
Configurable RTL Model for Level-1 Caches
Vahid Saljooghi, Alen Bardizbanyan, Magnus Själander and Per Larsson-Edefors

VLSI Research Group, Dept. of Computer Science and Engineering
Chalmers University of Technology, Gothenburg, Sweden

Abstract—Level-1 (L1) cache memories are complex circuits that
tightly integrate memory, logic, and state machines near the processor
datapath. During the design of a processor-based system, many different
cache configurations that vary in, for example, size, associativity, and
replacement policies, need to be evaluated in order to maximize per-
formance or power efficiency. Since the implementation of each cache
memory is a time-consuming and error-prone process, a configurable
and synthesizable model is very useful as it helps to generate a range of
caches in a quick and reproducible manner. Comprising both a data and
instruction cache, the RTL cache model that we present in this paper
has a wide array of configurable parameters. Apart from different cache
size parameters, the model also supports different replacement policies,
associativities, and data write policies. The model is written in VHDL
and fits different processors in ASICs and FPGAs. To show the usefulness
of the model, we provide an example of cache configuration exploration.

I. INTRODUCTION

Since data and instructions in executed software exhibit spatial and
temporal locality, it is likely that upcoming instructions will access
memory addresses that are near the current one. This fact is the
rationale for cache memory hierarchies which are extensively used in
almost all systems. The part of the software that is likely to be needed
by the processor can, thus, be transferred from the big and slow main
memory to a smaller and faster memory—the cache—just before it
is needed. Now, the processor performance is not constrained by the
slow main memory, instead it depends on the speed of the cache.
The level-1 (L1) cache of this work represents the fastest cache of
the memory hierarchy, located closest to the processor datapath.

The L1 cache can be implemented in a large number of ways and
the chosen cache configuration greatly impacts the whole processor
system’s behavior [1]. In addition, which cache configuration is
optimal varies between instruction and data caches [2]. In this
perspective, a generic RTL model that allows implementation pa-
rameters to be freely selected would facilitate design exploration:
Once the cache model parameters have been set, the desired cache
configuration can be used in logic simulation. When promising
configurations have been identified, these can be synthesized and
further evaluated on the metrics that are of importance. Design
closure becomes straightforward as the exploration cycle readily can
be repeated, using alternate cache parameters.

Our contribution is a versatile L1 cache RTL model that, in contrast
to a specialized cache generator such as [3], is not tailored to a spe-
cific processor core (CPU). This VHDL model comprises logic and
state machines to handle the complex schemes for writing and reading
to the cache, providing a complete L1 cache. To support single-bus
testing of a processor equipped with an L1 cache, arbitration between
the instruction and data cache is also an option in the model. To our
knowledge, generic RTL cache models are not publicly available at
this time. The generality of the model comes with one disadvantage:
Since the model is interface agnostic and since it does not support
deeper pipelining, performance co-optimization of CPU and cache
will have to be performed once the CPU has been chosen.

II. CACHE MODEL

In order to describe the model, its structure, and its parameters, we
give a brief introduction to caches, their function and terminology.

A. Basic Terminology and Function

Fig. 1 shows one example of cache organization [4]. In most
systems, and in our model, one cache is devoted to instructions, while
another is devoted to data.

The cache is made up of entries that each contains data bits—
the cache line—and tag bits, where the latter refer to the portion of
the main memory address with which the cache line is associated.
For the vast majority of caches the cache line contains more than
one instruction or data to take advantage of spatial locality in an
application. The instruction cache is addressed using the program
counter, while the data cache uses the address from load and store
instructions. For both the instruction and data cache, the address is
divided into three fields as shown at the top of Fig. 1. The second
field—Index—identifies the cache line, while the third—Line Offset—
selects the appropriate word inside the cache line. The first field—
Tag—contains the most significant bits of the main memory address
that is requested.

TAG
ARRAY

V
DATA

ARRAY

= Word Select

Ta
g

In
d
e
x

In
d
e
x

Li
n
e
 O

ff
se

t

TAG
ARRAY

V
DATA

ARRAY

= Word Select

Ta
g

In
d
e
x

In
d
e
x

Way Select

Tag Index Line OffsetADDRESS:

D

Li
n
e
 O

ff
se

t

D

Fig. 1. Cache organization of a 2-way associative cache.

When the CPU needs to write to or read from main memory, it
sends a request to the cache, which in turn checks if the requested
main memory entry already exists within the cache. If it exists, we
have a hit, and the CPU’s read or write transaction will take place.
Otherwise, we have a miss, leading to a time-consuming transfer of
data from main memory to the cache after which the CPU can read
from or write to the appropriate cache line. The CPU is stalled during
the completion of the transfer to or from the next level of the memory
hierarchy. One such occasion is at the start up of a program; here the
CPU is being stalled while the first chunk of instructions and data is
transferred to the caches.

978-1-4673-2223-2/12/$31.00 ©2012 IEEE

Mapping of main memory addresses to cache entries is done by
first dividing the address space into blocks that are of the size of a
cache line. Then, 2Index of these blocks are grouped together into a
page. Thus, a page has the same size as the data array of a single
way of the cache. A particular word within a page can be accessed
by using the index to identify the cache line and the line offset to
access the particular word within the line. The tag identifies which
page a particular cache line resides in. When the CPU is accessing
the cache, the address tag field is compared to the tag of the cache
entry that is defined by the address index field. If the two tags match
and the valid bit (the column marked V in Fig. 1) is set, we have a
hit. Otherwise, a cache miss has occurred and data must be retrieved
from the next level of the memory hierarchy.

In an associative cache, as the 2-way cache in Fig. 1, a cache line
(with a particular index) can reside in exactly one position in each
of the ways. With two ways the cache can store a cache line with
the same index from two different pages. In the event a cache line
with the same index would be accessed from a third page, one of the
cache lines in one of the ways has to be overwritten. That cache line
is said to be evicted. If the cache uses a write-back policy, the dirty
bit (the column marked D in Fig. 1) of a corresponding line is set on
a store operation. During eviction of a line, if the line’s dirty bit is set,
the line is written back to the next level in the memory hierarchy.
The replacement policy decides in which order cache entries will
be evicted upon a miss, while the associativity defines how main
memory entries are associated with each index in the cache. With
a higher associativity there is a greater chance that a cache line is
not evicted, thus the hit rate increases. The downside is that it takes
longer time to identify if the cache is holding the requested data.
In terms of associativity, the two extremes are fully associative and
direct-mapped caches. In the first cache, the main memory entries
are freely associated with any cache entry, while in the latter, which
uses a single way, each memory entry is associated with one specific
cache entry. Direct-mapped caches tend to have relatively low hit
rates, but in exchange their access speed is high.

B. Cache Model Parameters

Our VHDL RTL cache model [5] is developed to be configurable.
Therefore, the caches can be used in processors with arbitrary data
and address bus widths, and they can communicate with a variety of
external memory widths. All configurable parameters, that is, cache-
line size, cache-line count, associativity, replacement policy, and
write policy, can be set through VHDL generics when instantiating
the top-level cache entity. Currently two replacement policies are
supported, that is, least recently used (LRU) and pseudo random.
Since the RTL cache model is modular, it is easy to later add other re-
placement policies, such as pseudo LRU. As far as data write policies,
our model supports write-back and write-through mechanisms, and,
on misses, write allocate and no write allocate, in these combinations:
write back (with write allocate), write through with write allocate,
and write through with no write allocate. The maximum associativity
that can be used is four. If a higher associativity is needed, it is
possible to increase this number by performing small modifications to
the LRU calculation mechanism. In addition to the above parameters,
the cache can be composed of memory modules with an equal number
of entries and width, which is useful if the cache-line size is larger
than the width of a single memory unit.

C. Cache Operation

In this part we describe instruction and data cache state transitions.
The presented finite state machines (FSMs) are simplified versions
of the implemented FSMs, only showing the most essential signals.

As shown in Fig. 2, the instruction cache FSM is a Mealy machine
composed of three states. When the cache powers up, all valid bits are
set to zero to avoid fake hits. The controller goes through all indexes
(sets) of the cache and invalidates the tag by clearing its valid bit.
During this initial Flush state the CPU is stalled. After clearing all
valid bits the state is changed to Comp_Tag. In this state, the cache
performs tag checks to identify if the instruction requested by the
CPU resides in the cache or not. If the instruction is available in the
cache, a hit occurs and the controller stays in the Comp_Tag state
and delivers the requested instruction to the CPU. In case of a miss,
the state changes to Read_Mem. As the name indicates, during this
state the instruction cache loads the whole cache line containing the
requested instruction from memory. At this point, in the case of an
associative cache, the replacement policy dictates from which way a
cache line will be evicted. Depending on the memory bus width and
the cache-line size, it can take several cycles to load a cache line.
The FSM returns to the Comp_Tag state once the complete cache
line has been read from the next level of the memory hierarchy and
asserts a hit for the recently loaded cache line.

Flush Comp_Tag Read_Mem

counter_tmp < Num_Of_Sets

counter_tmp=Num_Of_Sets
hit=0

counter_tmp=Num_IMem_Refer-1

counter_tmp < Num_IMem_Refer-1

Reset=0

hit=1

Fig. 2. Instruction cache state machine.

Next we describe the data cache controller that uses the write-back
policy. As shown in Fig. 3, the flushing operation is similar to the
one mentioned above for the instruction cache. After the Flush state,
since it is not as frequently accessed as the instruction cache, the data
cache goes to the Idle state and waits for a request from the CPU. As
soon as there is a CPU request for reading (dc_in.rd = 1) or writing
(dc_in.wr = 1), the data cache will change to the appropriate state.
These signals should be driven by the result of the ALU if interfaced
with a conventional five-stage pipeline. The reason for this is that the
memories in the cache are synchronous and will be latched on the
rising edge. If the signals are provided to the cache first, a complete
cycle will be wasted in the memory stage waiting for the following
rising edge of the clock. This also gives the FSM time to change from
the Idle state to service the requested read or write. For both read
and write operations, the data cache checks whether the requested
data resides in the data array or not.

Assuming a miss occurs and the victim cache line is dirty (dirty =
1), then this line is written back to memory. This means changing
to the Wr_Back state. The process of writing data back to memory,
just like reading from it, takes several cycles as is suggested by the
transitions that loop back to the Wr_Back state. After the data is
written to memory, the controller moves to the Read_Mem state,
in which the victim line is replaced by new data from the next
level of the memory hierarchy. By now, if the CPU request was a
read, the task is complete. If the next instruction also is a memory
operation (dc_in.rd = 1 or dc_in.wr = 1), the next state becomes
Comp_Tag, otherwise the controller changes back to the Idle state.

Another scenario is that, when the controller changes to the
Wr_Back state, the CPU is requesting a write operation. In this case,
after reading from memory, part of the cache line—word, half word
or byte—is updated by the CPU. Here, Update_DC is the state that
is reached to complete the CPU’s write request. If the next instruction
also is a data memory operation (dc_in.rd = 1 or dc_in.wr = 1),
the controller changes to the Comp_Tag state, otherwise it changes
to the Idle state and waits for another CPU request.

Flush Idle Comp_Tag

Update_DC

Wr_Back

Read_Mem

counter_tmp < DC_Num_Of_Sets

t

Reset=0

counter_tmp = DC_Num_Of_Sets

dc_in.rd=0 & dc_in.wr=0

dc_in.rd=1 | dc_in.wr=1

hit=1 & dc_rd_clked=1 &

Idle

(dc_in.rd=1 | dc_in.wr=1)

hit=1 & dc_rd_clked=1 &

Idle

(dc_in.rd=0 & dc_in.wr=0)

hit=0 & dirty=1

hit=0 & dirty=0

hit=1 & dc_wr_clked=1

counter_tmp = Num_DMem_Refer &

Read_Mem

(dc_in.rd=1 | dc_in.wr=1)

Read_Mem

dc_wr_clked=0 &

counter_tmp = Num_DMem_Refer

(dc_in.rd=0

Update_DC

& dc_wr_clked=1

counter_tmp = Num_DMem_Refer-1

(dc_in.rd=1 | dc_in.wr=1)

counter_tmp = Num_DMem_Refer &

Idle

dc_wr_clked =0 &

Idle

(dc_in.rd=0 & dc_in.wr=0)

counter_tmp < Num_DMem_Refer-1

counter_tmp < Num_DMem_Refer-1

Update_DC

& dc_in.wr=0)

Fig. 3. State machine for data cache using the write-back policy.

Fig. 4. Cache structure and its interface.

III. SYSTEM LEVEL MODEL

To make a generic RTL model useful to a third-party user, the
model must have a structure that is easy to grasp. To make it easier
to understand the signal interface between any two components, those
interface signals can be encapsulated in VHDL records. Fig. 4 shows
the signals encapsulations between the CPU, the caches, the arbiter,
and the next level of the memory hierarchy. For example, the dc_in
record, which was referred to in Sec. II-C, contains address, data,
mask, read and write signals, as shown in Table I. The arbiter was
developed for single-unit memory environments and performs the task
of arbitration between caches to access external memory. If only one
of the caches has a memory request, the arbiter grants access to
memory immediately. In case of simultaneous requests from both
caches, the data cache is given priority over the instruction cache.

To evaluate our RTL cache model, we integrated it with a five-
stage MIPS core [4] that was developed in a separate project [6]. To
create a complete system that can be deployed on an FPGA we also
developed an AMBATM High-performance Bus (AHB) [7] master
interface that connects to the mem_in/out records of the arbiter.
The AHB master interface connects to an AHB bus with a DDR
memory controller that is constructed out of cores from the open-

TABLE I
RECORD DESCRIPTIONS

Record Signal Description
ic_in addr Address for the instruction cache

stall Stall the instruction cache
ic_out data The instruction returned from the cache

stall The instruction cache is stalled
dc_in addr Address to requested data

data Data to be written on write requests
mask Write mask
rd Read request
wr Write request

dc_out data The data returned from the cache
stall The data cache is stalled

mem_in data Data returned from main memory
stall The main memory is stalled

mem_out addr Address to requested data
data Data to be written on write requests
mask Write mask
rd Read request
wr Write request

Fig. 5. System evaluation setup.

source GRLIB IP library [8]. The system also has a UART interface
that connects to an Advanced Peripheral Bus (APB) bus, which is
connected to the AHB bus through an AHB-to-APB bridge. Fig. 5
shows the complete system used in the evaluation presented next.

IV. DEMONSTRATION OF CACHE CONFIGURATION EVALUATION

Here we will present a basic execution-time evaluation using the
RTL models of a processor system consisting of a five-stage in-order
MIPS processor, L1 instruction and data caches, arbiter, and AHB
interface. A time-accurate RTL model of a Micron DDR memory
is also included to estimate the main memory latency. As metric
we use the average execution time of the following five benchmarks
from the EEMBC benchmark suite [9]: autcor, conven, fft, rgbcmy,
and viterb. In terms of cache parameters, instruction and data cache
sizes are varied between 512 bytes and 4,096 bytes. The cache-line
size is fixed to 32 bytes for all the configurations.

Fig. 6 shows the average execution time for different cache sizes
and associativities. The execution time is normalized to the slowest
configuration, that is, the 512-byte direct-mapped cache. As expected,
when we increase the cache size, the execution time is decreased
since the miss rate is reduced. Increasing the cache size further
yields diminishing returns, since the miss rate does not decrease
significantly after some point. The 2-way associative cache performs
more efficiently than the direct-mapped cache. Again, this is expected,
since the miss rate decreases due to fewer conflicts. Due to the
variation in application working sets, some benchmarks are more
sensitive to the cache size than others. For example, the rgbcmy
benchmark experiences only a 14% execution time improvement
when the direct-mapped cache is scaled up from 512 bytes to
4,096 bytes, whereas the fft benchmark shows a 73% execution time
improvement for the same scaling.

Fig. 7 shows the average execution time for different data write
policies. Only a direct-mapped configuration is shown here, but the

Size (Bytes)

E
x
e

c
u

ti
o

n
 t

im
e

512 1024 2048 4096
0.45

0.5
0.55

0.6
0.65

0.7
0.75

0.8
0.85

0.9
0.95

1

Direct mapped Two−way associative (LRU)

Fig. 6. Execution time for for different cache sizes and associativities,
normalized to a 512-byte direct-mapped cache configuration.

Size (Bytes)

E
x
e

c
u

ti
o

n
 t

im
e

512 1024 2048 4096
0.45

0.5
0.55

0.6
0.65

0.7
0.75

0.8
0.85

0.9
0.95

1

Write−back Write−through (write allocate)

Write−through (no−write allocate)

Fig. 7. Execution time for different write policies and cache sizes, normalized
to a 512-byte write-back cache configuration.

trend is similar for higher associativities. Because each store opera-
tion causes stall cycles until the data are written to main memory, the
write-back policy tends to be faster than the write-through policies.
The write-through policy actually gives some execution time benefits
for very small cache sizes, since the write-back rate is higher here.
Although the execution time penalty of the write-through policy can
be somewhat mitigated using a write buffer between main memory
and the L1 cache, the write-back policy offers the best performance
in most cases, which is in line with other reports [10]. The write-
through with no-write-allocate policy has shorter execution time than
the write-through with write-allocate policy. This is because the no-
write-allocate policy reduces the conflicts in the cache, since the
store operations that miss in the cache do not cause any allocation in
the cache. As the cache size increases, the miss rate decreases and
the reduction in the conflicts decreases. Hence, the advantage of the
write-through with no-write-allocate policy diminishes.

There are other parameters that should be considered when decid-
ing the cache configuration in a real system. For example, a decreased
miss rate does not only improve the execution time, but it also—due
to fewer accesses—reduces main memory energy. Another example
is an FPGA platform, in which the SRAM blocks are usually of fixed
size. To avoid unused space in the SRAM blocks once the resource
allocation has been completed, the cache configuration process should
consider how memory blocks are implemented.

V. CONCLUSION

We have described an RTL model of a complete L1 cache that
enables rapid processor system implementation and evaluation. The
RTL model is configurable in a number of parameters (line size,
line count, and associativity) and policies (replacement policies and
data cache write policies). To show the usefulness of the model, we
demonstrated an evaluation of a processor system, which consists of
a MIPS processor, the presented cache RTL model, an AHB bus and
an AHB arbiter. By varying key parameters, we were able to quickly
run a benchmark suite on the whole processor system model, evaluate
the results, and identify efficient cache configurations. Synthesis and
place and route can readily be performed after the architectural
evaluation, improving the evaluation accuracy further.

REFERENCES

[1] R. Bahar, G. Albera, and S. Manne, “Power and performance tradeoffs
using various caching strategies,” in Proc. Int. Symp. Low Power
Electronics and Design (ISLPED), 1998, pp. 64–69.

[2] A. Milenkovic, M. Milenkovic, and N. Barnes, “A performance eval-
uation of memory hierarchy in embedded systems,” in Proc. 35th
Southeastern Symp. System Theory, 2003, pp. 427–431.

[3] A. Putnam, S. Eggers, D. Bennett, E. Dellinger, J. Mason, H. Styles,
P. Sundararajan, and R. Wittig, “Performance and power of cache-based
reconfigurable computing,” in Proc. Int. Symp. on Computer Architecture
(ISCA), 2009, pp. 395–405.

[4] D. A. Patterson and J. L. Hennessy, Computer Organization and De-
sign: The Hardware/Software Interface, 2nd ed. Morgan Kaufmann
Publishers, 1998.

[5] L1 Cache VHDL Code. [Online]. Available: http://www.flexsoc.org
[6] M. Thuresson, M. Själander, M. Björk, L. Svensson, P. Larsson-Edefors,

and P. Stenström, “FlexCore: Utilizing exposed datapath control for
efficient computing,” J. Signal Processing Systems, vol. 57, no. 1, pp.
5–19, Oct. 2009.

[7] AMBATM Specification, ARM, May 1999, rev. 2.0.
[8] GRLIB IP Library User’s Manual, Aeroflex Gaisler, Jan. 2012, ver.

1.1.0, B4113. [Online]. Available: http://www.gaisler.com/products/
grlib/grlib.pdf

[9] Embedded Microprocessor Benchmark Consortium. [Online]. Available:
http://www.eembc.org

[10] Cortex-A15 MPCore Technical Reference Manual, ARM, 2012, sec.
6.4.1, rev. r3p2. [Online]. Available: http://infocenter.arm.com

