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Radiative damping of toroidicity-induced Alfv�en eigenmodes (TAEs) in tokamaks, caused by

coupling to the kinetic Alfv�en wave (KAW), is investigated analytically in the limit of low magnetic

shear. A significant asymmetry is found between the radiative damping of the odd TAE, whose

frequency lies above the central TAE gap frequency x0, and that of the even TAE, with frequency

x < x0. For the even TAE, which consists of a symmetric combination of neighboring poloidal

harmonics (and therefore has ballooning-type mode structure), the coupling results in two non-

overlapping, outgoing fluxes of KAWs that propagate radially away from each other and the TAE

localization region. In contrast, the odd TAE consists of an antisymmetric combination of

neighboring poloidal harmonics, resulting in anti-ballooning mode structure. For this mode, the

KAWs initially propagate towards each other and form an interference pattern in the TAE

localization region, resulting in a negligibly small escaping flux and a correspondingly low radiative

damping rate. As a result of the up/down asymmetry in radiative damping with respect to the mode

frequency, the odd TAE may be destabilized by fusion born alpha particles more easily than the

usual, even TAE. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4748292]

I. INTRODUCTION

In burning deuterium-tritium (DT) plasma experiments,

such as ITER,1 the number and type of kinetic instabilities

excited by fusion-born alpha particles may become impor-

tant factors for alpha particle transport and heating. In partic-

ular, toroidal Alfv�en eigenmodes (TAEs)2 are of major

concern since they can be destabilized by super-Alfv�enic

alpha particles via parallel wave-particle resonances3 and

subsequently may degrade the alpha particle heating, cause

alpha particle losses, and damage the first wall.

The stability of TAEs is determined by a competition

between the drive from the alpha particles3 and a sum of

damping effects caused by the thermal plasma (see, e.g.,

Ref. 4). Among others, the so called radiative damping,5 due

to a small but finite coupling between the ideal magnetohy-

drodynamic (MHD) TAE and the non-ideal kinetic Alfv�en

wave (KAW),6 may become significant. This type of damp-

ing is, however, less understood than others, and estimates of

the damping rate still have large error bars due to its expo-

nential sensitivity to finite ion Larmor radius (FLR)

effects.5,7 Moreover, agreement between theory and dedi-

cated experiments has so far not been very convincing.8

The aim of this article is to develop analytical theory

demonstrating that radiative damping of TAEs with eigenfre-

quencies at the top end of the toroidicity induced gap is neg-

ligible. Such modes are called odd TAEs, as they are formed

through the toroidal coupling of poloidal harmonics with op-

posite signs, and they have anti-ballooning mode structure

with maximum amplitude at the high field side of the torus.

In contrast, even TAEs, with eigenfrequencies at the bottom

of the TAE gap, consist of poloidal harmonics with the same

sign, resulting in a ballooning-type mode structure with

maximum amplitude on the low field side. Although the anti-

ballooning structure of the odd TAE makes it difficult to

excite in present day machines, where super-Alfv�enic,

trapped ions accelerated by ion cyclotron resonance heating

(ICRH) are mostly localized at the low field side of the torus,

the weakly damped odd TAE may be destabilized more eas-

ily than the usual, even TAE by passing alpha particle

resonances in burning plasma experiments.

The very existence of the odd TAE deserves a special

comment. Historically, the first theoretical investigation of

TAEs2 assumed a toroidal plasma equilibrium satisfying a

certain relation between the inverse aspect ratio, � � r=R0,

and the magnetic shear, s � ðr=qÞdq=dr, namely

�� s2: (1)

Here, R0 is the major radius at the magnetic axis, r is the

minor radius, and qðrÞ is the safety factor. Under the assump-

tion (1), one discrete eigenvalue was found to exist within

the TAE gap (i.e., a single TAE mode per gap). With the

same ordering, the effect of finite pressure was shown to sup-

press the TAE when the normalized pressure gradient

a � �R0q2 db
dr

(2)

exceeds the critical value9

ac �
s2

1þ s
: (3)

In these expressions, b ¼ 8pp=B2
0 is the ratio between the

plasma thermal and magnetic pressures, with B0 the mag-

netic field at the magnetic axis. However, it was found10 dur-

ing the DT campaign on the tokamak fusion test reactor

(TFTR) that the equilibria relevant to high pressure TFTRa)Electronic mail: robert.nyqvist@chalmers.se.
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plasmas do not satisfy the condition (1) in the region of high-

est alpha particle pressure and that TAE modes could exist

even at normalized plasma pressure gradients well exceeding

ac as given by Eq. (3). Subsequent analytical theory11

explained the existence of TAEs in high pressure plasmas as

the case of � � s equilibria, for which finite aspect ratio

effects qualitatively modify the expression (3) to

ac � 3�þ 2s2. Furthermore, it was found12 that two TAEs

per gap could exist in TFTR equilibria satisfying � � s2: One

with eigenfrequency at the bottom of the gap, consisting of

two coupled poloidal harmonics of the same sign (even

TAE), and another one with frequency at the top of the gap,

consisting of two poloidal harmonics of opposite signs (odd

TAE). The even TAE corresponds to the previously found

mode, with similar eigenfrequency and ac, while the unex-

pected existence of the odd mode requires that �� s2. In

fact, the odd mode had previously been noticed in numerical

analysis,13 but its importance was fully appreciated only

when the relevant TFTR equilibria were found to support

such modes in real plasmas.

Experimentally, the odd TAE (observed together with

the even TAE) was identified in ICRH-heated JET dis-

charges with extended low shear central regions in sawtooth-

ing plasmas.14 It was found that the overall temporal

evolution of the modes is in agreement with analytical

theory,11 but the proximity of the magnetic axis renders a

non-trivial frequency evolution that deviates from the usual

TAE scaling x / B=
ffiffiffi
n
p

.

The important role of low shear TAEs as triggers of

monster sawtooth crashes was underlined in experiments on

TFTR,15 DIII-D,16 JET,17,18 and C-MOD.19 Moreover, in

addition to the sawtoothing low shear scenarios typical for

present-day tokamaks, novel so called hybrid scenarios of

enhanced plasma performance were established as good

candidates for burning ITER plasmas.20 These scenarios

also require extended regions of low shear, typically satis-

fying s2 � �. Finally, the spherical tokamak approach,21

with the aspect ratio close to unity, could enter the very

interesting limit s� �, where spectra of multiple TAEs are

expected to exist within each gap.22 Although there has

been no unambiguous identification of multiple TAEs on

present-day spherical tokamaks, future experiments may

change this situation and such modes will have to be inves-

tigated in detail.

In this article, we present analytical theory of radiative

damping for low shear TAEs due to wave coupling to the

KAW. The model is based on the ideal MHD framework,

and the TAE/KAW coupling is analyzed by incorporating

non-ideal terms due to ion FLR effects and a non-vanishing

parallel electric field. The case with both odd and even TAEs

is the focus of the study, with the respective eigenfrequen-

cies situated in the proximity of the top and bottom tips of

the Alfv�en continuum. The paper is organized in the follow-

ing way: In Sec. II, a set of non-ideal mode equations are

derived and analyzed in the inner region surrounding the

TAE localization area as well as the outer MHD region.

Then, in Sec. III, a matching technique is applied for the ana-

lytic solutions in the separate inner and outer regions, which

results in dispersion relations for the odd and even TAEs,

including the radiative damping. Finally, conclusions are

presented and discussed in Sec. V. Note that some of the

more lengthy calculations are reproduced in detail in the two

appendices, whereas only the corresponding results are given

in the main text.

II. NON-IDEAL MODE EQUATIONS

In toroidal magnetic confinement devices, the magnetic

field topology induces couplings between the poloidal har-

monics /m of the Fourier expanded, perturbed electrostatic

potential

Uðr; h;uÞ ¼ eiðnu�xtÞ
X

m

/mðrÞe�imh: (4)

Here ðr; h;uÞ are the usual toroidal coordinates, m and n are

the poloidal and toroidal mode numbers, respectively, and x
is the mode frequency. In particular, toroidal effects such as

the radial dependence of the magnetic field strength and the

Shafranov shift of the magnetic axis from the geometric axis

couples the dynamics of mainly neighboring poloidal har-

monics /m and /m�1. This toroidicity induced coupling is

most vigorous at the radial location r ¼ rm, where the cylin-

drical Alfv�en continua

x2
A ¼ k2

kmðrÞv2
AðrÞ (5)

for the two neighboring poloidal harmonics cross. In Eq. (5),

vA is the Alfv�en velocity, and the parallel wave number is

given by

kkmðrÞ ¼
nqðrÞ � m

qðrÞR0

: (6)

Thus, rm is found by setting kkm�1 ¼ �kkm, resulting in the

condition qðrmÞ ¼ ðm� 1=2Þ=n � qm. In the proximity of

r ¼ rm, the toroidal coupling induces a gap in the global

Alfv�en continuum, centered at the frequency

x0 � kkmðrmÞvAðrmÞ ¼
vAðrmÞ
2qmR0

; (7)

whose width can be estimated as Dx=x0 � �. The situation

is portrayed qualitatively in Figure 1. As depicted, the cou-

pling also enables the possibility of discrete frequency

eigenmodes within the gap, situated close to r ¼ rm. These

modes are the TAEs discussed in Sec. I. In the remainder of

this section, we present and analyze a set of coupled, non-

ideal mode equations for /m and /m�1, which will ultimately

yield TAE dispersion relations, including imaginary parts

that represent the radiative damping.

To proceed with formalism, we focus our attention on

the case with small inverse aspect ratio, �� 1, high poloi-

dal mode number, m� 1, and low shear, s� 1. In this

limit, each eigenmode is highly localized in the vicinity of

r ¼ rm and consists of merely two neighboring poloidal har-

monics, /m and /m�1. Assuming circular magnetic flux

surfaces, the appropriate set of equations for /m and /m�1

is then given by the following coupled, fourth order differ-

ential equations12,23:
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q2 d4/m

dr4
þ Lm/m þ

�þ D0

2q2
mR2

0

d2/m�1

dr2
þ m2

r2
m

D0 � a

2q2
mR2

0

/m�1 ¼ 0;

(8a)

q2 d4/m�1

dr4
þLm�1/m�1þ

�þD0

2q2
mR2

0

d2/m

dr2
þm2

r2
m

D0 � a
2q2

mR2
0

/m ¼ 0;

(8b)

with

Lm �
d

dr

x2

v2
A

� k2
kmðrÞ

� �
d

dr

� �
� m2

r2
m

x2

v2
A

� k2
kmðrÞ

� �
: (9)

In Eqs. (8), the second terms are the cylindrical, low-b,

MHD operators24 for /m and /m�1. The first terms, propor-

tional to

q2 � q2
i

4q2
mR2

0

3

4
þ s

� �
; (10)

accounts for the non-ideal contributions due to first order

FLR effects and finite parallel electric field.25,26 Here qi is

the ion Larmor radius and s � Te=Tið1� idÞ, with Ti and Te

the ion and electron temperatures, represents the electron

contribution, including a small wave dissipation rate d. An

explicit form for d is calculated in Ref. 26, but for our pur-

poses it suffices to know that 0 < d� 1. The third and

fourth terms constitute the toroidicity induced coupling,

including the effect of finite plasma pressure. Here, D0 is the

radial derivative of the Shafranov shift, and the normalized

pressure gradient, a, is given by Eq. (2). Note that �; D0; a,

and vA are to be evaluated at r ¼ rm.

In order to simplify the subsequent analysis, we intro-

duce the normalized frequency g � ðx2 � x2
0Þ=�̂x2

0, with

�̂ � 2ð�þ D0Þ, which takes on the values 61 at the upper/

lower tips of the continuum, respectively, and a dimension-

less radial variable x � n½qðrÞ � qm	. The mode equations,

Eqs. (8), then transform into

�q2 d4/m

dx4
þ d

dx

�̂

4
gþ x� x2

� �
d/m

dx

� �

� 1

s2

�̂

4
gþ x� x2

� �
/m þ

�̂

4

d2/m�1

dx2
þ D0 � a

2s2
/m�1 ¼ 0;

(11a)

�q2 d4/m�1

dx4
þ d

dx

�̂

4
g� x� x2

� �
d/m�1

dx

� �

� 1

s2

�̂

4
g� x� x2

� �
/m�1 þ

�̂

4

d2/m

dx2
þ D0 � a

2s2
/m ¼ 0;

(11b)

where

�q2 � m2s2q2
i

4r2
m

3

4
þ s

� �
; (12)

and s is to be evaluated at the location r ¼ rm. Focusing on

the situation with two TAEs present in the gap,12 we take

�̂; D0, and a to be Oðs2Þ, and �q � s2. With this ordering,

Eqs. (11) constitute a boundary layer problem: The x-axis

separates into an outer region with x � s and an inner layer

where x � s3 (this can be shown a priori), characterized by

very peaked gradients.

Intuitively, the implications of non-ideal effects on the

TAEs can be understood by once again turning to the qualita-

tive configuration in Figure 1: There are two TAEs inside the

toroidicity induced gap, shifted slightly off the upper and

lower continua. The radiative damping is due to mode con-

version of parts of the TAE amplitudes into KAWs that prop-

agate radially away from the TAE localization region close

to x¼ 0. Noting that the KAW local dispersion relation reads

x2
KAW ¼ k2

kmv2
A½1þ k2

?q
2
i ð3=4þ sÞ	; (13)

so that x2
KAW > x2

A, one realizes that the KAW with poloidal

mode number m can only propagate above the cylindrical

continuum for the m:th poloidal harmonic (the curve labeled

m in Figure 1). Likewise, the KAW with poloidal mode num-

ber m – 1 can only propagate above the line labeled m – 1.

For the even TAE at the bottom of the gap, the KAW forma-

tion thus occurs in the tails of the TAE eigenfunction, result-

ing in non-overlapping fluxes of outward propagating

KAWs. For the odd mode at the top end of the gap, on the

other hand, the KAWs form in a joint, intermediate region

where they interact and establish an interference pattern. The

purpose of this article is to show that the consequent escap-

ing fluxes differ significantly from those of the even TAE,

thus leading to an asymmetry in the rates of radiative damp-

ing for the odd and even modes.

A. Outer region

In the outer region where x � s, we neglect the fourth

order derivative FLR terms in Eqs. (11) and introduce the

new spatial variable y¼ x/s. Following Ref. 12, we can then

reorganize the terms so that the ordering in s becomes

manifest:

FIG. 1. Qualitative figure of a single toroidicity induced Alfv�en gap, with

discrete frequency eigenmodes close to the two continuum tips. The green

(dashed) lines correspond to the cylindrical continua for the m:th and m –

1:th poloidal harmonics, given by Eq. (5), and the blue (solid) lines consti-

tute the actual, toroidal continuum. Note that sufficiently far from x¼ 0,

where toroidal effects are unimportant, the two types of curves merge.
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L0/m ¼ s yL0 þ y
d

dy
� �̂g

4s2

d2

dy2
þ �̂g

4s2

� �
/m

� s
�̂

4s2

d2

dy2
þ D0 � a

2s2

� �
/m�1; (14a)

L0/m�1 ¼ �s yL0 þ y
d

dy
� �̂g

4s2

d2

dy2
þ �̂g

4s2

� �
/m�1

þ s
�̂

4s2

d2

dy2
þ D0 � a

2s2

� �
/m; (14b)

where

L0 �
d

dy
y

d

dy

� �
� y: (15)

To lowest order in s, the solutions that decay at j yj ! 1
have even parity, viz.,

/0
m ¼ �CmK0ðj yjÞ; (16)

where Cm are constants and K0 is the zeroth order modified

Bessel function of the second kind. The next order, odd par-

ity corrections to Eq. (16) result in a discontinuity at the ori-

gin, with a corresponding jump in /m,

D/m � lim
�!0
½/1

mð�Þ � /1
mð��Þ	; (17)

that can be calculated as

D/m ¼ �s

ð1
�1

K0ðjyjÞL0/
1
m dy: (18)

Substituting Eq. (16) into the right hand sides of Eqs. (14),

one finds

D/m ¼ 2s I2 �
�̂g

4s2
I3 þ

�̂g

4s2
I1

� �
Cm

� 2s
�̂

4s2
I3 þ

D0 � a
2s2

I1

� �
Cm�1; (19a)

D/m�1 ¼ �2s I2 �
�̂g

4s2
I3 þ

�̂g

4s2
I1

� �
Cm�1

þ 2s
�̂

4s2
I3 þ

D0 � a
2s2

I1

� �
Cm; (19b)

where

I1 �
ð1
0

K2
0ðyÞ dy ¼ p2

4
; (20a)

I2 �
ð1
0

yK0ðyÞ
dK0

dy
dy ¼ �p2

8
; (20b)

I3 �
ð1
0

K0ðyÞ
d2K0

dy2
dy � p2

4
: (20c)

There is a slight subtlety in the evaluation of I3, where an

apparent divergence has to be removed. The reader is

referred to Ref. 12, where these technicalities are discussed

in more detail. With Eqs. (20), the jumps become

D/m ¼ �
p2s

4
Cm þ

~� � a
s2

Cm�1

� �
; (21a)

D/m�1 ¼
p2s

4
Cm�1 þ

~� � a
s2

Cm

� �
; (21b)

where ~� � �þ 2D0.

B. Inner layer

In the inner layer, the solutions to Eqs. (11) are highly

peaked, so only the highest order derivates contribute.

Neglecting lower order derivatives and approximating

xð16xÞ � x, the inner layer mode equations can be written

as23

k2 d4/m

dz4
þ d

dz
ðgþ zÞ d/m

dz

� �
þ d2/m�1

dz2
¼ 0; (22a)

k2 d4/m�1

dz4
þ d

dz
ðg� zÞ d/m�1

dz

� �
þ d2/m

dz2
¼ 0; (22b)

where z � 4x=�̂ and the FLR terms are to be regarded as

small perturbations, with

k2 � ð4=�̂Þ3�q2 � 1: (23)

Setting U � d/m=dz and V � d/m�1=dz and integrating

once yields

k2 d2U

dz2
þ ðgþ zÞU þ V ¼ Cm; (24a)

k2 d2V

dz2
þ ðg� zÞV þ U ¼ �Cm�1: (24b)

Here, the integration constants have been chosen so that the

large z asymptotes of U and V match onto the y� 1, lowest

order solutions in the outer region, i.e., Eq. (16).23

The form of the solutions to Eqs. (24) can be seen by

first neglecting the small FLR terms. Equations (24) then

become algebraic in U and V, and the corresponding solu-

tions for /m and /m�1 are found to consist of two pieces23:

An even part that matches onto Eq. (16) when z� 1, and an

odd part that produces jumps in /m and /m�1 across the

inner layer. To obtain dispersion relations in the absence of

non-ideal effects, these jumps must then match onto the

jumps at the origin of the outer region solutions, i.e., Eqs.

(21). The presence of the small FLR terms in Eqs. (24), how-

ever, changes only the form of the jumps slightly. Following

the method developed in Refs. 26 and 27, we choose to work

with the Fourier space versions of Eqs. (24). The jumps in

/m and /m�1 are then given by (cf., Appendix A)
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D/m ¼ p½aCm þ bCm�1	; D/m�1 ¼ �p½aCm�1 þ bCm	;
(25)

where

a ¼ �i
l2 þ 1

l2 � 1
; b ¼ i

2l
l2 � 1

; (26)

and

l ¼ � 1

gþ iS
: (27)

Here the parameter S is most easily obtained as

S ¼ lim
k!0

1

u

du

dk
; (28)

where u is the solution to the Fourier space boundary value

problem

d2u

dk2
¼ Qu (29)

with

Q � 1� ðg� k2k2Þ2 � 2ik2k; (30)

given that u! 0 as k!1.

III. DISPERSION RELATIONS

The dispersion relation is obtained by equating the

jumps across the inner layer, given by Eq. (25), with the

outer region jumps at the origin (Eqs. (21)). After some alge-

bra, the resulting expressions take the form

ðCm � Cm�1Þ ða� bÞ � ps

4
A�

h i
¼ 0; (31a)

ðCm þ Cm�1Þ ðaþ bÞ þ ps

4
Aþ

h i
¼ 0; (31b)

where

A6 �
~� � a

s2
61: (32)

Equations (31) allow for the two distinct solutions

Cm ¼ 6Cm�1; (33a)

with

a 6 b ¼ 7
ps

4
A6: (33b)

Using the expressions (26) and (27), we also have

a 6 b ¼ i
1 7 l
1 6 l

¼ �i
1 6 g 6 iS

1 7 g 7 iS
; (34)

where the parameter S is calculated in Appendix B.

A. Even mode, Cm5Cm21

This is the usual TAE mode, consisting of a symmetric

combination of the poloidal harmonics /m and /m�1. The

eigenfrequency lies just above the tip of the lower Alfv�en

continuum, with 0 < 1þ g� 1, and the appropriate form of

S is given by (cf., Appendix B1)

S ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p
½1þ ie�pa	; (35)

where

a ¼ 1� g2ffiffiffi
8
p

k
: (36)

In the limit a� 1, the condition (33b) can be written asffiffiffiffiffiffiffiffiffiffiffi
1þ g

1� g

s
½1þ ie�pa	 ¼ ps

4
Aþ; (37)

which requires that Aþ > 0, i.e.,

a < ~� þ s2 ¼ �þ 2D0 þ s2: (38)

Note that Eq. (38) corresponds to the value for ac derived in

Ref. 12 for the even mode. The dispersion relation (37) may

be iteratively solved in the large-a limit to yield

g ¼ � 1� p2s2

8
A2
þ þ i

p2s2

4
A2
þ exp � p3s2

8
ffiffiffi
2
p

k
A2
þ

� �� �
; (39)

so that the radiative damping rate becomes

c
x
¼ ��̂ p2s2

8

~� � a
s2
þ 1

� �2

exp � p3s2

8
ffiffiffi
2
p

k

~� � a
s2
þ 1

� �2
" #

:

(40)

B. Odd mode, Cm52Cm21

This case corresponds to an antisymmetric combination

of the poloidal harmonics /m and /m�1, and its eigenfre-

quency resides close to the upper tip of the Alfv�en contin-

uum, where 0 < 1� g� 1. The appropriate form for S is

(cf., Appendix B2)

S ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p
½1þ i4 expð�4

ffiffiffi
2
p

=3kÞ	; (41)

and the matching condition (33b) becomesffiffiffiffiffiffiffiffiffiffiffi
1� g

1þ g

s
½1� i4 expð�4

ffiffiffi
2
p

=3kÞ	 ¼ ps

4
A�; (42)

which can be satisfied only if A� > 0. Hence, existence of

the odd mode requires that

a < ~� � s2 � �þ 2D0 � s2; (43)

which puts a more restrictive limit on the pressure gradient

than for the even mode (cf., Eq. (38) and Ref. 12). Moreover,

for a centrally peaked, monotonic pressure profile, D0 can be
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evaluated as a function of � and s.11 Then, Eq. (43) implies

that the shear and inverse aspect ratio must satisfy the rela-

tion 3� > 2s2 for the odd mode to exist.

When Eq. (43) is satisfied, the dispersion relation (42)

may be solved iteratively to yield the normalized frequency

g ¼ 1� p2s2

8
� ip2s2A2

� expð�4
ffiffiffi
2
p

=3kÞ: (44)

The radiative damping rate for the odd mode is then

c
x
¼ ��̂ p2s2

2

~� � a
s2
� 1

� �2

expð�4
ffiffiffi
2
p

=3kÞ: (45)

IV. CONCLUSIONS

In this article, we have presented analytical theory

describing radiative damping of low shear TAEs. The damp-

ing is due to so called wave tunneling: Loosely speaking, a

part of the TAE amplitude is converted into non-ideal waves

that propagate radially away from the eigenmode. The result-

ing expressions (40) and (45) reveal that the rate of radiative

damping of the odd TAE is always exponentially small, as

opposed to the even TAE, where the effect becomes signifi-

cant as s2 ! k. Since the even and odd modes have nearly

the same frequency and thus are expected to experience

approximately the same fast particle drive, this asymmetry

suggests that the odd mode may be more easily excited than

the even mode.

The odd TAE is rarely observed in experiments,14 how-

ever, which is partly due to the more restrictive constraint

(43) on the odd mode pressure gradient. As previously

explained, another important difference between the odd and

even mode can be found in the structure of their respective

eigenmodes, which are formed from symmetric/antisymmet-

ric combinations of neighboring poloidal harmonics, respec-

tively. The even TAE is therefore a ballooning-type mode,

so it resides on the outboard side where it is accessible to

both passing and trapped fast particles. The odd mode, on

the other hand, is anti-ballooning. It is therefore situated on

the inboard side, where it is much more prone to interact

with passing fast particles than trapped ones. On JET, e.g.,

super-Alfv�enic fast particles are created by ICRH, and the

odd TAE has only been observed with the ICRH resonance

layer shifted to the high field side.14 In burning ITER plas-

mas, however, the situation is expected to be the opposite,

with enough passing alpha particles available to destabilize

the weakly damped odd TAE.
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APPENDIX A: CALCULATION OF INNER LAYER
JUMPS IN FOURIER SPACE

Note that the calculations presented in this section fol-

low exactly the derivation given in Ref. 26. It is repeated

here for reasons of completeness only. We start by Fourier

transforming the inner layer mode equations (24). Denoting

the respective Fourier transforms of U(z) and V(z) with u(k)

and v(k), we then have

Lkuþ v ¼ 2pCmdðkÞ; (A1a)

L�kvþ u ¼ �2pCm�1dðkÞ; (A1b)

where

Lk � i
d

dk
þ g� k2k2; (A2)

which are to be solved given that u; v! 0 as k !1. The

presence of the d-functions on the right hand sides of

Eqs. (A1) leads to discontinuities in u and v at the origin,

given by the jump conditions

uð0þÞ � uð0�Þ ¼ �2piCm; (A3a)

vð0þÞ � vð0�Þ ¼ �2piCm�1: (A3b)

On the other hand, away from k¼ 0, the two coupled Fourier

space equations can be combined into second order,

uncoupled equations,

½L7kL6k � 1	 u
v

� �
¼ 0; (A4)

where the upper sign applies for u and the lower for v. From

Eq. (A4), it can be seen that u and v obey the following sym-

metry rules for k > 0:

uðkÞ ¼ rvð�kÞ; vðkÞ ¼ ruð�kÞ; (A5)

with r constant. This may be utilized in the calculation of

the jumps in /m and /m�1 across the inner layer, yielding

D/m ¼ /mðz!1Þ � /mðz! �1Þ

¼
ð1
�1

U dz ¼ uð0þÞ þ uð0�Þ
2

¼ p½aCm þ bCm�1	; (A6a)

and, similarly,

D/m�1 ¼ �p½aCm�1 þ bCm	; (A6b)

where

a � �i
l2 þ 1

l2 � 1
; b � 2il

l2 � 1
; (A7)

and

l � uð0þÞ
vð0þÞ ¼

vð0�Þ
uð0�Þ : (A8)
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An alternative expression for l is provided by defining the

parameter

S � lim
k!0

1

uðkÞ
du

dk
: (A9)

For k > 0, we then have

S ¼ lim
k!0þ

iðg� k2k2Þuþ iv

u
¼ i gþ 1

l

� �
; (A10)

so that

l ¼ �1

gþ iS
: (A11)

In prospect, the jumps across the inner layer can be readily

calculated once the boundary value problem

½L�kLk � 1	u ¼ 0; (A12)

or

d2u

dk2
¼ ½1� ðg� k2k2Þ2 � 2ik2k	u; (A13)

has been solved for k > 0, given that u! 0 as k !1.

APPENDIX B: CALCULATION OF S

In order to evaluate the parameter S, we first need to

solve Eq. (29) for u. Due to the small and negative imaginary

part of k2, the large-k WKB solution to Eq. (29) must be that

of an outgoing wave, viz.,

uðkÞ � expð�ik2k3=3Þ; k !1: (B1)

Note that for a fixed mode frequency, the local KAW disper-

sion relation (13) predicts that k2
k will decrease as this non-

ideal wave propagates outward in k-space (and k2
? increases).

The asymptote (B1) therefore corresponds to a radially out-

going KAW in real space (as measured from the TAE local-

ization region at x¼ 0, cf., Figure 1), and its fractional

amplitude will determine the rate of radiative damping.

On the other hand, in the limit of moderate k (to be more

precise, for k � k�1), we may neglect the imaginary part of

Q, giving

Q � 1� ðg� k2k2Þ2: (B2)

Equation (29) with (B2) can then be cast in the form of an

equivalent Schr€odinger-type eigenvalue problem

d2u

dk2
þ ½E� VðkÞ	u ¼ 0; (B3)

with E � �ð1� g2Þ < 0 for eigenfrequencies in the gap,

and

VðkÞ � 2gk2k2 � k4k4: (B4)

The effective potential V is plotted in Figure 2 for the refer-

ence values g ¼ 61. The problem at hand then consists of

investigating what fraction of u tunnels through the effective

potential barrier from k¼ 0 all the way to the real turning

points

k6 ¼ 6

ffiffiffiffiffiffiffiffiffiffiffi
1þ g
p

k
; (B5)

where Q¼ 0, and eventually matches onto the solution (B1)

as it propagates towards larger k.

It is however obvious from Figure 2 that the thickness of

the upper mode potential barrier by far exceeds that of the

lower mode. Taking into account the well-known exponen-

tial decay of wave functions across potential barriers, it is

therefore qualitatively easy to see that the tunnelling through

the thick barrier for the upper mode is exponentially smaller

than the tunnelling through the much thinner lower mode

barrier. Correspondingly, the radiative damping of the upper

mode due to the tunnelling is exponentially weaker than the

radiative damping of the lower mode. However, an accurate

assessment must also include the pre-exponent factors and is

therefore quite involved. In the following two sections, such

an analysis is carried out by means of a rather tedious as-

ymptotic matching technique. From Ref. 12, we expect the

eigenfrequencies to lie close to the continuum tips, with

1 6 g � s2. We therefore adopt the ordering 0 < k�
1 6 g� 1 throughout this section.

1. Lower mode, g�21

For a mode with eigenfrequency just above the tip of the

lower continuum, the appropriate ordering is 0 < k� 1

þ g� 1. For k � kþ, we can then neglect the term k4k4 in Q
as compared to 2gk2k2 and 1� g2, yielding the parabolic

cylinder equation

d2u

dy2
þ y2

4
� a

� �
u ¼ 0; (B6)

where

y � dk; d � ð8jgjk2Þ1=4 � ð8k2Þ1=4; (B7)

FIG. 2. Effective potential VðkÞ for the Fourier space Schr€odinger problem

(B3) when g ¼ 61. The radiative damping depends on how large fractions

of the TAE amplitudes that tunnel through these potential barriers.
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and

a � 1� g2

d2
� 1: (B8)

The solution to Eq. (B6) that matches onto Eq. (B1) is given

by28

uðyÞ ¼ Const: ½Wða; yÞ þ igWða;�yÞ	; (B9)

where W is a Whittaker function, and

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2pa

p
� epa � e�pa

2
: (B10)

Taylor expanding around y¼ 0 and transforming back to k
gives

uðkÞ � Const: 1þ k d
W0ða; 0Þ
Wða; 0Þ

1þ ig
1� ig

� �
; k ! 0; (B11)

where one can show that, for large a,

W0ða; 0Þ
Wða; 0Þ � �

ffiffiffi
a
p

: (B12)

Hence,

uðkÞ � Const: 1� k
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p
½1þ ie�pa	

h i
; (B13)

so that

S ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p
½1þ ie�pa	: (B14)

2. Upper mode, g � 1

When the mode eigenfrequency lies just below the upper

continuum tip, the terms are ordered as 0 < k� 1� g� 1.

The turning points then become approximately

k6 � 6
ffiffiffi
2
p

=k. Due to the larger value of kþ, the k4k4-term

may not be altogether neglected (as in the case of the lower

mode), and the corresponding matching procedure for the

upper mode turns out to be more strenuous than for the lower

mode: In total, one has to find, and match asymptotically,

solutions in 3 different regions for 0 � k � k�1, given the

large-k form (B1).

Region 1, k � k�1: As for the lover mode, the k4k4-

term may be neglected in this region, resulting in

Q � d2 y2

4
þ a

� �
; (B15)

where y and a are defined in Eqs. (B7) and (B8). The general

solution to the corresponding form of Eq. (29), i.e.,

d2u

dy2
� y2

4
þ a

� �
u ¼ 0; (B16)

is then given in terms of parabolic cylinder functions28

uðyÞ ¼ A1Uða; yÞ þ B1Vða; yÞ; (B17)

with A1 and B1 constants. As y! 0, U and V can be

expanded to yield

uðkÞ¼ c 1� kd
ffiffiffi
2
p

tan p
1

4
þa

2

� �� �
C 3

4
� a

2

� �
C 1

4
� a

2

� �1� B1

A1

cot p 1
4
þa

2ð Þ½ 	
C 1

2
�að Þ

1þ B1

A1

tan p 1
4
þa

2ð Þ½ 	
C 1

2
�að Þ

8><
>:

9>=
>;;

(B18)

where c is a new constant and we have transformed back to

k. Note that the expression (B18) immediately gives S as

S ¼ �d
ffiffiffi
2
p

tan p
1

4
þ a

2

� �� �
C 3

4
� a

2

� �
C 1

4
� a

2

� � 1� B1

A1

cot p 1
4
þa

2ð Þ½ 	
C 1

2
�að Þ

1þ B1

A1

tan p 1
4
þa

2ð Þ½ 	
C 1

2
�að Þ

:

(B19)

The remaining task is then to derive an expression for the ra-

tio B1=A1, which is in fact uniquely determined by the large-

k solution (B1). However, (B17) does not match directly

onto (B1). It turns out that we need to consider two more, in-

termediate, regions, and for this purpose we need the asymp-

totic form of Eq. (B17)

uðyÞ ¼ A1 e�y2=4y�a�1=2 1þ B1

A1

ffiffiffi
2

p

r
ey2=2y2a

" #
; (B20)

valid for y� 1.

Region 2, 0 < k < kþ: Here, the solution is taken as the

WKB form

uðkÞ ¼ A2

Q1=4
exp

ðk

0

ffiffiffiffi
Q

p
dk

� �
þ B2

Q1=4
exp �

ðk

0

ffiffiffiffi
Q

p
dk

� �
;

(B21)

where A2 and B2 are constants. To proceed, we separate the

analysis into two parts: First, we match Eq. (B21) onto (B20)

for moderately small values of k, k�1 ffiffiffiffiffiffiffiffiffiffiffi
1� g
p

� k� k�1. As

for the calculations in region 1, we may then neglect the

k4k4-term in Q, resulting in

ðk

0

ffiffiffiffi
Q

p
dk ¼ 1

4
y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 4a

ph
þ 4aðln jyþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 4a

p
j � ln 2

ffiffiffi
a
p
Þ
i
: (B22)

With the ordering k� k�1 ffiffiffiffiffiffiffiffiffiffiffi
1� g
p

we have y� 2
ffiffiffi
a
p

, so

that ðk

0

ffiffiffiffi
Q

p
dk � y2

4
þ a ln y� a ln

ffiffiffi
a
p

: (B23)

The WKB solution (B21) can then be cast into a form similar

to Eq. (B20),

uðyÞ ¼ B2

ffiffiffi
2

d

r
aa=2e�y2=4y�a�1=2 1þ A2

B2

a�aey2=2y2a

� �
;

(B24)
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where the matching conditions can be immediately read off

by comparing with Eq. (B20):

B1

A1

¼ A2

B2

ffiffiffi
p
2

r
a�a; (B25a)

A1 ¼ B2

ffiffiffi
2

d

r
aa=2: (B25b)

Second, close to the turning point we write

ðk

0

ffiffiffiffi
Q

p
dk ¼

ðkþ

0

ffiffiffiffi
Q

p
dk �

ðkþ

k

ffiffiffiffi
Q

p
dk: (B26)

Now, k4k4 cannot be neglected in Q, and we get

I �
ðkþ

0

ffiffiffiffi
Q

p
dk

¼ 1

k

ðffiffiffiffiffiffi1þg
p

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðz2 � gÞ2

q
dz

¼
ffiffiffi
2
p

3k
ð1� gÞK

ffiffiffiffiffiffiffiffiffiffiffi
1þ g

2

r !
þ 2gE

ffiffiffiffiffiffiffiffiffiffiffi
1þ g

2

r !" #

�
ffiffiffi
2
p

3k
1� g

2
ln

32

1þ g
þ 2g

� �
� 2

ffiffiffi
2
p

g

3k
; (B27)

where K and E are the complete elliptic integrals of the first

and second kind, respectively, and we have expanded K and

E for small 1 – g on the final line. To evaluate the second in-

tegral in Eq. (B26), we set

k ¼ kþ �
z

�
; � � ð4k2kþÞ1=3: (B28)

For z� ð2=k2Þ1=3
, we then have

Q � �2z; (B29)

so that ðkþ

k

ffiffiffiffi
Q

p
dk � 2

3
z3=2: (B30)

Hence, the WKB solution for k�kþ becomes

uðzÞ ¼ A2 eIffiffiffi
�
p

z1=4
exp

2

3
z3=2

� �
þ B2

A2

e�2Iexp � 2

3
z3=2

� �� �
:

(B31)

Region 3, k � kþ: Here, Eq. (29) can be written as

d2u

dz2
¼ zu; (B32)

where z is defined in Eq. (B28). The general solution to

Eq. (B32) is given in terms of the Airy functions

uðzÞ ¼ A3 AiðzÞ þ B3 BiðzÞ; (B33)

with A3 and B3 constants. For large, positive z, Ai and Bi

may be expanded to give

uðzÞ ¼ B3ffiffiffi
p
p

z1=4
exp

2

3
z3=2

� �
þ A3

2B3

exp � 2

3
z3=2

� �� �
;

(B34)

which matches onto Eq. (B31) if

A3

2B3

¼ B2

A2

e�2I; (B35a)

B3ffiffiffi
p
p ¼ A2eIffiffiffi

�
p : (B35b)

For large negative z, on the other hand,

uðzÞ � A3 sin
2

3
ð�zÞ3=2 þ p

4

� �
þ B3 cos

2

3
ð�zÞ3=2 þ p

4

� �
(B36)

which matches onto the negative phase component (B1) only

if A3 ¼ �iB3. Hence,

A2

B2

¼ 2B3

A3

e�2I ¼ 2i e�2I; (B37)

so that

B1

A1

¼
ffiffiffiffiffiffi
2p
p

i e�2Ia�a �
ffiffiffiffiffiffi
2p
p

i e�
4
ffiffi
2
p

3k a�a: (B38)

Now, Eq. (B19) with (B38) defines the parameter S for the

upper mode. That is,

S ¼ �
ffiffiffi
2
p

d tann
C 3

4
� a

2

� �
C 1

4
� a

2

� � 1� iD cotn
1þ iD tann

; (B39)

where

n � p
1

4
þ a

2

� �
; D �

ffiffiffiffiffiffi
2p
p

a�a

C 1
2
� a

� � e�
4
ffiffi
2
p

3k : (B40)

In the limit a� 1, however, it is possible to simplify these

expressions somewhat. Using the reflection formula for the

gamma function together with Stirling’s formula yields28

tann
C 3

4
� a

2

� �
C 1

4
� a

2

� � ¼ C 3
4
þ a

2

� �
C 1

4
þ a

2

� � � ffiffiffi
a

2

r
; (B41)

and

D cot n � 4e�
4
ffiffi
2
p

3k cos2n; D tann � 4e�
4
ffiffi
2
p

3k sin2n: (B42)

Hence, for a� 1,

S � �d
ffiffiffi
a
p

1� iDðcotnþ tannÞ½ 	

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p
1� i4 expð�4

ffiffiffi
2
p

=3kÞ
h i

: (B43)
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