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The non-local properties of anomalous transport in fusion plasmas are still an elusive topic. In this

work, a theory of non-local linear ion-temperature-gradient (ITG) drift modes while retaining

non-adiabatic electrons and finite temperature gradients is presented, extending the previous work

[S. Moradi et al., Phys. Plasmas 18, 062106 (2011)]. A dispersion relation is derived to quantify the

effects on the eigenvalues of the unstable ion temperature gradient modes and non-adiabatic

electrons on the order of the fractional velocity operator in the Fokker-Planck equation. By solving

this relation for a given eigenvalue, it is shown that as the linear eigenvalues of the modes increase,

the order of the fractional velocity derivative deviates from two and the resulting equilibrium

probability density distribution of the plasma, i.e., the solution of the Fokker-Planck equation,

deviates from a Maxwellian and becomes L�evy distributed. The relative effect of the real frequency

of the ITG mode on the deviation of the plasma from Maxwellian is larger than from the growth rate.

As was shown previously the resulting L�evy distribution of the plasma may in turn significantly alter

the transport as well. [http://dx.doi.org/10.1063/1.4745609]

I. INTRODUCTION

The high level of anomalous transport in magnetically

confined fusion plasmas is still an unresolved issue in the

quest for controlled fusion. Furthermore, a deterministic

description of intermittent events in plasma turbulence is

improper due to the stochastic nature of the transport exhibit-

ing non-local interactions as well as non-Gaussian probabil-

ity density functions (PDFs). Fluctuation measurements by

Langmuir probes have provided abundant evidence to sup-

port the idea that density and potential fluctuations are dis-

tributed according to non-Gaussian PDFs, see Ref. 1 and

references there in. By comparing plasma edge density fluc-

tuation PDFs with different types of fusion devices such as

the linear device, spherical Tokamak, reversed field pinch,

stellarator, and several tokamaks, similar observations were

reported. All these PDFs have similar properties and exhibit

a clearly skewed, non-Gaussian shape. A large variety of

mechanisms can be responsible for these fluctuations such as

collisional processes, perturbations in the external electric or

magnetic fields imposed on the system, and linear and/or

nonlinear interactions between different electromagnetic

waves present in fusion plasmas. The PDFs of heat and parti-

cle flux also display uni-modal non-Gaussian features which

are the signature of intermittent turbulence with patchy spa-

tial structure that is bursty in time. The turbulent behavior in

magnetically confined plasmas is the main ingredient in the

anomalously high transport of heat, particles, and momen-

tum visible in present day large experiments. One crucial

component of the turbulent transport is the so-called ion-

temperature-gradient (ITG) driven turbulence. The ITG tur-

bulence is found to be bursty in nature where a significant

part of the transport is carried by large avalanche-like events.

More specifically, exponential scalings are often observed in

the PDF tails in magnetic confinement experiments, and

intermittency at the edge strongly influences the overall

global particle and heat transport. In particular it may for

instance influence the threshold for the high confinement

mode (H-mode) in tokamak experiments.2 In view of these

experimental results, theories built on average transport coef-

ficients and Gaussian statistics fall short in predicting vital

transport processes. There is a considerable amount of exper-

imental evidence3–6 and recent numerical gyrokinetic7–10

and fluid simulations11 that plasma turbulence in tokamaks is

highly non-local. A satisfactorily understanding of the non-

local signatures as well as the ever-present non-Gaussian

PDFs of transport12–14 found in experiments and numerical

simulations is still lacking.

An attractive candidate for explaining the non-local fea-

tures of ITG turbulence is by inclusion of a fractional veloc-

ity operator in the Fokker-Planck (FP) equation15 yielding a

non-local description that have non-Gaussian PDFs of heat

and particle flux. This approach is similar to that of Ref. 16

resulting in a phenomenological description of the non-local

effects in plasma turbulence. Moreover, one additional bene-

fit is that anomalous transport features can be described by a

purely linear model at the cost of a fractional derivative. The

fractional operator introduces an inherently non-local

description with strongly non-Maxwellian features of the dis-

tribution function resulting in significant modification of the

transport process. The non-locality is introduced through the

integral description of the fractional derivative.16,17 There

are a number of other phenomenological studies of the

effects of fractional derivative models. Using fractional gen-

eralizations of the Liouville equation, kinetic descriptions

have been developed previously.18,19 The use of a fractional

derivative in velocity space as the source of non-locality in

the FP equation allows to link the microscopic stochastic

properties of the system to the macroscopic behavior via the

solutions of the FP at long times. The underlying physical

reasoning is to allow for the non-negligible probability of

direction preference and long jumps, i.e., L�evy flights, which
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therefore allows for asymmetries and long tails in the equilib-

rium PDFs, respectively. In previous literature, fractional

derivatives in real space and time have been reported in vari-

ous fields. It has been shown that the chaotic dynamics can be

described by using the FP equation with coordinate fractional

derivatives as a possible tool for the description of anomalous

diffusion20; however, a fractional derivative in velocity space

can be considered as a natural generalization of classical ther-

modynamics of equilibrium, and much work has been devoted

on investigation of the Langevin equation with L�evy white

noise, see e.g., Refs. 21 and 22, or related fractional FP equa-

tion. We would like to point out that the use of fractional

derivatives to model the anomalous transport is still in its

infancy that is under development by many authors. There-

fore, at the present time one cannot discard any of the devel-

oping models, and further experimental tests are needed.

Furthermore, fractional derivatives have been introduced into

the FP framework in a similar manner23,24 as the present

work; however, a study on ITG modes is still lacking.

In this paper, based on the non-Gaussian properties of the

plasma random fluctuations, a stochastic Langevin equation

for the particle’s motion is constructed where the stochastic

processes are represented by a larger class of statistical distri-

butions, namely, stable distributions. Although this may be a

crude assumption that does not represent the full physics, it

allows for a natural generalization of the classical example of

the motion of a charged Brownian particle with the usual

Gaussian statistics. This stochastic process is represented in

the Fokker-Planck equation by a fractional velocity derivative

operator which as was shown in Ref. 15, resulting in a non-

Gaussian (L�evy) equilibrium PDF solution. The modified

equilibrium in turn may enhance the unstable fluctuations, i.e.,

eigenvalues of the unstable modes. Here, we extend the work

presented in Ref. 15 to include the effects of finite temperature

gradients and non-adiabatic electrons leading to a fractional

description of the non-local effects in ITG turbulent transport

in a gyrokinetic framework. We quantify the non-local effects

in terms of a modified dispersion relation for linear ITG

modes. We have considered a case with constant external

magnetic field and a shear-less slab geometry. The character-

istics of the ITG modes, i.e., the linear eigenvalues, can signif-

icantly alter the order of the fractional derivative a. However,

the relative effect of the real frequency of the ITG mode on

the order of the fractional derivative a deviating from the

Maxwellian limit (a ¼ 2) is larger than that from the growth

rate. This is different from the results obtained in Ref. 15

where the growth rate increased the deviation strongly. We

have found that the physics behind this discrepancy is due to

the difference in the electron dynamics: adiabatic and non-

adiabatic electrons are considered in Ref. 15 and in the present

work, respectively. As was shown in Ref. 15 the resulting

L�evy distribution of the plasma may in turn significantly alter

the transport as well. However, here we limit ourselves to

analysis of the impact of the linear phase of ITG instability on

modification of the statistical properties of the background

equilibrium.

The paper is organized as follows: first we present the

mathematical framework of the fractional FP equation (FFPE)

which is used to derive a dispersion relation for the ITG

modes while retaining the non-local interactions. In the next

section, the deviations from a Maxwellian distribution func-

tion are investigated, and the dispersion relation is solved. We

conclude the paper with a results and discussion section.

II. FRACTIONAL FOKKER-PLANCK EQUATION

Following Ref. 15, the FFPE with fractional velocity

derivatives in shear-less slab geometry in the presence of a

constant external force can be written as

@Fs

@t
þ v

@Fs

@r
þ F

ms

@Fs

@v
¼ � @

@v
ðvFsÞ þ D

@aFs

@jvja ; (1)

where s(¼ e,i) represents the particle species and 0 � a � 2.

Here, the term @aFs

@jvja is the fractional Riesz derivative. The dif-

fusion coefficient, D, is related to the damping term �,

according to a generalized Einstein relation25

D ¼ 2a�1Ta�

Cð1þ aÞma�1
s

: (2)

Here, Ta is a generalized temperature, and force F represents

the Lorentz force (due to a constant magnetic field and a

zero-averaged electric field) acting on the particles of species

s with mass ms and Cð1þ aÞ is the Euler gamma function.

The solution of the Eq. (1), i.e., the generalized equilibrium

distribution for a general a can be obtained as15

Fsðr; vÞ ¼
nsðrÞ

2p3=2
ffiffiffiffiffiffiffi
2D
p

ð
dkv
?dkv

k

ð2pÞ3=2
e�iðkv

?v?þkv
kvkÞe�

D
aðjk

v
?j

aþjkv
kj

aÞ;

(3)

where

D ¼
Va

T;s

Cð1þ aÞ ; (4)

and we have introduced a generalized thermal velocity as

Va
T;s ¼

2a�1Ta

ma�1
s

: (5)

Using the generalized equilibrium distribution expressed in

Eq. (3), we will now quantify the non-local effects on drift

waves induced by the fractional differential operator by

determining the dispersion relation for ITG driven drift

modes. We start by formulating the linearized gyro-kinetic

theory where the particle distribution function, averaged

over gyro-phase, is of the form (see Ref. 26)

fsðr; vÞ ¼ Fsðr; vÞ þ ð2pÞ�4

�
ð ð

dk dx expðik � r� ixtÞdf s
k;xðvÞ: (6)

We assume that the turbulence is purely electrostatic and

neglect magnetic field fluctuations ðdB ¼ 0Þ. For small devi-

ations from the local equilibrium we find the linearized gyro-

kinetic equation of the form
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ð@t þ ikkvkÞdf s
kðvk; v?; tÞ ¼ i

�
c

B
kyrx þ

es

ms
kk@k

�
Fsðx; vk; v?Þ

� J0ðjXsj�1k?v?Þd/kðtÞ: (7)

Here @k ¼ @=@vk. Evaluating explicitly the derivatives of the

distribution function in Eq. (3), we obtain the following

relations:

c

B
kyrxFsðx; vÞ ¼

es

Ts;a
xs
�k

�
d ln nsðxÞ

dx
� 1

2

d ln Ts;aðxÞ
dx

�
Fsðx; vÞ

þ es

Ts;a
xs
�k �

nsðxÞ
2p3=2

ffiffiffiffiffiffiffi
2D
p

ð
dkv
?dkv

k

ð2pÞ3=2

(

�
�
�D

a
ðjkv
?j

a þ jkv
kj

aÞ d ln Ts;aðxÞ
dx

�

� e�iðkv
?v?þkv

kvkÞe�
D
aðjk

v
?j

aþjkv
kj

aÞ
)
; (8)

where
d ln AðxÞ

dx ¼ 1
AðxÞ

dAðxÞ
dx , and

es

ms
kk@kFsðx; vÞ ¼

es

ms
kk

nsðxÞ
2p3=2

ffiffiffiffiffiffiffi
2D
p

ð
dkv
?dkv

k

ð2pÞ3=2
ð�ikv

kÞ

� e�iðkv
?v?þkv

kvkÞe�
D
aðjk

v
?j

aþjkv
kj

aÞ; (9)

where xs
�k ¼ cTs

esB
ky, and we assumed that the space depend-

ence of Fs is only in the x direction perpendicular to the mag-

netic field as well as for the density gradient. In the equation

above, J0 is the Bessel function of order zero, vk is the paral-

lel velocity, v? � ðv2
x þ v2

yÞ
1=2

is the perpendicular velocity,

and hence we write the total speed as v ¼ ðv2
? þ v2

kÞ
1=2

. The

linearized gyro-kinetic equation could be further Laplace

transformed. The Fourier-Laplace transform of the fluctuat-

ing electrostatic potential is

d/k;x ¼
ð1

0

dteixtd/kðtÞ: (10)

Similar formula defines the Fourier-Laplace transform of dfk;x.

Therefore the Fourier-Laplace transformed gyro-kinetic

Eq. (7) is

�iðx� kkvkÞdf s
kðvk; v?; tÞ ¼ �Ds

k;xðvk; v?Þd/k;x

þ df s
kðvk; v?; 0Þ: (11)

Its solution is

df s
k;xðvk; v?Þ ¼ Gs

k;xðvk; v?Þf�Ds
k;xðvk; v?Þd/k;x

þ df s
kðvk; v?; 0Þg; (12)

where the operator

Gs
k;xðvk; v?Þ ¼

1

�iðx� kkvkÞ
(13)

is the unperturbed propagator of the gyro-kinetic equation,

and we have introduced the function Ds
k;xðvk; v?Þ as

Ds
k;xðvk; v?Þ ¼ �i

es

Ts;a
xs
�k

�
d ln nsðxÞ

dx
� 1

2

d ln Ts;aðxÞ
dx

�

�Fsðx;vÞJ0ðjXsj�1k?v?Þþ i
es

Ts;a
xs
�k

� nsðxÞ
2p3=2

ffiffiffiffiffiffiffi
2D
p

ð
dkv
?dkv

k

ð2pÞ3=2

(

� D
a
ðjkv
?j

aþ jkv
kj

aÞd ln Ts;aðxÞ
dx

� �
e�iðkv

?v?þkv
kvkÞ

� e�
D
aðjk

v
?j

aþjkv
kj

aÞ
)

J0

�
jXsj�1k?v?

�

þ i
es

Ts;a

Ts;a

ms
kk

nsðxÞ
2p3=2

ffiffiffiffiffiffiffi
2D
p

ð
dkv
?dkv

k

ð2pÞ3=2
ðikv
kÞ

"

� e�iðkv
?v?þkv

kvkÞe�
D
aðjk

v
?j

aþjkv
kj

aÞ
#

J0ðjXsj�1k?v?Þ:

(14)

Here, the wave vector perpendicular to magnetic field is

k? ¼ ðk2
x þ k2

yÞ
1=2

. The gyro-kinetic Eq. (6) is complemented

with Poisson equation for the electric potential. For fluctua-

tions with wave vectors much smaller than the Debye wave

vector, the Poisson equation becomes the quasi-neutrality

condition X
s

esdns
k;x ¼ 0; (15)

where the density fluctuation is related to the distribution

function through

dns
k;x ¼ �

es

Ts
nsd/k;x þ

ð
dvJ0ðjXsj�1k?v?Þdf s

k;xðvk; v?Þ:

(16)

In the above equation we have separated the adiabatic

response (first term on the right hand side) from the non-

adiabatic response (second term on the right hand side).

We have to keep in mind that the density ns coming from

the Fsðx; vÞ in the adiabatic response is also given by Eq.

(3), and for a general 0 � a � 2 the adiabatic response can

be different than that calculated by Maxwellian distribu-

tion. Using the quasi-neutrality condition (9) we find the

dispersion equation which determines the eigenfrequencies

as a function of the wave vector, x ¼ xðkÞ ¼ xrðkÞ
þ icðkÞ. In the simplest case we consider a plasma consist-

ing of electrons and a single species of singly charged ions

with equal temperatures. For the density fluctuation there-

fore we have

dns
k;x ¼ �nsðxÞ

es

Ts
d/k;x½Mad;s þMs

k;x�: (17)
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Therefore, the dispersion equation as in the Ref. 26 is

Mad;e þMe
k;x ¼ �Mad;i �Mi

k;x; (18)

where

Mad;s ¼
ð

dv
1

2p3=2ðCð1þ aÞÞ�1=2 ffiffiffiffiffiffiffiffiffiffi
2Va

T;s

p
ð

dkv
?dkv

k

ð2pÞ3=2

� e�iðkv
?v?þkv

kvkÞe�
Va

T;s
Cð1þaÞaðjk

v
?j

aþjkv
kj

aÞ; (19)

gives the adiabatic contribution, and

Ms
k;x ¼

1

nsðxÞ

ð
dvGs

k;xðvk;v?ÞDs
k;xðvk;v?ÞJ0ðjXsj�1k?v?Þ ¼ �xs

�k

�
d ln nsðxÞ

dx
� 1

2

d ln Ts;aðxÞ
dx

�ð
dv

J2
0ðjXsj�1k?v?Þ

x� kkvk

� 1

2p3=2ðCð1þ aÞÞ�1=2 ffiffiffiffiffiffiffiffiffiffi
2Va

T;s

p �
ð

dkv
?dkv

k

ð2pÞ3=2
e�iðkv

?v?þkv
kvkÞe�

Va
T;s

Cð1þaÞaðjk
v
?j

aþjkv
kj

aÞ
( )

þxs
�k

ð
dv

J2
0ðjXsj�1k?v?Þ

x� kkvk

� 1

2p3=2ðCð1þ aÞÞ�1=2 ffiffiffiffiffiffiffiffiffiffi
2Va

T;s

p �
ð

dkv
?dkv

k

ð2pÞ3=2

Va
T;s

Cð1þ aÞa ðjk
v
?j

aþ jkv
kj

aÞd ln Ts;aðxÞ
dx

� �
e�iðkv

?v?þkv
kvkÞe�

Va
T;s

Cð1þaÞaðjk
v
?j

aþjkv
kj

aÞ
( )

þTs;a

ms
kk

ð
dv

J2
0ðjXsj�1k?v?Þ

x� kkvk

1

2p3=2ðCð1þ aÞÞ�1=2 ffiffiffiffiffiffiffiffiffiffi
2Va

T;s

p �
ð

dkv
?dkv

k

ð2pÞ3=2
½ikv
k�e
�iðkv

?v?þkv
kvkÞe�

Va
T;s

Cð1þaÞaðjkv
?j

aþjkv
kj

aÞ
( )

(20)

gives the non-adiabatic contribution.

The analytical solutions for integrals over kv with an

arbitrary a in the Eqs. (19) and (20) requires rather tedious

calculations. Instead we consider an infinitesimal deviation of

the form a ¼ 2� �, where 0 � �	 2 and expand the terms

depending on a in the Eq. (19) around � ¼ 0 as follows:

1

2p3=2ðCð1þ aÞÞ�1=2 ffiffiffiffiffiffiffiffiffiffi
2Va

T;s

p e�
Va

T;s
Cð1þaÞaðjk

v
?j

aþjkv
kj

aÞ

¼ e�
V2

T;s
4
ðjkv
?j

2þjkv
kj

2Þ

2p3=2VT;s
þ Kðkv

?; k
v
kÞ�þO½�2�; (21)

where

Kðkv
?; k

v
kÞ ¼

e�
V2

T;s
4
ðjkv
?j

2þjkv
kj

2Þ

8p3=2VT;s

(
� 3þ 2cE þ 2log½VT;s�

� 2V2
T;s

h
jkv
?j

2 þ jkv
kj

2
i
þ cEV2

T;s

�
jkv
?j

2 þ jkv
kj

2
�

þ V2
T;s

�
jkv
?j

2
log
h
jkv
?j

2
i
þ jkv

kj
2
log
h
jkv
kj

2
i�

þ V2
T;slog½VT;s�

�
jkv
?j

2 þ jkv
kj

2
�)

(22)

and in Eq. (20) the expansion for the second term on the

RHS gives

Va
T;s

Cð1þaÞa ðjk
v
?j

a þ jkv
kj

aÞ

2p3=2ðCð1þ aÞÞ�1=2 ffiffiffiffiffiffiffiffiffiffi
2Va

T;s

p e�
Va

T;s
Cð1þaÞaðjk

v
?j

aþjkv
kj

aÞ

¼
e�

V2
T;s
4
ðjkv
?j

2þjkv
kj

2ÞVT;s

�
jkv
?j

2 þ jkv
kj

2
�

8p3=2
þ Rðkv

?; k
v
kÞ�

þO½�2�; (23)

where

Rðkv
?;k

v
kÞ ¼

e�
V2

T;s
4
ðjkv
?j

2þjkv
kj

2ÞVT;s

32p3=2

(
5ðjkv

?j
2 þ jkv

kj
2Þ

� ð2 cE þ 2 log½VT;s�Þ
�
jkv
?j

2 þ jkv
kj

2
�

� 4
�
jkv
?j

2
log½jkv

?j� þ jkv
kj

2
log½jkv

kj�
�

þ
�
� 2VT;s þ cEV2

T;s þ log½VT;s�V2
T;s

�
�
�
jkv
?j

4 þ jkv
kj

4
��
� 4 VT;s þ 2cEV2

T;s

þ 2 log½VT;s�V2
T;sÞðjkv

?j
2jkv
kj

2
�

þ V2
T;s

�
jkv
?j

4
log½jkv

?j� þ jkv
kj

4
log½jkv

kj�
�

þ V2
T;s

�
jkv
?j

2jkv
kj

2
�
ðlog½jkv

?j� þ log½jkv
kj�Þ
)
:

(24)

Here, we have used the Euler-Mascheroni constant

cE 
 0:57721.

Inserting the zeroth order terms in � from the expansion (21)

into Eq. (19) will produce the Maxwellian adiabatic response

Mad;s ¼ 1; (25)

and by inserting the zeroth order terms in � from the expan-

sion (22) into Eq. (20) will produce the Maxwellian non-

adiabatic response

Ms
k;x ¼

2ffiffiffi
p
p

V3
T;s

ð1
�1

dvk

ð1
0

dv?v?
kkvk �xs;T

�k ðvk;v?Þ
�xþ kkvk

� J2
0ðjXsj�1k?v?Þe

�
v2
kþv2
?

V2
T;s ; (26)
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where

xs;T
�k ðvk; v?Þ ¼ xs

�k

�
d ln nsðxÞ

dx
þ
� v2
k þ v2

?

V2
T;s

� 3

2

�
d ln TsðxÞ

dx

�
:

(27)

By using the expansion defined by the expressions (21) and

(23) to first order in � from Eqs. (19) and (20), the adiabatic

and non-adiabatic parts of the dispersion relation Mad;s and

Ms
k;x are as follows:

Mad;s ¼ 1þ
�

2p
ð1
�1

dvk

ð1
0

dv?v? �
ð

dkv
?dkv

k

ð2pÞ3=2

� e�iðkv
?v?þkv

kvkÞKðkv
k;k

v
?Þ
�
�¼ 1þ �Wad;s (28)

and

Ms
k;x ¼

2ffiffiffi
p
p

V3
T;s

ð1
�1

dvk

ð1
0

dv?v?
kkvk � xs;T

�k ðvk; v?Þ
�xþ kkvk

J2
0

�
jXsj�1k?v?

�
e
�

v2
kþv2
?

V2
T;s

þ � �2pxs
�k

d ln nsðxÞ
dx

� 1

2

d ln TsðxÞ
dx

� � ð1
�1

dvk

ð1
0

dv?v?
J2

0

�
jXsj�1k?v?

�
x� kkvk

�
ð

dkv
?dkv

k

ð2pÞ3=2
e�iðkv

?v?þkv
kvkÞKðkv

?; k
v
kÞ

8<
:

þ2pxs
�k

d ln TsðxÞ
dx

ð1
�1

dvk

ð1
0

dv?v?
J2

0

�
jXsj�1k?v?

�
x� kkvk

�
ð

dkv
?dkv

k

ð2pÞ3=2
e�iðkv

?v?þkv
kvkÞRðkv

?; k
v
kÞ

þ2p
Ts

ms
kk

ð1
�1

dvk

ð1
0

dv?v?
J2

0

�
jXsj�1k?v?

�
x� kkvk

�
ð

dkv
?dkv

k

ð2pÞ3=2
e�iðkv

?v?þkv
kvkÞðikkÞKðkv

?; k
v
kÞ

9=
; ¼ Ns

k;x þ �Ws
k;x:

(29)

III. DISPERSION EQUATION

We will now turn our attention to the problem of

solving the dispersion relation described by Eq. (18). In

order to solve this dispersion equation we use the method

described in Ref. 15, where the dispersion relation is in the

form

ð1þ Ne
k;xÞ þ �eðWad;e þWe

k;xÞ

¼ �ð1þ Ni
k;xÞ � �iðWad;i þWi

k;xÞ: (30)

Note that we have expanded in �e and �i for electrons and

ions, respectively, and that there exist a relation between the

two see Ref. 15. The first terms on the right and left hand

sides generate the usual contributions to the dispersion equa-

tion as in Ref. 26, and the terms proportional to � generate

the non-Maxwellian contributions. For the non-adiabatic

Maxwellian response, we have

Ns
k;x ¼

2ffiffiffi
p
p
ð1
�1

dw

ð1
0

duu

�
w� �xs;T

�k ðu;wÞ
w� �x

�
J2

0ðbsuÞe�ðu
2þw2Þ;

(31)

with

�xsT
�kðu;wÞ ¼ �xs

�k

�
1þ u2 þ w2 � 3

2

� �
gs

�
: (32)

Here, bs ¼ k?VT;s=Xs, fw; ug ¼ fvk=VT;s; v?=VT;sg, we have

introduced the following notation LA ¼ d ln AðxÞ
dx , gs ¼ LT=Ln,

and xs
�k ¼ cTs

esB
ky=Ln. Bar denotes normalization to kkVT;s.

The effects of the fractional velocity derivative can result in

the non-Maxwellian contribution of the form

Ws
k;x ¼

2ffiffiffi
p
p
ð1
�1

dw

ð1
0

duu

�
w!ðu;wÞ � �X

sT
�kðu;wÞ

w� �x

�

� J2
0ðbsuÞe�ðu

2þw2Þ; (33)

where

�X
sT
�kðu;wÞ ¼ �xs

�k

�
1� 1

2
gs

�
Uðu;wÞ � �xs

�kgsWðu;wÞ: (34)

The functions Uðu;wÞ, Wðu;wÞ, and !ðu;wÞ are given in

Appendix.

IV. RESULTS AND DISCUSSION

In this section we present the solutions of the dispersion

Eq. (30) using Eqs. (31) and (33). We can find an expression

for �e as

�e ¼ �
2þ Ne

k;x þ Ni
k;x

67:32þWe
k;x þ 1:42Wi

k;x

: (35)
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Here, we have used the results shown in Ref. 15: �i ¼ 1:42�e,

Wad
e ¼ 33:724, and Wad

i ¼ 23:6591, VT;e ¼ 5:93 109½cm=s�,
VT;i ¼ 1:38 108½cm=s�, and bi ¼ 0:42. We normalize all the

frequencies to jkkjVTe where kk ¼ 10�3, and we solve Eq.

(35) for given values of c and x where �x ¼ xr þ ic corre-

sponding to the real and imaginary (also called growth rate)

parts of the eigenvalue.

Figure 1 shows the deviation factor �e, as defined in

Eq. (35) calculated for given values of c and x with gi ¼ 5

and ge ¼ 0. As seen in this figure, the deviation factor

increases as the frequency and growth rate of the ITG mode

increase. These results are in agreement with results given

in Ref. 15, where it was shown that as the growth rate

increases, e.g., the plasma becomes more linearly unstable,

the plasma starts to deviate from a Maxwellian, and

becomes L�evy distributed. This qualitative behavior is

observed for all relevant values of the temperature gradient

through the parameter gi. Note that the relative effect of the

real frequency is larger compared to the effect of the

growth rate. This behavior is different from the results

shown in Ref. 15 where the main effect on the deviation of

the plasma from Maxwellian was due to the growth rate of

the density gradient mode. From our findings we expect

that the basis of this discrepancy is the result of the differ-

ent assumptions on the electron dynamics: adiabatic or non-

adiabatic electrons were assumed in Ref. 15 and here,

respectively.

In summary, the impact of the plasma background fluc-

tuations are introduced into the Langevin equation for the

particle motion by a stochastic process obeying the statisti-

cal properties of a larger class of distributions, namely, sta-

ble distributions. Such a stochastic process is represented

by a fractional velocity derivative in the corresponding

Fokker-Planck equation. The solution of the fractional

Fokker-Planck equation represents the equilibrium PDF of

the system and, due to the non-Gaussian assumption on

the background fluctuations, is no longer the classical

Maxwellian distribution but a L�evy distribution. Through

the plasma quasi-neutrality condition one can find an

expression for the exponent of the L�evy distribution, i.e.,

the order of the fractional derivative in the Fokker-Planck

equation as a function of the linear eigenvalues of

the unstable modes. By solving this expression for given

eigenvalues, it is shown that as the linear eigenvalues of

the modes increase, the order of the fractional velocity

derivative deviates from 2 and therefore, plasma becomes

L�evy distributed. In Ref. 15 by solving the dispersion

equation for eigenvalues with a given deviation order �e, it

was also shown that the modified equilibrium in turn

may strongly enhance the unstable fluctuations, i.e., eigen-

values of the unstable modes, cf., Ref. 27. Therefore,

when analyzing the turbulence driven transport one has to

take into account that if the statistical properties of the

underlying plasma fluctuations are non-Gaussian, the

resulting transport due to the unstable fluctuations may

be modified significantly. The present work is a step on

the way to establish the connection between the micro-

scopic physics of turbulence and fractional derivative

models.
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APPENDIX: FRACTIONAL VELOCITY FUNCTIONS

The functions Uðu;wÞ, Wðu;wÞ, and !ðu;wÞ are defined

as follows:

Uðu;wÞ ¼ � i

8juj uErfi½juj�
 �
� 1þ 3w2

�
ð�2cEþ 2log½VT;s�Þ þ ew2

1F1ð1;0;0Þ
�

3

2
;
1

2
;�w2

�!(

� ijujð14� 8cE� 8u2þ 4cEu2� 8w2þ 4cEw2� 4log½VT;s� � 2eu2

1F1ð1;0;0Þ
�

3

2
;
1

2
;�u2

�

� 2ew2

1F1ð1;0;0Þ
�

3

2
;
1

2
;�w2

�
� iErfi½juj�

 
ð�1þ 2w2Þð�2þ cEþ 2log½VT;s�Þ þ ew2

1F1ð1;0;0Þ
�

3

2
;
1

2
;�w2

��!)
;

(A1)

and

FIG. 1. �e as function of x and c, where the frequencies are normalized to

jkkjVTe.
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Wðu;wÞ ¼ 1

48juj iuErfi½juj�
 �

3� 12w2 þ 4w4
�
ð�8þ 3cE þ 6log½VT;s�Þ � 9ew2

1F1ð1; 0; 0Þ
�

5

2
;
1

2
;�w2

�!(

þ juj
 
� 84þ 48cE þ 180u2 � 96cEu2 � 32u4 þ 24cEu4 þ 180w2 � 96cEw2 � 192u2w2 þ 48cEu2w2 � 32w4

þ 24cEw4 þ 24iErfi½u� � 9icEErfi½u� � 96iw2Erfi½u� þ 36icEw2Erfi½u� þ 32iw4Erfi½u� � 12icEw4Erfi½u�
þ 24log½VT;s� � 24u2log½VT;s� � 24w2log½VT;s� � 18iErfi½u�log½VT;s� þ 72iw2Erfi½u�log½VT;s�

� 24iw4Erfi½u�log½VT;s� � 6ð�1þ 2u2Þð�1þ 2w2Þð1F1
ð1;0;0Þ

�
0;

1

2
; u2

�
þ1F1

ð1;0;0Þ
�

0;
1

2
;w2

�!

� 12eu2

1F1
ð1;0;0Þ

�
3

2
;
1

2
;�u2

�
� 12ew2

1F1
ð1;0;0Þ

�
3

2
;
1

2
;�w2

�
þ 18eu2

1F1
ð1;0;0Þ

�
5

2
;
1

2
;�u2

�

þ 18ew2

1F1
ð1;0;0Þ

�
5

2
;
1

2
;�w2

�
þ 9iew2

Erfi½u�1F1
ð1;0;0Þ

�
5

2
;
1

2
;�w2

�
þ 61F1

ð1;0;1Þ
�

0;
1

2
; u2

�

� 24u2
1F1

ð1;0;1Þ
�

0;
1

2
; u2

�
� 12w2

1F1
ð1;0;1Þ

�
0;

1

2
; u2

�
þ 48u2w2

1F1
ð1;0;1Þ

�
0;

1

2
; u2

�
þ 61F1

�
0;

1

2
;w2

�

� 12u2
1F1

ð1;0;1Þ
�

0;
1

2
;w2

�
� 24w2

1F1
ð1;0;1Þ

�
0;

1

2
;w2

�
þ 48u2w2

1F1
ð1;0;1Þ

�
0;

1

2
;w2

�

þ 12u2
1F1

ð1;0;2Þ
�

0;
1

2
; u2

�
� 24u2w2

1F1
ð1;0;2Þ

�
0;

1

2
; u2

�
þ 12w2

1F1
ð1;0;2Þ

�
0;

1

2
;w2

�

� 24u2w2
1F1

ð1;0;2Þ
�

0;
1

2
;w2

�!)
; (A2)

and

!ðu;wÞ ¼ �1

8juj iuErfi½juj�
 �
� 3þ 2w2

�
ð�2þ cE þ 2log½VT;s�Þ þ ew2

1F1
ð1;0;1Þ

�
3

2
;
1

2
;�w2

�!
þ juj

 
22� 12cE � 8u2

(

þ 4cEu2 � 8w2 þ 4cEw2 � 6iErfi½u� þ 3icEErfi½u� þ 4iw2Erfi½u� � 2icEw2Erfi½u� � 4log½VT;s� þ 6iErfi½u�log½VT;s�

� 4iw2Erfi½u�log½VT;s� � 2eu2

1F1
ð1;0;0Þ

�
3

2
;
1

2
;�u2

�
� iew2ð�2iþ Erfi½u�Þ1F1

ð1;0;0Þ
�

3

2
;
1

2
;�w2

�!)
: (A3)

Here, 1F1½a; b; z� denoting Kummer’s confluent hypergeo-

metric function and the superscripts represent the derivative

of the hypergeometric function with respect to its parame-

ters; for example, 1F1
ð1;0;0Þ½a; b; z� represents the derivative

with respect to the first parameter, i.e., a, and Erf[u] gives

the imaginary error function Erf[iu]/i.
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