2

erfc
(
− x√

D
1

2
√
t

)
+ c0, x ≤ 0

c0
2

erfc
(

x√
D

1
2
√
t

)
, x > 0

⇔ c(x,t) =

c0 − c0
2

erfc
(
− x

2
√
Dt

)
, x ≤ 0

c0
2

erfc
(

x
2
√
Dt

)
, x > 0

. (2.2.1.31)

Here, erfc(y) is the complementary error function, which is related to the
error function erf(y) via

erfc(y) = 1− erf(y), (2.2.1.32)

that is in turn defined as [13]

erf(y) =
2√
π

∫ y

0

e−y
′2

dy′. (2.2.1.33)

It has thus been concluded that the solution to the problem (2.2.1.1) is given
by the formula

c(x,t) =
c0

2
erfc

(
x

2
√
Dt

)
=
c0

2

(
1− erf

(
x

2
√
Dt

))
, (2.2.1.34)

for x > 0. Furthermore this expression is identical to formula (eq. 6.2) in
Lundgrens thesis, which according to the author yields predictions that are
reasonably consistent with experimental data [5].
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2.2.2 Semi-infinite domain.

A more physically accurate model for the problem at hand can be formulated
by making suitable changes to the boundary and initial conditions defined
in (2.2.1.1). In princip, the solution is constrained to the positive half-axis,
so that it is defined only for x ∈ [0,∞,[. Still, the model system will, as
before, consist of two domains. One of these, namely x ∈ [0,lh], represents
the part of the cuvette that contains the buffer solution, which is assumed
to have been filled up to a height lh and have a concentration c0. The region
above, x ∈]lh,∞[, is, on the other hand, assumed to contain the gold sol, in
which the citrate concentration equals c∞ � c0, initially. It is, furthermore,
appropriate to set the flux J to zero at x = 0. According to Fick’s first law,
(2.2.0.6), this is equivalent to demanding that the concentration gradient
vanishes at the same boundary. In other words, the reformulated version of
the problem (2.2.1.1) is

∂
∂t
c(x,t) = D ∂2

∂x2
c(x,t)

c(x,0) =

{
c0, x ∈ [0,lh]

c∞, x ∈]lh,∞[
∂
∂x
c(x,t)

∣∣
x=0

= 0

c(x,t) −−−−→
x→+∞

c∞

, (2.2.2.1)

as is also illustrated in figure 2.2.

The steps required to find the solution to (2.2.2.1) will largely be consis-
tent with the ones described in section 2.2.1. In particular, since the PDEs
in (2.2.2.1) and (2.2.1.1) are identical, the ODE obtained by Laplace trans-
forming Fick’s second law is has the same form as (2.2.1.8),

∂2

∂x2
c̃(x,ω)− ω

D
c̃(x,ω) = − 1

D
lim
t→0−

c(x,t). (2.2.2.2)

Due to the different initial conditions, however, the right hand sides of equa-
tions (2.2.1.8) and (2.2.2.2) are similar but not identical. In particular, by
introducing the expression for c(x,0) in (2.2.2.1) into (2.2.2.2) one can de-
duced that

∂2

∂x2
c̃(x,ω)− ω

D
c̃(x,ω) =

{
− c0
D
, 0 ≤ x ≤ lh

− c∞
D
, lh < x <∞

. (2.2.2.3)

This equation can be seen to have the same form as the ODE (2.2.1.10), in
each of the intervals 0 ≤ x ≤ lh and lh < x < ∞ respectively. Hence, the
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x

c(x, 0) = c
∞
, x > lh

c(x, 0) = c0, x ≤ lh

∂
∂x
c(x, t)

∣

∣

x=0
= 0

limx→∞
c(x, t) = c

∞

∂
∂t
c(x, t) = D ∂2

∂x2
c(x, t)

0

lh

∞

Figure 2.2: Illustration of the system represented by the initial and boundary value
problem inequation (2.2.2.1), which describes the diffusion of a single species in a semi-
infinite and one-dimensional domain.

solution must be given by (2.2.1.18), provided that the factor c0 in the third
term is substituted for c∞ in the this case,

c̃(x,ω) =

{
C+e
√

ω
D
x + C−e−

√
ω
D
x + c0

ω
, 0 ≤ x ≤ lh

C ′+e
√

ω
D
x + C ′−e−

√
ω
D
x + c∞

ω
, lh < x <∞

. (2.2.2.4)

The formula (2.2.2.4) shall now be simplified with help of the Laplace trans-
forms of the original boundary conditions, which are stated in (2.2.2.1)

L

{
lim
x→0

∂

∂x
c(x,t)

}
(x,ω) = 0

L
{

lim
x→∞

c(x,t)
}

(x,ω) = L {c∞} (ω),

⇔{(2.2.1.6), (2.2.1.23)}

⇔

lim
x→0

∂

∂x
c̃(x,ω) = 0

lim
x→∞

c̃(x,ω) =
c∞
ω

. (2.2.2.5)
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In particular, when (2.2.2.4) is substituted into (2.2.2.5) the result islim
x→0

∂

∂x

[
C+e
√

ω
D
x + C−e−

√
ω
D
x +

c0

ω

]
= 0

lim
x→∞

[
C ′+e
√

ω
D
x + C ′−e−

√
ω
D
x +

c∞
ω

]
=
c∞
ω

⇔

{√
ω
D
C+ −

√
ω
D
C− = 0

C ′+ lim
x→∞

e
√

ω
D
x + C ′− lim

x→∞
e−
√

ω
D
x = 0

⇒

{
C+ = C−

C ′+ = 0
⇒ {(2.2.2.4)} (2.2.2.6)

⇒c̃(x,ω) =

C−
(

e
√

ω
D
x + e−

√
ω
D
x
)

+ c0
ω
, 0 ≤ x ≤ lh

C ′−e−
√

ω
D
x + c∞

ω
, lh < x <∞

. (2.2.2.7)

In order to determine C− and C ′−, it is, as earlier, necessary to introduce
extra conditions on c(x,t). In particular, these will be the same as those
found in (2.2.1.9). The only exception is that in this case they apply at the
interior boundary, x = lh, rather than at x = 0, and are hence given by the
limits, 

lim
x→lh−

c(x,t) = lim
x→lh+

c(x,t)

lim
x→lh−

∂

∂x
c(x,t) = lim

x→lh+

∂

∂x
c(x,t)

, (2.2.2.8)

In accordance with (2.2.1.27), these have the following Laplace transforms
L

{
lim
x→lh−

c(x,t)

}
(x,ω) = L

{
lim
x→lh+

c(x,t)

}
(x,ω)

L

{
lim
x→lh−

∂

∂x
c(x,t)

}
(x,ω) = L

{
lim
x→lh+

∂

∂x
c(x,t)

}
(x,ω)

⇔


lim
x→lh−

c̃(x,ω) = lim
x→lh+

c̃(x,ω)

lim
x→lh−

∂

∂x
c̃(x,ω) = lim

x→lh+

∂

∂x
c̃(x,ω)

. (2.2.2.9)

By substituting the solution (2.2.2.7) into (2.2.2.9), it is, in particular, found
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that

{(2.2.2.9), (2.2.2.7)}

⇒


lim
x→lh−

[
C−

(
e
√

ω
D
x + e−

√
ω
D
x
)

+
c0

ω

]
= lim

x→lh+

[
C ′−e−

√
ω
D
x +

c∞
ω

]
lim
x→lh−

∂

∂x

[
C−

(
e
√

ω
D
x + e−

√
ω
D
x
)

+
c0

ω

]
= lim

x→lh+

∂

∂x

[
C ′−e−

√
ω
D
x +

c∞
ω

]
⇔

C−
(

e
√

ω
D
lh + e−

√
ω
D
lh
)

+ c0
ω

= C ′−e−
√

ω
D
lh + c∞

ω

C−

(√
ω
D

e
√

ω
D
lh −

√
ω
D

e−
√

ω
D
lh
)

= −
√

ω
D
C ′−e−

√
ω
D
lh

⇔

C
′
−e−
√

ω
D
lh + c∞−c0

ω
= C−

(
e
√

ω
D
lh + e−

√
ω
D
lh
)

−C ′−e−
√

ω
D
lh = C−

(
e
√

ω
D
lh − e−

√
ω
D
lh
) . (2.2.2.10)

From the latter equality in (2.2.2.10), the following relation between the
coefficients C− and C ′− can be deduced
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which, as is shown below, can be substituted into the former of the two
equations to yield an explicit formula for C−
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Next, an expression for C ′− can be obtained by simply inserting (2.2.2.12)
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into (2.2.2.11), with the result [13]
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Given the explicit formulas for the coefficients C− and C ′−, (2.2.2.12) and
(2.2.2.13) respectively, the Laplace transform of the concentration, c̃(x,ω),
can be determined by substitting these equations into (2.2.2.7), which yields
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(2.2.2.14)

From this relation, the concentration profile c(x,t) can be obtained by apply-
ing the inverse transform, (2.2.1.4),

c(x,t) = L −1 {c̃(x,ω)} (x,t)

⇔
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(2.2.2.15)

In conclusion, the citrate concentration will, according to the model (2.2.2.1),
follow the profile

c(x,t) = c∞ +
c0 − c∞

2

[
erfc

(
x− lh√
Dt

)
− erfc

(
x+ lh√
Dt

)]
, (2.2.2.16)

for x ∈]lh,∞[. As will be shown in the result section, the agreement between
the predictions that can be made using this equation and numerical simula-
tions is very good. Though the deviation from the experimental data is more
significant, it is still comparatively small.
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2.3 The DLVO Theory & The RSA Model.

The DLVO theory and the RSA model, which are the main subjects of this
section, represent fundamental concepts for modelling colloid suspensions.
Specifically, the former, which shall be first be presented, provides the for-
malism needed to describe the interactions that exist between, charged, col-
loids. The second subsection, meanwhile, is centred around the version of
the RSA method that can be used to model the adsorption of such particles
on, flat, surfaces.

2.3.1 The DLVO Theory.

The DLVO theory states that the potential arising from the pairwise inter-
actions between colloidal particles is given by the sum [14]

utot(r) = uBorn(r) + uvdW(r) + ud.l.(r). (2.3.1.1)

Higashitani further explains that the first term, uBorn, represents the so called
Born repulsion, which arises when the electron clouds of the particles begin
to overlap. This author, moreover, suggests that it is most convenient to
assume that this potential becomes infinitely large, and positive, at very
short surface-to-surface separations, d. He, specifically, states that

uBorn(r) =

{
+∞, r ≤ rlim

0, r > rlim

, (2.3.1.2)

for,

d < dlim = 4 Å (2.3.1.3)

⇒r < rlim = {r = d+ 2ap} = 4 Å + 2 · 5 Å (2.3.1.4)

⇒r < rlim = 14 Å. (2.3.1.5)

Yet, in this project only the terms that represent the, attractive, van der
Waals forces, uvdW, and the, repulsive, electric double layer interaction, ud.l.

have been taken into account. Specifically, these contributions can, respec-
tively, be calculated from the formulas

uvdW(r) = −AH

6

(
2a2

p

r2 − 4a2
p

+
2a2

p

r2
+ ln

(
r2 − 4a2

p

r2

))
, (2.3.1.6)
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and

ud.l.(d) = 4πa2
pY

2

(
kBT

e

)
1

d+ 2ap
e−dκ, (2.3.1.7)

where d = r − 2ap is the surface-to-surface separation and r the center-to-
center distance. Moreover,

Y = 8tanh
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while

κ−1 =

[
εrε0kBT

1000e2NA2I

]
, (2.3.1.9)

is the Debye screening length and

I =
1

2

∑
i

ciZ
2
i . (2.3.1.10)

the ionic strength.

The typical form of the total potential, utot, as a function of the interparticle
distance, is schematically depicted in figure 2.3. This diagram indicates,
in agreement with the discussions by, among others, Guozhong as well as
Higashitani, that both the van der Waals and the electric double layer terms
vanish at sufficiently large, or strictly speaking infinite, separations [15, 14].
As is argued by the former author, the lack of overlap between the electrical
double layers in this regime should mean that there is no repulsion [15].
The only interaction of interest should, in other words, be a weak attraction
resulting from the van der Waals forces [15]. Provided that the counterion
concentration is high enough, so that the double layer repulsion is effectively
screened, a minima in the interaction energy may, therefore, appear. If this,
so called, secondary minimum is present there is a significant chance for
the particles to combine into aggregates through a process normally referred
to as flocculation. As can be seen from figure 2.4 this is not always the
case, however. This diagram, specifically, shows the interaction potential
for the case when gold nanoparticles of size 2ap = 10 nm and with an,
assumed, surface potential ψs = −50 mV are suspended in a cCi = 10 mM
buffer solution 1. For comparison, one could inspect figure 3.7 in section

1When calculating the ionic strength, it was assumed that the system had a pH of 4.

23



3.2, which shows an SEM image of a functionalised gold substrate that has
been immersed in a Au NP suspension. Yet, if the interparticle distance
is further decreased the ion clouds surrounding the particles will begin to
overlap. This should, in turn, lead to an increased repulsion between the
individual colloids. As a result, the potential energy curve typically displays
a primary maximum, umax

tot , which is known as the repulsive barrier. This
terminology stems from the fact that it is only if the thermal energy, kBT ,
is of the same order of magnitude as the barrier height that the particles
can come into close proximity to one another. According to Guozhong, there
is only likely to occur if the maximum value umax

tot & 10kBT . Due to the
deep minimum in the potential, which appears at very small interparticle
distances, there is, however, a significant chance that the particles will start
to agglomerate, if this criterium is reached.

ap d = r − 2ap

u/kBT

Primary minimum

Secondary minimum

Primary maximumumax/kBT

0

Total DLVO potential: utot = uBorn +uvdW + ud.l.

 

 
utot

uBorn

uvdW

ud.l.

Figure 2.3: Schematic diagram that illustrates the typical dependence of the total inter-
action potential between two colloidal particles, utot, on the surface-to-surface distance, d
as predicted by the DLVO theory. The corresponding graph, in the form of the black solid
curve, has, in accordance with (2.3.1.1), been calculated by summing (2.3.1.2), (2.3.1.6)
and (2.3.1.7). The individual contributions from the Born repulsion, red dotted curve, van
der Waals attraction, blue dash-dotted curve, and electric double layer interaction, green
dashed curved, have also been plotted.
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Figure 2.4: Diagram showing the total interaction potential between two colloidal parti-
cles, utot, as a function of the surface-to-surface distance, d, predicted by the DLVO theory.
The corresponding graph, in the form of the black solid curve, has, in accordance with
(2.3.1.1), been calculated by summing (2.3.1.2), (2.3.1.6) and (2.3.1.7) for 2ap = 10 nm,
ψs = −50 mV and cCi = 10 mM. Moreover, the individual contributions from the Born
repulsion, red dotted curve, van der Waals attraction, blue dash-dotted curve, and electric
double layer interaction, green dashed curved, have also been plotted.

2.3.2 The RSA Model.

Combining the DLVO Theory with the RSA Model.

The random sequential adsorption, or RSA, model, is a crude but effective
Monte-Carlo type method for simulating adsorption processes. According to
Adamczyk, Nattich and Batbasz as well as Adamczyk and Warszynski, it is,
in its most basic form, based on the following scheme [16, 17]:

1. A virtual adsorbing particle is generated, with a random initial position
and orientation.

2. Provided that the, randomly, selected area is unoccupied, the virtual
particle will, according to the“localized and irreversible adsorption pos-
tulate”, stick to the surface with unit probability and, furthermore,
remain at this location throughout the entire deposition process.

3. If an overlap exists between the newly arrived and previously deposited
particles then the adsorption criterion is not fulfilled and no adsorption
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occurs. Instead a new, unbiased, attempt is made, in accordance with
the earlier procedure.

4. This process is continued until no more particles can be placed on the
surface. At this point, the so called jamming, or maximum packing,
limit has been reached and the substrate should be regarded as being
“completely covered”.

The relatively simple version of the RSA model described above can be made
more general by combining it with the DLVO theory. In particular, doing
so allows the presence of interparticle interactions to be taken into account,
which effectively extends the range of applicability of the former beyond
the limiting case of adsorbing hard spheres. The aim is, more precisely,
to describe how the presence of such forces can be taken into account by
introducing an effective particle radius, within the framework of the RSA
model.

According to Semmler, Mann, Rička and Borkovec as well as Lundgren, it is
possible to show that the saturation coverage is, in this case, related to the
theoretical jamming limit via the formula [5, 18]

θmax
p = θjam

p

(
ap
aeff
p

)2

. (2.3.2.1)

In agreement with Lundgrens study, it shall be assumed that aeff
p is defined

by the equation

utot(2a
eff
p )

kBT
=

1

Λ
, (2.3.2.2)

where utot is the total pairwise interaction potential [5]. While the parameter
Λ has no specific physical interpretation, its inverse 1/Λ, consequently, rep-
resents the interaction potential for an interparticle separation of d = 2aeff

p .
Unsurprisingly, its value, while confined to the interval 1 < Λ < exp(1), is
most often chosen so as to give the best possible fit between the calculations
and the experimental data. Here, it shall, specifically, be assumed that

Λ =
exp(1)− 1

2
, (2.3.2.3)

in agreement with Lundgrens thesis work. Yet, one should note that different
values have been used in other studies, primarily depending on the nature of
the particles and substrates used in the experiments. Semmler, Mann, Rička
and Borkovec for example chose Λ = exp(1) [19].
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The results presented in this report, as well as Lundgrens study, have been ob-
tained with help of numerical calculations and by assuming that the pairwise
interaction potential is given by the sum of the contributions from (2.3.1.6)
and (2.3.1.7). Before moving on, it shall be noted that several alternative
techniques exist for simulating the absorption of interacting nanoparticles.
This not only includes contrasting extensions of the RSA model, but also
methods based on entirely different concepts.
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Chapter 3

Experiments & Simulations.

The first part of this section will detail the different experimental setups
that have been developed, for the purpose of obtaining substrates with well-
defined, yet non-uniform, particle coverage. This presentation shall, initially,
focus on the setup used by Lundgren to cover functionalised gold surfaces
with one-dimensional nanoparticle gradients [5]. This will be followed by a
description of the development of methods for immobilising Au NPs in radi-
ally symmetric patterns. The purpose of the next section, 3.2, on the other
hand, is to introduce the reader to the instruments and computer programs
implemented in this project. Firstly, the scanning electron microscope and
the ImageJ R© software will be presented, in that order. The final part of this
section, meanwhile, is dedicated to the, perhaps, most important tool used
in this project, namely the COMSOL Multiphysics R© software.

3.1 Experimental Setups

As was mentioned earlier, the description of the experimental setups has been
separated into two distinctive parts. In the first of the two following subsec-
tions, an effectively one-dimensional geometry shall, specifically, be consid-
ered. It shall be noted, however, that none of the experiments, performed as
part of this study, are related to this geometry. Instead, the measured data
presented in section 4.1 was originally obtained by Lundgren and his colleges
[1]. For obvious reasons, the presentation of the setups, which were designed
for creating radially symmetric particle gradients, that follows thereafter is
more detailed. In particular, not only does this subsection give a complete
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description of the final geometries, it also includes detailed discussions of the
alternative designs that were considered during the development process.

3.1.1 Setup for Creating 1D Gradients

In his PhD thesis, Lundgren presents the so called backfilling approach for
coating dithiol covered gold substrates with one-dimensional gradients of gold
nanoparticles [5]. As can be seen from the schematic depiction of this method
found in figure 3.1, the first step involves immersing the substrate in a cuvette
filled with a sol of Au NPs, with a low ionic strength. Since the latter are
negatively charged, due to layers of citrate ions bound to the surfaces of
the individual colloids, these will repel one another. This effect will, due to
screening, be especially strong at such low citrate buffer concentrations. As
Lundgrens research has shown, the strength of the double layer repulsion is,
moreover, directly related to the spacing between the immobilised particles.
Specifically, smaller interparticle distances and a more complete coverage is
achieved at higher ionic strengths.

The backfilling method is, as Lundgren states, based on the prospect of
controlling the separation between the surface adsorbed colloids by tuning
the electrolyte concentration [5]. Specifically, the above discussion implies
that the initial particle pattern, which is typically uniform, can be made
denser by increasing the buffer concentration. In particular, the injection
of a concentrated solution of citrate buffer below the, lighter, nanoparticle
suspension will compel the ions to diffuse from the lower to the upper phase.
The decrease in the buffer concentration with the distance from the interface
can, thus, be modelled as a one-dimensional gradient. As a result, a coverage
profile, with a similar shape, should develop on the surface of the substrate,
which is immersed in the Au NP sol. In other words, the number of adsorbed
particles per unit area should be highest at the bottom of the substrate and,
moreover, decrease continuously along its length. This statement is verified
by the experiments by Lundgren and his co-workers, as can be seen from
their, as of yet unpublished, paper [20].

As a final step in the experimental procedure, one must somehow halt the
particle deposition process. In order to hinder the highly concentrated buffer
solution and the nanoparticle suspension from mixing, the cuvette should,
according to Lundgren, be emptied from the bottom before the substrate is
removed [5]. Otherwise, it is likely that the gold colloids, in the suspension,
start to coagulate and that the pattern, formed by the immobilised nanopar-
ticles, is ruined. In spite of the relative simplicity of this concept, Lundgrens
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Figure 3.1: A sequence of illustrations, which shows the method, developed by Lundgren,
for depositing Au NP gradients on, functionalised, gold surfaces. This procedure involves
filling a cuvette with a buffered gold nanoparticle suspension before the substrate is lowered
into position. Next, a concentrated citrate buffer is inject at the bottom of the container
until the interface reaches the lower edge of the sample. It is, specifically, the deposition
process that follows, thereafter, that is schematically depicted in this figure. From left to
right, the images shows the system at t = 0, moments after the preperatory steps have
been completed, for some t > 0, during the diffusion process and at t = end, just after the
liquid contents have been removed, respectively.

research shows that highly reproducible and practically applicable results can
be achieved by following the procedure described above. The fact that the
same author has shown that it is possible to treat several samples simulta-
neously, using this technique, can be seen as further evidence of the success
of this approach. As can be seen from figure 3.2, this is achieved by placing
the substrates in parallel inside a single channel which is then filled with the
Au NP suspension before the concentrated buffer is injected.

3.1.2 Setup for Creating Radially Symmetric Gradi-
ents

In this section different experimental setups for coating flat surfaces with
radially symmetric nanoparticle gradients, which are conceptually similar to
the design sketched in figure 3.3, will be presented. When possible, this will
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Figure 3.2: Photograph showing the simultaneous coating of multiple surfaces with gradi-
ents of Au NPs. Specifically, the brightly and darkly coloured vertically placed substrates
correspond to gold coated glass and silicon substrates respectively. It is, moreover, possi-
ble to distinguish a bluish region between the upper nanoparticle suspension, which has
a deep red colour, and the, relatively, clear concentrated buffer found at the bottom of
the container. Specifically, this intermediate layer is formed due to the coagulation of the
particulate matter, which in turn is a result of the high buffer concentration.

include specifications of the suitable components as well as detailed descrip-
tions of how these should be interconnected. It shall be noted that these have
been chosen so that they can, almost exclusively, be attached to one another
via QUICKFIT R© joints. The shapes and sizes of the cone and the socket
that make up each joint are specified in terms of a so called NS number,
which like the key dimensions for other types of glassware, can be found in
the product catalogue from Fisher Scientific [21]. As an aid when trying to
interpret these values it is advisable consult the table and the sketch found
on page 7 in the product catalogue from Lenz Laborinstrumente, [22].

The next step in the development process was find an appropriate set of com-
ponent, available from Fischer Scientific, with which the concept illustrated
in figure 3.3 could be realised. After having reviewed the relevant product
catalogue, it was inferred that an appropriate setup, in the form of “Setup
1” in figure 3.4, could be constructed from the following products, which are
listed from top to bottom.

1: (F) Funnel with NS cone (“Tratt, Scilabware, Lenz, QUICKFIT R©”). For
more information, see page 806 in the Fisher Scientific product cata-
logue for 2011/12 or page 92 in the laboratory glassware catalogue from
Lenz Laborglasinstrumente [21, 22].
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Citrate buffer
Gold sol

Wire support

Substrate

Valves

Sketch of experimental setup for obtaining radially
 symmetric nanoparticle gradients on a solid substrate

Figure 3.3: Original sketch of a plausible setup, with which a gold substrate, placed near
the funnel opening, can be coated with Au NPs. Specifically, by opening the valve to the
tube filled with a concentrated buffer solution, the electrolytes should begin to diffuse from
the opening in the upper stop cock. This should result in the development of a radially
symmetric coverage profile on the bottom face of the sample.

2: (C) Connectors with stopcock (“Sammanbinding med kran”). For more
information, see page 63 in the laboratory glassware catalogue from
Lenz Laborglasinstrumente [22].

3: For example:

(T) Test tube, ground socket (“Provrör, Scilabware, QUICKFIT R© med
normalslipning för glaspropp”). For more information, see page
640 in the Fisher Scientific product catalogue for 2011/12 [21].

(R) Round-bottom flasks with conical ground joint (Kolvar, Rundkolv
med slipning, Scilabware, QUICKFIT R©, Lenz). For more infor-
mation, see page 391 in the Fisher Scientific product catalogue
for 2011/12 or page 32 in the laboratory glassware catalogue from
Lenz Laborglasinstrumente [21, 22].

As can be seen from the leftmost illustration in figure 3.4, the upper part
of the “Setup 1” is made up of a funnel (F), with a height 125 mm and an
angle 60◦, that is attached to a connector (C) via a QUICKFIT R© joint. In
addition to the socket, to which the funnel is connected, this component also
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Sketches of experimental setups for obtaining radially
 symmetric nanoparticle gradients on a solid substrate

Citrate buffer

Gold sol

Substrate

Funnel (F)

Test tube (T)

Connector, with
stopcock (C)

Stopcock

SETUP 1

(1)

(2)

(3)

Round bottom
flask (R)

Citrate buffer

Citrate buffer

Gold sol

Substrate

Funnel (F)

Test tube (T)

Adapter,
straight (A1)

Adapter, with
stopcock (A2)

Stopcock

Tubing

SETUP 2

(1)

(2)

(3)

(4)

Round bottom
flask (R)

Citrate buffer

Figure 3.4: Two possible designs, which, hypothetically, could be used to coat substrates
with nanoparticle gradients that are radially symmetric. These designs were, in particular,
developed so as to be constructable from products supplied by Fischer Scientific.

features a stopcock as well as a cone. If necessary, the default stopcock of
the NS 14/23 connector, which has inner hole diameters of 2.5 mm can be
replaced with one featuring a somewhat larger bore hole, specifically 4.0 mm.
Specifically, both this plug and the two distinctive glass stopcocks found on
page 24 in the product catalogue from Lenz have a NS number of 14.5 [22].
The cone end of this middle component should, meanwhile, be attached to
some sort of vessel that can hold the concentrated buffer solution. One could,
for example, use either a test tube or a round bottom flask, with a suitable
volume, given that it features a matching NS socket. Thought there are
other possible choices, these two represent relatively simple geometries and
are therefore suitable for modelling purposes.

A list of components, similar to the one above, for the alternative geometry,
which is labelled “Setup 2” in figure 3.4, can be found below.

1: (F) Funnel with NS cone (“Tratt, Scilabware, Lenz, QUICKFIT R©”). For
more information, see page 806 in the Fisher Scientific product cata-
logue for 2011/12 or page 92 in the laboratory glassware catalogue from
Lenz Laborglasinstrumente [21, 22].

2: (A1) Adapters, straight (“Adapter, Lenz, rak modell med hylsa och slan-
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ganslutning”). For more information, see page 478 in the Fisher Scien-
tific product catalogue for 2011/12 or page 62 in the laboratory glass-
ware catalogue from Lenz Laborglasinstrumente [21, 22].

3: (A2) Adapters with NS stopcock, straight (“Adapter, Lenz, rak modell
med kärna och kran i glas, plugg 2,5 mm”). For more information, see
page 478 in the Fisher Scientific product catalgue for 2011/12 or page 62
in the laboratory glassware catalogue from Lenz Laborglasinstrumente
[21, 22].

4: For example:

(T) Test tube, ground socket (“Provrör, Scilabware, QUICKFIT R© med
normalslipning för glaspropp”). For more information, see page
640 in the Fisher Scientific product catalogue for 2011/12 [21].

(R) Round-bottom flasks with conical ground joint (“Kolvar, Rund-
kolv med slipning, Scilabware, QUICKFIT R©, Lenz’). For more
information, see page 391 in the Fisher Scientific product cata-
logue for 2011/12 or page 32 in the laboratory glassware catalogue
from Lenz Laborglasinstrumente [21, 22].

The connector, which was the central part of the previously described setup,
has, in this case, been replaced by a pair of tube adapters. As earlier, a
QUICKFIT R© joint connects the funnel (F) with upper of the two (A1). The
latter component is, in turn, attached to the lower adapter (A2), which fea-
tures a stopcock together with a cone rather than a socket, via a piece of
tubing. Similarly to the connector, it ought to be possible to replace the
2.5 mm stopcock with one featuring a 4.0 mm bore hole. The cone end of the
lower adapter, meanwhile, is, as in the previous case, attached to a container,
for the citrate buffer.

Both of setups described above are, as can be seen from figure 3.4, based on
the same experimental procedure. Specifically, all glass components, below
the stop cock, are first filled with the concentrated citrate buffer. Once this
has been achieved the valve is closed and the upper part of the setup is rinsed
clean. Next, a silicon substrate is placed in the funnel, with the gold coated
surface facing down, before a sufficient amount of the nanoparticle suspension
is added so that the sample completely immersed. The final step is to open
the stop cock so that the citrate ions can be allowed to diffuse into the dilute
region above the interface. This should give rise to a spherically symmetric
concentration gradient, which, when it eventually reaches the lower face of the
substrate, should result in a particle coverage profile with a radial symmetry.
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Since both “Setup 1” and “Setup 2” were later proven to be unsatisfactory,
due to the issues detailed in section 4.4, two other geometries were developed
and, eventually, tested. In contrast to the former two cases, the relative
positions of the two liquid phases were shifted in the alternative design that
was first considered. Thus, the samples are prepared by first placing the
gold substrate flat down on the bottom of a glass container, which is then
filled with enough gold nanoparticle suspension so that the former is, well
and truly, submerged. The concentrated citrate buffer is, thereafter, injected
into a piece of tubing, with help of a syringe, until a well defined and nearly
flat air-to-liquid interface is formed at the open end of the tube. Next, this
tube end is allowed to make contact with the surface of the suspension, at
a point directly above the substrate. Since the glass vessel is placed on a
platform with an adjustable height, this can be achieved by slowly raising
container until the, firmly fixated, tube dips into the solution. Due to the
sharp concentration difference the buffer species should, as earlier, diffuse
radially outwards from the point of contact between the two phases. This
ought to result in a spherically symmetric gradient , which, once it reaches
the gold surface, leads to the formation of the sought nanoparticle pattern.
As is further explained in section 4.4 the attempts to apply this approach in
practice, unfortunately, failed.

The final, and by far the most successful, design is similar to the original
sketch, as a comparison between the figures 3.5 and 3.3 reveals. A contrasting
feature, however, is that the two liquid phases are not separated via valves
in the former case. Instead, this setup relies upon the use of a syringe to fill
up the funnel, from below, first with the Au NP suspension and then with
the concentrated buffer. The first step is, therefore, to insert a tube into the
lower half of the funnel, which is made up of a glass colon. Specifically, one
end should be situated a few millimetres above the opening, to the conical
part. Next, the substrate is placed vertically above the tube opening. As
was explained earlier, a sufficiently large volume of colloid suspension, for
the sample to become fully immersed, is then supplied with help of a syringe.
An adjustable clamp, which has previously been fastened to the piece of
tubing, is then used to hinder the gold sol from pouring out during the next
step in the preparation procedure. This, more precisely, involves replacing
the empty syringe with one filled with concentrated citrate buffer, which is
then carefully injected into the system. If the exactly the right amount of
solution is added a sharp liquid-to-liquid interface should form at the end
of the tube, which is situated directly underneath the gold coated substrate.
Such a result is not easily achieved in practice, however. The main reason
for this is that the mainly because the view of the tube opening is obscured,
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since it is situated inside the conical part of the funnel. This fact should
be apparent from in figure 3.6 and especially the photograph in part (b),
which zooms in on the upper half of the setup. Once the two liquids have
been brought into contact, the system is left to fend for itself until the buffer
gradient has been deemed to have reached the functionalised surface and a
radial gradient of Au NP:s has been deposited. At this point, the syringe is
withdrawn, which should allow both the buffer and the suspension to pour
out of the tube. Only thereafter should the substrate be removed from the
funnel and rinsed with water.
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Figure 3.5: Sketches of the final designs for the experimental setup, both of which is made
up of a glass funnel into which bottom a rubber tube has been pried. This length of tubing
also features a syringe as well as a clamp, which have been inserted into the free end and
attached to its mid-section respectively. The difference between the two variants, depicted
in part (a) and (b), is that the tube extends into the conical section in the former case
but not in the latter. During a typical experiment, a sufficient amount of the nanoparticle
suspension is first injected into the system in sufficient amounts that the substrate, which
is, thereafter, lowered into the funnel with the gold surface facing down, is going to be
entirely submerged. Next, the clamp is tightened before the syringe is removed and refilled
with the concentrated citrate buffer. After the latter has been reinserted into the tube, the
clamp is loosened and the buffered solution is slowly injected, specifically, until the liquid-
to-liquid interface reaches the end of the tube, which is situated directly underneath the
substrate. Following this procedure, the system is left to tend to itself for a given period
of time, whereafter the diffusion process is interrupted by removing the syringe and letting
the liquid pour out.
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(a) (b)

Figure 3.6: Photographs of the experimental setup schematically depicted in figure 3.5.
While part (a) displays all of the components, (b) gives an enlarged view of the conical
section of the funnel, inside which both the substrate and the top end of the tube are
situated.

3.2 Experimental and Computer Generated

Data

Here, the methods, which were used to examine the nanoparticle coated gold
surfaces, fabricated using the techniques described in section 3.1.2, as well
as the data thus acquired, will be presented. In particular, the first part
outlines some general features of scanning electron microscopes, or SEMs,
since such an instrument was used to image the samples. In order to quantify
the obtained coverage, these images were processed and analysed with the
ImageJ R© program, which is the subject of the second subsection. Finally,
the COMSOL Multiphysics R© software package, which was used to simulate
the experiments described in section 3.1, will be introduced. This implies
that the required input for the ImageJ R© and COMSOL Multiphysics R© have
fundamentally different origins, namely experimental measurements, in the
form of SEM images, and a predefined computer models respectively. Even
so, the two programs can produce comparable data sets, in the form of the
surface coverage at different positions on the functionalised gold surface, as
should be evident from the discussion that follows.
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Imaging Surfaces with SEM

Since detailing the underlying physics for electron microscopes is beyond the
scope of this report, only a brief introduction shall be given. Readers that
are keen to learn more, are advised to study the excellent reference litera-
ture, for example the textbooks by Petty, Zangwill and Ohring respectively
[23, 24, 25]. Generally, the aim of all microscopes is to image any sample as
faithfully as possible. For the case of SEMs, this is achieved by scanning an
electron beam in a, so called, raster pattern over the substrate. Concomi-
tantly, the secondary electrons, which are emitted from the surface due to the
collisions between the electrons in the beam and on the surface respectively,
are detected. An image of the sample is, hence, successively built up, pixel
by pixel. Moreover, the brightness is, at any given point, directly related to
the intensity of the stream of electrons that is emitted when the beam swept
over the corresponding position on the sample.

Because the wavelengths of the incident are much lower than that of, for
example, visible light, much greater resolution can be achieved than with an
optical microscope. In particular, Petty claims that electrons, which are ac-
celerated over a voltage of 100 kV, have a wavelength of about 3.7 · 10−3 nm.
The diffraction limit is, therefore, sufficiently narrow that objects with the
atomic sizes can be distinguished. Indeed, particles with sizes on the order of
10 nm are clearly visible in the figure 3.7. This SEM image, more precisely,
depicts a reference sample, prepared by immersing a cystiamine function-
alised and gold covered silicon substrate in a sol of Au NP:s with a buffer
concentration of ∼ 10 mM.

3.2.1 Image analysis using ImageJ R©

Though the free image analysis software ImageJ R© has many possible appli-
cations, this brief introduction will only describe the functionalities that are
relevant for the project at hand. A much broader and more detailed descrip-
tion can be found in the user’s manual [26]. Specifically, the aim was to
analyse the SEM images of the surfaces prepared with help of the methods
described in section 3.1.2, for the purpose of determining the number of par-
ticles per unit area. Therefore, only a handful of the available features had
to be implemented. The first step was to define the scale of the image, mea-
sured in units of m/pixel. This was achieved by first marking the scale-bar,
which, as can be seen from figure 3.7, is found at the bottom of each SEM
image, with a line and then clicking on Analyze/Set Scale.... Doing so
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Figure 3.7: SEM image of a reference sample, in the form of a partially cysteamine func-
tionalised and gold covered silicon substrate that has been submerged in an Au NP sus-
pension, with a pH of 4 and a buffer concentration of 10 nm.

will, in particular, bring up a command window, in which the scaling can
be defined simple by inputting the length, found on the left side of the bar.
Next, the Image/Adjust/Threshold command is used to obtain a black and
white version of the image, which, by default, is shown in greyscale. This
involves choosing the upper and lower limits for the threshold so that only
features that are sufficiently bright, or dark, are displayed. In the case of
figure 3.7 the result of this procedure is the pattern in figure 3.8.

Before proceeding with the actual measurements, it is necessary to select
the type of data that is to be determine. This process reduces to ticking
the correct boxes in the list found under Analyze/Set Measurements....
For the case at hand it suffices to mark “Area” and “Area fraction”. This
means the program calculate the total, selected, area and the fraction of
this part of the image that is coloured, black, respectively if one clicks on
Analyze/Measure.... Using the Analyze/Measure... command, available
from the window that shows the result of these calculations, it is possible to
save tabulated values, for example as a .txt spreadsheet. The final step is
to use the function Analyze/Analyze Particles..., which both counts the
number of particles in the image and determines their individual areas. From
this data, the particle coverage, in units of particles/µm2, can be determined
with help of, for example, MATLAB R©.
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Figure 3.8: Black and white version of the SEM image in figure 3.7, that has been obtained
with help of the Image/Adjust/Threshold feature of the imageJ R© software.

It shall be noted that the method used for determining the total number of
particles, in the image, is not optimal, in the sense that it is less accurate
than hand-counting all the particles. An alternative, and perhaps more pre-
cise, technique is based on the Process/Find Maxima... command, which
counts all the maxima and, as can be seen from figure 3.9 (a), marks the
corresponding positions, with a cross. If the Noise tolerance value is cho-
sen correctly, each such maximum should, specifically, represent an adsorbed
nanoparticle, which appear bright against the underlying, gold, surface. To
determine an appropriate limit, it is convenient to zoom in on an arbitrary
area, such as the one shown in figure 3.9 (b). Thereafter, the number in the
Noise tolerance field is altered, slightly, before the Preview point se-

lection box is ticked. This, specifically, tells the program to re-analyse the
photograph in terms of the new values on the input parameters, unbiased by
any previous calculations. The set of marked points will, hence, successively
be updated, allows the relative success of each calculation to be assessed. In
particular, special attention should be paid to how many:

1. Crosses found are found in empty regions on the surface,

2. Nanoparticles that have been marked at multiple points,

3. NPs that the program has failed to identify and left unmarked.

If these three numbers are minimised then the optimal value on the Noise
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tolerance has been found. It shall be noted, however, that if this toler-
ance is set higher then the number of mistakes of the first and second types
will increase, at the same time as fewer errors of third kind should be ob-
served. Manual tuning is, therefore, generally required in order to reach this
optimum. As is implied by the discussion above, the procedure for deter-
mining the particle coverage from the total number of maxima is more time
consuming than the one described earlier, which instead made use of the An-

alyze/Analyze Particles... function. Still, more accurate results should,
according to the supervisor for this project, be obtained with help of the for-
mer technique. During the implementation, it was discovered, however, that
the estimates obtained by applying either of the methods were almost the
same. For the sake of convenience, only the former of two was used to analyse
the SEM images of the surfaces, supposedly, covered by radially symmetric
particle gradients.

3.2.2 Estimating the coverage from the citrate concen-
tration.

The most theoretically correct route for predicting the surface coverage that
corresponds to a given concentration of citrate ions is to use the formula
(2.3.2.1) directly. As was mentioned in section (2.3.2), this involves determin-
ing the effective particle radius, aeff

p , by numerically solving equation (2.3.2.2).
Firstly though, the total potential utot must be calculated by summing the
contributions from the van der Waals attractions and electric double layer re-
pulsions, which are given by the formulas (2.3.1.6) and (2.3.1.7) respectively.
An alternative and simpler approach, especially for implementation purposes,
is to use the following approximate relation for the number of particles per
square micrometer

Np = 37815 · c0.5291
Ci . (3.2.2.1)

This formula, more precisely, represents the interpolant to the set of points
(cCi, Np) generated with help of the procedure described above. Though such
an approximation can be deduced in an, effectively, infinite number of ways,
this particular parametrisation was determined using a built-in routine, for
power regression, in the Microsoft R© Excel R© 2010 software package. As can be
seen from the diagram in figure 3.10, the deviation between the predictions
of the formulas (3.2.2.1) and (2.3.2.1), respectively, increases with the citrate
concentration cCi.
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(a)

(b)

Figure 3.9: (a): Version of the SEM image in figure 3.7, in which the brightest points has
been obtained with help of the Process/Find Maxima... feature of the imageJ R© software.
(b) Zoomed in view of a specific region in (a).

In order to evaluate (2.3.2.1), a number of crucial assumptions, with re-
gards to the physical conditions, must be made. In practice, this reduces
to properly choosing the, tunable, parameters that appear in the relevant
expressions. Since the systems considered in this project are more or less
identical to the ones that have been previously studied by Lundgren, it was
deemed appropriate adopt the values that he used in his work [5]. In sum-
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Figure 3.10: Diagram showing the predicted nanoparticle coverage as a function of the
citrate concentration that has been calculated using the set of formulas in (3.2.2.2) as well
as the corresponding interpolant, which parametrisation is given by (3.2.2.1). Specifically,
the data points generated by the solver routine described in the text are marked with the
filled blue squares while the black solid line has been derived with help of the predefined
power regression model in Microsoft R© Excel R© 2010.

mary, the following set of formulas were evaluated for a number of different
concentrations in the interval of interest, cCi ∈]0,000001 M, 0,01 M], using the
parameter values listed in table 3.1,
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Parameter Value
Particle radius, ap 5 · 10−9 m
Absolute temperature, T 298.15 K
Λ (e− 1)/2
Hamakar constant, AH 2.5 · 10−19 J
Surface potential, ψs −0.05 V
pH 4

Table 3.1: List of parameters that were used when evaluating the formulas in (3.2.2.2), in
order to determine the particle coverage, θmax, as a function of the citrate concentration,
cCi.

As is suggested by the last of the above formulas, the individual concentra-
tions, ci, of all the electrolytes i must be determined, from the total citrate
concentration cCi, before the ionic strength can be calculated.

It should be apparent, from the first expression in (3.2.2.2), that the above
procedure only yields a prediction of the percentage of the total surface area
that is covered by particles. As is suggested by the description of the method
used to analyse the SEM images in section 3.2.1, that approach instead gives
a measure of the number of particles per square micrometer. Fortunately, it
is relatively straightforward to derive a relation between these two entities.
The first step is to note that the relative coverage, θp, is defined as the ratio
between the sum of the cross sectional areas of the particles

∑
iA

p
i and the

total area of the surface Atot,

θp =
∑
i

Api
Atot

. (3.2.2.3)

Under the assumption that all of the adsorbed particles can be regarded as
perfect spheres with the same size, 2ap = 10 nm then their projections on the
surface should have a common area

Ap = πa2
p = 25π nm2. (3.2.2.4)

This means that the sum in the nominator of (3.2.2.3) simplifies to∑
i

Api = Np
totAp = Np

totπa
2 = 25πNp

tot nm2, (3.2.2.5)

where Ntot is the total number of adsorbed particles. Thus, the number of
particles per unit area,

Np =
Np

tot

Atot

, (3.2.2.6)
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and the relative coverage, θp, are interrelated via the equation

Np = {(3.2.2.3)} =

∑
Api

Atot

= {(3.2.2.5)} =
NtotAp
Atot

⇔

⇔Np = Apθp ⇔ θp =
Np

Ap
(3.2.2.7)

⇒Np = 25πθp nm2 ⇔ θp =
Np

25π nm2

Naturally, there are some disadvantage with using the regression function
(3.2.2.1), rather than the set of equations in (3.2.2.2). The first of these,
for instance, suggests that the maximum surface coverage should always less
than the jamming limit, since

ap ≤ aeff
p ⇔

ap
aeff
p

≤ 1⇒ θmax
p ≤ θjam

p . (3.2.2.8)

This fact is, however, not taken into account by if the approximate formula,
(3.2.2.1), is directly applied. According to this expression, the coverage,
specifically, increases monotonically with the citrate concentration instead of
saturating at some limiting value. It is especially important to keep this in
mind when studying the diagrams in the sections 4.1 and 4.2, which show
the predicted number of adsorbed particles per unit area. In fact, the rela-
tion (3.2.2.7) can be used to estimate an upper limit for θp. Based on the
assumption that all of the adsorbed particles have the same physical size,
this yields the following result

lim
cCi→∞

Np ≤
θjam
p

Ap
(3.2.2.9)

⇒ lim
cCi→∞

Np ≤
0.547

25π
particles/nm2 ≈ 6964.620 particles/µm2.

If the influence of polydispersity could, somehow, have been taken into, a
higher value on this limit would have been obtained, however. Even so, any
predictions, which imply that Np > 6964.620 particles/µm2, are most proba-
bly flawed. In other words, any graphs, showing the coverage as a function of
the citrate concentration, should asymptotically approach a horizontal line,
such that Np(cCi) = {constant} ≈ 6964.620 particles/µm2, as cCi increases.

3.2.3 The COMSOL simulations

According to the introduction manual, COMSOL Multiphyisics R© has been
developed as a tool for simulating different types of model systems [27]. This,
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specifically software provides a graphical interface, which allows access to
powerful built-in routines for solving coupled physical problems in multiple
dimensions. In particular, these solvers, generally, implement different vari-
ants of the finite elemental method, or FEM, for this purpose. As is stated
in the same manual, one of the advantages with the COMSOL program is
that neither specific programming skills nor in depth knowledge of numer-
ics are required in order to achieve practically applicable results. Rather, a
reasonable solution should be obtainable given that the user can provides a
well-defined geometrical model, together with suitable boundary conditions.
The required input arguments, more precisely, include numerical values on
the model parameters, which are required in order to specify both the ge-
ometry as well as all of the relevant physical processes. Additionally, the
user must also choose a suitable mesh, which subdivides the domain into a
number of smaller segments. This allows the program to find approximate so-
lutions to the physical problems, defined by the user, by numerically solving
the governing differential equations at each node. Thereafter, the obtained
result can be processed in a number of different ways. The data can, for ex-
ample, be displayed in various types of three- or two-dimensional diagrams.
Moreover, it is possible to use the solutions to calculate related quantities,
such as the flux across a specific boundary.

As is suggest by the above discussion, COMSOL Multiphyisics R© can not be
successfully implemented unless a thorough analysis of the system of interest
has been performed. In the case of molecular transport, which represents the
main type of problem studied in this project, this includes determining the
diffusion coefficients of all chemical species. It is likely, however, that neither
the initially specified parameter values nor the numerical methods correspond
to the most optimal choices. Thus, it is advisable to first consider a relatively
rudimentary system for which comparable experimental data is readily avail-
able. Even without using the predefined optimisation routines, it should be
possible to significantly improve the accuracy of the model and increase the
efficiency of the solver by successively refining the input arguments while
studying the effects of these changes.

As was explained in section 3.1, the main aim of this project is to simulate the
diffusion of, charged, chemical species in one- and two-dimensional geome-
tries. Specifically, a model for the 1D case, which corresponds to the setup
detailed in section 3.1.1, was first developed. Though the aim was to even-
tually be able to use the same formalism to simulate the transport in more
complex geometries, it was deemed appropriate to allow for improvements of
the original formulation to be made beforehand. Still, the built-in modules
for solving this type of optimisation problem requires that the constraints,
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in this case the sought coverage profile, can somehow be quantified. At the
same time, arriving at a suitable expression for the coverage Np(x) as a func-
tion of the distance x, which could be provided as an input to the program
can be difficult. Simply simulating the system for various ionic strengths and
over relatively long time interval, therefore, seemed like a better, yet, less
sofisticated alternatives. Specifically, by plotting these results in appropri-
ate diagrams, which are found in the sections 4.1 and 4.2, conclusions could
be drawn as to how to choose the input arguments in order to achieve a,
sufficiently, good agreement between the predictions and the measurements.

Once the model parameters had been optimised, the next step was, as was
mentioned earlier, to turn to more complicated model systems. In particular,
the goal was to be able to predict how the concentration gradient in the
experimental setups described in section 3.1.2 would develop over time. The
discussion in section 4.2 will, moreover, reveal that such simulations were
not only used as references for the experimental measurements. Instead,
the COMSOL Multiphysics R© software was used repeatedly during the entire
development process, as was detailed in section 3.1.

The simulations of the experiments, described in sections 3.1.1 and 3.1.2,
were, more precisely, performed by implementing the “Transport of Diluted
Species” module for specific geometries. In the next sections, the COMSOL
Multiphysics R© graphical interface will be introduced in relatively general
terms. It shall be noted that of the physical interfaces, which each belong
to specific predefined module, have all been developed for tackling a cer-
tain type of problem. Though this means that the corresponding modelling
environments differ in many respects, it is neither practically feasible nor
appropriate to present all of them here. Still, it is worth mentioning that
extensive documentation, including introductions to each of the above men-
tioned modules as well as complete descriptions of all available features, is
available [27, 28].

The graphical interface.

According to the user manual for the “Chemical Engineering” module, the
“Transport of Diluted Species” interface, which is classified under the“Chemical
Species Transport” branch, “has the equations, boundary conditions, and rate
expression terms for modelling mass transport of diluted species in mixtures,
solutions and solids, solving for the species concentrations” [10]. Hence, the
software can use the built-in routines to calculate the individual concentra-
tions of multiple chemical species as a function of space and time in a geom-
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etry of arbitrary dimensionality, provided that certain physical parameters
have been specified. The requirement that the solution should be dilute, in
practice means that the concentration variables, solved for, must be at least
an order of magnitude lower than that of the solvent. As was explained al-
ready in section 2.1, three distinctive types of transport mechanisms, namely
diffusion, convection and migration, can be simultaneously simulated within
the framework of this model. Mathematically, the first of these phenomena
is described by Fick’s first, (2.1.1.1), and second, (2.1.1.3), laws, which are
discussed in section 2.1. The contributions from the latter two, meanwhile,
are taken into account through the inclusion of the third and fourth terms
on the left hand side of equation 2.1.1.4 respectively. Furthermore, the mass
balance equation must be formulated so as to take into account that the
transported species may take part in different types of chemical reactions.
The corresponding conversion rates are, therefore, included among the many
different input arguments, which must be specified in order for the program
to be able to solve transport problems of this type.

One of the key features of the 4.2 version of the COMSOL Multiphyisics R©

software, is the reworked desktop. In the general user manual, it is, specifi-
cally, stated that the main idea is that the user should be able to control all
aspects of the simulation with help of a limited number of different windows
[27]. As is suggested by the screen shot in figure 3.11, the “Model Builder”
tree is the most central part of the graphical interface since it allows access
to a number of distinctive nodes, each of which concerns a specific aspect
of the computer model. By left-clicking on one of the points in this list the
“Settings” window is activated and brings up a number of different options
that are associated with the chosen item. In this part of the desktop, the user
can both specify the required input arguments and to choose if the available
optional features should be activated or not. If the same node is right-clicked,
instead, the so called “context menu” appears, from which a number of dis-
tinctive actions can be selected. Though these menus represent, perhaps, the
most important part of the graphical interface, it shall also be noted that
each is unique and may even change depending on the nature of the model
environment. The entire modelling process is, in fact, controlled by choosing
which of the features, listed in the “context menus”, that the program shall
implement during the corresponding part of the simulation.

For the sake of clarity only a handful of the available options associated
with the different nodes in the “Model Tree” are going to be discussed in
this section. For the example at hand at least, the default settings can,
therefore, be left unchanged in all fields in the “Settings” windows that are
not specifically mentioned.
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Model Builder window with Model Tree Messages, Progress & Log windows

Main Menu
Main Toolbar

Settings window Graphics window

Figure 3.11: Screen shot of the COMSOL Multiphyisics R© desktop, from which some of
the key windows and menus can be distinguished.
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Chapter 4

Results & Conclusions

In this chapter, the results of the experimental procedures and computer
simulations described in chapter 3 will be both presented, compared and
discussed. For convenience this discussion will be divided into two parts,
which focus on the experimental setups developed for the purpose of achieving
one-dimensional and radially symmetric particle gradients respectively. In
particular, the former case will the subject of the first subsection while the
second deals with the latter.

4.1 Measured and simulated 1D gradient

Here, the predicted and measured particle coverage, related to the experi-
mental procedure described in section 3.1.1, will be presented. The former,
calculated, results are, specifically, based on both the analytical solution
to the 1D diffusion problem and the COMSOL Multiphysics R© simulations,
which are detailed in sections 2.2 and 3.2 respectively. In order to determine
the accuracy of these estimates, they will be compared with experimental
data, in the form of some of the measurements presented by Lundgren in his
PhD thesis [5]. As should be apparent from section 2.2, a number of key
parameters exist, which can be used to characterise any given model system.
In terms of these, the experimental procedure at hand can be described as
follows:

1. A silicon substrate, which has been covered, on one side, first with
a thin gold film followed by an octanedithiol SAM, is lowered into a
cuvette.
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2. The vessel is filled with a c∞ = 50µM and pH of 4 citrate solution, in
which 10 nm gold nanoparticles had been suspended.

3. A c0 = 1 M buffer, with the same pH, is injected at the bottom of the
cuvette, up to a height lh = 1 cm.

4. The citrate is allowed to diffuse, from concentrated to the dilute region,
during t = 90 min.

The diagram in figure 4.1 shows the two different analytical solutions to the
one-dimensional diffusion problem, which corresponds to the experimental
procedure described in section 3.1.1, derived in the sections 2.2.1 and 2.2.2.
Specifically, the red dashed curve represents the simpler of the two models,
(2.2.1.34), while the black solid graph corresponds to the more complex case,
(2.2.2.16). The results from the computer simulation of the same system,
meanwhile, is displayed by the blue dot-dash line. As can be seen from
this diagram, there is a relatively good correspondence between all three
predictions. At the lower half of the interval, −11 cm ≤ x ≤ 0 cm, the solid
black and blue dot-dash curves are almost indistinguishable thanks to the
fact the same boundary condition,

∂

∂x
cCi(x,t)

∣∣
x=−lh=−1 cm

= 0,

is implemented in both cases. Concomitantly, it can be concluded, from a
comparison with the red dashed curve, that the less complex analytically
solvable problem yield almost the same result, for x < 0, even though it is
assumed that cCi(x,t) −−−−−→

x→−+∞
c0 in this case. Yet, it is in the most relevant

part of the interval, 0 cm < x < 1 cm, where x is the distance from the
interface between the concentrated and more dilute buffer solution, that the
largest differences can be found.

Diagram 4.1 (b), which gives a more detailed view of the subinterval 0.4 cm <
x < 0.7 cm, reveals that the calculations based on the, relatively, simple
analytical solution shows a stronger deviation from the predictions of the
more accurate models as x increases. This should be expected, however,
since the main difference between the three distinctive models is the boundary
condition for large values on x. Specifically, the simplest model relies on the
assumption that cCi(x,t) −−−−→

x→+∞
0, while setting cCi(x,t) −−−−→

x→+∞
c∞ yields the

more complex expression. The COMSOL Multiphysics R© calculations, on the
other hand, is based on a physically sounder condition, namely that there is
no flux of citrate ions at the upper surface of the suspension, 1 cm above the
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Figure 4.1: Diagrams that display the theoretical predictions of the citrate concentration,
which can be achieved with the experimental setup described in section 3.1.1. Specifically,
the red dashed and black solid curves respectively represent the analytical solutions to
simpler and more complex of two mathematical models presented in section 2.2. The blue
dot-dash line, on the other hand, shows the result of the simulations with the COMSOL
Multiphysics R© software. Physically, these graphs represents the particle coverage after
90 min given that the initial citrate concentrations equalled 1 M and 50µM in the lower
concentrated buffer and the upper dilute suspension respectively. Part (a), in particular,
shows the predicted number of adsorbed nanoparticles per unit area, for−1 cm ≤ x ≤ 1 cm,
where x is the distance from the liquid-liquid interface. As can be seen from diagram (b)
the discrepancy between the blue dot-dashed and black solid curves is the largest in the
intermediate region 0.4 cm ≤ x ≤ 0.7 cm.

interface,

∂

∂x
cCi(x,t)

∣∣
x=1 cm

= 0.

Therefore, the predictions will deviate the most from one another for interme-
diate values on x. As can be seen form part (b) of figure 4.1, the discrepancy
is, indeed, the largest for 0.4 cm ≤ x ≤ 0.7 cm. Finally, it shall be noted that
the initial condition are more or less similar for all three models, namely that
the concentration profile, at t = 0, is given by a step function,

cCi(x,0) =

{
c0, x ≤ 0

c∞, x > 0
,

though with c∞ = 0 for the simplest case.

The accuracy of the predictions, presented earlier, can only be assessed by
comparing them with experimental data, here in the form of the measure-
ments provided by the supervisor for this project. These have, more precisely,
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been conducted in accordance with the procedure described in section 3.1.1,
as part of a study by Lundgren and colleges [20]. If plotted together with the
coverage profiles that correspond to the concentration gradients displayed in
figure 4.1, the diagram in figure 4.2 results. Though the predicted curves
deviate from the measurements, which have been marked by asterisks, the
discrepancy is generally relatively small. This indicates that the solutions,
obtained by solving the, more complex, problem analytically and with help of
the COMSOL Multiphysics simulations respectively, capture the most essen-
tial physics that are involved in this process. It is particularly encouraging
that the slopes of the corresponding curves, which give a measure of the
sharpness of the gradient, are almost the same, especially for x & 0.5 cm.
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Figure 4.2: Diagram that displays the nanoparticle coverage, as a function of the distance,
x, from the liquid-liquid interface, which should be obtained with the, one-dimensional,
experimental setup described in section 3.1.1. Specifically, the red dashed and black solid
curve respectively represent the analytical solutions to simpler and more complex of two
mathematical models described in section 2.2. The blue dot-dash line, on the other hand,
shows the result of the simulations with the COMSOL Multiphysics R© software. Com-
parable experimental data, which is represented by the green asterisks, have also been
included. Specifically, these results give the particle coverage after 30 min given that the
citrate concentration initially equalled 1 M and 50µM in the lower concentrated buffer and
the upper dilute suspension respectively.

As can be seen from figure (4.2), experimental data is only available for
x & 0.3 cm, mainly because the measurements becomes less accurate as the
distance from the interface decreases. This unreliability can, in turn, be
traced back to the fact that salt concentration is relatively large close to the
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concentrated buffer.Since the chance for coagulation increases with the ionic
strength of the electrolyte, aggregates are more likely to form and become
deposited on the target surface in regions where the citrate concentration
is higher. Since these congregations, of nanoparticles, are more strongly af-
fected by the gravitational field, their formation can lead to sedimentation,
which, due to drag, gives rise to convective currents. Because the resulting
bulk fluid motion will carry with citrate ions with it, the transport of these
species will no longer be diffusion-governed close to x = 0, as the theoretical
models assume. On relatively short time-scales, however, such effects should
be limited to a relatively small region around x = 0, as figure 4.3 implies.
According to this diagram, which was obtained by evaluating (2.2.2.16) for
c0 = 1 M and c∞ = 50µM at various points in time, the coverage profile
should remain very sharp several hours after the diffusion process was initi-
ated.
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Figure 4.3: Diagram that shows the nanopartcle coverage predicted by the mathematical
model of the one-dimensional diffusion problem described in section (2.2.2). Specifically,
the graphs have been obtained by plotting the solution (2.2.2.16), as a function of the
distance x from the bottom of the substrate, at certain times 0 min ≤ t ≤ 150 min] min
after the concentrated buffer solution was introduced into the system. When evaluating
this expression it has, furthermore, been assumed that the initial concentrations of citrate
ions in the lower concentrated and the upper dilute phases were 1 M and 50µM respectively.
Additionally, the asterisks correspond to the measured coverage after 30 min given that
the citrate concentration initially equalled 1 M and 50µM in the lower concentrated buffer
and the upper dilute suspension respectively.
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Though the theoretical calculations agrees relatively well with the experi-
mental data, there still exists much room for improvements, as can be seen
from figure 4.2. In particular, it may, depending on the specific model used,
be possible to obtain a better fit by tuning certain parameters. While it is
difficult to find convincing arguments for changing the diffusion coefficient,
for the citrate ions, from the value DCi = 6.904 · 10−6 cm2/s, found in liter-
ature [29]. Yet, it shall be noted that this numerical value is, strictly, only
applicable at infinite dilution, which is clearly not a good approximation
across the entirety of the relevant interval −1 cm ≤ x ≤ 1 cm [29]. Altering
the citrate concentration in the Au NP suspension is less controversial, how-
ever, since this entity was not accurately measured during the experiments.
Yet, the results only depends relatively weakly on this parameter. As can
be seen from figure 4.4, changing the value on c∞ from 10µM to 110µM
only has a noticeable effect on the predictions in the region farthest from the
interface. According to figure 4.5, one can, however, significantly shift the
coverage profile without altering the slope, by varying the strength of the
concentrated buffer. Even if it should not be regarded as a fitting parameter,
it is interesting to study the dependence of the coverage on this concentration
for the purpose of discerning how the experiment should be set up in order
to achieve a particular result. Still, it is not advisable to change the buffer
concentration arbitrarily, since the likelihood of aggregation increases with
the ionic strength, as was mentioned earlier.

From the above discussion, is apparent that the predictions of the most accu-
rate, and analytically solvable, formulation of the one-dimensional diffusion
problem agrees remarkably well with the COMSOL Multiphysics R© simula-
tions. For this reason, it might seem unnecessarily complicated to implement
the latter program for modelling the physical situation at hand. It should, in
particular, be simpler to use the analytical solution, (2.2.2.15), to determine
how the values on the process parameters should be chosen in order to ob-
tain a specific coverage profile. Furthermore, this approach is advantageous
since the named formula can be evaluated relatively easily, even without the
aid of a computer. Specifically, the right hand side of equation (2.2.2.15) is
nothing but a weighted sum of error functions, which are tabulated, for a
range of different arguments, in most mathematical handbooks, such as the
one written by R̊ade and Westergren [13].

As will be further discussed in section 4.5, there are reasons to believe that it
should be beneficial to increase the level of complexity of the physical model,
on which the predictions presented above have been based. In particular, the
problem is, in reality, not confined to the transport of a single type of, neu-
tral, solute molecules within an infinitely dilute solution. Rather, one should
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Figure 4.4: Diagram showing the nanoparticle coverage predicted by the mathematical
model of the one-dimensional diffusion problem described in section (2.2.2). Specifically,
the graphs have been obtained by plotting the solution (2.2.2.16), as a function of the
distance x from the bottom of the substrate, 30 min after the concentrated buffer solution
was introduced into the system. When evaluating this expression it has, furthermore, been
assumed that cCi(x,0) = c0 = 1 M for x < 0, while the initial buffer concentration in the
region x > 0 was allowed to vary from 10µM to 110µM. These results should be compared
with the measured coverage after 30 min for an initial citrate concentration of 1 M and
50µM in the lower concentrated buffer and the upper dilute suspension respectively, which
corresponds to the data points marked by asterisks.

take into account that the system contains a relatively complex mixture of
different ions, which are interconverted via multiple equilibrium reactions.
As is further explained in section (4.5.2), the situation is further complicated
by the fact that the molecular transport is affected by the electrostatic in-
teractions between the charged species. If the effects of such phenomena are
taken into account, it is no longer possible to solve the problem analytically,
however, and therefore numerical methods would have to be implemented.
In other words, it might, initially, seem advantageous to make use of the
COMSOL Multiphysics R© software. As is further explained in section 4.5.2,
there, specifically, exists several different modules, which are supposedly es-
pecially well suited for simulating systems of the type considered here. The
implementation, unfortunately, proved to be more difficult than had been
anticipated due a number of complicating factors, which are discussed in
section 4.4.2.
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Figure 4.5: Diagram that shows the nanopartcle coverage predicted by the mathematical
model of the one-dimensional diffusion problem described in section (2.2.2). Specifically,
the graphs have been obtained by plotting the solution (2.2.2.16), as a function of the
distance x from the bottom of the substrate, 30 min after the concentrated buffer solution
was introduced into the system. When evaluating this expression it has, furthermore,
been assumed that cCi(x,0) = c0 = 1 M in the region x > 0, while the initial buffer
concentration, for x < 0, was allowed to take on a range of different values, in the interval
0.5 M ≤ c0 ≤ 3.0 M. The asterisks, meanwhile, correspond to the measured coverage after
30 min given that the citrate concentration initially equalled 1 M and 50µM in the lower
concentrated buffer and the upper dilute suspension respectively.

4.2 Measured and simulated radially symmet-

ric gradients.

Due to the relative success of the attempts to model the one-dimensional dif-
fusion process, the natural continuation of this study was to consider a more
complex geometry. As was explained in section 1, the aim was, specifically,
to develop an experimental setup, with which a radially symmetric nanopar-
ticle gradient could be deposited on a flat substrate. From a modelling point
of view, this problem is, thus, effectively two-dimensional in nature. The
relative complexity of the geometries that were considered as part of this
design process, which is detailed in section 3.1.2, means that it not possible
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to solve these problems analytically. Instead, COMSOL Multiphysics R© was
used to simulate the diffusion within these systems and was repeatedly im-
plemented during the development process. In particular, these numerical
calculations made it possible to continuously assess how specific changes to
the setup would affect the outcome of the deposition process. In this sub-
section, the results of these computations will be presented along with the
conclusions that can be drawn from them as well as how they affected the
choices made during the design process. Note, however, that this discussion,
which is found in the first subsection, will not be as detailed as the one in
section 3.1.2. In fact, the second part of this section is exclusively devoted to
the predicted and measured coverage profiles that are related to the is final
experimental setup, which is schematically depicted in figure 3.5. Finally, it
shall be noted that for the calculations, presented below, are based on the
assumption that DCi = 0.623 · 10−5 cm2/s, which, according to the “CRC
Handbook of Chemistry and Physics”, is the diffusion coefficient for citrate
ions in a pure and dilute aqueous solution [30].

Simulations Performed During the Design Process.

While no efforts were made to simulate the original design, which is schemat-
ically depicted in figure 3.3, the is not true for the second geometry, found in
part (a) of figure 3.4. Rather, a computer model for this system was defined
and simulated with help of the COMSOL Multiphysics R© software. Since the
primary aim with these calculations was to assess whether the specific ge-
ometry was suitable for achieving radially symmetric nanoparticle gradients,
it was imperative that the design parameters were chosen within reasonable
limits. Due to the fact that changing the initial citrate concentration, in the
Au NP suspension, had little effect on the final gradient, as the results pre-
sented in section 4.1 showed, c∞ was set equal to the 50µM. The supervisor,
moreover, maintained that the concentration of the buffer solution should not
exceed 3 M. This is, more precisely, due to the fact that a, too, high ionic
strength adversely affect the stability of the suspension, as is mentioned in
section 4.1. He, furthermore, advised against letting adsorption process pro-
ceed for more than three hours, for the sake of avoiding disturbances related
to the aggregates that will, inevitably, form.

When designing the experimental setup for achieving radially symmetric
nanoparticle gradients, one more process parameter have to be consider com-
pared to the one-dimensional case. Specifically, the distance, ∆z, between
the liquid-liquid interface and the gold surface. Due to the strong distance
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dependence of the coverage, which is implied by both the predicted and mea-
sured coverage profiles displayed in figure 4.2. Still, for the geometries that
are currently being considered, this parameter can not be regarded as being
tunable. In fact, the position of the substrate will be decided solely by the
relation between its size and the radius of the funnel.

As was already mentioned in section 3.1.2, the second version of the experi-
mental setup, depicted in figure 3.4 (a), was never realised since it was proven
inadequate by the computer simulations. This is apparent from figure 4.6,
which displays the predicted coverage as a function of the radial distance r
for 2 days ≤ t ≤ 12 days, c0 ≤ 3 M and c∞ ≤ 3 M under the assumption that
the substrate is placed at the bottom of the funnel. Specifically, the diagram
shows that distance from gold surface to the interface between the concen-
trated buffer and the suspension, ∆z ≈ 80.4 mm, is to large for a high enough
particle coverage to be obtained within a reasonable time frame. According
to the supervisor for this project, the patterned substrates are, in fact, only
of practical use if the coverage profiles are of the same order of magnitude as
in the one-dimensional case. Given the experimental data presented in figure
4.2, it can, thus, be concluded that only setups, for which the coverage is
on the order of 1000 particles/µm2, can be regarded as potential candidates.
Clearly, this demand is not satisfied by the design that is currently being
considered. Because the available substrates were, moreover, smaller than
the diameter of the funnel, at its narrowest point, this component was not
included in the next version of the setup.

Due to geometrical constraints, the separation between the concentrated
buffer source and the substrate could not be chosen arbitrarily, even in the
absence of the funnel. Instead, the latter was assumed to be positioned just
above the opening that leads to the stop cock, so that ∆z ≈ 10.4 mm. The
corresponding COMSOL simulations, meanwhile, resulted in two data sets,
(r,θ(r)), which are plotted in figures 4.7 (a) and (b). The latter, in particular,
shows the predicted coverage after 3 h for a range of different buffer concen-
trations, while the former displays the same type of profile after different
time periods, given that c0 = 3 M. Based on the earlier discussion, both
these diagrams seem to suggest that the best experimental results should be
obtained by using the limiting values on these two parameters.

Before ordering the specific parts, from the experimental setup could be as-
sembled, it was deemed necessary to perform one final set of simulations,
of the diffusion process. Specifically, these were performed for a range of
different values on ∆z, while c∞, c0 and t were kept constant and equal to
50 mM, 3 M and 3 h respectively. The specific aim of these calculations was
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Figure 4.6: Diagram that shows the nanopartcle coverage predicted by the COMSOL
Multiphysics R© model of the radially symmetric diffusion problem that represents the ex-
perimental setup depicted in figure 3.4. This solution, specifically, applies to the case
when a substrate was placed at bottom of the funnel, at a distance ∼ 80.4 mm from the
interface between the suspension and the concentrated buffer. Additionally, the initial cit-
rate concentration was assumed to equal 50µM and 3 M in the former and latter solution,
respectively. Each of the graph, moreover, corresponds to a different time in the interval
2 days ≤ t ≤ 12 days.

to assess if it would be practical to tune the coverage profile, and thereby
optimize the final result, by changing the location of the gold surface. As
the corresponding graphs, which are found in figure 4.8, reveals, this should
indeed be possible, provided that a suitable method for positioning the sub-
strate could be developed. It shall, furthermore, be noted that this diagram,
in agreement with figure 4.2, indicate that the coverage varies very strongly
with the separation. It should, therefore, be highly desirable to choose a
design , for which this parameter can be changed with relative ease and good
accuracy. As the discussion in section 4.4 will reveal, however, developing
such a setup is not unproblematic.

As was indicated by the presentation in section 3.1.2, the designs described so
far do not correspond to the final versions, which are schematically depicted
in figure 3.5. Moreover, all of the nanoparticle covered substrates studied in
this project were, in fact, prepared with help of either of these two setups.
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Figure 4.7: Diagram that shows the nanopartcle coverage predicted by the COMSOL
Multiphysics R© model of the radially symmetric diffusion problem that represents the
experimental setup depicted in figure 3.4. Specifically, the graphs in part (a) and (b)
have been obtained by plotting the solution as a function of the radial distance r. It
has, moreover, been assumed, in both cases, that the interface-to-substrate distance
equalled ∼ 10.4 mm and the initial citrate concentration in the nanoparticle suspension
was 50µM. Furthermore, each of the curves in (a) depicts the coverage profile different
times 0 h ≤ t ≤ 3 h, provided that cCi(r,z,0) = c0 = 3 M in the concentrated buffer solution
after the liquid-liquid interface between the concentrated buffer and the Au NP suspension
was formed. Diagram (b), however, has been obtained by plotting the predicted coverage
for various values on the latter parameter, in the interval 0.5 M ≤ c0 ≤ 3 M, after t = 3 h.

Yet, prior to the fabrication, a set of simulations were performed in order
to decide how long the adsorption process should be allowed to continue,
given the distance between the substrate and the interface. The diagrams
in figure 4.9, specifically, show the predicted coverage for various values on
∆z and t provided that c0 = 3 M and c∞ = 50µM. If these diagrams are
compared with the one-dimensional profile depicted in figure 4.2, it can be
concluded that a reasonable coverage should result if the tube is positioned
3 mm from the gold surface and the deposition is interrupted after 15 minutes.
In figure 4.10 comparable results are presented for an alternative version of
the design, for which the hole was wider, 2 mm, and the interface-to-substrate
distance larger, 7.5 mm. As should be expected, a longer time period, namely
60 min, would be required in order for a comparable number of particles to
be adsorbed per unit area.
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Figure 4.8: Diagram that shows the nanoparticles per square micrometer as a function
of the radial distance r, predicted by the COMSOL Multiphysics R© model of the radially
symmetric experimental setup sketched in figure 3.4. The different curves, specifically,
depicts the coverage profile after t = 3 h, given that the substrate was placed at various
distances 8.4 mm . ∆z . 14.4 mm from the interface between the suspension and the
concentrated buffer. Additionally, the initial citrate concentration was assumed to equal
50µM and 3 M in the former and latter solution, respectively.

Results Related to the Final Experimental Setup.

Before any measurements could be performed, a number of Au NP covered
substrates had to prepared, by following the procedure described at the end
of section 3.1.2. This process, specifically, yielded two suitable samples. The
experimental conditions were, moreover, chosen based on the calculations de-
scribed earlier. In particular, the two fabrication processes, which correspond
to the setups depicted in part (a) and (b) of figure 3.5, were based on the
parameter sets

{t = 15 min, c0 = 3 M, c∞ = 50µM, atube = 1 mm, ∆z = 3 mm} , (4.2.0.1)

and

{t = 60 min, c0 = 3 M, c∞ = 50µM, atube = 2 mm, ∆z = 7.5 mm} ,
(4.2.0.2)
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Figure 4.9: Diagram that shows the nanoparticles per square micrometer as a function
of the radial distance r, predicted by the COMSOL Multiphysics R© model of the radially
symmetric experimental setup sketched in figure 3.5 (a). The different diagrams, specifi-
cally, shows the coverage profile after various times t, given that the substrate was placed
at a distance of, (a), 2 mm, (b), 3 mm, (c), 4 mm and, (d), 5 mm from the interface between
the suspension and the concentrated buffer. Additionally, the initial citrate concentration
was assumed to equal 50µM and 3 M in the former and latter solution, respectively.

respectively. Additionally, the gold surfaces were covered by a monolayer of
dithiols in the former case and a cysteamine SAM in the latter. The same
holds true for the pair of references, which were, concomitantly, fabricated by
immersing a gold covered piece of silicon in 10 mM citrate buffers, in which
certain amounts of Au NPs had been suspended.
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Figure 4.10: Diagram that shows the nanoparticles per square micrometer as a function
of the radial distance r, predicted by the COMSOL Multiphysics R© model of the radially
symmetric experimental setup sketched in figure 3.5 (b). The different curves, specifically,
depicts the coverage profile after various times 25 min ≤ t ≤ 150 min, given that the
substrate was placed at distance of 7.5 mm from the interface between the suspension and
the concentrated buffer. Additionally, the initial citrate concentration was assumed to
equal 50µM and 3 M in the former and latter solution, respectively.

Once prepared, all of the samples were studied with help of a scanning elec-
tron microscope, as was discussed in section 3.2. Since the references ought
to be uniformly covered by nanoparticles, it was deemed sufficient to image
them at a single location only. The photograph, shown in figure 3.7, in par-
ticular, depicts a reference surface that had, previously, been functionalised
with cysteamine molecules. As can be seen from this figure, the Au NPs
seem to have been deposited fairly evenly on the substrate and seldom as
part of larger aggregates. Consequently, the interparticle distances should be
a relatively narrowly distributed, around some average value. What is more,
these images suggest that the same holds true for the sizes of the individual
colloids.

With help of the ImageJ R© software, it is possible to determine the particle
coverage from photographs of the patterned surfaces. For the case of the
references, both of the alternative methods described in section 3.2.1, were,
in fact, implemented for this purpose. The result of this analysis is sum-
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marised in table(4.2.0.3). Though the exact value on θp is not particularly
important, for these samples at least, it is worth noting that the two distinc-
tive approaches, for calculating the number of particles, yield very similar
results. For this reason, only the more straightforward of the two, which
involved converting the photo into an black and white image and then count-
ing the number of dark spots, was used to analyse the other samples. It
can, moreover, be interesting to compare these measurements with coverage
predicted by the RSA model. In section 3.2.2, it was, specifically, shown that
the dimensionless number θjam

p = 0.547, which gives the maximum percent-
age of the surface that can be covered by hard sphere particles, corresponds
to a particle coverage of N jam

p ≈ 6964.620 particles/µm2. According to the
same section, the effect of the double layer interaction can be taken into ac-
count with help of the approximate relation, 3.2.2.1, between the coverage
Np and the citrate concentration cCi. Since cCi = 10 mM = 10−2 M during
the preparation of the references, the maximal coverage should, based on this
expression, be given by

{(3.2.2.1)} ⇒N ref
p ≈ 37815 · c0.5291

Ci{
cCi = 10−2 M

}
⇒Np ≈ 37815 · (10−2)0.5291

⇒N ref
p ≈ 3307.23 particles/µm2

If the ImageJ R© is used to estimate particle coverage from the SEM image in
figure 3.7, with help of the methods described in section 3.2.1, the results are

N ref
p ≈

{
1306.06 particles/µm2, with Analyze Particles

1466.81 particles/µm2, with Find Maxima
(4.2.0.3)

In order to assess the effectiveness of the final version of the experimental
procedure, the substrates, thus prepared, had to be studied more carefully
than the references. It was, hence, deemed appropriate to image each of
the surfaces at several different positions. These points were, more precisely,
chosen so that they trace out a pair of straight lines, which joined the mid-
points of the opposite sides of the, rectangular, substrates. The cysteamine
functionalised substrate, schematically depicted in diagram 4.11 (a), was pho-
tographed, roughly, along the straight lines L1234 and L2341, which join the
opposite sides of the substrates. For the surface covered with a dithiol SAM,
images were only recorded along a line parallel to the former, as can be seen
from part (b) of the same figure. Given the coordinates for the corners of
the substrates, which, as can be seen from figure 4.11, have been labelled
from 1 to 4, it was possible to determine the exact locations that had been
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Figure 4.11: Diagrams showing the positions on the, (a), cysteamine and, (b), dithiol
covered surfaces that were imaged with an SEM. Specifically, the locations that lie close
to the lines L1234 and L2341 correspond to the solid squares and diamonds, respectively.
The projections of these points, meanwhile, have been marked with to circles, in the former
case, and triangles, in the latter.

photographed. Specifically, the points distributed along the lengths of L1234

and L2341 have been marked with solid squares and diamonds, respectively.

In order to be able to draw conclusions about the agreement between the pre-
dictions and the experimental data, the measured coverage, at each point,
had to be associated with a specific distance. Moreover, this separation had
to be comparable with the radial coordinate associated with the calculated
value on Np. For this reason, the projections of the positions of the images
on the lines L1234 and L2341 were determined. Specifically, these are repre-
sented by the white-filled circles and triangles in figure 4.11, respectively.
Thereafter, the measured NP coverage, Nmeas

p , was plotted as a function of

the distance dproj
I between these projections and the midpoint. The reason

for this procedure is that the experimental setups are radially symmetric,
which means that the nanoparticle gradients should not only have a similar
symmetry but also be centred around the middle of the substrates. The cor-
responding graphs can be found in the two diagrams in figure 4.12, together
with the results of the COMSOL Multiphyisics R© simulations. In particular,
the curves shown in diagrams (a) and (b) represent the coverage profiles on
the cysteamine and dithiol coated substrates respectively.

The most immediate conclusion that can be drawn from the figures 4.12
(a) and 4.12 (b) is that the predictions and the measurements differ quite
substantially. Even so, the discrepancy is less significant in the former of
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Figure 4.12: Diagram showing the nanoparticles per square micrometer as a function of the
radial distance r. Specifically, the dashed curves, in parts (a) and (b), depicts the profiles
predicted by the COMSOL Multiphysics R© models of the radially symmetric experimental
setups sketched in the figures 3.5 (a) and 3.5 (b), respectively. Comparable experimental
data, in the form of ImageJ R© estimates of the particle coverage within the imaged areas of
the sample surfaces, have also been included. In particular, the solid squares and diamonds
correspond to measurements at the locations, marked with the same symbols, displayed in
figure 4.11. Note that each such point can, explicitly, be written as (dprojI ,Nmeas

p ). Here,

dprojI is the distance between the projection of the position of the image and the midpoint
on the substrate, while Nmeas

p is the coverage estimated from that photograph.

the two cases. Though this may be a matter of coincidence, it can also
be due to the fact that the two samples were covered by different types of
SAMs. In particular, these were some issues related to the functionalisation
of these surfaces, which might have affected the outcome of the experiments.
These problems will be further discussed in section 4.4.3, together with other
challenges associated with the preparation and measurement procedures.

In spite of the inconsistencies mentioned above, the measured coverage does
seems to indicate that some kind of radial particle distribution has devel-
oped on the substrates. It is especially encouraging that the nanoparticles
have, most prominently, been adsorbed close to the middle of the substrate.
Still, the maximum appears to be shifted from the exact centre. Concomi-
tantly, a number of different sources for the relatively large fluctuations, in
the measured number of particles per square micrometer, can be identified.
One possible explanation could be the inexact nature of the image analysis.
Specifically, it is generally true that the best estimate of the coverage is ob-
tained by counting all the particles by hand rather than, as in this project,
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relying on approximate schemes, such as the one detailed in section 3.2.1.
There are reasons to believe that the resulting error was relatively small in
this case. As the results in (4.2.0.3), for instance, show, the more intricate
analysis technique, described in the same section, yielded almost the same
result as the less involved method, when applied to the image of the reference
sample depicted in figure 3.7.

The non-uniform nature of the nanoparticle coating, could also have influ-
enced the measurements. Once again, the most probable cause is that the
quality of the SAMs, covering the gold surfaces, was not of sufficiently high
quality. As was mentioned earlier, this issue will be addressed in section
4.4.3. A third type of effect that might, at least partially, explain the lack
of agreement between the computer simulations and the experimentally ob-
tained data is the occurrence of additional transport mechanisms, which may
have influenced the diffusion process. Examples of such phenomena, which
have not been included in the current theoretical model, shall be discussed
in the sections 4.4.1 and 4.5. Concomitantly, suggestions will be given with
regards to how these aspects can be taken into account.
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4.3 General Conclusions

Based on the results presented in the sections 4.1 and 4.2, compared with
the goals outlined in section 1, it is clear that the main aims of this project
has been achieved. To be specific, the diagram in figure 4.2 indicates that
the mathematical models of the one-dimensional molecular diffusion prob-
lem, indeed, capture the basic features of the physical situation, described
in section 3.1.1. It should, therefore, be correct to assume that the main
driving force for the transport of the citrate is the difference in concentration
between the concentrated and dilute phases. The same result, furthermore,
suggests that the net motion of these ions is not significantly affected ei-
ther by the presence of the other electrolytes, which are also diffusing, or
the equilibrium reactions that these participate in. It, thus, appears as if
the diffusion coefficient for this species, found in literature, to some extent
take the presence of these complicating factors into account. In other words,
the approximation DCi ≈ 6.904 · 10−5 cm2/s, which is strictly only applicable
at infinite dilution, can be regarded as an effective value on this, material,
parameter. Additionally, the relatively good agreement, between the calcu-
lations and the measurements, implies that the RSA model is sufficient for
explaining the adsorption processes considered in this project. In particular,
by using the DLVO theory to calculate an effective particle radius, relatively
accurate predictions of the coverage that results from the deposition of, bare,
gold nanoparticles on samples coated with cysteamine or dithiol SAMs, can
be obtained.

As was explained in sections 3.1.2 and 4.2, the chosen physical model was
successfully applied to develop an experimental setup, which was intended to
be used for covering the gold coated face of a single silicon substrates with
a radially symmetric Au NP gradient. In accordance with the original plan,
the COMSOL Multiphysics R© proved to be an important tool for deciding the
dimensions of the geometry. These computer simulations, more precisely,
allowed the design parameters to be chosen, so that a significant coverage
would be obtained within a convenient time frame without having to use an
unreasonably high buffer concentration. Yet, this part of the project took
longer time to complete than had initially been expected, partially due to
the various problems that were encountered, which are detailed in section
4.4.3. As a result, the experimental studies were delayed, which together
with the issues involving the substrate fabrication meant that only a limited
the number of experiments could be performed.

While the correspondence between the predicted and measured coverage was
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far from perfect, as figure 4.12 clearly shows, it is also apparent, from the
same diagrams, that the obtained coverage profiles have at least some radial
dependence. This result is, in fact, sufficiently good to be regarded as a proof
of concept. It should, in other words, be possible to obtain substrates coated
with radially symmetric nanoparticle gradient using an experimental setup
similar to the one sketched in figure 3.5. Still, many aspects of this study
could have been improved, as the discussions in sections 4.4 and 4.5 show.
Several of these issues should and can, however, be resolved by continuing
the research initiated in this project.
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4.4 Model-, Simulation- and Experiment-Related

Challenges

In this section, the key challenges related to the mathematical modelling, the
simulations and the experiments, that were encountered during the course of
the project, will be discussed. For the sake of convenience, the issues specific
to each of the distinctive parts of this study will be presented separately,
namely in the subsections 4.4.1, 4.4.2 and 4.4.3 respectively. As will become
apparent, the possible solutions to these problems, which have not been tested
during this project, will only be briefly mentioned. In some cases, however, a
more detailed description have been included in section 4.5, which specifically
details how the present study could be improved or extended through future
research.

4.4.1 Challenges during Model Development

The development of the mathematical models, which represent the physical
situations studied in this project, was, in general, relatively straightforward.
As was discussed in section 2.1, the diffusions of the citrate ions, which were
treated as a single uncharged species, was assumed to be the only transport
phenomena that had to be taken into account. Though this conjecture greatly
simplifies the modelling process, to the extent that analytical solutions can
be derived for the 1D case, it also limits the accuracy of the correspond-
ing predictions. Indeed, this is apparent from the discrepancy between the
computed and experimentally determined surface coverage, indicated by the
figure 4.2. Even though it is relatively easy to distinguish possible causes for
this lack of agreement, the continued discussion will reveals that it is more
challenging to compensate for them.

From the very beginning, it shall be noted that the assumption that the
entire transport process can be reduced to the diffusion of single molecular
species is flawed, in several respects. Firstly, all of the ions that make up the
electrolyte, namely H3Ci, H2Ci–, HCi2–, Ci3– as well as H+ and Na+, will, in
reality, simultaneously diffuse through the system. Since each of the ions will
do so at different rated, determined by the corresponding diffusion coefficient,
a charge separation should, theoretically, result. This will, in turn, give rise to
electric fields, directed so as to restore the, electrically neutral, equilibrium
state. Since any charged particle, under the influence of a finite potential
gradient, will tend to migrate so as to minimise their free energy, the motions
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of the distinctive ions will become coupled. In order to take such phenomena
into account, one, usually, applies the so called Nernst-Plancks equations,
which will be further discussed in section 4.5.2. Another type of phenomena,
which may link the concentrations of the distinctive species in a buffer, are
different chemical reactions. Specifically, all solutes, except for the sodium
ions, are, in this case, being continuously interconverted through different
protonation reactions. Even though this coupling mechanism, together with
the one mentioned earlier, severely complicates the mathematical modelling,
there exist ways to take them both into account, as the discussion in section
4.5.2 will reveal.

Even in the absence of a bulk flow, across the exterior boundaries, convective
currents may still be present within the system. As was mentioned already
in section 3.1.2, the density of, on one hand, the concentrated citrate buffer
and, on the other, the nanoparticle suspension differ quite substantial. Due
to the fact that such gradients represent some of the principle driving forces
for bulk fluid motion, a net flow of liquid should, from a theoretical point
of view, arise immediately after the two phases come into contact. As was
discovered during the experiments, and further discussed in sections 3.1.2 and
4.4.3, it is therefore not practical to supply the concentrated citrate solution
from above. Consequently, the buffer was supplied from underneath the,
less dense, nanoparticle suspension in all but one of the experimental setups
described in section 3.1.2.

Another possible source for convective currents is the drag force associated
with the movements of individual gold nanoparticles. Provided the particle
distribution remains relatively uniform this motion is of Brownian origin, no
net effect on the molecular transport should be expected. In the systems
at hand, however, there ought to be a tendency for the particles to sink
into the, initially, pure buffer, not only due to gravity but also because of
the substantial concentration difference. Moreover, the former driving force
should become more significant as a result of aggregate formation. Since the
coagulation is most severe close to the buffer-suspension interface, this could
potentially gives rise to mixing effects that are likely to disturb the diffusion
process. In other words, the spatial gradients could, partially, be evened out
so that the resulting concentration profile may not be as sharp as the theory
predicts. This is one of the reasons why the coverage measurements, for the
surfaces patterned with one-dimensional particle gradients, begin a few mil-
limetres above the bottom edge of the substrate, as figure 4.2 indicates. No
measurements are required in order to prove the existence of this phenomena,
however, since it can be directly observed during the preparation procedure.
Specifically, its presence is indicated by the swirling blue and veil-like aggre-
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gate rich regions that appear in close vicinity to the liquid-liquid interface,
which are clearly visible in the photograph in figure 3.2.

The presence of the Au NPs is likely to affect all solute and solvent molecules
in their immediate vicinity. The concentrations of the individual ions should,
in particular, be highly non-uniform, at least locally, due to the formation of
electrical double layers. Additionally, a range of different confinement effects
may become important if the particle content is high enough that the average
distance between them is reduced to molecular dimensions. Finding suitable
models for the individual interactions, mentioned above, is not an easy task,
however. What is more, these mechanisms are, for the case at hand, coupled
to both the migration of the ions as well as the reactions that these species
participate in. In addition to influencing the molecular transport, these,
highly intertwined, phenomena should also affect both the interparticle and
the particle-surface interactions. Another reason for doubting the accuracy
of the predictions obtained by combining of the DLVO theory and the RSA
model, is that these are based on several relatively crude approximations.
Even so, no attempts have been made to account for the presence of the
Au NPs, when simulating the diffusion processes, or to find a more accurate
relation, than the interpolant (3.2.2.1), between the surface coverage and the
citrate concentration.

4.4.2 Computational Challenges

Since several issues were encountered during the development of the theoret-
ical models, it is, perhaps, not surprising that the implementation was some-
what problematic. First and foremost, learning how to use any computer
software, in this case COMSOL Multiphysics R©, is very seldom a straight-
forward process. One of the disadvantages, compared to writing a specific
program for solving a specific problem, is that COMSOL, due to its wide
range of applicability, is not as easy to overview. It is, for example, relatively
difficulty to distinguish what mistakes have been made, if any, when a solu-
tion can not be found. Still, simple simulations can most often be performed
without much effort, once one have been familiarised with graphical inter-
face. This is especially true if the problem only involves one type of physics.
Improving the accuracy of the calculations, by taking additional phenomena
into account, is more difficult, however, in spite of the fact that the program
has, supposedly, been developed for the purpose of tackling multi-physical
problems. As was discovered during the course of the project, the distinc-
tive interfaces are, in fact, not always fully compatible, and even if they are,
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it may not be self-evident how to combine them. Difficulties were, specifi-
cally, encountered in the attempts account for the electrostatic interactions
between the ions as well as the chemical reactions that these participate in.
As was mentioned in section 4.4.1, the corresponding physical model will be
discussed in more detail in section 4.5.2.

As will become evident from the presentation in section 4.5.2 it might, in
hindsight, have been more prudent to design a specific computer program
for simulating the physical processes instead of relying upon the COMSOL
Multiphysics R© software. If the program code had, for instance, been writ-
ten in an MATLAB R© .m-file, the finite elemental method could have been
implemented with help of certain predefined functions. Furthermore, the
alternative solving procedure, suggested by , which is also detailed in sec-
tion 4.5.2, could more easily have been implemented. Because the above
mentioned shortcomings, of the current version of COMSOL Multiphysics R©,
were discovered at a relatively late stage, there was not enough time avail-
able to realise these plans. Even so, developing a computer program, for the
purpose solving problems with this level of intricacy, ought to be relatively
time-consuming. This explains why it was deemed preferable to make use of
a commercial software package.

4.4.3 Experimental Challenges

As the presentation of the setup development process in section 3.1.2 showed,
several distinctive designs were tested before arriving at the final two versions,
which are schematically depicted in figure 3.5. Unsurprisingly, the original
setup, shown in figure 3.3, had to be redesigned, so as to be compatible with
the available components. The later versions, meanwhile, were successively
rejected following the discovery of one, or more, distinctive shortcomings of
each design, as will be further discussed below. In order for the simulations of
the diffusion process to be reliable, it is crucial that good enough estimates
of suitable dimensions for the geometry are available. The scale must, in
particular, be chosen so that a sufficiently high coverage can be achieved in
spite of the limitations on the required time and buffer concentration. The
dimensions of the relevant components were not readily available, however,
neither from the homepage nor the product catalogue of the suppliers. For-
tunately, the manufacturers were willing to provide this information, without
any reservations.

Given the sizes of the individual parts, the diffusion process could be sim-
ulated within a geometry that represents the version of the experimental
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setup shown in figure 3.4. As was already mentioned in sections 3.1.2 and
4.2, this lead to the discovery that the separation between the substrate and
the liquid-liquid interface was to large. Specifically, the time period required
for achieving a reasonable coverage, without using an extremely concentrated
citrate buffer, was deemed to long for the deposition process to be reliable.
This lead to the development of an alternative design, which only differed
from the versions shown in figure 3.4 in that the funnel had been removed.
Even though the calculations, presented in figure 4.6, showed that the long
distance between the source and the target surface remained an issue, an
order was placed for the required components. The long delivery time, which
amounted to approximately 5 weeks, meant, however, that the first experi-
ments could not be performed as scheduled.

Immediately after the experimental setup had been constructed, from the
purchased glassware, a simple test was performed to make sure that all of the
components, as well as the connections between them, functioned properly.
This was, more precisely, achieved by first adding the concentrated buffer
followed by the nanoparticle solution, but only once the valve had been sealed
and the section above it had been rinsed clean. Next, stop cock was reopened
so that a, relatively, sharp interface was formed between the two liquids.
Unfortunately, it soon became apparent that the setup suffered from severe
leakage problems, which had the added effect that the valve became locked
in an open position. Though attempts were made to release the latter, it
deemed necessary to come up with a new design.

In the type of setup considered next, a substrate was, as was explained in
section 3.1.2, first placed in a small dish filled with an Au NP suspension.
The deposition process was, thereafter, initiated by lowering a piece of tubing,
which other end was attached to a syringe filled with concentrated buffer, into
the liquid. The idea was, specifically, that the citrate would be diffuse into
the underlying dilute region, which, as in the earlier cases, should result in the
deposition of a radially symmetric particle gradient on the substrate. Still, it
became evident, already from the first experiment, that the large difference
in density between the two phase gave rise to such strong convective currents
that the design was rendered inadequate. In particular, the much lighter gold
nanoparticle suspension was relatively quickly transported up the tube once
the liquid-liquid interface had formed. It was, thus, apparent that it would be
entirely flawed to assume that the flow of the citrate buffer from the bottom
end of the tube could be modelled as a diffusive phenomena. In other words,
it seems very unlikely that a spherically symmetric concentration gradient,
which is required in order to obtain the sought type of coverage profile, would
form.
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In the final versions of the experimental setup, which are depicted in figure
3.5, the lateral ordering of the phases was reversed compared to the previ-
ously considered case. The analysis of the substrates, thus prepared, revealed
that the obtained coverage showed at least some degree of radial variation,
as can be seen from figure 4.12. This can be seen as proof that this is indeed
an appropriate concept for preparing gold coated surfaces covered by radi-
ally symmetric Au NP gradients. Even though the latest designs were far
from perfect, it was not deemed necessary to develop them further. Still, a
number of specific changes, which could possibly have improved the results,
will be proposed as part of the discussion in section 4.5.1. Specifically, one
of the most crucial parameters is the separation between the buffer source
and the gold surface, mainly due to the strong distance dependence of the
concentration gradient. In other words, developing a practical strategy for
controlling this parameter is perhaps the most important design challenge
that has yet to be overcome.
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4.5 Future prospects

The main purpose of this section is to provide some proposals of how the
research conducted as part of this project could be continued so as to ei-
ther extend the range or improve the accuracy of the results presented in
this report. For the sake of clarity this discussion will be divided into three
distinctive parts. Firstly, some general remarks will be made with regards
to how the modelling, computer simulations, experimental setups as well as
the data gathering and analysis could be further developed in future studies.
This will be followed by a more detailed discussion on how the Nernst-Planck
equations can be used to better the mathematical model of the physical sit-
uations considered in this project. In the final subsection, the possibilities
to extend the study to true three-dimensional problems shall be presented.
This discussion will specifically focus on the prospects for depositing gold
nanoparticles inside gels, with regards to both the modelling of the prob-
lem as well as practical aspects such as what material parameters should be
considered when choosing a suitable polymer.

4.5.1 General Remarks.

As with any project, it is always possible to, with the benefit of hindsight,
distinguish choices that would have been made differently if the outcome had
been known in advance. In what follows, some remarks of this sort will be
made, with the hope of providing some guidelines on how to avoid some of
the challenges that were encountered as part of this project. In addition,
some suggestions will be made on in what ways future research can build on
the results that were presented in this report. It shall also be noted that a
more detailed discussion on how the so called Nernst-Planck equations can
be implemented with help of the COMSOL Multiphysics R© software in order
to yield more accurate results can be found in the next subsection. Thus only
a few general comments will be made with regards to how the mathematical
models as well as the simulations could have been improved.

Beginning with the mathematical modelling, it is essential to stress that the
model used to represent the physics related both to the transport of ions
within the buffer as well as the deposition of the particles are both relatively
rudimentary as can be gathered from the discussions in the first two chap-
ters of this report. The natural way to improve these predictions is, as was
explained in some detail in section 4.4.1, to take more of the physics into
account. Yet, doing so generally has the disadvantage that it complicates
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the physical models, which in turn makes the numerical simulations more
involved and concomitantly less reliable. Another disadvantage is that any
such efforts are almost always associated with the introduction of additional
parameters. This furthermore leaves more room for uncertainties, since it
is not always clear how these values shall be chosen in order to best reflect
the physical situation. Without proper estimates of these input arguments,
there is little point in taking more complex physics into account. At the same
time, it should be clear that while relatively much effort has been put into
researching how the molecular transport could be better represented, hardly
any efforts have been made to inquire if and how it would be possible improve
the model for the adsorption process. Specifically, the equation (3.2.2.1) has
exclusevily been used to correlate the predicted citrate concentration with
a particular surface coverage. As was explained in section 3.2.2, this power
law was obtained by interpolating the predictions of the set of equations in
(3.2.2.2), which in turn were obtained by combining the DLVO theory with
the RSA model. It should be evident from the presentations of the latter,
which are found in the sections 2.3.1 and 2.3.2 respectively, that these only
take the most basic physical phenomena related to the interparticle inter-
actions and the adsorption process into account. Hence, there exist much
room for improvements. Better predictions should, for instance, be achieved
if surface forces other than the van der Waals and electrostatic double-layer
interactions were considered and if the adsorbing particles were allowed to
move laterally across the surface. While there exists alternative approaches
that include the effects of such, additional, mechanisms it was deemed ap-
propriate to apply the same method as Lundgren in this study. Additionally,
the parameter values that were used in the calculations presented in this
project are the same as those suggested by the author in his PhD thesis [5].
In this context it is especially worthwhile to mention the surface potential ψ
and the dimensionless constant λ. In particular, it should be clear from the
discussion in section 2.3.1 that ψ = 50 mV and λ = (e−1)/2 are not the only
possible choices, but rather represents estimates that according to Lundgren
seems reasonable based on earlier research. It should be said, however, that
the applicability of these values have, for the sake of convenience, not been
scrutinised during the course of this study Thus, it is entirely possible that
more accurate results could be obtained, in future studies, simply by using
an alternative estimates, which better represent the physical situation.

With regards to the computer calculations it shall, firstly, be said that no
great efforts were made to research how the numerical solving routines could
have been changed in order to improve the predictions. In particular, it
should be evident from the presentation in section 3.2.3 that the default set-
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tings were almost exclusively left unaltered during the computations, while
the more advanced options were never even considered. Still, due to the fact
that each of the physical interfaces have been specifically developed for solv-
ing certain types of problems, it should generally not be necessary to alter the
predefined input arguments. This should be especially true for those param-
eters that are only related to the numerical solving routine. Another aspect
of the numerical calculations that has not been thoroughly researched, is the
possibility that there may exist alternative physical interfaces that could be
used to simulate the transport problems of interest for this study. In fact,
only the basic tools that the COMSOL Multiphysics R© software provides, have
so far been considered. Had the project been prolonged, it would perhaps
have been a good idea to overview the programs more advanced features
and to make some further inquiries into what physical models, other than
“Transport of Diluted Species”, that are available. Moreover, it is important
to at least mention that COMSOL Multiphysics R© is not the only commercial
software for solving the type of problem considered as part of this project.
For future research it might be advantageous to explore what other programs
are available and if any of them are even more suitable for simulating the
physical situations at hand.

As is suggested by the sketch in figure 3.5, together with the discussion in
section 4.4.3, the final version for the experimental setup must be considered
to be rudimentary, at best. In other words, there exists much room for
improvements. Even so, the relative success of the obtained results, which
were presented in section 4.2, suggest that the fundamentals of this concept
are sound. A complete overhaul of the most recent design should therefore
not be necessary. In what follows, a few general guidelines of how the setup
could be changed in order to further improve the quality of the results will
be presented. As was already mentioned in section 4.2, the strong distance
dependence of the coverage means that it is crucial to be able to control the
separation between the surface and the concentrated buffer solution. This
means that it not only important to be able to fixate both the position and
the inclination of the substrate relatively precisely but also to have a sharp
liquid-liquid interface. These represent perhaps the two areas where the
most significant improvements can be made, since the design concept offered
very little control over these parameters. One possible way to achieve the
latter goal is to separate the two phases by a semi-permeable membrane,
since this would minimise the intermixing between them. While doing so
would hinder the Au NPs from sinking into the concentrated buffer, which
is advantageous, it would at the same time mean that the nanoparticles and
the aggregates that they form will begin to pile up on top of the membrane.
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For the case of a prolonged adsorption process it is therefore possible that the
inflow of buffer will become hindered with time. With regards to the distance
control there are exists, essentially, three distinctive concepts. In particular,
either the position of the substrate, the liquid-liquid interface or both may be
tunable. While there is no reason why the second variant should be superior,
or inferior, to the other two, it was, for the sake of convenience, implemented
in the final version of the experimental setup. Regardless, it is important to
choose a design that allows one to firmly fixate both the solid surface and
the boundary between the two solutions, but that still leaves the distance
tunable. Finally, it should be said that it is also crucial to be able to interrupt
the deposition process quickly without causing any unecessary mechanical
motion. In particular, one must avoid, at all costs, that the substrate, even
briefly, comes into contact with regions of high citrate concentration, since
this could potentially ruin the adsorbed pattern. Letting both liquids pour
out from below the substrate is perhaps the easiest and most effective way
to achieve this, which explains why this methodology was implemented both
in this project as well as the in the studies performed by Lundgren [5].

The final part of this discussion will concern to the data gathering and anal-
ysis, which were performed with an SEM and the ImageJ R© software respec-
tively, in accordance with the presentation in section 3.2. This pair of meth-
ods is only one example of possible approaches for determining the coverage
on the Au NP patterned gold surfaces. Lundgren, for example, mentions
that similar measurements can be obtained by imaging the substrates with a
transmission, rather than scanning, electron microscope [5]. Another possi-
bility is to use imaging surface plasmon resonance, iSPR, which, supposedly,
allows the gradients to be directly visualised, since the SPR response is di-
rectly proportional to the particle density. As Lundgren, and colleges, men-
tion in their, as of yet, unpublished article, this technique is especially useful
in biological applications where the patterned substrates have been coated
with biomolecules, such as proteins. The main reason for this is that the
added layer alters the dielectric constant next to the surfaces of the adsorbed
nanoparticles which in turn changes the resonance frequencies associated with
the local surface plasmons. Moving on to the image analysis, there exists,
as was mentioned in section 3.2.1, an alternative technique for determining
the number of particles in each SEM photograph. It was initially believed
that a better result would have been obtained with this method compared
to the approached that was primarily used in this study, due to its relative
simplicity. The comparison between the two techniques that was presented
in section 3.2.1 revealed, however, that there was no significant difference
between the estimated particle counts for the same image. Yet, one should
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not forget to mention that the most accurate way to determine the number of
particles is to count them by hand, wherefore any result obtained with com-
puter controlled analysis methods will be inaccurate, at least to some degree.
While there are likely to exist other, and more sophisticated approaches for
obtaining comparable estimates, it seems unlikely that the counting of the
particles is the most significant source of errors.

4.5.2 Implementing the Nernst-Planck Equations.

Within the COMSOL Multiphysics R© environment there exist several, prede-
fined, physical interfaces that are supposedly well suited to solve the type of
problem considered in this project. One of these, which forms part of the
“Chemical Engineering”module, is labelled“The Nernst-Plancks Equations”. As
the name suggests, this modelling environment is based on the Nernst-Planck
equations, which purpose is to describe the transport of ions in liquid media.
In the 4.3 version of the program, which has just been released, a “Nernst-
Plancks Equations” interface has been added, as part of the new “Corrosion”
module, that essentially describes the same kind of physical situation, but
which is especially well suited for the simulating the ionic transport related
to corrosion phenomena.

Within both these frameworks it is possible to take chemical reactions, of
any type, into account through explicit inclusion of expression for the corre-
sponding reaction rates. Yet, this is not a convenient approach for the case
at hand, since both the protonation and deprotonation processes occur so
fast that kinetic data is not readily accessible. A better choice would be to
assume that these reactions occurs so rapidly, compared to the other trans-
port phenomena, that the involved species are in local, chemical, equilibrium.
For this purpose it initially seems suitable to use the “Reaction Engineering”
interface, which is also defined within the framework of the “Chemical En-
gineering” module. The reason is that it provides a modelling environment
that has been developed for the purpose of simulating coupled “irreversibel”,
“reversible” as well as “equilibrium” reactions. While it is always necessary
to define all the chemical species involved, the rate constants only have to
be specified for the two first mentioned types, while it suffices to state the
equilibrium constants in the third case. Specifically, it is the acidity con-
stants, which are almost equivalent to the latter parameter, that are known
for each of the acid-base reactions involving the species of interest. Unfortu-
nately, this interface has not been defined to take the spatial dependence of
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the concentrations into account.1 This issue can be resolved, however, with
help of a specific so called “Synchronisation” node, which is available in the
“Synchronisation” context menu. While the specific purpose of this feature is
to introduce a spatial dependence into the model for the reactions that occurs
within the system, this feature is not available if these are of the“equilibrium”
type. Hence, this function does not help solve the problem at hand. More
precisely, even if it would be possible to couple the “Reaction Engineering”
and “Nernst-Planck Equations” interfaces, this would again require that a pair
of, unknown, rate constants are defined for each of the “Reversible” reactions.

There exists another plausible way to resolve the said issue, that can in fact
be implemented in COMSOL. This approach involves using either one of the
environments for solving the Nernst-Plancks equations, but not necessarily
together with the “Reaction Engineering” interface, with the rate constants
set equal to sufficiently large values. In particular, these should be suffi-
ciently high that the reactions, within the framework of this model, occurs
on a much faster time scale than the diffusion and the migration. In this
case, equilibrium will, for all practical purposes, be reached almost instanta-
neously. The first attempts to implement such a concept was unsuccessful,
however, because the forward rate constants could not be set higher than,
approximately, 104 mol/dm3 · s since doing so caused the simulations to fail.
While this problem might have, at least partially, been avoided by defining
the geometry as “1D”, rather than a “2D” there is no guarantee that this
would have allowed the rates to be chosen high enough that good predictions
would have been obtained. One of the reasons why this approach was not
pursued further was that the a predefined solution, of this very type, for
a problem very similar to the one considered in this project was supposed
to be included in the 4.3 versions of the COMSOL Multiphysics R© software.
Though the hope was that this model could have been altered in such a way
that it would correspond to the system described in section 3.1.1, rather than
the one considered in the original corrosion problem, this was not possible
due to time shortages. Specifically, it should be said that a trial version of
the named program was first released at a very late stage in the project,
which explains why there was not sufficient time to pursue this plan.

Another approach to deal with a problem, similar to the one at hand, was
originally suggested by Swietach et al [31]. Specifically, one of the systems

1Rather than providing the program with specific geometry, the user instead states
which type of process, and vessel, that is being considered. This, specifically, includes
“batch”, “semi-batch”, “plug-flow” and “” types of reactors. The total volume of the sys-
tem is another of the input arguments, which together provides the, almost, the same
information as a specific geometry, which is otherwise requested.
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they considered in their study of the transport of H+ ions inside cells, was
composed of a solution that contained protons together with a pair of buffers.
In the mechanistic model of this physical situation that was presented in the
final article, all of the species were, moreover, “allowed to diffuse and react”.
Moreover, the authors state that“In FEM, the diffusion equation is solved in
a stepwise fashion (time-step 1 ms), alternating with a minimisation function
that returns solutes to equilibrium (to maintain buffers at equilibrium with
protons after redistribution due to diffusion)”. By using such a procedure it
is inexplicitly assumed that the buffering effect is instantaneous, wherefore it
is not necessary to know the rate constants for the associated reactions. One
possible way of implementing this procedure is, as was mentioned in section
4.4.3, to write a dedicated MATLAB program, which sole purpose is to solve
the corresponding initial and boundary value problem. Compared to using a
more generic coding environment, such as Fortran, the named software pack-
age has the advantage that it provides predefined functions, with the help
of which FEM can be implemented. Another approach would be to use a
certain COMSOL Multiphysics R© module, named Live-link with MATLAB,
which allows the former program to be controlled using the MATLAB desk-
top. Specifically, it should be possible to first simulate the diffusion of all
the buffer species, as well as the protons, with help of “Nernst-Plancks Equa-
tions”interface, for a sufficiently short time-period. In other words, COMSOL
will solve the Nernst-Planck equation, with terms representing the reaction
rates set equal to zero. Next, the equilibrium the concentrations of all these
compounds are calculated, given the pH and the total citrate concentration
at each point. These values are then used as the initial values, which are
provided as input to the COMSOL Multiphysics R© when simulating the re-
distribution that occurs during the next time step. As of yet, however, no
efforts have been made to pursue either of these alternative methods. Since,
very few inquires have been made with regards to if and how these procedures
can implemented in practice, it is not certain that either of them are suitable
for solving the problems at hand.

4.5.3 The Adsorption of Au NPs in Gels.

According to the original plan for this project, the aim was to apply the
physical model, which was used to predict the coverage profiles resulting
from one-dimensional and radially symmetric diffusion processes, to simulate
the deposition of nanoparticles inside a gelatinous material. At an even
earlier stage, it was suggested that the procedure should involve the synthesis
of the gel system followed by the injection of first an Au NP suspension
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and then a concentrated citrate buffer. After having studied the existing
theoretical models for such systems it was decided that these ideas had to be
abandoned, however. Specifically, it quickly became apparent that choosing
a gel with the proper material characteristics is not only crucial but also far
from straightforward. Another problem is that there seems to be no simple
way of halting the diffusion of the concentrated buffer, once it has been
introduced into the system. In other words, it is not clear how one can exert
control over the deposition process.
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[19] Semmler M, Rička J, Borkovec M. Diffusional deposition of colloidal
particles: electrostatic interaction and size polydispersity effects.
Colloids and Surfaces A: Physicochemical and Engineering Aspects.
2000;165:79–93.

[20] Lundgren AO, et al. Tuning molecular compartmentalization via
nanoparticle self assembly, implications for classical cell adhesion
experiments;. In manuscript.

[21] Fisher Scientific: Laboratoriekatalogen 2011/12; 2011.

[22] Laboratory Glassware Catalogue; 2011.

[23] Petty MC. Molecular Electronics: From Principles to Practice. John
Wiley & Sons, Ltd.; 2008.

86

http://www.knovel.com.proxy.lib.chalmers.se/web/portal/browse/display?_EXT_KNOVEL_DISPLAY_bookid=4381
http://www.knovel.com.proxy.lib.chalmers.se/web/portal/browse/display?_EXT_KNOVEL_DISPLAY_bookid=4381


[24] Zangwill A. Physics at surfaces. Cambridge University Press; 1988.

[25] Ohring M. Materials Science of Thin Films: Deposition and Structure.
2nd ed. Academic Press; 2002.

[26] Ferreira T, Rasband W. ImageJ User Guide. Bethesda, USA; 2012.
http://imagej.nih.gov/ij/docs/guide/user-guide.pdf.

[27] COMSOL Multiphysics R© User’s Guide; 2012.

[28] COMSOL Multiphysics R© Reference Guide; 2011.

[29] Yaws CL. Yaws’ Handbook of Thermodynamic and Physical
Properties of Chemical Compounds. Knovel; 2003.
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Appendix A

Nomenclature – Acronyms &
Symbols

This chapter provides a summary of the key acronyms and symbols, which
are used in the report. Though the former list, which is found in the first of
the two sections, is complete the latter is not. Proper definitions of all com-
binations of indices and symbols, which represent specific physical variables
or constants, can be found in the relevant part of the text, however.

A.1 List of Acronyms

Common acronyms
DLVO Derjaguin, Landau, Vervwey and Overbeek
FEM finite element method
iSPR imaging surface plasmon resonance
NP nanoparticle
NPBC Nano Particle Binary Chemistry
ODE ordinary differential equation
PDE partial differential equation
RSA random sequential adsorption
SAM self-assembled monolayer
SEM scanning electron microscope
SPR surface plasmon resonance
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A.2 List of Symbols

Latin symbols
A area
a radius
C general constant
c concentration
D diffusion constant
d surface-to-surface separation, separation
f general function
I ionic strength
J flux
l length
N total number
Q charge
r coordinate vector
R reaction rate
r center-to-center distance, radial coordinate
T temperature
t time
u interaction potential
V electric potential
v velocity
x general coordinate, x-coordinate
Z valency
z vertical distance, z-coordinate

Greek symbols
∆ change, difference
ε dielectric permittivity
η viscosity
θ fractional particle coverage
ϑ step function
κ inverse of the Debye screening length
Λ inverse, effective threshold potential
µ mobility
υ general exponent
ψ electrical potential
ω Laplace transform of the time variable t
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Miscellaneous symbols, indices and superscripts
L Laplace transform
∇ gradient
{}0 initial
{}∞, {}∞ bulk
{}Ci citrate
{}i chemical species i, general index
{}p, {}p particle
{}s, {}s surface
{}“something”, {}“something” something1

{̃} Laplace transform
{} per area

Universal constants
Symbol Name Value [32]

e elementary charge 1.60217646 · 10−19 C
F0 Faraday constant eNA

kB Boltzmann constant 1.380650 · 10−23 J/K
NA Avogadro constant 6.0221420 · 1023 molecules/mol
ε0 vacuum permittivity 8.854187817 · 10−12 As/Vm
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