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Abstract 

 

This is a master thesis which compares several methods for foreground segmentation and object 

rotation. By object rotation, it is meant in this thesis that for a given object, having images with 

different angles as input should ideally always output images with the object in the same angle. 

Finally, it is tested how this combined can make the task of object recognition easier by running 

the algorithms for the two tasks successively as an image pre-processing stage. It is shown that 

making pixel-wise background segmentation by comparing the input image to an averaged 

background image works well for the segmentation task, and that encapsulating the object in a 

minimum bounding rectangle and rotating it with the angle of the bounding box can work well 

for the rotation task. It is also shown that using these algorithms combined as a pre-processing 

stage to an object classifier may be a way of making the classification easier. 
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1. Introduction 

 

1.1 Background 

 

Electronic waste is usually fed into recycling plants in unsorted batches. It is then shredded 

without further pre-processing. Many products have rare earth materials which may be very 

valuable or perhaps may contaminate the batches. It would be beneficial to sort the content of the 

batches and process them in different groups according to material content. Hence, there is a 

need of finding and localizing each individual product at a conveyor belt. 

 

The company Optisort is specialized in technology for identifying and sorting waste products. 

Their most recent accomplishment is a method for sorting batteries which is used on recycling 

plants. The method is based on visual recognition, and takes advantage of the limited variations 

in shape of batteries. The battery is fed mechanically to the front of the camera. However, when 

this method is extended to other sorts of waste than just batteries, the same controlled flow 

cannot be maintained that easily due to the large variance in shapes. Optisort has now finished 

their battery sorter and wants to develop more solutions for the recycle industry. Thus, in order to 

be able to adapt the current recognition system to electronic waste products, pre-processing of its 

input images has to be done in order to avoid excessive amounts of background being part of 

them, to avoid that several objects are taken for being a single object, and other similar issues. 

 

1.2 Purpose 

 

The main aim of the project is to find an algorithm that solves the two following tasks: 

 

1) Given an image, the positions and bounding areas of each object in it are to be found. 

 

2) Given an image of a single object, the image is to be rotated in such a way that if another 

image of the same object would be given, but with a different rotation, both of the resulting 

images would have the same rotation after being processed. 

 

These tasks should be done in sequence, such that each output of task 1 is processed by task 2. 

Task 1 and 2 combined can be seen as a module, which takes one image as an input and gives a 

sequence of rotated sub-images as output. These output images could then be fed into a separate 

image recognition algorithm. 

 

Different candidate solutions for the tasks above should be found and then tested through 

experiments so that their performance can be compared. 
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1.3 Limitations 

 

We did not investigate different camera placements and hardware configurations; the methods 

we investigated just assumed that we had some picture taken and that we were going to process 

it. 

 

The sample data in the experiments is limited to the kind of objects that the available prototype 

could produce. The prototype could only handle small objects (smaller than a mobile phone), so 

testing against larger objects than so has not been done. The objects used in the set of test images 

are chosen based on what has been of interest to Optisort. The results are thus less general and 

more specific to their needs. 

 

The algorithms have been implemented using OpenCV in order to limit the implementation time, 

and thus solutions that have optimized support in OpenCV will be favored in the selection. The 

programming language used was C++, which is a language that Optisort uses in their 

implementations, and it is also frequently used with OpenCV. Furthermore, the fields of 

computer vision and image processing are broad, so we focused our study on some algorithms 

that are among the more well-known and that have had related use. 

 

1.4 Questions 

 

These are the questions that we aimed to answer in this thesis: 

 

What are some useful algorithms that can be used to find objects in an image, and how do they 

perform? 

 

What are some useful algorithms that can be used to determine the rotation of an object and how 

do they perform? 

 

Can some standard pre-processing algorithms enhance the performance of the segmentation- and 

rotation algorithms? 

 

Can segmentation- and rotation pre-processing enhance the performance of object classification 

algorithms? 

 

2. Method 
 

The project was carried out roughly as beginning with one month of research studies followed by 

two months of implementation and testing, and finally one month of report writing. 

 

The literature studies during the first month were used to get a good understanding of which 

algorithms needed to be implemented and tested. A first step was to get an overview of possible 

candidates, and then a second step followed which was about searching for more information 

about the candidates. 
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After the literature studies, we acquired the data to be used with the experiments. The data was 

retrieved from Optisort, who produced it with a prototype product. 

 

Next followed the implementation and testing phase. First some algorithms (some for object 

recognition and some for object rotation) were implemented in a way that they could be 

compared. Exactly which algorithms that were chosen was a decision based on the knowledge 

from the literature study. Some were more strictly based on the descriptions found, and some 

were based more on our own ideas. 

 

After the implementation step was done, experiments were carried out. The purpose of these 

experiments was to test the algorithms in order to compare their performance and to discover 

how some different factors affected them. The test results were then reviewed.  

 

The last test was done by choosing the best segmentation algorithm and the two best rotation 

algorithms and applying them in a pre-processing stage before they were used as input to an 

object classification algorithm. The purpose of this was to investigate to what degree these image 

processing algorithms could make the task of object classification easier. 

 

3. Theoretical background 
 

Here the background theory is covered which our experiments and chosen methods were based 

upon. This work is mainly based on theory from the related areas of Image Processing, Image 

Segmentation and Computer Vision. Different algorithms from these fields can work 

cooperatively in the sense that, for example, one might need to process an image by some 

enhancement method such as smoothing before segmentation can be carried out successfully.   

 

Although we have two separate algorithms for segmentation and rotation, many of the techniques 

presented here are relevant for both fields. First, how an image is represented and what a 

computer image is will be covered in chapter 3.1. Then, image enhancement methods are 

presented in chapter 3.2. Next, transformation methods are described in chapter 3.3. These are 

primarily of interest for the task of image rotation in this report. Finally, feature detection 

methods are covered in chapter 3.4, and they can be helpful both when it comes to image 

segmentation and rotation. 

 

3.1 Image representation and color spaces 

 

General computer raster images are represented as matrices, where each element is a pixel (dot 

of an image) (Young et al., 1998, p.2).  

 

This is a matrix of sets, where each set is the intensity value of a specific image channel. A 

normal grayscale image might be represented with just one color channel, while a color image 

might have more channels. A standard set of channels for color images is the RGB (Red, Green, 

Blue) set where each channel roughly corresponds to the base colors that the human eye 

registers. 
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There are several more ways a color image can be represented in (these ways go under the term 

color spaces), especially the HSV (Hue, Saturation, Value) / HSL (Hue Saturation, Lightness) is 

of interest within this field. The HSL color space is related to the RGB color space in the sense 

that it is a linear transformation of it (Tkalcic et al., 2005). Thus, a color represented as a red 

intensity, a green intensity and a blue intensity combined can be seen as a point in a three 

dimensional space where red, green and blue correspond to one axis each. Thus, the set of all 

possible colors has a form of a cube in the linear space. If this cube is uniform and has a side of 

length 1, then each point on the line, x = y = z, (an equal amount of each color) represents a 

grayscale value from black (at point x = y = z = 0), to white (at point x = y = z = 1). This is the L 

value of HSL. The S value is then the distance between the color point and the closest point on 

the x = y = z line. The H value is the angle of rotation of the color point along the x = y = z line 

(against some predefined reference). Note that this is just a rough explanation of how the RGB 

color space correlates to the HSL color space and not an exact description of how to implement 

conversions between the two color spaces. 

 

 
Figure 1: A visual representation of the RGB color space and a rough approximation of how it 

can be converted to a HSL color space. The idea is that by simply doing a three dimensional 

rotation of the RGB cube and flattening the color edges so that their distances to the white and 

the black edges are equal, a HSL style representation is acquired. 
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Figure 2: The HSL and HSV color spaces (Wikimedia Commons, 2010) 

 

3.2 Image enhancement methods 

 

A major part of image processing is the field of image enhancement. In this section image 

enhancement will be defined as methods to alter an image in order to enhance certain aspects of 

it (Wu et al., 2008, chapter 6). 

 

There are a couple of different ways to approach image enhancement. For example, the most 

basic operations on a gray scale image would be multiplication and addition of the intensity 

values. Addition of a positive value would make the image lighter as each intensity value would 

increase, and addition of a negative value would make the image darker. Multiplication affects 

the contrast of the image, such that multiplication with a value greater than 1 increases the range 

of intensity values (higher contrast), while multiplication with a non-negative value less than 1 

decreases the range of intensity values (lower contrast). This is a kind of operation that could be 

done pixel by pixel, with each pixel´s change being independent of the other pixels. On the other 

hand, there are also approaches that make changes to the pixels based on statistics from the 

collected data of neighboring pixels, which are described in sections 3.2.3 and 3.2.5 below. In 

section 3.2.1 and 3.2.2 histogram methods, which consider collected statistics from all the pixels 

and make changes more to the image on the whole rather than strictly pixel by pixel, are 

considered.   
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3.2.1 Histogram 

 

A histogram can be seen as a graph derived from an image. For each channel of the image, the 

frequency of every possible intensity value is calculated. A histogram is thus a representation of 

the original image where the position of each pixel is lost, but instead the amount of each 

possible color in the color space that exists in the image is made available for analysis (Bovik et 

al., (2005), chapter 3).  Histograms are usually visualized graphically; however a histogram is 

basically a table consisting of number of pixels for each intensity value in the image.  

 

Histograms have several areas of use in the fields of Image Processing and Image Segmentation. 

Two of these will be presented below; namely threshold selection and histogram equalization. 

 

 

 
Figure 3: A histogram can be represented as a diagram. One can imagine having “number of 

pixels” being labeled on the y-axis, and “pixel brightness” on the x-axis. This would then group 

pixels with the same brightness for the respective images. 

 

3.2.1.1 Histogram threshold selection 

 

Histogram threshold selection is used for separating the image into different parts, where each 

part represents a certain brightness level. Thresholding makes the picture undertake a binary 

choice for each pixel; it stays or does not stay. For instance, pixels could turn white or black 

depending on this. The light pixels could represent foreground and the dark pixels the 

background, or vice versa. Thresholding is not always completely trivial, as there are often cases 
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where the brightness levels are evenly distributed and the image contains pixels of a large variety 

of nuances and colors (Shapiro et al., 2001, p. 99). 

 

Several threshold selection methods exist for problems such as the one covered in this thesis, 

which use statistical information gained from the histogram in order to select suitable thresholds. 

The different approaches are based on shape information, space clustering, entropy information, 

image attributes, spatial information and local characteristics (Sezgin et al., 2004). This means 

that one can look at either the peaks in the histogram, clustered gray level samples, the entropy 

of the different parts, similarity measures, spatial probability distributions or local pixel 

characteristics in order to make the thresholding. 

 

 

 
 

Figure 4: Before (left image) and after (right image) thresholding. The dark pixels are set to 

being pitch black, leaving only light pixels left in their original colors. 

 

3.2.1.2 Histogram equalization 

 

In a histogram the distribution can be analyzed. Histogram equalization is a method that takes an 

image, calculates its histogram and, given its distribution, extracts parameters and runs a function 

which, given the image, outputs an adjusted image. The goal is that this output image has a more 

evenly distributed histogram than the original image so as to heighten the contrast (Gonzalez et 

al., 2002). The process that ensures this is built upon the usage of a cumulative histogram with a 

wider range of intensity levels and lower sum of total intensity for the lower intensity scale, and 

a higher sum the higher up in the intensity scale (Song Ho 2006).  
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Figure 5: Before (top image) and after (bottom image) equalization. The intensity in the image is 

evened out, and it now appears as being clearer. 

 

3.2.2 Filtering techniques 

 

In practical problems, it might be needed to apply one or more filters in order to reach a certain 

goal, or filters might be a prerequisite for other algorithms to work well. For instance, in edge 

detection algorithms it might be preferable to blur the image somewhat as a pre-processing 

operation for more preciseness.  

 

A common way of implementing filtering is by using convolution. This is done by using a kernel 

matrix, usually 3x3 in dimension, and sweeping it over the image with each pixel being the 

center of this matrix once. For each centered pixel, a change is made to it which depends on the 

computation made with the neighboring pixels being in the array. In other words, the kernel is a 

summation function where the output is the new pixel value and the inputs are the neighbors 

values individually weighted. Different kinds of filters make different changes to an image, for 

instance edge sharpening, noise reduction, blurring and morphology are some of the possibilities. 

A drawback of using convolution can sometimes be that many calculations have to be carried 

out, so that it might take some time (Smith, 1997, chapter 24). 

 

Convolution filtering is not the only way of filtering, though. Median filtering, which basically is 

a way of ranking pixels locally, is another way of filtering. Even Fourier Transform can be seen 

as a kind of filtering, as it converts the image data to the frequency domain (Spring et al., 2007). 
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Figure 6: An original image 

 

 
Figure 7: The same image being processed with a blurring filter. 

 

3.2.3 Noise reduction 

 

There are many possible sources for noise in digital images. It can for example appear at the very 

acquisition of the image from the sensor, from various hardware malfunctioning problems or 

from bad transmission (Gonzalez et al., 2002). Noise can be seen as a local deviation from the 
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ideal value at a pixel. Noise can be further classified by its characteristics, such as whether the 

pixels deviate to a certain degree or to gets an extreme value, if only a certain channel gets 

affected, as well as the distribution of the noise. Noise reduction is thus the process of trying to 

remove these deviations and getting as close as possible to the ideal noise free version of the 

image without too much distortion by the process. There are many ways of trying to reduce noise 

and the following is only a brief overview.  

 

First, there are algorithms based on evaluating the pixels one by one, with each evaluation being 

based on the neighboring pixels. Using kernelization to take the median of the neighboring pixels 

would for example be able to reduce so called salt and pepper noise (pixels having either full 

intensity or no intensity) without introducing too much blur in the image (Chan et al., 2005). On 

the other hand, using a kernel with the average of a neighborhood would result in some form of 

blurring filter, and as every pixel depends on their neighbor, local pixel deviations will be evened 

out. Other approaches could be using a point detection algorithm that evaluates if a certain pixel 

differs with more than a certain threshold value from its neighbor (in fact, it is a little more 

advanced than this) (Gonzalez et al., 2002). On binary images a morphological operation such as 

erosion followed by a dilation operation could remove too small details that might be the result 

of noise. 

 

 

 
Figure 8: A black image which contains small fragments of white noise. 
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Figure 9: Noise filtering removes most of the noise. 

 

 

3.2.4 Morphological operations 

 

Morphological operations is a kind of filtering originally for black and white images, but it can 

be expanded to a range of different other types, such as gray scale images. It is a filtering 

technique with the two fundamental operations (or really weighted combinations of) dilation and 

erosion. These operations could then be combined in various ways to form more advanced 

functions (Gonzalez et al., 2002). 

 

Dilation works in the sense that it expands the borders of foreground objects. Using a kernel 

(here the usual 3x3 kernel), the idea is that when making the convolution for the image, as 

described in section 3.2.2, each pixel is the center of this kernel once. Then if there is some 

foreground pixel among the surrounding ones, the centered pixel is set to being foreground 

(regardless whether it was background or foreground before). Erosion is the reverse; the pixel is 

set to being a background pixel if there are some surrounding ones being background pixels 

themselves, otherwise do nothing (Fish et al., 2003). 

 

 

 



14 

 

 
Figure 10: The image from figure 5 being dilated. 

 

 

 
Figure 11: Here the image is eroded instead. 
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3.3 Image transformation methods 

 

An image transformation returns a new picture from some given picture. The new picture will 

then enhance or highlight certain features of the old image (Natural Resources Canada, 2008). 

First and foremost alignment and spatial color distribution are such features that are of particular 

interest in this report, and methods will be described below which makes it possible to analyze 

them among others.   

 

3.3.1 Fourier transformations  

 

Fourier transformation is a way of representing a signal as a set of sinus waves (Sundararajan, 

2001, p 18). The theory behind the Fourier transform is too complicated to be explained in 

greater detail here, but the transformation itself is based on decomposing the pixel intensities to a 

set of orthogonal functions (Owens 1997). An important property is then that one can transform 

the diagram back to the standard array image form after making the desired manipulations of it.  

 

There are several variants of the Fourier transform. A common variant for digital images is the 

Discrete Fourier Transform (DFT) which has an advantage of being relatively fast to compute 

(Sundararajan, 2001, p 54). As the name indicates, DFT represents sinusoidal waves. The result 

of this is that given one input image, two output images (real and imaginary) can be obtained. 

Many filters can be defined which are based on processing these output images (which represent 

the frequency domain of the original image), such as noise reduction. For some pixel with 

coordinates (x, y) in the original image and (u, v) in the Fourier image, the equation of the 

transform for the DFT is (Marshall, 2001): 

 

 
 

The following formula is used to reverse the transform back again: 

 

 

 

 

 

 

 

Analysis of the real output image is of special interest, as this image represents the structural 

information of the original image. More specifically, a normal image tends to have the frequency 

domain look of a body of water, in which a stone has been dropped in the middle, resulting in 

circular waves that are very intense at the middle and that even out the further away they reach. 

Thus, in the center of the frequency domain image there is usually more intensity than at the 

edges. Furthermore, the intensities closest to the center of this image represent the 
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comprehensive structure of the original image, while the further out from the center, the more the 

intensities represent the details in the image. A filter for removing details in an image can thus be 

constructed by keeping the part of the frequency domain image that is closest to the center and 

removing everything else, and then transforming back the image (Gonzalez et al., 2002).  

 

Another analytical aspect of interest is finding the alignment of the image. The dominating 

alignment angles will be represented by the clearest straight lines in the Fourier diagram (Fish et 

al., 2003). Thus, one could for example use the Bresenham line algorithm (Bresenham, 1965) 

which approximates the drawing of a straight line between two points in a matrix (if the line is 

drawn on the screen image, it is essentially drawn in a matrix because of the screen resolution 

aspect) to search for the line with most white pixels in it. 

 

 

 
Figure 12: An image (to the left) and its Fourier diagram (to the right). One can see in the 

diagram that horizontal and vertical lines dominate the image, since these directions are 

dominating in the diagram. 

3.4 Feature detection methods 

 

This section is devoted to feature detection methods (or more concretely edge-, line-, and Points 

Of Interest (POI) detection methods as we have limited the content to). To make it possible to 

see what an image really contains, it might be necessary to make a residual image that is a 

simplified version of the original, for instance black and white with white as foreground and 

black as background, or in some other way clearly distinguish different objects and contours in 

an image. This is what the first section is about. Next follows line- and POI detection, which 

search for more specific features that stand out in some way, and mark them in the image. 

 

As will be seen, several of the methods presented here will more or less work as algorithms for 

deciding the orientation angle for a given image. This is intuitive, since many of the algorithms 

which were eventually used for finding the rotation would be based on averaging some set of 

features (angle of the average line of the line detection, for instance), so this chapter basically 

covers algorithms for rotating the images consistently, as well as different processing algorithms. 

The only rotation algorithm which was tested that is not presented in this chapter is the algorithm 
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based on Fourier analysis (a concept described in section 3.3.1). Several of the segmentation 

algorithms from the experiments are also introduced here in relevant sections. 

 

3.4.1 Edge detection 

 

Edge detection is a class of methods to be used when one wants to find the borders of the objects 

in an image, or just some of the contours. The more precise definition of an edge is a sudden 

shift in intensity at some border (Qurechi, 2005). There are many algorithms for edge detection, 

and we list some of the more well-known below. The choice of algorithm can be rather 

subjective sometimes as most edge detectors have individual circumstances where they work 

either good or bad (Nadernejad et al., 2008).  

 

3.4.1.1 Edge detection with Sobel derivates 

 

The Sobel operator works in the sense that it approximates the gradient of an image intensity 

function with Gaussian smoothing (opencv dev team, 2011). Thus, the edges are assumed to be 

located where the jumps occur in this approximated differentiation (Qiu, 2001). More concretely, 

a sobel mask is used as a convolution kernel, and for a 3x3 mask it looks like the following:  

 

For x axis: For y axis: 

-1 0 1 -1 -2 -1 

-2 0 2  0  0  0 

-1 0 1  1  2  1 

 

(Bebis, 2003). Then as stated, convolution is used with this kernel and how that works was 

described in section 3.2.2.  

 

One requirement for the Sobel edge detection to work well is that there is a regular spatial 

distribution of the design points (Qiu, 2001). Furthermore, there are both advantages and 

disadvantages with it; an advantage being that it is easy to implement and runs relatively quickly, 

and a disadvantage being that the edges might be thicker than necessary (compared with Canny´s 

edge detector for example, which is described later on) (Vincent et al., 2009). 
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Figure 13: Sobel edge detection is used on the top image, showing the skeletonized result on the 

bottom image. 

 

3.4.1.2 Laplacian edge detection 

 

Laplacian edge detection uses calculations of the second spatial derivative to detect the regions 

where the intensity changes most rapidly (Fisher et al., 2003). As with Sobel edge detection, 

Laplacian edge detection could practically be implemented by convolution. However, the 

difference from Sobel edge detection is that now the second derivative is used, and not the first 

(the change of the slope is calculated instead of just the slope). This makes it somewhat different 

from the Sobel edge detection, even though much of the core concept is the same as both are 

based on working with gradients. An advantage of Laplacian edge detection is that it might be 

better at finding the localization for the edges, while a disadvantage can be that curves and 

corners might pose slightly more problems than for Sobel edge detection (Bhadauria et al., 

2010).  



19 

 

 

 
Figure 14: Laplacian edge detection is used on the image to the left, showing the skeletonized 

result in the image to the right (the red blue line marks the rotation angle calculated) 

 

3.4.2 Line detection 

 

A well-known line detection algorithm (which is of interest here since it has support in OpenCV) 

is the Hough transform (Duda, Hart, 1972). The method is based upon a voting system for the 

pixels in an image (voting in terms of number of curve intersections at certain points), which 

decides the parameters of line segments, and running the algorithm will eventually result in an 

outlining of these. While it can be an effective way of detecting the lines in an image, a 

drawback is the relatively high complexity of the algorithm (Fisher et al., 2003). An advantage 

that compensates this is the property of being robust to noise (Turkel, 2011). The interesting 

aspect in this report is to see whether Hough transform gives a consistent output of lines for 

certain objects. 

 

 

 
Figure 15: The Hough Lines algorithm is used to mark noticeable lines on a circuit card. 
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3.4.3 Thinning 

 

In order to make the task of detecting contours and rotation for an object easier, thinning can be 

used in order to get lines that represent the skeletonized shape, while also preserving the 

topology (Palágyi). This could possibly make the process of detecting the alignment for some 

object easier, as lines can be easier to handle than the object itself. For instance, one way can be 

to view the lines as vectors, and making calculations with these (for instance, summing them 

could be a possibility) could be a way of finding the alignment.    

 

Basically, thinning is a morphological operation (Fisher et al., 2003) which uses a kernel to 

acquire the result. There are a couple of different ways of thinning as well; one could get the 

whole “skeleton” of an object (the shape drawn with lines) or one could just get the corners of it. 

In fact, the last approach could have possible aspects of interest for finding the alignment, for 

instance by marking vectors between the center point and the corners, and then computing some 

kind of average or median angle. There are many different algorithms for thinning (or 

skeletonization), however using the kernel is a base approach which deletes or keeps black 

colored pixels depending on the amount of neighboring black pixels and their connectivity 

(Saeed et. al, 2010). 

 

3.4.4 Points of interest detection 

 

There are algorithms for finding points of interest in an image; points that make the image stand 

out or points that describe it in some way. It is desired that such an algorithm is robust to noise, 

orientation and other features when being in use. One such algorithm is the SURF descriptor 

which uses integral images and Hessian matrix based detection measures, among others. It has 

been shown to be an effective detector of interesting points and also to be relatively fast (Bay et 

al., 2008). Basically this is a high level function in OpenCV, and the specific usage of it was 

interesting in this thesis for the rotation problem. 

 

POI detection has several applications. One such application could relate to the task in this 

project of finding the rotation; a mean point could be created from the interest point and a vector 

could be defined as going from the middle point of the image to the mean interest point. This 

could then stand for the orientation angle of the image. 
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Figure 16: A number of points of interest are detected for a circuit card using OpenCV´s library. 

 

3.4.5 Histogram of Oriented Gradients (HOG) 

 

This section demonstrates an example of how histograms can be used to implement an algorithm 

for handling the rotation task in this thesis. First, some method is used to get the first order 

intensity derivative for each pixel (for example Sobel edge detection) (Dalal et al., 2005). This 

derivative basically represents the slope of the intensity change between pixels. This is done for 

both the x and y axis, whose results are stored separately. Next, these Cartesian coordinates are 

converted into polar coordinates, and these are stored in a histogram. Finally, the averaged angle 

is calculated for all the angles of the polar coordinates. This is basically the final angle that the 

algorithm outputs. 
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Figure 17: The image to the left is the input image to the HOG algorithm, and to the right it is 

gradually going through different stages. Gradients are first calculated for the X- and Y axis 

separately, and then the result is transformed into a representation of these with polar 

coordinates. The result of this is visualized in the two rightmost images, and the vectors are 

summed in order to calculate the final angle. 

 

3.5 Background subtraction 

 

In this project, what is to be regarded as the most crucial part of the image segmentation 

algorithm is the background subtraction. This is since once the background is gone from the 

picture, the rest is easy; let us suppose we know that everything but foreground objects has a 

single color; then we can use a simple color detection to retrieve the objects, for example. There 

are several approaches for background subtraction. However, in some way or another, the 

methods below are all based on comparing some form of statistics between the background 

picture with and without objects on it.  

 

3.5.1 Pixel/histogram statistics 

 

Statistics can be acquired to divide the image into pixels probable to be background and 

foreground, given a sample image as basis (opencv dev team, (2011)). This approach is popular 

in the computer vision area thanks to the relative simplicity in the computational aspect (Noriega 

et al., 2006). 

 

A simplified description of an algorithm for background subtraction using histograms could be 

as follows: 

 

Take a number of pictures on the background alone. This number depends on how dynamic and 

large the background is. Then, compute an image that makes a good representation of the 

average background by averaging over the pictures taken. Then, for each input image, find a 

suitable threshold value that subtracts the pixels probable to be background pixels using both the 

histogram for the averaged background image as well as the histogram for the input image, and 

do this by comparing the difference between these two histograms. 
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Alternatively, one can run the algorithm without using histograms, and instead comparing the 

images pixel by pixel. Then in the input image, one simply keeps the pixels that differ to a 

greater extent (because an object will probably be located there) and each pixel that is of about 

the same intensity in both images will be discarded. 

 

3.5.2 Mixture Of Gaussians / Gaussian functions 

 

A background subtraction algorithm by Kaewtrakulpong and Bowden was based on the Grimson 

and Stauffer background mixture modeling approach using Gaussians (Kaewtrakulpong et al., 

2001). A brief, simplified overview of the theory is the following. Each color in the image is 

modeled as a Gaussian. The final background subtraction is made after collecting the information 

from each pixel and constructing these Gaussians, and this is done by keeping the pixels that 

differ more than some constant number of standard deviations in intensity from the rest of the 

distributions. 

 

Another way is to model each pixel as a Gaussian distribution depending on what color it has 

had over time (in the different images in the image series). If it is seems stable, it is probably a 

background pixel. More uneven distributions for the pixel indicate that foreground has taken 

place there for some image. 

 
Figure 18: An example of a mixture of three Gaussian variables (Wikimedia Commons, 2009). 

 

3.5.3 Central image moment 

 

The centroid of an image is calculated as a mean of the image intensity in the image. So the 

result is a point, which has the property that the intensity is equally distributed around it 

throughout the image (Intelligent Perception, 2010). In other words, all pixel values can be 

summed up to find this point which becomes the gravitational center. The real advantage of this 
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method is that it is robust to minor shifts in the image - small rotations or small amounts of noise 

do not alter the result very much (Utkarsh, 2011). 

 

It might be required to have the light settings exactly the same for all pictures when running this 

algorithm for the task in this thesis of finding the rotation of a certain object. If the light 

conditions are not fixed, i.e. there are reflections in some pictures, the result could alter 

drastically since the intensity distribution might get shifted. 

 

3.6 Image Classification 

 

This section is devoted to describing the method for object classification that was used in the 

final experiment, when testing how the pre-processing algorithms in this thesis can enhance the 

results when classifying objects. Because of certain time constraints for this project (about one or 

two weeks were devoted to the implementation of the classifier) we chose a relatively simple 

classifying algorithm, namely Template Matching by comparing pixel intensities.  

This has been tried before with successful results (Pinto et al., 2010). There are many other 

choices that could have been made, but we limited the thesis to cover only this one as the field of 

Object Detection is broad and many algorithms are too complex to be implemented in the time 

frame given. Optisort recommended us to implement this algorithm because of this. 

 

The underlying idea of the algorithm is to go through the image retrieved by the algorithm (or 

taken by the camera, if no pre-processing is done) pixel by pixel and compare it to the same 

corresponding pixel in the images stored that represent each object (the templates). In order to 

see which of these objects the image resembles most when all the pixels are iterated through (i.e. 

the least total intensity difference is for that object among the different ones). 

 

3.7 Earlier research work of interest 

 

It is of interest what research methods have been tried already in similar tasks to those in this 

report. One interesting point is that different kinds of height sensing or similar techniques 

resulting in a three dimensional image for analysis have often been applied in automated waste 

sorting and research (Mattone et al., 2000), (Dop, 1999). It is also a frequent approach to the 

more general object recognition task, and video processing is sometimes chosen instead of using 

images (Mamoru et al., 2000), (Gould et al., 2007). 

 

Numerous methods have been used for separating foreground from background (segmentation in 

other words), for example the background subtraction part color modeling has been tried 

(Horprasert et al., 1999), and also Bayesian Rules (Li et al., 2004) which is a bit more novel than 

regular image processing methods. This is not to mention the approaches already written about in 

the section about background subtraction in this report. For example, histograms have been used 

as an important tool (Arifin et al., 2006). Also color-set back projection is a method that has been 

used, and it has worked (Doringa et al., 2010). 
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Fourier transformations have been used for registering images in the sense that they become 

rotation invariant; in other words similar problems to the image rotation problem  

(Makadia et al., 2003). Interestingly enough, also histograms (Villamizar et al. (2006) and 

wavelet transforms (Lee et al., 2002) have been used to solve problems of similar character 

(Villamizar et al. used gradient orientation histograms to compute image feature orientation for 

object detection). Thinning methods have been used as a part of rotation invariant algorithms 

(Ahmed et al., 2002). 

 

It should also be mentioned that the problem of detecting skewness for printed characters has 

also been approached in several ways (a problem relatively similar to the rotation problem here). 

For example, Hough transform has been used successfully for detecting this kind of skewness 

(Nandini et al., 2008).  

 

In summation, there are many approaches that have been tried to problems similar to the 

problems in this thesis. In this project, however, we have chosen the methods that seemed most 

suitable for the conditions in our specific problem. Some of these related works still worked as 

inspirations even though there was no direct application. 

 

4. Experiments 
 

The following experiments were done in order to gain understanding about what performance 

could be expected from the algorithms. The experiments are, as stated earlier, image 

segmentation, image rotation and object classification in consecutive sections 4.2-4.4. The 

experiments were made on a Compaq 6720s laptop with an Intel Celeron Processor with a 1.73 

GHz processor and 2 GB RAM (and with other processes in the background while running 

them). While the choice of computer certainly may affect the performance, the idea was mainly 

to get a comparison of the different algorithms knowing that the final performance can probably 

be improved, while still getting results indicating the best algorithm choices. Even if the 

performance differs between different computers, it was believed that one could get results with 

the computer chosen here indicating whether the algorithms were probable to be effective in a 

real production setting. Optisort had a benchmark of 0.1 seconds; the total time that was desired 

to be kept as an upper limit. Then if some algorithm would take 2 seconds to complete, for 

example, the 0.1 second limit could probably not be managed even by a stronger computer. So 

getting results for the sake of comparison and realistic evaluations was the main goal. 

4.1 Test set 

 

The test sets for all the experiments below have been obtained from a prototype made by 

Optisort. The point with this is to make sure that the results should reflect the actual performance 

if used with a final product in a real environment. However, the prototype might differ from the 

final product, which also might be the case for the photographed test objects, so it is possible that 

the results might still vary. However, the main idea is to show, since the camera is to be stationed 

at one fixed area, that with some program settings the program can work for that environment. 

Because of the fixed camera position, specific light settings and a specific background (in form 

of a specific moving conveyor belt), one may need to adjust the program settings to fit some 

other conditions. In this experiment we had a specific prototype with some specific conditions to 
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work with. However, as explained, these conditions might be different in a release version, and 

thus it is possible that one needs to adjust the program settings accordingly (by changing the 

threshold values, for instance). 

 

 

Figure 19: The left image displays the conveyor belt with no items on it. The right image shows 

a lamp that has appeared on the conveyor belt. This is how images in the test set would typically 

look. 

 

Due to the fact that Optisort already uses high quality cameras and light settings in order to 

reduce errors based on image quality, comparing image quality was not considered to be a 

relevant aspect in the testing. A more likely source of error is dirt on equipment and objects. 

However, the test set was collected with a representative amount of dirt already. Thus, it is 

expected that the test set already represents the variation in dirt that would occur in a final 

product. After all, the test objects were collected at Renova, a waste sorting company, so the test 

objects represent data from a real live setting. A varied series of objects were used; light bulbs, 

clocks, circuit cards, LED lamps, screws, pencils and batteries among others. 199 images of the 

foreground objects were taken, and 21 background images were taken (to be used with the 

segmentation methods for background subtraction). As explained, the camera is fixed but the 

background is still partly dynamic because of the moving conveyor belt. 

 

The images that were taken by the prototype to be used for the test set had each object's frame 

defined by hand in order to enable automated testing. This means that a data file with optimal 

results was done by hand, and the output of each test was saved in a file of the same format. A 

small test program made the comparison between the output file and the file with optimal results. 

When testing the rotation, a test set was used that basically consisted of the segmented images 

from the first experiment. A similar way of outputting the performance of the algorithm was 

used, as described for the segmentation above. This enabled automated testing, so that when 

acquiring the algorithms’ performance, the program was run for all the test pictures and the 

results were written correspondingly to the output file. Then, the test software was used to iterate 

automatically through the results for all the pictures in the output text file, and the performance 

was calculated in terms of correctness (measured in number of pictures) and average time spent 

on each picture for the output image (that is for the segmentation task, for the rotation task the 
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first is instead exchanged for rotation degree variance measured for each object, not for each 

image). 

 

Both accuracy and time are important aspects; accuracy alone is not enough. This is since 

Optisort has a requirement that the algorithm takes about a tenth of a second to complete. At the 

same time, this requirement is not all too strict since improvement can be made later with faster 

processors, images of more suitable resolution and so on. However, time is still an important 

aspect and it is therefore fully possible that we regard some faster algorithm as better than a 

slower one, even though the later might have better accuracy.  

 

4.2 Experiment 1: Image segmentation comparison 

This experiment is meant to give a general overview of how different ways of segmenting an 

image (finding the objects contained in it) perform on the test set. The output of each experiment 

run was classified by hand. 

 

 

 
Figure 20: An image of the conveyor belt with an object on it to the left, and to the right is an 

image of the object being segmented in a correct way. 

 

4.2.1 Algorithm descriptions 

 

The main task for these algorithms is deciding whether a pixel belongs to the background or the 

foreground. This is done either directly or indirectly. 

 

In general, the algorithms chosen can be divided into two categories. The first is algorithms 

where no knowledge based on previous images is used and thus focus on feature extraction only, 

such as finding contours in the original image. These algorithms generally try to extract features 



28 

 

based on just pixel value or by pixel neighborhoods. The second category is algorithms that use 

data of previous images in to perform segmentation. The simplest example is a pixel-by-pixel 

comparison between two objects. The background could be used as one of these images and the 

deviation of the given picture from this background could thus be used for background 

segmentation, separating the image into foreground and background sections. 

 

The algorithms presented here generally have one step of the second category of the two ones 

described previously, followed by one step of the first category. It would show that it was more 

or less necessary to have background images sampled beforehand in order to get optimal results. 

This is since on the conveyor belt of the prototype, there was noise in the form of dirt, oil and 

iron bars that would be taken for being objects though not being desired, when having algorithms 

of the first category. In a realistic scenario, dealing with these problems should be quite 

necessary. 

 

Once the background and foreground has been separated, usually in the form of a binary image, a 

segmentation of the first category can easily be used to go from separated foreground and 

background to a set of objects. To get a set with different objects and deciding their frame, mask 

and position, a most direct way has been chosen; the built in function for finding contours 

(Suzuki et al., 1985) and minimal bounding rectangles in OpenCV. It might be possible to 

optimize further for a small speed benefit. 

 

The algorithms implemented here strongly depend on background subtraction. After the 

background subtraction, they all use the built in OpenCV function for finding the contours. As 

mentioned earlier in this report, background subtraction was required for the segmentation to 

work and was very much the sole challenge and the work behind the algorithms, since when a 

perfect background subtraction is carried out the rest is easy; the foreground is more or less 

segmented already. Therefore, the below descriptions are mostly about this part.   

 

The first two algorithms below were low-level implementations while the remaining two 

algorithms used high level functions in OpenCV. The interesting aspect of including both kinds 

is that a comparison can also be made between low level implementation versus high level 

implementation. 

 

4.2.1.1 4d histogram (Histogram) 

One algorithm that was tested was the one described in section 3.5.1 based on background 

subtraction using histograms. In this implementation a four dimensional histogram was used. 

Three dimensions corresponded to the three color channels and the fourth dimension 

corresponded to the amount of pixels of some specific color found in the picture. By scaling 

down the intensity values, similar color values were grouped together so that the histogram did 

not have to store a separate value for each possible color intensity. The exact scaling might 

depend on the light conditions and other image qualities, and might thus need some adjustment 

for each specific case. Problems can arise if the histogram is scaled down too much, because then 

the grouping into different colors will be too coarse. Also, if the histogram is scaled down too 

little it will require more resources instead and be too sensitive to noise and color variation 

between different photos.  
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For the algorithm, a histogram is first created for the average background. Then, for each image, 

another histogram is created. The image histograms are compared to the background histogram, 

and each color group is either set to being part of the background or part of the foreground 

depending on the similarity in density. Each pixel in the given image can then be marked to 

foreground or background just by checking its color. The algorithm is thus sensitive to the fact 

that the input image should preferably have a wide spread of different color values, and ideally 

the background should not have colors all too similar to the objects. This might need some pre-

processing based on the image qualities of the given situation. On the binary resulting image, the 

OpenCV algorithms for finding contours and minimum bounding rectangles are used. 

 

4.2.1.2 Averaged background segmentation algorithm (BgDiff) 

 

The pixel based approach was also used which is described in section 3.5.1. While the histogram 

approach is based on dividing the colors into foreground and background and then marking the 

pixels accordingly, this approach is a direct pixel-to-pixel comparison. To recap, for a set of 

background images, the average image is calculated. This results in an image where much noise 

has been removed. This can be seen as an approximation for the ideal image that would be 

captured if there was no noise. This image is compared to the set pixel by pixel in order to 

calculate the average- and maximum differences. This results in two images, the average noise 

level and the peak noise level. Note that these values are available on a per pixel basis. For each 

pixel, an approximation of the ideal value of the background, the average difference and peak 

difference are available. This concludes the necessary setup. For each new image, a pixel-wise 

comparison between the given pixel value and the approximated ideal background value with a 

tolerance based on the average noise level and a parameter times the peak level is performed. 

This is done to decide whether a pixel belongs to the foreground or the background. This 

algorithm is more sensitive to having the photographs taken from a fixed and stable position. On 

the binary resulting image, the OpenCV algorithms for finding contours and minimum bounding 

rectangles are used.  

 

4.2.1.3 Gaussian segmentation algorithm (Gaussian) 

 

The algorithm representing each pixel's intensity distribution as a Gaussian was used (described 

in section 3.5.2). Unlike the two algorithms described in the preceding sections, this is more of a 

high level algorithm. This means that a pre-implemented function is used from OpenCV´s 

library, so what we get is essentially a “black box” that makes the segmentation. The advantage 

with this is that it is easier to implement, of course, however the drawback is less control since 

nothing about the function can be changed except for some input parameters, however the 

implementation remains static. 

 

4.2.1.4 MOG segmentation algorithm (MOG) 

 

Another algorithm that was used was Mixture Of Gaussians (MOG) for background subtraction, 

described in section 3.5.2 (colors represented as a mixture of Gaussians). Basically the same 



30 

 

holds here as for the Gaussian segmentation; it is a high level algorithm which has its advantages 

and disadvantages. 

 

4.2.2 Results 

  

The below diagram shows the results when running the different segmentation algorithms on the 

test set. It is clear that the algorithms have different properties; for example, MOG made 

relatively many false detections (i.e. stated falsely that a part of the background was a foreground 

object), while still having a large amount of the objects being detected correctly. The histogram 

segmenter, on the other hand, missed relatively many objects compared to other algorithms.  

 

The best performing algorithm was the pixel-wise background segmenter, with almost 90% of 

the objects being detected in a correct way. The Gaussian segmenter which did not miss a single 

object completely, but where on the other hand the majority of the detected objects were only 

captured partially in the segmentation, cannot be regarded as the best choice.  

 

Overall there were not many merged detections, meaning that two objects close to each other are 

classified as a single object. This indicates that the algorithms are not very sensitive for close 

distances between objects. Also, MOG was the only algorithm to make false detections; the other 

algorithms did not falsely label the background as foreground.  

 

The greatest difficulty seems to be connected with detecting the objects completely with a fine, 

exact bounding box that does not cut out any parts of the objects; failing with this was the most 

common source of errors. The main problem with only making a partial detection of some object 

is that when having the resulting image as input to the rotation algorithms, the fact that the object 

is only partially detected may alter the results considerably. As many of the rotation algorithms 

tend to output a result based on shapes and angles of the object, it may be a completely different 

result if just a little part of the object is cut off, being substituted for a sharp edge instead, whose 

angle will then contribute to some other resulting angle as output than what should have been if 

the whole object was segmented from the beginning. 
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Figure 21: An object being detected partially. The leftmost shows the input image, the second 

left image a processed version of it, and then the two rightmost images are the partial detections 

of the USB-stick. 

 

Finally, time is an important aspect, and it comes clear that Gaussian and MOG segmentation 

takes too long time to complete. With better hardware a speed-up may be achieved, but still 

reaching the benchmark of less than 0.1 seconds seems unthinkable. It is important to mention 

that while the average time for BgDiff was 246,52 ms, a more optimized version outside the test 

environment managed to run at about 150 ms. Also, as a faster computer could have been used, it 

is believed that the algorithm has potential to run faster than 100 ms in a final version. 

 

Algorithm Average 

speed 
Correct 

detection 
False 

detection 
Missed 

detection 
Partial 

detection 
Merged 

detection 

BgDiff 246,52 ms 249 0 8 26 2 

Gaussian 1106,60 ms 94 0 0 191 0 

Histogram 382,17 ms 201 0 30 48 2 

MOG 1626,33 ms 224 123 5 59 0 

 

4.3 Experiment 2: Image rotation 

The purpose of this experiment was to test how different algorithms perform on the following 

task: given a set of images of well segmented objects from the test set, rotate them in the sense 

that for each object, the rotation will be the same and there is no difference in the orientation 

regardless of which it had in the input. For instance, suppose a specific battery was photographed 

several times in a multitude of angles. The ideal is that after inputting the images one by one, all 

outputs are practically indistinguishable. 

 

 

 
Figure 22: The upper part displays a series of input images to the rotation algorithm displaying a 

circuit card. The lower part shows the output images (using the Image Moments rotation 

algorithm) for the above respective input images. Here the algorithm succeeded very well since 

they look almost the same. 
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Each individual algorithm was tested one by one with a test set that was acquired when making 

the segmentation experiment; 10 different objects were tested, and images were used which 

represented correct segmentations of each object (average was 7 images for each object). 

 

The main properties for testing in this experiment were speed and accuracy. The accuracy was 

simply measured as the variance of the rotation degree. To explain this further, we had several 

images of the same object in the test set. The goal is, as explained above, that each object will be 

rotated in the same way for all the pictures of it. Thus, accuracy is measured in terms of variance 

for each object and not for each individual image. The speed is measured as the average time of 

calculating the rotation for a certain object. 

 

Something that should also be noted is that if nothing else is labeled, the test was done with 

pictures of the respective object taken on the conveyor belt of Optisort´s prototype. However, we 

have also included something called the Ideal Test Case. This means that for the given object, the 

background was black, and using Photoshop, replicated images of the exact same object were 

created with different rotation angles. The purpose of this was to investigate the theoretical ideal 

case, where the object is perfectly segmented and the light conditions do not change for the 

different images taken. This is probably hard to achieve with one hundred percent perfection in 

reality, but is something that was interesting to test anyway. This is since if an algorithm would 

work very well in this setting and not in the real setting, it would rather be hardware and 

environment posing problems than the algorithm itself. An alternative way of viewing it, of 

course, is that the algorithm might be too sensitive for changes, but in whichever case more 

conclusions could be drawn when including this test case.   

 

4.3.1 Algorithm descriptions 

 

The following algorithms mainly work in two different ways; working with the contour of an 

object or working with the surface (which is color or structure) of an object. A solution could 

also possibly be a combination of an algorithm based on contour analysis and an algorithm based 

on surface analysis. While the contour of an object is relatively easy to work with, symmetric 

shapes tend to cause ambiguity, such as with finding the point furthest from the center in a 

perfect circle; no unique solution exists here. Working with surfaces might give more 

opportunities to find a reference angle, but in the case of an object with a uniform surface, this 

could also fail. In the special case of an object that registers the image as a perfect circle with 

uniform surface, any angle as output by the algorithm will actually work. The hardest situations 

for these algorithms would then be the ones featuring objects that are very close to symmetric 

and have a minimal amount of surface features with direction. Several of the following 

algorithms passed through a pre-processing algorithm to handle the above ambiguity issue, 

namely an algorithm that rotated the image so that if a cross would divide the image into four 

equally large rectangular parts, the brightest part would be the upper left one, so that is a rotation 

of 0, 90, 180 or 270 degrees. This is not included in the algorithm descriptions but is instead 

mentioned here. Also, this pre-processing is obviously regarded as a part of the algorithm itself 

and the time it takes is included in the experiment results.  
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Something that is important as a notice is that the images were preprocessed before they were 

used as input to the algorithms. More specifically, Canny’s - and Laplacian edge detection were 

used to skeletonize the image before it was used as input to the algorithms. This means that the 

algorithms work with the structure and the contour of the objects, and not the light nuances or 

colors. The reason for this is that the light conditions varied between the images depending on 

how close the object was to the lamp, and there was also the fact that different reflections could 

be depending on how the object was turned, and this was undesired since consistent results could 

not be acquired then. So because of this, the pre-processing was done. 

 

Six algorithms were tested for the rotation task, and they are presented below. Both high level 

approaches based on pre-implemented functions (POI and Hough Lines) and low level 

approaches (HOG) were used. We used optimized algorithms in OpenCV in many cases where it 

was possible (for example, in order to perform the Fourier transform) but mostly they were 

combined and complemented with more thorough low level implementing in order to finalize the 

algorithm.  

 

Algorithm 1: 

 

One algorithm was based on Hough Lines. The Hough Lines algorithm was executed for the 

image, and then a resultant vector was created from the lines in the output. The rotation was 

simply the negated degree of this angle. 

 

Algorithm 2: 

 

Next, an algorithm was used based on Points Of Interest (POI) detection. This algorithm would 

use the POI detection algorithm in OpenCV (a high level algorithm based on SURF detection) to 

find a number of points of interest. A midpoint was then created from these points, and a vector 

was made by having the mid image point and the mid POI point as endpoints. So this is basically 

what was also described in section 3.4. 

 

Algorithm 3: 

 

Another algorithm which was also based on a high level function in OpenCV was the algorithm 

based on Central Image Moment. This is the concept described in section 3.5.6; a point of mean 

image intensity was calculated on the image, and again a vector made from these points would 

stand for the resulting rotation angle (negated). 

 

Algorithm 4: 

 

The fourth algorithm used the idea from section 3.3.1; it calculated the Fourier diagram of the 

image, and then using Bresenham´s Line algorithm, the line of most intensity was found in the 

diagram, and this angle would represent the angle for the image. 
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Algorithm 5: 

 

The fifth algorithm was based on orientation gradients (so it was inspired by HOG, described in 

section 3.2.2.3), and calculated a resultant vector by summing the gradient vectors. This would 

then represent the angle of the image. The algorithm is referred to as the HOG algorithm though 

there is a slight difference from the standard approach, namely that no histograms were used; 

calculations were made instead by getting the gradient orientation pixel by pixel and filtering out 

weak gradients. 

 

Algorithm 6: 

 

The sixth algorithm simply used the bounding box acquired by the segmentation algorithm when 

segmenting the objects (the pixel-wise segmenter was used for this, as stated earlier). The angle 

for the bounding box was used to rotate the box back. At this stage, there is a rectangular 

bounding box which could be turned 0, 90, 180 or 270 degrees to maintain the property of the 

sides being parallel to the computer screen. First, the longest sides are turned so they represent 

the width of the box. Next and finally, there is a choice of rotating the bounding box either 0 or 

180 degrees. This is decided by the Image Moments algorithm; if the direction of the resulting 

vector is to the right (between -90 and 90 degrees), the image is rotated 180 degrees. This means 

that for long objects, there will be no problem in choosing which side will represent the width 

(which poses a problem for quadratic objects, though); only the choice of the final rotation of 

either 0 or 180 degrees could be problematic if the light conditions are very homogeneous in the 

image. 

4.3.2 Results 

 

Here follows the results from the experiment. Note that the experiment was done with three 

different edge detection methods for each rotation algorithm, and the result is presented for each 

of them. The reason for testing against three different edge detection methods was that features 

for the individual detectors would not bias the result; they all worked a little different, so testing 

against all three gave a better overview. Also, the results are showed when no edge detection is 

used as pre-processing. 

 

 

Test measuring average times for running algorithm 6 

 

The time for segmentation is included here since the bounding box is what gives the rotation 

angle for this algorithm, and segmenting the objects is thus required. The segmentation should 

really be separate from the rotation and not included if segmentation and rotation is run in 

sequence, however this might not always be the case; rotation could be run alone. Therefore the 

time for segmentation is included; in that case it is part of this algorithm. 

 

Here “Both” means time in total including the rotating of the images, 

“Seg” means that just the segmentation algorithm was used and 

“Rot” means correspondingly that only the rotation algorithm was used.  
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Testing average time for rotation 

Algorithm Average speed 

Fourier 780 ms 

HOG 44 ms 

Hougline 210 ms 

Moments 0.98 ms 

POI 220 ms 

 

 
Tests of performance of rotation algorithms with different edge detectors as pre-processing 

 
Here the results are compared for the different rotation algorithms. As noted earlier, different 

edge detectors are compared, working as image pre-processing tools. 

 

For each object in the tests, green color is used to mark the best result and red the worst result.  

 

 

 

 

Fourier Rotation - Standard Deviation 

 Canny edge 

detection 

Laplacian edge 

detection 

Sobel edge 

detection 

No pre-processing 

(plain) 

Battery 62,40 29,43 36,79 79,79 

Long green circuit card 41,71 79,59 85,62 75,59 

Green circuit card 80,55 76,96 77,62 80,13 

Christmas tree lightbulb 63,32 99,54 89,95 99,83 

Keychain (electronic) 43,01 63,74 30,39 40,73 

Orange circuit card 49,77 23,48 19,86 51,77 

Orange irregular shaped 

circuit card 

9,68 58,83 58,95 77,60 

Spotlight lamp 66,38 65,14 72,76 56,84 

Oven lamp 46,45 48,61 36,00 40,39 

White lamp 44,62 31,57 34,42 43,53 

 

 

HOG Rotation - Standard Deviation 
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 Canny edge 

detection 

Laplacian edge 

detection 

Sobel edge 

detection 

No pre-processing 

(plain) 

Battery 82,69 57,33 67,07 107,68 

Long green circuit card 65,11 60,57 59,29 81,44 

Green circuit card 97,84 51,07 44,54 82,81 

Christmas tree lightbulb 83,25 67,31 92,73 99,06 

Keychain (electronic) 95,30 96,61 62,81 103,96 

Orange circuit card 82,27 81,50 91,42 92,03 

Orange irregular shaped 

circuit card 

95,37 74,67 88,26 87,32 

Spotlight lamp 97,88 76,15 74,81 87,36 

Oven lamp 91,44 78,96 80,97 44,82 

White lamp 30,95 51,18 13,06 29,82 

 

 

 

 

 

 

Houghline Rotation - Standard Deviation 

 Canny edge 

detection 

Laplacian edge 

detection 

Sobel edge 

detection 

No pre-processing 

(plain) 

Battery 61,80 86,45 91,88 56,64 

Long green circuit card 62,57 42,73 48,38 69,70 

Green circuit card 56,19 93,59 97,91 95,21 

Christmas tree lightbulb 103,85 94,14 70,95 82,83 

Keychain (electronic) 96,52 97,70 89,56 60,01 

Orange circuit card 80,79 86,92 84,23 84,50 

Orange irregular shaped 

circuit card 

91,10 78,60 87,09 83,26 

Spotlight lamp 80,64 85,50 61,95 84,51 

Oven lamp 65,57 94,48 105,03 63,90 

White lamp 59,74 71,65 78,45 112,52 

 

 

Moment Rotation - Standard Deviation 
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 Canny edge 

detection 

Laplacian edge 

detection 

Sobel edge 

detection 

No pre-processing 

(plain) 

Battery 99,19 14,65 19,47 16,26 

Long green circuit card 46,70 62,69 52,39 68,27 

Green circuit card 71,74 49,57 45,49 66,40 

Christmas tree lightbulb 39,83 68,91 60,28 74,93 

Keychain (electronic) 51,67 8,18 5,10 13,12 

Orange circuit 33,68 16,67 14,03 48,55 

Orange irregular shaped 

circuit card 

55,52 71,92 66,34 55,99 

Spotlight lamp 99,18 34,07 40,19 50,91 

Oven lamp 9,76 26,17 45,68 70,76 

White lamp 24,00 1,81 2,73 17,33 

 

 
 

 

 

 

 

POI Rotation - Standard Deviation 

 Canny edge 

detection 

Laplacian edge 

detection 

Sobel edge 

detection 

No pre-processing 

(plain) 

Battery 74,39 14,60 20,92 82,59 

Long green circuit card 48,13 62,50 79,76 73,65 

Green circuit card 59,67 70,84 66,16 70,72 

Christmas tree lightbulb 55,28 98,74 103,87 99,17 

Keychain (electronic) 18,16 47,63 33,98 28,82 

Orange circuit card 41,96 48,18 32,51 58,59 

Orange irregular shaped 

circuit card 

25,04 50,45 50,67 94,65 

Spotlight lamp 102,47 60,82 60,37 67,48 

Oven lamp 19,23 36,13 44,35 49,74 

White lamp 8,20 15,24 23,31 15,81 
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Theoretically possible results by using a single image rotated in turns of 45 degrees using 

Photoshop for a total of 8 images per test set. 

 

Here the result is shown for the Moments algorithm with the theoretical ideal test images as 

input. It turns out that in this setting, it performs very well. 
 

Moments 

 Standard deviation 

rectangular circuit card 0,90 

oval circuit card 1,06 

 

 

 

Results of algorithm 6 using Sobel pre-processing (both results as they are and if 180 

degrees rotation is allowed as in using two reference images for each object) 

 

Here the bounding box based rotation algorithm is tested with Sobel edge detection as pre-

processing for the images, and it shows that when allowing images being rotated 180 degrees (in 

other words, it does not matter if the image is flipped over), the algorithm performs very well. 

 

 

 

Boxwise Rotation - Standard Deviation 

 Standard Allowing 180 degrees rotation 

Battery 2,68 2,58 

Long green circuit card 67,71 1,05 

Green circuit card 0,36 0,31 

Christmas tree lightbulb 63,55 1,11 

Keychain (electronic) 4,70 4,76 

Orange circuit card 0,26 0,22 

Orange irregular shaped circuit card 112,36 9,79 

Spotlight lamp 36,96 36,84 

Oven lamp 64,72 5,79 

White lamp 0,96 1,19 
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4.4 Experiment 3: Testing how the segmentation and rotation algorithms can 
enhance the performance of an object classifier 

 

This experiment was done using an implementation of the object classifier described in section 

3.6. The purpose of this experiment is to tie together the previous algorithms into a single applied 

program as a pre-processing stage to an object classifier, ideally showing that the previous 

results in this thesis are of benefit for real applications.  

 

The experiment was done in the following way: using the best rotation algorithms from the 

previous experiment, images were sent into it that had been segmented by the pixel-wise 

background segmentation algorithm (which had achieved the best results among the 

segmentation algorithms), whose input in turn came from the test set. So in other words, images 

from the test sets were both segmented and rotated, and then sent into the image classifier. This 

was done for 20 different objects, and since the classifier would always output exactly one image 

from the template bank which was regarded as the one resembling the input most, the score 

system was completely binary for each object; it was either the right object that was suggested, 

or it was the wrong one.  

 

Since the segmentation algorithm chosen here worked very well, the main interest was 

comparing different rotation algorithms. This was what would be the main issue in the end; 

assuming every object was segmented in a perfect way, rotating each object in the same way for 

all images in the sense that they all look more or less the same, should intuitively give good 

results for the classifier. The two best rotation algorithms had shown to be the one using the 

angle for the bounding box and having Image Moments as a secondary algorithm, and the Image 

Moments algorithm. These were the one used in this experiment for comparison. 

 

4.4.1 Results 

 

The results were the following with the following algorithms as pre-processing stages before 

classification: 

 

Image rotation with bounding box angle: 12 out of 20 correctly classified images 

Image rotation with image moments: 3 out of 20 correctly classified images 

 

The results will be discussed in the Discussion section, which follows below. 

 

5 Discussion 
 

In this chapter, it is going to be discussed not only what algorithms worked best, but also what 

underlying features are important for the different tasks. Four algorithms were tested in the 

segmentation experiment, and five algorithms in the rotation experiment. The results could 

clearly show which algorithms worked best, though at the same time most algorithms had 

different strengths and weaknesses. 
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5.1 Segmentation 

 

It turned out that background subtraction done by having an averaged background and 

classifying pixels in the input image with intensity above a certain threshold difference as 

foreground, would be the best approach for segmenting objects (the algorithm described in 

section 3.5.1). It appears that this is a rather straightforward approach, which works well since 

the background does not change very much for different images (the conveyor belt has moved, 

however the color nuances are still almost the same).  

 

The histogram segmentation also works rather well, however it is a little different while still 

being similar, which has some consequences. The most important difference is that it does not 

make operations pixel-wise when deciding which pixels will be foreground and which will be 

background; the overall difference is compared for certain nuances. The intuitive weakness that 

could arise is when an object contains nuances from the background, and the comparison shows 

that this nuance in the input image does not differ from the background with an amount which is 

large enough. Then partial detections could be the resulting error, since the pixels were regarded 

as background. Missed detections could also be made in this way, and both kinds of errors were 

seen in the experiments. 

 

The MOG and Gaussian segmentation algorithms are harder to analyze directly since they are 

more high level algorithms, using pre-implemented functions from OpenCV. However it 

becomes clear from the results that the higher level (abstraction level, to be specific) the worse 

the performance of the algorithm becomes. Also, with higher abstraction level, it also followed 

that the time it took to perform the last two algorithms increased to a degree such that it was 

unacceptable (more than 1 second on average per object).  

 

It seems that the pixel-wise background subtraction worked best just because it does not 

complicate the task more than necessary, and all that really is needed is a pixel-wise comparison; 

it is a straightforward and very controlled way of segmenting the objects. 

 

5.2 Rotation 

 

It seems from the results that the best algorithm seems to be the sixth algorithm, which uses the 

bounding box of the segmentation algorithm. The main strength of this algorithm is the 

robustness of it compared to the Image Moments algorithm for example; the Image Moments 

algorithm worked well on the ideal test set with the exact same light settings and proportions but 

would encounter some problems when these properties were changed just a little for the real test 

set. Additionally, the bounding box algorithm showed to be relatively fast. There is a slight 

weakness though; namely handling images with a very homogeneous intensity distribution and 

having close to quadratic shape, since these are ambiguous in terms of orientation. It should be 

mentioned however, that even though some objects images in the experiment failed in the sense 

that there were 90- or 180 degree differences between them, these kinds of errors are not very 

serious from a practical point of view. While they clearly make the results in the table look 

worse, it can be imagined that in a practical setting with an image classifier for example, 

templates of a certain object could be stored with 0, 90, 180 and 270 degree rotations to solve 
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this problem. Thus, only irregular variations will pose a real problem where the error degree 

cannot be known beforehand, and these were not seen very much for this algorithm. Therefore, it 

can be stated that the bounding box based rotation algorithm worked best. It should also be noted 

that the other algorithms did not encounter the above problem in a noticeable way. 

 

Among the other algorithms the Image Moments seemed to be the best one, with a very low 

running time and relatively accurate results. This was also an algorithm that would have very 

accurate results on the ideal test case with same proportions and light settings; in this ideal case, 

the variance was only 1 or 2 degrees. However for this algorithm, as well as for the remaining 

ones, the problem was that it was sensitive for light variations. Reflections in the object seemed 

to alter the resulting angle rather much. Thus it can be stated that while this algorithm works very 

well theoretically in a perfect setting with a very even light distribution, some problems can be 

encountered in a practical setting.  

 

Another algorithm that gained decent results was the one based on Fourier analysis. The same 

also holds here; it performs very well theoretically, but has a weakness in the sense that the 

results might be inconsistent when the settings change slightly. Another weakness is the running 

time, which is comparatively long. 

 

The Hough Lines algorithm did not work very well, and the problem seems to lie in the fact that 

it is a very high level algorithm whose output can change radically when the input is tweaked 

just a little, and while there are parameters possible to adjust somewhat, it is hard to gain good 

control of it. 

 

All in all, it can be stated that object shape is a much more stable guideline for choosing the 

angle than intensity distribution or color, which can vary for different images though it is the 

same object with the same background. However it follows then also that in general, objects with 

more of a symmetrical shape are harder than unevenly shaped objects for the algorithms. Other 

things that could be of influence are the various image transformations and processing methods; 

these are operations that could make individual pixels vary for the same object in the same place 

for two different images, and thus make algorithms based on color or pixel intensity distributions 

more sensitive, so they should be applied in a careful, controlled manner.  

 

5.3 Image classification 

 

It would appear that when having well segmented images, rotating them with the algorithm 

based on the bounding box would be a helpful way of pre-processing for object classification. 

The reason why this works rather well (12 of 20 correct classifications) seems to be not only 

because the algorithm rotates the images of objects in a consistent way, but also because the 

angles are chosen in an intuitive way that makes the classification task easier. For example, 

practically all rectangular objects will be rotated in a way that they are oriented either 

horizontally or vertically. This is very practical since by knowing this, errors are almost only 

made with 90 or 180 degrees in some direction. Thus one can for instance store four pictures for 

each object as templates; each rotated 0, 90, 180 and 270 degrees respectively, in order to 
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minimize this kind of error. Then the rest is up to the image classifier; the images are rotated in a 

consistent way that minimizes the difficulties for it. 

 

It seemed that the Image Moments gained considerably worse results here (3 of 20 correct 

classifications). Most probably, an important aspect to notice is that this did not do what was 

described above; it did not necessarily rotate the objects in a way so they became horizontal or 

vertical. The problem with this is that differences occurs naturally, and while we could correlate 

them easily with the previous algorithm (rotate 90, 180 or 270 degrees), this is not done as easily 

here as the amount the angle is wrong can be practically random. Furthermore, if we have a 

rectangular object and it is not rotated horizontally or vertically, the image it is contained in will 

have an additional amount of unnecessary black background. This will practically work as noise 

as it distorts the shape of the object when sending it into the classifier. Therefore it can be said 

that it is not only important that the objects are rotated in a consistent way; how the angle is 

chosen is also of importance, i.e. rectangular objects should be vertical or horizontal. 

 

It is important to note that the results here are relative – the classifier is very simple, so 12 of 20 

correct classifications is good enough to show that the pre-processing with segmentation and 

rotation can be helpful.  

 

 

 

 

 
Figure 23: To the right the object is horizontal and no unnecessary background is sent into the 

classifier. On the image to the left, on the contrary, the object has a skew angle which adds the 

black background, and the result is that more pixels have to be compared by the classifier (since 

a saved image has to be rectangular). 
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6. Further work 
 

There are several aspects that could be of interest for further work. The hardware is an aspect 

that is of interest; for segmentation, having a laser that could scan the height of the locations in 

the image would enable another kind of algorithm for background subtraction. Several versions 

of this has already been tried, as stated in the “Earlier Work” section, however one possibility 

could be to combine height scanning with pixel-wise intensity comparison. Different hardware 

could also be used to take the test pictures, possibly enabling different results; having a neutral 

light setting that is very even and causes minimal reflection could improve the results of the 

rotation algorithms (as edge detection maybe would not have to be used). Also, another kind of 

conveyor belt of larger size could be used, enabling the possibility of having larger objects. 

 

Another aspect that would be of interest is having other frameworks than OpenCV; as an 

example, one could make own implementations of the Fourier Transform as an attempt to speed 

it up. So other ways of implementing the various algorithms in this thesis would be an interesting 

way of trying to get a faster running time. Furthermore, finding the ideal resolution for the 

images could also be interesting as a way to increase the speed while preserving as much 

precision as possible. 

 

The classifier here is, as stated earlier, a very simple one that was chosen because of time 

constraints. Using a more complex classifier based on Neural Networks, for instance, would 

probably be much more effective. Something that would be of high interest would be to test 

having the algorithms here as a pre-processing stage for Optisort´s Object Classifier, and 

comparing the performance with and without this. However it can only be assumed that since 

effective algorithms has been found for pre-processing images before classification, they can be 

used in some way to enhance their results. 

 

In the segmenter based on background difference separation, the average background has mainly 

been used. For the images taken by the object scanner at Optisort this worked fine. In other 

circumstances such as when using a conveyor belt with strong stains and tears, it might be 

beneficial to treat the background differently. Photographing the whole belt part by part and 

synchronizing the current photo with the corresponding photo of the background conveyor belt 

might be a solution.   

 

Another remark is that the current approach is based on taking single photos, however a different 

approach could be to use video input. By tracking objects in a video sequence, there is less risk 

of having the same object analyzed multiple times or the picture taken a bit too early or too late 

and thus leaving part of the object outside the frame (making it harder to recognize a partial 

object). The approach used in this report should still be valid. Still, the possible precision 

benefits should be properly weighed against the extra costs in processing introduced, and it 

might be possible that video recognition could add effectiveness if only these added costs seem 

reasonable. 
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7. Conclusions 
 

It has been shown that Foreground Segmentation can be done effectively in an environment 

where the background is partly static and partly dynamic. The method for this can be chosen as 

calculating an averaged background image based on a multitude of different background images, 

and then making a pixel-wise threshold selection of pixels probable of being foreground because 

of the intensity difference, and finally marking dense areas of such pixels as foreground objects. 

 

Calculating angles for an object in the above setting in a way such that for every image of it, 

rotating them with the respective angles calculated will result in images looking almost the same 

can be done in the following way. Use a good image segmentation algorithm (like the one 

described previously) and rotate the objects with the angles of the bounding boxes. Then, use 

simple rules like having the longest side representing the width and the brightest side up, in order 

to avoid mirrored images. 

 

To answer the question if pre-processing can be helpful for the algorithms presented in this thesis 

it seems that for the rotation task, edge detection might be more or less necessary if the light 

conditions are uneven. 

 

Finally, it has been shown that using effective algorithms for segmentation and rotation can be 

helpful for the task of object recognition. It is possible to implement pre-processing algorithms 

that segments and rotates objects in a sense that they are likely to match templates previously 

stored in the classifier of the same object. This could then be a possibility of making object 

recognition easier. 
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