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Multitarget Sensor Resolution Model and Joint

Probabilistic Data Association
Daniel Svensson, Martin Ulmke, and Lars Hammarstrand

Abstract

In the design of target tracking algorithms, the aspect of sensor resolution is rarely considered.

Instead, it is usually assumed that all targets are always resolved, and that the only uncertainties in the

data association are which targets that are detected, and which measurement each detected target gave

rise to. However, in situations where the targets are closely spaced in relation to the sensor resolution, this

assumption is not valid, and may lead to degraded tracking performance due to an incorrect description

of the data. In this paper, we present a framework for handling sensor resolution effects for an arbitrary,

but known, number of targets. We propose a complete multitarget sensor resolution model that can be

incorporated into traditional Bayesian tracking filters. Further, the exact form of the posterior probability

density function is derived, and two alternative ways of approximating that exact posterior density with

a Joint Probabilistic Data Association (JPDA) filter are proposed. Evaluations of the resulting filters

on simulated radar data show significantly increased tracking performance compared to the JPDA filter

without a resolution model.
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I. INTRODUCTION

Traditionally the aspect of sensor resolution has not been considered in the design of target tracking

algorithms [2]. Instead, it has been assumed that the targets are always resolved, and that the data

association problem only regards the assignment of measurements to single targets. In many situations,

that assumption is reasonable, but there are important cases when the resolution limitations of the sensor

cannot be ignored [10]. Such cases arise when targets are temporarily closely spaced in relation to

the resolution of the sensor, e.g., when tracking aircraft in formation, or in convoy tracking for ground

surveillance. For such applications, ignoring the limitedresolution of the sensors may lead to an incorrect

interpretation of the data, which results in degraded performance, in particular due to premature deletion

of tracks.

To account for resolution in a tracking algorithm, the resolution phenomena must be modeled. One

way of modeling them is to express the capability of the sensor to resolve individual targets in a group

by a resolution probability, and to have a model for the merged measurement that arises when the targets

are unresolved. Two approaches have been proposed in the literature which follow this line of modeling.

In [8], a grid-based resolution model for two targets is proposed, where the resolution probability is

zero if the targets are within the same resolution cell, and one otherwise. The integration into the Joint

Probabilistic Data Association (JPDA) filter [13] is also described, and in [19] the model is further

extended to a Multiple Hypothesis Tracking (MHT) framework[1], [2], [11], [20]. Even though a fixed

grid often is a good approximation of the signal processing procedure, the capability of a sensor to

resolve targets generally depends on their positions relative to the sensor. Hence, in [18], a simple, but

qualitatively correct, resolution model that take relative positions into account is proposed. Further, its

incorporation into an MHT filter is also presented. In [5], the model in [18] is combined with the so-

called descriptor system approach, which results in resolution-model extensions of the Joint Interacting

Multiple Model Coupled Probabilistic Data Association (JIMMCPDA) filter, and its track-coalescence-

avoiding version, the JIMMCPDA* filter [3]. An exact Bayesian filter for two targets is also developed.

Further, in [6], the hybrid sequential importance resampling particle filter [4] is extended with the above

two-target resolution model. However, just as the resolution model in [8], the model in [18], and the

filters based upon it, are restricted to only consider two targets. An alternative approach to the tracking of

closely spaced objects is to treat them as a group. For an overview on group target tracking, see [28]. A

benchmark scenario for tracking including (two) closely spaced targets is given in [27], and a solution to

it based on angle estimation of two unresolved targets [22] (with extension in [26]) is presented in [23].
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In this article, we consider the modeling of limited sensor resolution for an arbitrary, but known, number

of targets. It is hence the first approach to consider resolution problems for more than two closely-spaced

targets. The main contribution of the article is a frameworkfor handling resolution limitations, which

can be easily incorporated into a Bayesian tracking setting. The framework relies on a graph description

of a resolution event, and on modeling the resolution probability as independent between target pairs. To

complete the framework and to attain a multitarget resolution model, a model for the resolution probability

for two targets and a group measurement model for an arbitrary number of targets are needed; for example,

the models in [8] or [18]. Preliminary results have previously been published in [24], [25].

The outline of the article as follows. In Section II, the problem formulation is stated. The proposal of

a framework for sensor resolution modeling is given in Section III, together with the graph description

of a resolution event. To complete the framework, specific measurement and resolution models for radar

sensors are suggested in Section IV. In Section V, the exact calculation of the posterior pdf under both

resolution and data association conflicts is described, while a Gaussian-mixture approximation is presented

in Section VI. In Section VII, two alternative approaches ofincorporating the resolution model into the

JPDA filter are presented, and in Section VIII those approaches are evaluated on simulated radar data. In

the evaluation, the tracking performance is compared to that of the JPDA filter without a resolution model.

The results show improved performance for all considered setups. Finally, in Section IX, conclusions are

drawn.

II. PROBLEM FORMULATION

The general problem considered in this article is tracking of a known number of targets under resolution

limitations and unknown data associations. To this problemthere are several subproblems. First, to model

the probability that a group of targets is unresolved; second, to model the corresponding merged group

measurement; and third, to find how these models can be incorporated into a general tracking framework.

The kinematic states of theN targets are represented by a joint state vector

xk =

[
(

x
(1)
k

)T (

x
(2)
k

)T
. . .

(

x
(N)
k

)T
]T

, (1)

wherex(i)
k is the state of targeti. At each time instant,tk, a sensor produces measurementsZk which

contain information regarding the kinematic statesxk. The collection of measurements from discrete time

index 1 to indexk is represented by

Zk =
{

Z1,Z2, . . . ,Zk

}

. (2)
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The goal of a tracking filter is to recursively calculate the posterior densityp
(

xk

∣
∣
∣Zk
)

, from which

optimal state estimates can be derived. To be able to calculate the density, models for the sensor

measurements and for the motion of the targets are necessary. Additionally, when limited sensor resolution

is considered, a model that describes that phenomenon is also needed. In the following, the considered

process and measurement models are presented, while radar resolution models are proposed and discussed

in Sections III and IV.

A. Process model

The process model, often called the motion model, describesthe dynamics of the targets. Given the

statexk−1 at time indexk − 1, the model describes the evolution of the state up to time index k. For

the general case,

xk = fk−1(xk−1,vk−1), (3)

wherefk−1 is the system function describing the transition from timek − 1 to time k, andvk−1 is a

process noise that describes the uncertainties in the prediction. For Gauss-Markov systems, which we

mainly consider in this article, it holds that

xk = Fk−1xk−1 + vk, (4)

whereFk−1 is the multi-target system matrix at timek − 1, andvk is Gaussian distributed with zero

mean and covariance matrixQk.

B. Sensor model

The sensor model describes the relation between the received measurements and the target states.

The measurements received at a certain time index include both target-generated detections and spurious

measurements that are due to false alarms and clutter (henceforth subsumed as clutter).

The joint measurement vector at timek is given by

Zk =

[
(

z
(1)
k

)T (

z
(2)
k

)T
. . .

(

z
(Mk)
k

)T
]T

. (5)

The heritage of the data is unknown, which means that it is notknown whichMk,c measurements are

clutter and whichMk,t measurements are target-generated. Additionally, it is not known which target or

targets gave rise to each of the true detections.
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The uncertainty in the discrimination between clutter and target-generated measurements is mathemat-

ically described as

Zk =
(

Πp ⊗ INz×Nz

)






Zc
k

Zt
k




 , (6)

whereZc
k andZt

k are ordered vectors of clutter- and target-originated measurements, respectively,Nz

is the dimension of the single-measurement space, and⊗ denotes the Kronecker product. Further,Πp

is anMk-dimensional random permutation matrix which models the uncertainty with respect to which

measurements are generated by targets.1

The uncertainty in the association between target-generated measurements and true targets, and the

model for the corresponding target-generated measurements, are here described as

Zt
k =

(

Ck ⊗ INz×Nz

)

hk(xk) +wk, (7)

whereCk is an unknownMk,t×N -dimensional matrix which determines the contribution of each target

on each target-generated measurement. When sensor resolution problems are not present, a measurement

can only originate from a single target. In that case,Ck has at most one single non-zero element per row (a

one), which determines the originating target of that measurement. However, for situations with resolution

limitations, several targets can be perceived as one by the sensor, and thus give rise to a joint/merged

measurement. Then, theCk matrix will have several non-zero elements in the corresponding row, where

the size of each element describes the contribution from each target to that measurement.2 The multi-

target observation functionhk transforms the joint state vectorxk to the measurement space, and the

noise processwk is assumed Gaussian with zero mean and block-diagonal covariance matrixRk. For

linear measurement models, the target-generated measurements are given by

Zt
k =

(

Ck ⊗ INz×Nz

)

H̃xk +wk, (8)

where

H̃ = diag
{

H, · · · ,H
︸ ︷︷ ︸

N times

}

, (9)

and whereH is the single-target observation matrix. The measurement noisewk is assumed independent

of the process noisevk.

1This matrix is equivalent to thẽχt matrix in [5, p. 615].

2Comparing with the descriptor system in [5, p. 615],Ck corresponds to the operatorΦ(φ′).
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For the measurement model to be complete, we also need to model the properties of the clutter

measurements. We here assume a spatially homogeneous Possion process. A single clutter measurement,

zck, is hence distributed as

zck ∼ Uniform
(

FoV
)

, (10)

where FoV is the field-of-view of the sensor, while the total number of clutter detections,Mk,c, is

distributed according to

Mk,c ∼ Poisson
(

λ ·
∣
∣
∣FoV

∣
∣
∣

)

, (11)

in which λ is the clutter intensity and
∣
∣
∣FoV

∣
∣
∣ the volume of the FoV. The algorithms described in this

article, however, are not restricted to Poisson-distributed clutter.

III. SENSOR RESOLUTION MODELING FRAMEWORK FOR ARBITRARY TARGET NUMBERS

To be able to track targets under resolution limitations with high accuracy, we wish to create a model

that

1) represents the probability that a group of targets is unresolved in a qualitatively correct way,

2) provides a reasonable description of the properties of a measurement from a group, and

3) is mathematically tractable and possible to incorporatein a Bayesian tracking framework.

In this section, we propose a novel framework for sensor resolution modeling for arbitrary, but known,

number of targets, which fulfills the three requirements above. To complete the framework, models for

the resolution probability of two targets and a measurementmodel for a group target are required. In

Section IV, two such models for radar sensors are presented.

We start by defining a group.

Definition 1: A group is defined as a set of targets that upon detection by the sensorgives rise to a

single (joint) measurement.

Thus, a group is not equivalent to a set of targets that move ina coordinated fashion, but a single resolved

target, or a set of more than one targets, which at a certain instant of time are so closely spaced that they

are not resolvable by the sensor. Note that the definition is on a per-scan basis, so that groups can be

formed and dissolved from scan to scan. Also note that the current article does not address multi-sensor

scenarios, but should such systems be of interest, the sensors would have to be considered in separate

filter recursions.
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At a certain time instant, there are many different possibilities regarding which targets form a group and

which are resolved. This is similar to the classic data association problem, where there are many different

explanations regarding measurement-to-target associations. We thus make the following definition of a

resolution event:

Definition 2: A resolution eventis defined as a partition of the set of all targets into groups.

That means, the set of all targets is divided into a set of non-empty non-overlapping subsets.

Example 1:Say that there are five targets present in the scene. An example of a resolution event,R,

is then:R =
{

{1, 2}, {3}, {4, 5}
}

, meaning that one group is formed by the set of targets1 and2, one

group is formed by the single-object set of target3, and a third group is formed by targets4 and5.

So, at a given time instant, many resolution events are possible, and we need a resolution model to

provide information regarding the probability of each suchevent.

A. Resolution probabilities

To model a resolution event, we propose the use of a graph representation, where each node in the

graph represents a target, and where an edge between nodes represents the event that those two targets

are mutually unresolved. A group is thus described by a connected sub-graph, i.e., a sub-graph with all

nodes being connected. We make the following definition.

Definition 3: A resolution graphis one possible representation of a resolution event. In thegraph, the

nodes are defined by the target states, and a pair of unresolved targets is represented by a symmetric link

between the respective nodes of the graph.

As the definition implies, a resolution event (cf. Definition2) may correspond to several resolution graphs.

For an example of a resolution graph, see Fig. 1. In that example, only one graph can be generated from

the resolution event. From a resolution event, all resolution graphs that could be generated from the

event are not always feasible, since some of them represent cases which are not physically reasonable.

An example of such a case is shown in Fig. 3. Assuming independent resolution in each measurement

direction (see Sec. IV), only those nodes can be connected which are nearest neighbors in at least one

direction of measurement space.

The edges of a resolution graph describe the pairwise interactions between the targets. For feasible

resolution graphs, we make the following assumption:

Assumption 1:The edge probabilities of a resolution graph are independent. That is, knowing that two
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targets are mutually unresolved provides no information regarding the probability that another pair of

targets is unresolved.

1

2

3

Fig. 1. Illustration of a graph,G1, which describes the resolution event that target one is resolved, while targets two and three

form a group.

For the calculation of the resolution graph probability we introduce the probability,Pu, according to

the following definition.

Definition 4: The probability that the pair of targets with statesx
(i)
k andx(j)

k are mutually unresolved

is given by Pu

(

x
(i)
k ,x

(j)
k

)

. Correspondingly, the probability that they are resolved is given by 1 −

Pu

(

x
(i)
k ,x

(j)
k

)

.

The probability of the graphG1, given by Fig. 1, is thus given by

Pr
{

G1
∣
∣
∣xk

}

= Pu

(

x
(2)
k ,x

(3)
k

)
(

1− Pu

(

x
(1)
k ,x

(2)
k

)
)(

1− Pu

(

x
(1)
k ,x

(3)
k

)
)

. (12)

Example 2:Consider the resolution eventR =
{

{1, 2, 3}
}

that the three targets present are all

unresolved. There are exactly four graphs,G1 to G4, leading to this event, as illustrated in Fig. 2.

The probability of the resolution event is then

Pr
{

R
∣
∣
∣xk

}

= Pr
{

G1
∣
∣
∣xk

}

+ Pr
{

G2
∣
∣
∣xk

}

+ Pr
{

G3
∣
∣
∣xk

}

+ Pr
{

G4
∣
∣
∣xk

}

,

where the respective graph probabilities are calculated similarly to the graph probability in (12).

Definition 5: A resolution graph where a node (vertex) is only connected tonodes that are the nearest

neighbors in any measurement dimension is calledfeasible. Further, a graph which does not fulfill this

is termedunfeasible.

In Fig. 2 all graphs are feasible since connections only exist to the nearest neighbors in the measurement

directions (being the horizontal and vertical axes). In Fig. 3, however, the graph is unfeasible since there

exists a link between nodes1 and4, which are not the nearest neighbors in thez1 dimension. That link
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1

2

3

1

1 1

2

2 2

3

3 3

Fig. 2. Illustration of the four graphs that lead to the resolution eventR, which describes the event that a group of three targets

is unresolved.

1 2 3 4

Fig. 3. Example of an unfeasible graph. In the graph, the targets 1 and 4 are connected even though they are not nearest

neighbors in either thez1 or thez2 dimension, which makes the graph unfeasible.

thus results in the contradictory event that targets1 and4 are unresolved, while the more closely spaced

targets2 and3 (in the same dimension) are resolved.

To calculate the probability for a given graph,G, we let Se be the set of targets that are pairwise

connected by an edge, andS0 be the set of targets that are not pairwise connected. Then,

Pr
{

G
∣
∣
∣xk

}

=

|Se|∏

i=1

Pu(Se(i))

|S0|∏

j=1

(

1− Pu(Se(j))
)

. (13)

Note thatS0 andSe are given byG, andPu is a function of the multi-target statexk. Further, we define

the product over an empty set as one.

The procedure of obtaining all feasible graphs and their respective probabilities at a given time index

is as follows:

1) Find all resolution events,R.

2) For each resolution event, generate all feasible resolution graphs,G.

3) Calculate the probability of each feasible graph using the resolution probabilities,Pu (see (12) for

an example).
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B. Graph likelihood

Apart from the probability of a graph, we would also like to describe the measurement model for a

given graphG, expressed asp
(

Zk

∣
∣
∣G,d,xk

)

. We call this model thegraph likelihood. The data association

vectord is included in the model since the distribution of the measurements depend on their origin. The

vector is defined as

d ,

[

d1 d2 . . . dMk

]T
, (14)

wheredj > 0 if measurementj is assigned to the single target or group targetdj , anddj = 0 if the

measurement is due to clutter.

Conditioned on the data association, it is known which of themeasurements inZk are target-generated

and which originate from clutter. That is, the vectorsZc
k (containingMk,c observations) andZt

k (containing

Mk,t observations) are known, and their distributions are givenby p
(

Zc
k

∣
∣
∣G,d,xk

)

andp
(

Zt
k

∣
∣
∣G,d,xk

)

.

From the assumption of spatially uniform clutter, the first density is

p
(

Zc
k

∣
∣
∣G,d,xk

)

=
1

∣
∣
∣FoV

∣
∣
∣

Mk,c
. (15)

Further, given the data association vectord and the graphG, the target-generated measurements are

distributed as

p
(

Zt
k

∣
∣
∣G,d,xk

)

=

Mk,t∏

i=1

p
(

z
t,(i)
k

∣
∣
∣d,G,xk

)

, (16)

wherep
(

z
t,(i)
k

∣
∣
∣d,G,xk

)

is thegroup measurement model(see Section IV-B for one alternative). In (16),

it is assumed that the measurements are independent, conditioned on their associations. Finally, the graph

likelihood is given by

p
(

Zk

∣
∣
∣G,d,xk

)

=
1

∣
∣
∣FoV

∣
∣
∣

Mk,c

Mk,t∏

i=1

p
(

z
t,(i)
k

∣
∣
∣d,G,xk

)

, (17)

whereMk,c andMk,t are known, givend.

IV. M ODELS FOR PAIR-WISE RESOLUTION PROBABILITIES AND GROUP MEASUREMENTS

In Section III, a novel model structure was presented for handling sensor resolution modeling for

an arbitrary, but known, number of targets. The model structure relies on a graph representation of a

resolution event, where each resolution graph describes the pairwise interactions between the targets,

under the resolution event.
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The fundamental unit of the graph probabilities is the resolution probabilityPu

(

x
(i)
k ,x

(j)
k

)

, which

states the probability that two targets with statesx
(i)
k andx(j)

k are unresolved. To complete the resolution

model we hence need a model for the probabilityPu. Here, we consider radar sensors, and use the

two-target resolution model by Koch and van Keuk [18], presented in Section IV-A. It should be noted

that the proposed resolution framework of this article is not restricted to radar sensors, and that the

described radar resolution model does not rely on the use of the two-target model in [18] as a basis for

the resolution probability, but that it is used due to its appealing properties.

The resolution modeling framework also includes the graph likelihood p
(

Zk

∣
∣
∣G,d,xk

)

. The general

expression for the likelihood is given in (17). To complete that likelihood, a group measurement model

is needed, which provides an explicit expression of the target measurement densityp
(

z
t,(i)
k

∣
∣
∣G,d,xk

)

,

conditioned on a graph, an association vector and a joint target state vector. In this article, we use a

simple group measurement model which is presented in Section IV-B. However, the proposed resolution

model does not hinge on that group measurement model, meaning that other group measurement models

are possible to use instead.

A. Two-target resolution model

For a certain pair of targetsx(i)
k , x(j)

k in a setS in (13), the probability that they are unresolved is,

according to [18],

Pu(x
(i)
k ,x

(j)
k ) = e−(∆ri,j)T (Ru,Nres)

−1∆ri,j , (18)

whereNres is the dimension of the measurement space (2 for range and azimuth),∆ri,j is a vector with

the distances between the predicted positions of targetsi andj in the measurement space, andRu,Nres is

given by

Ru,Nres =
1

(

2 ln(2)
)Nres/2

diag
{

α2
1, . . . , α

2
Nres

}

. (19)

The parametersα1 to αNres in (19) describe the resolution capability of the sensor in the respective

measurement dimensions. Note that the diagonal structure of Ru,Nres implies that the resolution in one

dimension is independent of the resolutions in the other dimensions.

The probabilityPu(x
(i)
k ,x

(j)
k ) can also be written as a scaled multivariate Gaussian

Pu(x
(i)
k ,x

(j)
k ) =

∣
∣
∣2πRu,Nres

∣
∣
∣

1/2
N
(

0;∆ri,j ,Ru,Nres

)

. (20)

Depending on the measurement model, the relation between∆ri,j and the statesx(i)
k andx(j)

k is either

linear or non-linear.
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B. Group measurement model

For an explicit expression of the graph likelihoodp
(

Zk

∣
∣
∣G,d,xk

)

, we need a group measurement

model which describes the properties of a merged measurement from a group. The assumed model states

that a group measurement can be described as a measurement ofthe center of gravity in the measurement

dimension. That is, for a group ofng targets (possibly one), whose state vectors are gathered inthe joint

vectorxg
k, their group measurementzt,(j)k is described by

z
t,(j)
k = h

ng

k

(

x
g
k

)

+ u
g,ng

k , (21)

wherehng

k

(

x
g
k

)

provides the arithmetic mean of the group targets in the measurement dimension. For

linear measurement models,

z
t,(j)
k = Hng

x
g
k + u

g,ng

k , (22)

where

Hng
=

1

ng
[H, · · · ,H]
︸ ︷︷ ︸

ng times

. (23)

The vectorug,ng

k ∼ N
(

0,R
ng

k

)

models the measurement spread from anng-target group, which depends

on the number of targets in the group and the measurement noise. Typically, the spread increases with

the number of targetsng, due to the radar target glint phenomenon.

Other group measurement models have been presented in the literature. A model for two targets, using

amplitude information, is given in [8], and is simplified in [9], while a measurement model for automotive

applications is proposed in [14].

V. CALCULATION OF THE POSTERIOR PROBABILITY DENSITY FUNCTION

In this section we describe the exact calculation of the posterior probability density function (pdf)

p
(

xk

∣
∣
∣Zk
)

under unknown resolution and data association events. We start by describing the general

calculation of the density, and then describe how the different parts of the general expression are obtained.

To express the posterior density, we marginalize over the feasible resolution graphs,G, and the set of

data association hypothesesD(G) for each graph. By also using Bayes’ rule and the Markov property,
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we obtain

p
(

xk

∣
∣
∣Z

k
)

=
∑

G

∑

d∈D(G)

p
(

xk,G,d
∣
∣
∣Z

k
)

=
∑

G

∑

d∈D(G)

p
(

Zk

∣
∣
∣G,d,xk

)

p
(

xk,G,d
∣
∣
∣Zk−1

)

p
(

Zk

∣
∣
∣Zk−1

) (24)

=
∑

G

Pr
{

G
∣
∣
∣xk

} ∑

d∈D(G)

Pr
{

d

∣
∣
∣G,xk

}p
(

Zk

∣
∣
∣G,d,xk

)

p
(

xk

∣
∣
∣Zk−1

)

p
(

Zk

∣
∣
∣Zk−1

) (25)

wherep
(

xk

∣
∣
∣Zk−1

)

is the predicted density of the target states,p
(

Zk

∣
∣
∣G,d,xk

)

is the graph likelihood

(see (17)),Pr
{

d

∣
∣
∣G,xk

}

is the probability of a data association hypothesisd, andPr
{

G
∣
∣
∣xk

}

is the

graph probability, given by the resolution model (see (13) for a general expression).

As seen in (25), the calculation of the posterior density includes ameasurement update, given by the

second sum, and aresolution model update, given by the total expression. In the following sections, these

calculations are described in more detail. Note that the discussion here does not make any assumptions

on the models. For calculation under Gaussian assumptions,see Section VI.

A. Calculation of the predicted density

Given the prior densityp
(

xk−1

∣
∣
∣Zk−1

)

, we calculate the predicted densityp
(

xk

∣
∣
∣Zk−1

)

by means of

marginalization over the previous statexk−1,

p
(

xk

∣
∣
∣Z

k−1
)

=

∫

p
(

xk,xk−1

∣
∣
∣Z

k−1
)

dxk−1 =

∫

p
(

xk

∣
∣
∣xk−1,Z

k−1
)

p
(

xk−1

∣
∣
∣Z

k−1
)

dxk−1 (26)

=

∫

p
(

xk

∣
∣
∣xk−1

)

p
(

xk−1

∣
∣
∣Z

k−1
)

dxk−1, (27)

where we in the final step assume that the prediction process has the Markov property. In the prediction

step, the prior density is propagated through the process model p
(

xk

∣
∣
∣xk−1

)

.

B. Measurement update

The measurement update includes the calculation of the dataassociation probabilities under a resolution

graph and the received data set, and the update of the predicted density function with the measurement

likelihood. We start with the data association hypotheses.

1) Data association probabilities:We here state an expression for the conditional data association

hypothesis probabilityPr
{

d

∣
∣
∣G,xk

}

in (25). Using the definition of the data association vectord in (14),

Pr
{

d

∣
∣
∣G,xk

}

= Pc(Mk,c)

(

Mk −Mk,t

)

!

Mk!

∏

{j:d(j)=0}

(

1− P j
D

) ∏

{j:d(j)>0}

P j
D, (28)
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where {j : d(j) = 0} is the set of clutter detections,{j : d(j) > 0} is the set of target-generated

measurements, andPc(Mk,c) is the probability of receivingMk,c clutter measurements, which is given by

the Poisson mass function with parameterλ·|FoV|. Further, the detection probabilityP j
D for measurement

index j is the group detection probability, which can be modeled to attain different values for different

number of targets in the group. Thus, we here assume that the detection probability only depends on the

number of targets in the group, and not on their states.

2) Density update:The second part of the measurement update is to refine the predicted density

p
(

xk

∣
∣
∣Zk−1

)

with information from the current measurements,Zk, under the graph,G and data association

d ∈ D(G). That is, we seek an expression for the productp
(

Zk

∣
∣
∣G,d,xk

)

p
(

xk

∣
∣
∣Zk−1

)

, ignoring the

scalingp
(

Zk

∣
∣
∣Zk−1

)

.

A general measurement model, under the assumption of uniformly distributed clutter in the measure-

ment space, is given by (17). Using that model, the density product is

p
(

Zk

∣
∣
∣G,d,xk

)

p
(

xk

∣
∣
∣Z

k−1
)

=
1

∣
∣
∣FoV

∣
∣
∣

Mk,c

Mk,t∏

i=1

p
(

z
t,(i)
k

∣
∣
∣G,d,xk

)

p
(

xk

∣
∣
∣Z

k−1
)

. (29)

The calculation of the measurement-updated pdf depends on the measurement modelp
(

Zk

∣
∣
∣G,d,xk

)

.

If it is linear and Gaussian, the first two moments of the updated density is calculated by the Kalman

filter [17], for each group. For non-linear models, the Extended Kalman filter (EKF) [15] or the Unscented

Kalman filter (UKF) [16] can be used. More details about explicit expressions under Gaussian assumptions

are found in Section VI. The calculation also depends on the predicted densityp
(

xk

∣
∣
∣Zk−1

)

.

C. Update with the resolution model

As seen in (25), the update with the measurement model gives an increase in the number of density

components, for each graph. In the update with the resolution model, each such component is multiplied

with the graph probability. For a certain graphG and data association hypothesisd we thus make the

update

Pr
{

G
∣
∣
∣xk

} 1
∣
∣
∣FoV

∣
∣
∣

Mk,c

Mk,t∏

i=1

p
(

z
t,(i)
k

∣
∣
∣G,d,xk

)

p
(

xk

∣
∣
∣Z

k−1
)

=
∏

Se

Pu(Se)
∏

S0

(

1− Pu(S0)
) 1
∣
∣
∣FoV

∣
∣
∣

Mk,c

Mk,t∏

i=1

p
(

z
t,(i)
k

∣
∣
∣G,d,xk

)

p
(

xk

∣
∣
∣Z

k−1
)

. (30)

Due to the1 − Pu factors, the resolution update further increases the number of density mixture

components. To get a clearer insight into the update calculations needed, we study the update in more



15

detail, focusing on

|Se|∏

i=1

Pu(Se(i))

|S0|∏

j=1

(

1− Pu(S0(j))
)

=

|Se|∏

i=1

Pu(Se(i))
(

1− Pu(S0(1)
)(

1− Pu(S0(2)
)

× · · · ×
(

1− Pu(S0(|S0|)
)

. (31)

In (31), |S0| is the cardinality of the setS0, i.e., the number of resolved pairs in the graphG. The(1−Pu)

factors can be split up, leading to

|Se|∏

i=1

Pu(Se(i))

|S0|∏

j=1

(

1− Pu(S0(j))
)

=

|Se|∏

i=1

Pu(Se(i))




1−

|S0|∑

j=1

Pu(S0(j)) +

|S0|∑

j=1

|S0|∑

l=1

l 6=j

Pu(S0(j))Pu(S0(l))

− . . .+

|S0|∑

j=1

|S0|∑

l=1

l 6=j

· · ·

|S0|∏

w=1

Pu(S0(w))




. (32)

As seen in (18), the resolution probabilitiesPu(S0(j)) depend on the state vectorxk. Hence, the

multiplication of the measurement-updated density with a resolution probability does not only scale

the density, but also affects its shape. The multiplicationcan thus be seen as a density update. Hence, for

each term in (32), we can perform an update of the measurement-updated density. Each update can either

be performed sequentially or in a single step, as described further in Section VI. The set of components

generated by a resolution update, for a graphG and data associaiton hypothesisd, are gathered in the

setU(G).

VI. GAUSSIAN MIXTURE APPROXIMATION

In this section, we seek to find a Gaussian-mixture expression of the posterior densityp
(

xk

∣
∣
∣Zk
)

. For

the sake of convenience, we assume that the prior densityp
(

xk−1

∣
∣
∣Zk−1

)

is a single Gaussian, i.e.,

p
(

xk−1

∣
∣
∣Z

k−1
)

= N
(

xk−1; x̂k−1|k−1,Pk−1|k−1

)

. (33)

The calculation will concern linear process and measurement models (cf. (3), (4), (21), and (22)) with

Gaussian noise. The generalization to general models can beperformed by linearization, similar to the

EKF, or by approximations with the Unscented Transform [16]. For the probability that two targets are

unresolved,Pu, we use the model in (20).
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A. Prediction step

The prediction is given by (cf. (27))

p
(

xk

∣
∣
∣Z

k−1
)

=

∫

p
(

xk

∣
∣
∣xk−1

)

p
(

xk−1

∣
∣
∣Z

k−1
)

dxk−1 = N
(

xk; x̂k|k−1,Pk|k−1

)

, (34)

where

x̂k|k−1 = Fk−1x̂k−1|k−1 (35)

Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 +Qk (36)

describe the predicted mean value and covariance matrix, respectively.

B. Measurement update

In the measurement update step, the predicted density,p
(

xk

∣
∣
∣Zk−1

)

, is updated with information from

the current measurement set,Zk. The update relies on the single-target and group-target measurement

models. A general expression for the measurement update is given by (29). By assuming that groups are

independent, the predicted density can be split into a product,

p
(

xk

∣
∣
∣Z

k−1
)

=

Ng∏

j=1

p
(

x
gj
k

∣
∣
∣Z

k−1
)

, (37)

wheregj is the group index andNg is the number of groups. Note that the group size can be equal to

one.

The measurement update step thus involves the calculation of

p
(

Zk

∣
∣
∣G,d,xk

)

p
(

xk

∣
∣
∣Z

k−1
)

=
1

∣
∣
∣FoV

∣
∣
∣

Mk,c

Mk,t∏

i=1

p
(

z
t,(i)
k

∣
∣
∣G,d,xk

) Ng∏

j=1

p
(

x
gj
k

∣
∣
∣Z

k−1
)

. (38)

Due to the independence assumption, the update can be performed group by group. We will describe the

expressions for one such update,

p
(

z
t,(i)
k

∣
∣
∣G,d,xk

)

p
(

x
gj
k

∣
∣
∣Z

k−1
)

,

of group gj with its associated measurementz
t,(i)
k . Using the group measurement model in (22), the

update is given by

p
(

z
t,(i)
k

∣
∣
∣G,d,xk

)

p
(

x
gj
k

∣
∣
∣Z

k−1
)

= N
(

z
t,(i)
k ;Hngj

x
gj
k ,R

ngj

k

)

N
(

x
gj
k ; x̂

gj
k|k−1,P

gj
k|k−1

)

. (39)

By using the following property of a Gaussian product

N
(

x; x̂,P
)

N
(

z;Hx,R
)

= N
(

x;µ,Σ
)

N
(

z; ẑ,S
)

, (40)
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where

ẑ = Hx̂ (41)

S = HPHT +R (42)

µ = x̂+K
(

z−Hx̂
)

(43)

Σ =
(

I−KH
)

P (44)

K = PHTS−1, (45)

we obtain

N
(

z
t,(i)
k ;Hngj

x
gj
k ,R

ngj

k

)

N
(

x
gj
k ; x̂

gj
k|k−1,P

gj
k|k−1

)

= N
(

z
t,(i)
k ; ẑ

gj
k ,Sgj

)

N
(

x
gj
k ; x̂

gj
k|k,P

gj
k|k

)

, (46)

where the mean values and covariance matrices are given by identification from (40)–(45).

The update can also be performed in a single step. For that we utilize the multi-target measurement

model in (8). Thereby,

p
(

Zk

∣
∣
∣G,d,xk

)

p
(

xk

∣
∣
∣Z

k−1
)

= N
(

Zk; H̆xk,R⊗ IMk,t×Mk,t

)

N
(

xk; x̂k|k−1,Pk|k−1

)

(47)

= N
(

Zk; H̆x̂k|k−1,S
G,d
)

N
(

xk; x̂k|k,Pk|k

)

, (48)

where

H̆ = C
G,d
k ⊗ INz×Nz

H̃ (49)

describes the relation between target states and the joint measurement vector, in whichCG,d
k represents

the current resolution and data association events. By identification from (40)–(45),

Ẑ
G,d
k = H̆x̂k|k−1 (50)

SG,d = H̆Pk|k−1H̆
T (51)

KG,d = Pk|k−1H̆
T (SG,d)−1 (52)

x̂k|k = x̂k|k−1 +KG,d
(

Zk − H̆x̂k|k−1

)

. (53)

C. Sequential update with the resolution model

As seen in (30) and (32), the resolution model update involves the calculation of the product between

a measurement-updated density and a sum of products. The update can be performed summand by

summand, producing a density mixture. For each summand, theupdated density is multiplied with a
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product ofPu factors. This calculation can either be carried out sequentially, factor by factor, or in a

single step. Here we describe the sequential update.

Let us start with a singlePu factor,Pu

(

x
(i)
k ,x

(j)
k

)

. From (48), the updated density is described by a

product of two Gaussian densities, where only one depends onxk. The resolution model update is thus

Pu

(

x
(i)
k ,x

(j)
k

)

N
(

xk; x̂k|k,Pk|k

)

=
∣
∣
∣2πRu,Nres

∣
∣
∣

1/2
N
(

0;∆ri,j ,Ru,Nres

)

N
(

xk; x̂k|k,Pk|k

)

, (54)

where

∆ri,j = H
(

x
(i)
k − x

(j)
k

)

. (55)

To describe the product of Gaussians, we would like to express the resolution model Gaussian as a

function of the joint target state vectorXk. To do so, we use the Kronecker delta

δk,i ,







1 if k = i

0 otherwise,

(56)

the 1×N vector

π(i,j) ,

[

δ1,i − δ1,j , . . . , δN,i − δN,j

]

(57)

and theNz × (N ·Nz) matrix

Π(i,j) = π(i,j) ⊗ INz
. (58)

Then,

∆ri,j = Π(i,j)H̃xk, (59)

whereH̃ is defined in (9).

The update with onePu factor is hence

Pu

(

x
(i)
k ,x

(j)
k

)

N
(

xk; x̂k|k,Pk|k

)

=
∣
∣
∣2πRu,Nres

∣
∣
∣

1/2
N
(

0;Π(i,j)H̃xk,Ru,Nres

)

N
(

xk; x̂k|k,Pk|k

)

(60)

when the measurement model is linear. This can be re-writtenas

N
(

0;Π(i,j)H̃xk,Ru,Nres

)

N
(

xk; x̂k|k,Pk|k

)

= N
(

0;Π(i,j)H̃x̂k|k,S
i,j
)

N
(

xk; x̂
i,j
k|k,P

i,j
k|k

)

(61)

where x̂i,j
k|k andP

i,j
k|k describe the expected value and the covariance matrix of thetarget states given

measurement update under hypothesisd, for graphG, and resolution model update for the unresolved

target pair(i, j). The exact form ofSi,j , x̂i,j
k|k andPi,j

k|k are given by identification from (40)–(45). As seen
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in the update equation, the ’negative information’ from a missed detection due to resolution limitations

is hence incorporated in the tracking framework as a measured ’0’ of the separation of the target pair.

When the summands in (32) involves severalPu factors, similar calculations as in (60) are performed

sequentially, factor by factor. That is, if we have a second factorPu

(

x
(l)
k ,x

(m)
k

)

, we perform a similar

calculation of

Pu

(

x
(l)
k ,x

(m)
k

)

N
(

xk; x̂
i,j
k|k,P

i,j
k|k

)

,

and so on. In general (cf. (32)),

|S0|∏

w=1

Pu(S0(w)N
(

xk; x̂k|k,Pk|k

)

=
∣
∣
∣2πRu,Nres

∣
∣
∣

|S0|/2
|S0|∏

w=1

N
(

0;Π(w)H̃x̂w−1
k|k ,Sw

k|k

)

N
(

xk; x̂
S0

k|k,P
S0

k|k

)

, (62)

where x̂w−1 is the state estimate after the update with resolution pairw − 1. Further,Sw depends on

the previous covariancePw−1
k|k (cf. (42)), where we definêx0

k|k , x̂k|k, and wherêxS0

k|k andPS0

k|k are the

state estimate and covariance matrix after the sequence of updates, for the setS0.

D. One-step update with the resolution model

Instead of making a sequential resolution update, as in the previous section, we can make a single

update for each summand in (32). To do so, we first note that theproduct ofPu factors (cf. (32)) can

be written as
|S0|∏

w=1

Pu(S0(w)) = e−(∆ri,j)T (Ru,Nres)
−1∆ri,j =

|S0|∏

w=1

e−(Π(i,j)H̃xk)T (Ru,Nres)
−1Π(i,j)H̃xk (63)

= e−
1

2

∑|S0|
w=1(Π

(i,j)H̃xk)T (Ru,Nres)
−1Π(i,j)H̃xk (64)

= e
− 1

2
xT

k

{
∑|S0|

w=1(Π
(i,j)H̃)T (Ru,Nres)

−1Π(i,j)H̃

}

xk

= e−
1

2
xT

k R̃
−1
u xk . (65)

By using the Kronecker product,

R̃−1
u ,

|S0|∑

w=1

(Π(i,j)H̃)T (Ru,Nres)
−1Π(i,j)H̃ =

|S0|∑

w=1

H̃T

{
(

π(i,j))Tπ(i,j)
)

⊗R−1
u,Nres

}

H̃. (66)

The matricesH̃ andRu,Nres do not depend oni and j and can hence be moved out of the summation.

So, by defining

G ,

|S0|∑

w=1

(

π(i,j))Tπ(i,j)
)

, (67)
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we get

R̃−1
u = H̃T

(

G⊗R−1
u,Nres

)

H̃. (68)

SinceG is positive semi-definite, it has a matrix square root,D, and we can thus write

G = DTD. (69)

Then, repeatedly using the Kronecker product rule [7]
(

A⊗B

)(

C⊗D

)

=
(

AC

)

⊗
(

BD

)

, (70)

we have

G⊗R−1
u,Nres

=
(

DTD
)

⊗R−1
u,Nres

=
(

DT ⊗R−1
u,Nres

)(

D⊗ INresr

)

(71)

=
(

DT ⊗ INres

)(

IN ⊗R−1
u,Nres

)(

D⊗ INres

)

. (72)

Since

DT ⊗ INres = DT ⊗ ITNres
=
(

D⊗ INres

)T
, (73)

the matrixR̃−1
u can be written as

R̃−1
u = H̃T

(

D⊗ INres

)T(

IN ⊗R−1
u,Nres

)(

D⊗ INres

)

H̃. (74)

So, through

xT
k R̃

−1
u xk = xT

k H̃
T
(

D⊗ INres

)T
×
(

IN ⊗R−1
u,Nres

)(

D⊗ INres

)

H̃xk (75)

=
(

(D⊗ INres)H̃xk

)T(

IN ⊗R−1
u,Nres

)(

(D⊗ INres)H̃x

)

, (76)

the probability in (65) is described. By further using that
(

IN ⊗R−1
u,Nres

)

=
(

IN ⊗Ru,Nres

)−1
(77)

the product ofPu factors can be written as a scaled Gaussian density
|S0|∏

w=1

Pu(S0(w) =
∣
∣
∣2πIN ⊗Ru,Nres

∣
∣
∣N
(

0; (D ⊗ INres)H̃xk, IN ⊗Ru,Nres

)

. (78)

Using the description in (78), the update of the measurement-updated density with one of the summation

terms in (32) can be performed in a single Gaussian-product step (the updated density, is for example

given by (48))

N
(

0; (D⊗ INres)H̃xk, IN ⊗Ru,Nres

)

N
(

xk; x̂k|k,Pk|k

)

= N
(

0; (D⊗ INres)H̃x̂k|k,S
u
)

N
(

xk; x̂
u
k|k,P

u
k|k

)

, (79)
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where

Su =
(

(D⊗ INres)H̃
)T

Pk|k

(

(D⊗ INres)H̃
)

+ IN ⊗Ru,Nres (80)

Ku = Pk|k

(

(D⊗ INres)H̃
)T

(Su)−1 (81)

x̂k|k = xk|k +Ku

(

0−
(

D⊗ INres

)

H̃x̂k|k

)

(82)

Pu
k|k =

(

I−Ku
(

D⊗ INres

)

H̃

)

Pk|k. (83)

The one-step update described here is performed for each term in the sums over
∣
∣
∣S0

∣
∣
∣ in (32). The

resolution model update is then finalized by the update with the product ofPu(Se) factors, which can

also be performed in a single calculation for each term.

E. Summary

The update with measurement and resolution models can be performed in four different ways:

1) Sequential measurement and resolution updates.

2) Sequential measurement update and one-step resolution update.

3) One-step measurement update and sequential resolution update.

4) One-step measurement and resolution updates.

The advantage with the one-step updates is that they keep theform of the Gaussian mixture throughout the

updates, since no assumption about independence between groups is necessary. The drawback, however, is

that the calculations require high-dimensional matrix operations. Then, the sequential update is a further

approximation which makes it faster but leads to the effect that the order matters and that the graph

feasibility might not be preserved.

VII. JOINT PROBABILISTIC DATA ASSOCIATION FILTERING USING THE RESOLUTION MODEL

In Section VI, the calculation of the posterior density was described under Gaussian assumptions. If the

prior density is Gaussian, the posterior density is a Gaussian mixture, where the number of components

depend on

• the number of resolution graphs,G,

• the number of open links in the graphs, yielding
(

1 − Pu

)

factors which doubles the number of

components, and

• the number of data association hypotheses
∣
∣
∣D(G)

∣
∣
∣ for each graph.
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Since processing of the full Gaussian mixture is infeasible, due to memory and processing limitations,

approximations are necessary. For the data association problem, a common algorithm is the Joint Proba-

bilistic Data Association (JPDA) filter [13]. The approach of the filter is to, at each time step, approximate

a Gaussian mixture with a single Gaussian, using moment matching. In [5], the JPDA algorithm was

extended with a resolution model for the two-target case. Here, we describe extensions of the JPDA

algorithm under resolution limitations for arbitrary target numbers. For the extension, two alternatives

are proposed: either to calculate the full Gaussian mixture, and to approximate that with a single Gaussian,

or to perform a two-step approximation, which is less computationally intensive. The two approaches are

described in the following two sections.

A. JPDA approximation of the full Gaussian mixture

The most accurate moment-matching approximation is given by calculating the full Gaussian mixture

in (87), and then approximate that with a single Gaussian. A pseudo-code description of such a procedure

is found in Table I, and in the following we discuss the different steps in more detail. The algorithmic

description starts with the predicted densityp
(

xk

∣
∣
∣Zk−1

)

.

Step I: Generate all feasible graphs:The first step is to generate all feasible graphs,G, which is

done by first forming the set of possible resolution events,R (cf., for example, Example 1), and then

generating the feasible resolution graphs for each event.

Step II: Data association hypotheses formulation:For each generated resolution graph, the set of

data association hypotheses,D(G) is formulated. The set of data association hypotheses includes all

combinations of group target-to-measurement assignments3, including missed detections.

Step III: Measurement and resolution model update:The third step is divided into three sub-steps. All

operations in step III are performed for each data association hypothesis formulated in Step II.

In Step III-a), the data association hypothesis probability is calculated according to (28).

Step III-b) is to update the predicted density functionN
(

xk; x̂k|k,Pk|k

)

with the measurement

likelihood under the current resolution and data association hypotheses. The update can either be per-

formed sequentially, as described in (38) and (39), or in a single calculation, given by (48). After the

measurement update, we obtain the scaled Gaussian densitycG,dN
(

xk; x̂
G,d
k|k

,PG,d
k|k

)

with proportionality

3Note that several graphs lead to the same data association hypothesis. Thus, in the measurement update, only a single update

is needed for those graphs. The resolution update with the graph probabilities, however, must be performed for each graph.
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TABLE I

COMPLETEGAUSSIAN MIXTURE JPDAFILTER WITH RESOLUTION MODEL

I: Generate all feasible graphs,G.

II : For each graph, formulate all data association hypotheses,D(G).

III: For each data association hypothesis,d ∈ D(G):

III-a) CalculatePr
{

d

∣
∣
∣G,xk

}

according to (28).

III-b) Perform measurement update according to (38) and (39), or by (48). This yields a scaled Gaussian

cG,dN
(

xk; x̂
G,d
k|k ,P

G,d
k|k

)

with weight given by (84).

III-c) Update with resolution model according to (30), (32), and either (60)–(62), or by (78) and (79).

The result is a sum of scaled Gaussians
∑

u∈U(G) c
G,u,dN

(

xk; x̂
G,u,d
k|k ,PG,u,d

)

with weights given

by (85) .

IV: Approximate the Gaussian mixture in (87) using moment matching, according to (86), and (88)–(90).

weight (using (48))

cG,d = Pr
{

d

∣
∣
∣G,xk

}

N
(

Zk; H̆x̂k|k−1,S
G,d
)

. (84)

In Step III-c), the resolution update is performed for each data association hypothesis. The general

update is described in (30). As seen in (32), the resolution update results in a sum of products. For each

summation term, the calculation can either be performed sequentially, as given by (60), (61) and (62),

or in a single step, described by (78) and (79). After the update, we obtain a sum of scaled Gaussians
∑

u∈U(G) c
G,u,dN

(

xk; x̂
G,u,d
k|k ,PG,u,d

)

, where the weight is given by

cG,u,d = Pr
{

d

∣
∣
∣G,xk

}

N
(

Zk; H̆x̂k|k−1,S
G,d
)∣
∣
∣2πIN ⊗Ru,Nres

∣
∣
∣N
(

0; (Du ⊗ INres)H̃x̂k|k,S
u
)

. (85)

In (85), Du represent the current resolution event (cf. (67) and (69)).

Step IV: Moment matching:The final step of the full Gaussian mixture JPDA algorithm with resolution

modeling is the moment matching approximation. First, the weight components are normalized,

c̄G,u,d =
cG,u,d

∑

G

∑

u∈U(G)

∑

d∈D(G) c
G,u,d

. (86)

If the prior density is Gaussian, the end result after resolution and measurement updates is a density

mixture of the form

p
(

xk

∣
∣
∣Z

k
)

=
∑

G

∑

u∈U(G)

∑

d∈D(G)

c̄G,u,dN
(

xk; x̂
G,u,d
k|k ,PG,u,d

k|k

)

. (87)
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The final step of the first version of JPDA algorithm is to approximate this Gaussian mixture density

with a single Gaussian. The best way of making that approximation, in the Kullback-Leibler sense, is to

perform second-order moment matching. We thus make the approximation

p
(

xk

∣
∣
∣Z

k
)

≈ N
(

xk; x̂
A1

k|k,P
A1

k|k

)

, (88)

where

x̂A1

k|k
=
∑

G

∑

u∈U(G)

∑

d∈D(G)

c̄G,u,dx̂G,u,d
k|k

(89)

PA1

k|k =
∑

G

∑

u∈U(G)

∑

d∈D(G)

c̄G,u,d

{

P
G,u,d
k|k +

(

x̂
G,u,d
k|k − x̂A1

k|k

)(

x̂
G,u,d
k|k − x̂A1

k|k

)T
}

. (90)

B. Two-step JPDA approximation

When the number of targets is large and the clutter level high, the number of Gaussian components to

calculate in each iteration can be large. Then, a less computationally demanding method is advantageous.

We here present such a method, where instead of approximating the full Gaussian mixture, we perform

a two-step procedure including two Gaussian approximations.

In Table II, the two-step JPDA filter is described. In the following, we describe some of the steps in

more detail. Since Step I to III-b) are the same as for the algorithm in Table I, we start with Step IV.

Step IV: Moment matching over data association hypotheses:After the measurement update step for

graphG and data association hypothesisd, we obtain a scaled GaussiancG,dN
(

xk; x̂
G,d
k|k ,P

G,d
k|k

)

with

weight given by (84). After having performed measurement updates for all data association hypotheses,

we have a Gaussian mixture. Step IV of the two-step JPDA filteris to approximate this Gaussian mixture

with a single Gaussian, using moment matching4, i.e.,
∑

d∈D(G)

c̄G,dN
(

xk; x̂
G,d
k|k ,P

G,d
k|k

)

≈ N
(

xk; x̂
G
k|k,P

G
k|k

)

, (91)

where

c̄G,d =
cG,d

∑

d∈D(G) c
G,d

(92)

x̂G
k|k

=
∑

d∈D(G)

c̄G,dx̂G,d
k|k

(93)

P̂G
k|k =

∑

d∈D(G)

c̄G,d

{

P̂G
k|k +

(

x̂
G,d
k|k − x̂G

k|k

)(

x̂
G,d
k|k − x̂G

k|k

)T
}

. (94)

4In fact, this the standard JPDA approximation performed foreach resolution graph.
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TABLE II

TWO-STEPJPDA FILTER WITH RESOLUTION MODEL

I: Generate all feasible graphs,G.

II : For each graph, formulate all data association hypotheses,D(G)

III: For each data association hypothesis,d ∈ D(G)

III-a) CalculatePr
{

d

∣
∣
∣G,xk

}

according to (28)

III-b) Update the predicted density with information from measurements, according to (38) and (39), or

by (48). This yields a scaled GaussiancG,dN
(

xk; x̂
G,d
k|k ,P

G,d
k|k

)

with weight given by (84).

IV: Perform moment matching over the data association hypotheses, as described in (91)–(94). This gives a

single GaussianN
(

xk; x̂
G
k|k,P

G
k|k

)

.

V: For each graph, perform an update with the resolution model. This yields a Gaussian mixture,
∑

u∈U(G)

∑

d∈D(G) c
G,uN

(

xk; x̂
G,u
k|k ,P

G,u
k|k

)

, with weights given by (95), and mean value and covariance

matrix by (93) and (94).

VI: Approximate the Gaussian mixture in (97) with a single Gaussian, as described in (98)–(100).

Step V: resolution update for each graph:After the moment matching in Step IV, we have a single

Gaussian for each graph. In Step V, the resolution model update is performed under each graph. This

gives a Gaussian mixture

∑

u∈U(G)

∑

d∈D(G)

c̄G,uN
(

xk; x̂
G,u
k|k ,P

V ,u
k|k

)

,

with weights

c̄G,u =
cG,u

∑

u∈U(G)

∑

d∈D(G) c
G,u

, (95)

cG,u =
∣
∣
∣2πRu,Nres

∣
∣
∣N
(

0; (Du ⊗ INres)H̃x̂
G,u
k|k ,S

G,u
)

, (96)

whereSG,u is given by (80), insertingPG
k|k instead ofPk|k.

Step VI: Gaussian approximation of posterior density:For each graph,G, Step V provides a Gaussian

mixture. The posterior density is hence approximated by

p
(

xk

∣
∣
∣Z

k
)

≈
∑

G

∑

u∈U(G)

c̄G,uN
(

xk; x̂
G,u
k|k

,PG,u
k|k

)

. (97)
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The final step of the algorithm is to make a second moment matching, to approximate the posterior

density as a single Gaussian, according to

p
(

xk

∣
∣
∣Z

k
)

≈ N
(

xk; x̂
A2

k|k,P
A2

k|k

)

, (98)

where

x̂A2

k|k =
∑

G

∑

u∈U(G)

c̄G,ux̂G,u
k|k (99)

PA2

k|k =
∑

G

∑

u∈U(G)

c̄G,u

{

P
G,u
k|k +

(

x̂
G,u
k|k − x̂A2

k|k

)(

x̂
G,u
k|k − x̂A2

k|k

)T
}

. (100)

VIII. S IMULATIONS

In this section, we evaluate the JPDA filter with the proposedresolution model, and compare the results

to those of the JPDA filter without a resolution model. The considered tracking scenario includes three

targets whose trajectories are shown in Fig. 4. The targets move with a constant speed of5 m/s, and

their separation is60 m in the middle part of the scenario.
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Fig. 4. Trajectories for the three-target scenario. The separation between the targets is60 m in the middle, and the targets

move from left to right.

As state vector, we usex =
[

x y ẋ ẏ
]

. For prediction of future states in the filters, a (nearly)

constant velocity model is used, with system matrix (cf. (4)) F = diag{F̃, F̃, F̃}, where

F̃ =






I2×2 T · I2×2

02×2 I2×2




 , (101)
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and whereT is the time between measurements. Further, the process noise covariance matrix isQ =

diag{Q̃, Q̃, Q̃}, where

Q̃ = q0






T 3/3 · I2×2 T 2/2 · I2×2

T 2/2 · I2×2 T · I2×2




 , (102)

andq0 = 0.2, which is the parameter value that gives the best average performance for this scenario.

At regular time intervals,T , of one second, a sensor, which is located at(−10000,−10000), provides

measurements of the rangeR and azimuth angleϕ to the targets. The accuracy of the measurements

depends on whether the targets are resolved or not, as discussed in Section IV. More specifically, the

range errors are assumed to be constant as the number of targets in a group increases, while the azimuth

errors are assumed to increase due to radar target glint. Thetarget-number dependent measurement noise

covariance matrix is thus

Rng = diag{(σR)
2, (σng

ϕ )2}, (103)

whereσng

ϕ = ng ·0.1π/180. Further, the resolution capability of the radar sensor is given by the parameters

(cf. (19)) αR equal to60 m andαϕ equal to0.3π/180. With these parameters, averaged over100 trials

for the 200 time steps of the scenario, all three targets are resolved79.7 times (time steps), two targets

are unresolved70.7 times and all three targets form a group target49.6 times.

The detection probabilityPD of the sensor is assumed equal for all group sizes. In the evaluations, we

test detection probabilities of0.999 and0.95. On top of target-generated measurements, the sensor also

reports spurious measurements due to clutter. We evaluate the results for two different clutter levels: low

clutter, with 1 false measurement per scan on average (and rarely more than4), and moderate clutter,

with 4 false measurements per scan on average (and rarely more than8).

In Fig. 5, examples of trajectory estimates from the JPDA filter with and without the resolution model

are shown, for the case of no clutter and a detection probability of 0.999. By comparing the outputs,

it is seen that the filter which takes resolution limitationsinto account produces more stable, and well-

separated, tracks.

For single-target tracking, or tracking of widely separated targets, performance evaluation is straight-

forward. However, for tracking of densely-spaced targets,fair performance evaluation is a major concern,

as noted already in [12]. There, a two-stage evaluation strategy was proposed, where first an optimal

assignment of state estimates to ground truth is performed,and second a measure of choice (for example

root mean squared error (RMSE)) is applied on that assignment. Recently, the Mean Optimal Subpattern

Assignment (MOSPA) measure [21] was introduced, and evaluations based on that measure are increasing
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Fig. 5. Example of the output of the standard JPDA filter (left), and the full Gaussian mixture JPDA filter with a resolution

model (right), for the case of no clutter and a detection probability of 0.999, but with resolution limitations expressed by

αR = 60 m andαϕ = 0.3◦. The dots represent the sensor measurements converted to Cartesian coordinates.

in number. The measure is a natural extension of the RMSE for multiple targets, and for a known number

of targets it is equivalent to the procedure proposed in [12]. We have therefore used MOSPA in the

evaluations of this article. As basis measure, we use the Euclidean distance. We further use the first-order

MOSPA measure (p = 1, see [21]), which means that the unit of the MOSPA distance ismeters. As

cut-off value we usec = 300 m.

For the performance evaluations, we first consider the case of a detection probability of0.999. To the

left in Fig. 6, the MOSPA performance over100 Monte Carlo runs is presented for the low-clutter case for

the JPDA filters with and without a resolution model. As a reference, the performance of the JPDA filter

when the sensor has perfect resolution is also shown. As seen, when the targets are closely spaced and

the resolution limitations have effect, the JPDA filter without resolution model performs worse than the

JPDA filter with a resolution model, which provides evidencethat the resolution model indeed accounts

for a better description of the data.

To the right in Fig. 6, the MOSPA results for the moderate clutter level are shown. There, it is seen that

the JPDA filter performs significantly worse than with the lower clutter level, whereas the performance of

the JPDA filter with a resolution model, performs almost as well. The reason for the significantly worse

performance of the JPDA filter is that a large number of track losses occur (where tracks are attracted to

clutter detections, and move away from the true trajectory). For the JPDA filter with a resolution model,

on the other hand, the attraction of the clutter detections is weaker due to the filter considering the events

that the targets are not resolved.
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Fig. 6. MOSPA performance for the JPDA filters averaged over100 Monte-Carlo runs for a detection probability of0.999.

Left: one clutter measurement on average, right: four clutter measurements on average. Green: without resolution model, blue:

with a resolution model, and red: with perfect resolution.

The final evaluation regards a lower detection probability of 0.95, and a moderate clutter level. The

results for this setup are shown in Fig. 7. By comparing this figure with the results shown to the right

in Fig. 6, it is seen that the performance of the JPDA filter is somewhat better with the lower detection

probability than with the higher one. The reason for this is that the weights of the data association

hypotheses under which clutter detections are assigned to the tracks are lower when the detection

probability is lower, and we thus obtain more stable tracks.Still, the performance is significantly improved

by using the proposed sensor resolution model.

IX. CONCLUSION

In this article, we consider the modeling of limited sensor resolution for an arbitrary, but known,

number of targets. The main contribution is a framework for handling resolution limitations, which

can be easily incorporated into traditional Bayesian tracking filters. The framework relies on a graph

description of a resolution event, and on modeling the resolution probability as independent between target

pairs. To complete the framework and to attain a multitargetresolution model, a model for the resolution

probability for two targets and a group measurement model for an arbitrary number of targets are needed.

By suggesting two such models, the exact calculation of the posterior probability density function under

both data association and resolution conflicts is described. Under linear and Gaussian assumptions, the

posterior density is a Gaussian mixture, and the componentsof that mixture are also derived in the

paper. Further, two alternative approximations of the density mixture by a single Gaussian are proposed,
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Fig. 7. MOSPA performance for the JPDA filters averaged over100 Monte-Carlo runs for a detection probability of0.95 and

four clutter measurements on average. Green: without resolution model, blue: with a resolution model, and red: with perfect

resolution.

which both can be considered as extensions of the Joint Probabilistic Data Association (JPDA) filter

taking resolution problems into account. Finally, the JPDAfilters with and without a resolution model

are evaluated on a three-target tracking scenario with simulated radar data. The results show significantly

improved tracking performance of the resolution filters forall considered setups.
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