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Multitarget Sensor Resolution Model and Joint

Probabilistic Data Association

Daniel Svensson, Martin Ulmke, and Lars Hammarstrand

Abstract

In the design of target tracking algorithms, the aspect aofsse resolution is rarely considered.
Instead, it is usually assumed that all targets are alwag@lved, and that the only uncertainties in the
data association are which targets that are detected, aiuth wieasurement each detected target gave
rise to. However, in situations where the targets are ojasgdced in relation to the sensor resolution, this
assumption is not valid, and may lead to degraded trackinfppeance due to an incorrect description
of the data. In this paper, we present a framework for hagdiemsor resolution effects for an arbitrary,
but known, number of targets. We propose a complete mgétasensor resolution model that can be
incorporated into traditional Bayesian tracking filtersrtRer, the exact form of the posterior probability
density function is derived, and two alternative ways ofragpmating that exact posterior density with
a Joint Probabilistic Data Association (JPDA) filter are pwesed. Evaluations of the resulting filters
on simulated radar data show significantly increased trgckierformance compared to the JPDA filter

without a resolution model.

Index Terms

Target tracking, state estimation, Bayes methods, senedels) radar detection, radar resolution.

D. Svensson is with the Department of Signals and Systemalnt&ins University of Technology, SE-412 96 Gothenburg,
Sweden, E-mail: daniel.svensson@chalmers.se, and vetirBhic Defence Systems, Saab AB, SE-412 89 Gothenburgd&w
E-mail: daniel.x.svensson@saabgroup.com.

M. Ulmke is with the Department of Sensor Data and Informatiusion, Fraunhofer-FKIE, Wachtberg, Germany, E-mail:
martin.ulmke @fkie.fraunhofer.de.

L. Hammarstrand (previously Danielsson) is with the Daparit of Signals and Systems, Chalmers University of Teduyol
SE-412 96 Gothenburg, Sweden, E-mail: lars.hammarstrahd(@ers.se.



. INTRODUCTION

Traditionally the aspect of sensor resolution has not begrsidered in the design of target tracking
algorithms [2]. Instead, it has been assumed that the tamet always resolved, and that the data
association problem only regards the assignment of memsumts to single targets. In many situations,
that assumption is reasonable, but there are importans egsen the resolution limitations of the sensor
cannot be ignored [10]. Such cases arise when targets amgotarity closely spaced in relation to
the resolution of the sensor, e.g., when tracking aircrafiormation, or in convoy tracking for ground
surveillance. For such applications, ignoring the limitedolution of the sensors may lead to an incorrect
interpretation of the data, which results in degraded parémce, in particular due to premature deletion
of tracks.

To account for resolution in a tracking algorithm, the regoh phenomena must be modeled. One
way of modeling them is to express the capability of the setsoesolve individual targets in a group
by a resolution probability, and to have a model for the méngeasurement that arises when the targets
are unresolved. Two approaches have been proposed indtadite which follow this line of modeling.
In [8], a grid-based resolution model for two targets is m®gd, where the resolution probability is
zero if the targets are within the same resolution cell, amel otherwise. The integration into the Joint
Probabilistic Data Association (JPDA) filter [13] is alsosdgbed, and in [19] the model is further
extended to a Multiple Hypothesis Tracking (MHT) framewdik, [2], [11], [20]. Even though a fixed
grid often is a good approximation of the signal processingc@dure, the capability of a sensor to
resolve targets generally depends on their positionsiveléd the sensor. Hence, in [18], a simple, but
qualitatively correct, resolution model that take relatpositions into account is proposed. Further, its
incorporation into an MHT filter is also presented. In [5]etmodel in [18] is combined with the so-
called descriptor system approach, which results in réisolumodel extensions of the Joint Interacting
Multiple Model Coupled Probabilistic Data AssociationMMCPDA) filter, and its track-coalescence-
avoiding version, the JIMMCPDA* filter [3]. An exact Bayesidilter for two targets is also developed.
Further, in [6], the hybrid sequential importance resantplarticle filter [4] is extended with the above
two-target resolution model. However, just as the resofutnodel in [8], the model in [18], and the
filters based upon it, are restricted to only consider twgdts. An alternative approach to the tracking of
closely spaced objects is to treat them as a group. For anieweon group target tracking, see [28]. A
benchmark scenario for tracking including (two) closelpsgd targets is given in [27], and a solution to

it based on angle estimation of two unresolved targets [@&h(extension in [26]) is presented in [23].



In this article, we consider the modeling of limited senssalution for an arbitrary, but known, number
of targets. It is hence the first approach to consider reisolygroblems for more than two closely-spaced
targets. The main contribution of the article is a framewfwk handling resolution limitations, which
can be easily incorporated into a Bayesian tracking setlihg framework relies on a graph description
of a resolution event, and on modeling the resolution priityabs independent between target pairs. To
complete the framework and to attain a multitarget resofuthodel, a model for the resolution probability
for two targets and a group measurement model for an anpitianber of targets are needed; for example,
the models in [8] or [18]. Preliminary results have previguseen published in [24], [25].

The outline of the article as follows. In Section Il, the plerh formulation is stated. The proposal of
a framework for sensor resolution modeling is given in Seclil, together with the graph description
of a resolution event. To complete the framework, specifiasneement and resolution models for radar
sensors are suggested in Section IV. In Section V, the exdctlation of the posterior pdf under both
resolution and data association conflicts is describedgvehGaussian-mixture approximation is presented
in Section VI. In Section VII, two alternative approachesuforporating the resolution model into the
JPDA filter are presented, and in Section VIII those appreaare evaluated on simulated radar data. In
the evaluation, the tracking performance is compared tioaththe JPDA filter without a resolution model.
The results show improved performance for all consideréuapse Finally, in Section IX, conclusions are

drawn.

[I. PROBLEM FORMULATION

The general problem considered in this article is trackihg known number of targets under resolution
limitations and unknown data associations. To this probieene are several subproblems. First, to model
the probability that a group of targets is unresolved; sdcom model the corresponding merged group
measurement; and third, to find how these models can be io@igul into a general tracking framework.

The kinematic states of th¥ targets are represented by a joint state vector

w= () () ()] w
(4)

wherex,’ is the state of target At each time instant;;, a sensor produces measuremefitswhich
contain information regarding the kinematic statgs The collection of measurements from discrete time

index 1 to indexk is represented by

7k — {zl,ZQ,...,zk}. @)



The goal of a tracking filter is to recursively calculate thesterior densityp(xk‘z’f), from which
optimal state estimates can be derived. To be able to c#dctifee density, models for the sensor
measurements and for the motion of the targets are neceésiifionally, when limited sensor resolution
is considered, a model that describes that phenomenonasakxded. In the following, the considered
process and measurement models are presented, while esdartion models are proposed and discussed

in Sections Il and IV.

A. Process model

The process model, often called the motion model, desctieslynamics of the targets. Given the
statex,_; at time indexk — 1, the model describes the evolution of the state up to timexrid For

the general case,

Xp = fro—1(Xp—1, Vi—1), 3)

where f._, is the system function describing the transition from tilne 1 to time k, andv,_; is a
process noise that describes the uncertainties in theghi@di For Gauss-Markov systems, which we

mainly consider in this article, it holds that
xp = Fp_1xXp_1 + Vi, (4)

whereF_; is the multi-target system matrix at time— 1, and v, is Gaussian distributed with zero

mean and covariance matny,.

B. Sensor model

The sensor model describes the relation between the receinemsurements and the target states.
The measurements received at a certain time index incluttetamet-generated detections and spurious
measurements that are due to false alarms and clutter (oethceubsumed as clutter).

The joint measurement vector at timeis given by

ze= (") ()" (Z,ng)Tr. ©)

The heritage of the data is unknown, which means that it isknotvn which A/, . measurements are
clutter and which)M}, ; measurements are target-generated. Additionally, it iknown which target or

targets gave rise to each of the true detections.



The uncertainty in the discrimination between clutter aarget-generated measurements is mathemat-
ically described as
Zj,
Zy = (H:n ® INZXNZ> ) (6)
Zt
k
where Z§ and Z! are ordered vectors of clutter- and target-originated nnemsents, respectivelyy,
is the dimension of the single-measurement space,camtnotes the Kronecker product. FurthEk,
is an Mj-dimensional random permutation matrix which models theeutainty with respect to which
measurements are generated by tar§ets.
The uncertainty in the association between target-ges@nateasurements and true targets, and the

model for the corresponding target-generated measursieet here described as

AR (C;C ® INszz)hk(Xk) + Wk, "

whereCy, is an unknownl\/;, ; x N-dimensional matrix which determines the contribution atle target

on each target-generated measurement. When sensor i@s@rdblems are not present, a measurement
can only originate from a single target. In that caSg,has at most one single non-zero element per row (a
one), which determines the originating target of that mesment. However, for situations with resolution
limitations, several targets can be perceived as one byeahsos, and thus give rise to a joint/merged
measurement. Then, th@, matrix will have several non-zero elements in the corredpanrow, where
the size of each element describes the contribution fronh ¢émget to that measurementhe multi-
target observation functioh; transforms the joint state vecter, to the measurement space, and the
noise processvy is assumed Gaussian with zero mean and block-diagonaliaoear matrixRy. For

linear measurement models, the target-generated measnieare given by

Zl = (Ck ® INszz)ﬂXk + Wi, (8)
where
ﬁ:diag{H,---,H}, (9)
N—_——
N times

and whereH is the single-target observation matrix. The measuremeisenv,. is assumed independent

of the process noise;,.

1This matrix is equivalent to th§,; matrix in [5, p. 615].

2Comparing with the descriptor system in [5, p. 616}, corresponds to the operat®(¢’).



For the measurement model to be complete, we also need tol tifw@roperties of the clutter
measurements. We here assume a spatially homogeneousrPossiess. A single clutter measurement,

z{, is hence distributed as
zj ~ Uniform(FoV), (20)

where FoV is the field-of-view of the sensor, while the totaimber of clutter detections) ., is

distributed according to
M, ~ Poisson(/\ : ‘FOVD, (11)

in which X is the clutter intensity anz#FoV‘ the volume of the FoV. The algorithms described in this

article, however, are not restricted to Poisson-distetutlutter.

[1l. SENSOR RESOLUTION MODELING FRAMEWORK FOR ARBITRARY TARGET NMBERS

To be able to track targets under resolution limitationshwhiigh accuracy, we wish to create a model

that

1) represents the probability that a group of targets issoived in a qualitatively correct way,

2) provides a reasonable description of the properties otasmrement from a group, and

3) is mathematically tractable and possible to incorpoirate Bayesian tracking framework.
In this section, we propose a novel framework for sensorluésa modeling for arbitrary, but known,
number of targets, which fulfills the three requirementsvabdo complete the framework, models for
the resolution probability of two targets and a measuremawrdel for a group target are required. In
Section IV, two such models for radar sensors are presented.

We start by defining a group.

Definition 1: A groupis defined as a set of targets that upon detection by the sgh&s rise to a

single (joint) measurement.

Thus, a group is not equivalent to a set of targets that mowaecimordinated fashion, but a single resolved
target, or a set of more than one targets, which at a certafarihof time are so closely spaced that they
are not resolvable by the sensor. Note that the definitiomis er-scan basis, so that groups can be
formed and dissolved from scan to scan. Also note that theecuarticle does not address multi-sensor
scenarios, but should such systems be of interest, the rsewsald have to be considered in separate

filter recursions.



At a certain time instant, there are many different possidsl regarding which targets form a group and
which are resolved. This is similar to the classic data @aasioo problem, where there are many different
explanations regarding measurement-to-target assm$atiVe thus make the following definition of a

resolution event:
Definition 2: A resolution evenis defined as a partition of the set of all targets into groups.
That means, the set of all targets is divided into a set of eropty non-overlapping subsets.

Example 1:Say that there are five targets present in the scene. An egarhpl resolution eventy,
is then:R = {{1,2}, {3}, {4, 5}}, meaning that one group is formed by the set of targeisd2, one
group is formed by the single-object set of targetind a third group is formed by targetsand 5.

So, at a given time instant, many resolution events are lpessind we need a resolution model to

provide information regarding the probability of each sesfent.

A. Resolution probabilities

To model a resolution event, we propose the use of a graplegeptation, where each node in the
graph represents a target, and where an edge between npdesergs the event that those two targets
are mutually unresolved. A group is thus described by a ottedesub-graph, i.e., a sub-graph with all

nodes being connected. We make the following definition.

Definition 3: A resolution graphis one possible representation of a resolution event. Irgthph, the
nodes are defined by the target states, and a pair of unresaligets is represented by a symmetric link

between the respective nodes of the graph.

As the definition implies, a resolution event (cf. Definitidnmay correspond to several resolution graphs.
For an example of a resolution graph, see Fig. 1. In that elgmply one graph can be generated from
the resolution event. From a resolution event, all resotutjraphs that could be generated from the
event are not always feasible, since some of them repressesavhich are not physically reasonable.
An example of such a case is shown in Fig. 3. Assuming indegr@nesolution in each measurement
direction (see Sec. IV), only those nodes can be connectéchvelie nearest neighbors in at least one
direction of measurement space.

The edges of a resolution graph describe the pairwise ttterss between the targets. For feasible

resolution graphs, we make the following assumption:

Assumption 1:The edge probabilities of a resolution graph are independéat is, knowing that two



targets are mutually unresolved provides no informatiagarding the probability that another pair of

targets is unresolved.

1

O 3

Fig. 1. lllustration of a graphg', which describes the resolution event that target one wed, while targets two and three

form a group.

For the calculation of the resolution graph probability wiroduce the probabilityP,, according to

the following definition.

Definition 4: The probability that the pair of targets with stat:e%> andx,(f) are mutually unresolved

is given by P, (x,(j),x(j)). Correspondingly, the probability that they are resolvedgiven by 1 —
P, (Xl(j) , x(j)) .

The probability of the grapig®, given by Fig. 1, is thus given by
Pr {gl‘xk} =P, (xg),x,&g)) <1 — P, (x,&l),x,gQ))) (1 — Py (X;ﬁl)7x/§3))> . (12)

Example 2:Consider the resolution everR = {{1,2,3}} that the three targets present are all
unresolved. There are exactly four grapigg, to G*, leading to this event, as illustrated in Fig. 2.

The probability of the resolution event is then
Pr {R‘xk} =Pr {gl‘xk} + Pr {gz‘xk} + Pr {gi”(xk} + Pr {g4‘xk},
where the respective graph probabilities are calculatedlasily to the graph probability in (12).

Definition 5: A resolution graph where a node (vertex) is only connectetbtes that are the nearest
neighbors in any measurement dimension is caléasible Further, a graph which does not fulfill this

is termedunfeasible

In Fig. 2 all graphs are feasible since connections onlytéxithe nearest neighbors in the measurement
directions (being the horizontal and vertical axes). In. Bighowever, the graph is unfeasible since there

exists a link between noddsand4, which are not the nearest neighbors in thedimension. That link



Fig. 2. [llustration of the four graphs that lead to the raioh eventR, which describes the event that a group of three targets

is unresolved.

z2

Fig. 3. Example of an unfeasible graph. In the graph, theetarg and 4 are connected even though they are not nearest

neighbors in either the; or the z; dimension, which makes the graph unfeasible.

thus results in the contradictory event that targetsd4 are unresolved, while the more closely spaced
targets2 and3 (in the same dimension) are resolved.
To calculate the probability for a given grapfi, we let S, be the set of targets that are pairwise

connected by an edge, ag be the set of targets that are not pairwise connected. Then,
|Sol

IS |
Pr {g‘xk} :HPu(Se(Z))H (1_Pu(86(]))> (13)
=1

j=1
Note thatSy and S, are given byg, and P, is a function of the multi-target state,. Further, we define
the product over an empty set as one.

The procedure of obtaining all feasible graphs and thepaetsve probabilities at a given time index
is as follows:

1) Find all resolution eventsy.

2) For each resolution event, generate all feasible rasalgraphsgG.

3) Calculate the probability of each feasible graph usirggrésolution probabilities?’, (see (12) for

an example).
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B. Graph likelihood

Apart from the probability of a graph, we would also like tosdabe the measurement model for a
given graphg, expressed eys(Zk‘g, d, xk> . We call this model thgraph likelihood The data association
vectord is included in the model since the distribution of the measwents depend on their origin. The

vector is defined as

N T
d2(d dy ... du (14)

whered; > 0 if measuremeny is assigned to the single target or group targgtandd; = 0 if the
measurement is due to clutter.

Conditioned on the data association, it is known which ofrtteasurements i, are target-generated
and which originate from clutter. That is, the vectdfs(containing)/j, . observations) and!, (containing

M, observations) are known, and their distributions are glwsrp(Zz g, d,xk> andp<zi‘g,d,xk).

From the assumption of spatially uniform clutter, the firshdlty is

1

p(Z; (15)

Q,d,xk> =
‘FOV‘ |

Further, given the data association vectband the graphy, the target-generated measurements are

distributed as

p(Zi|g.a.x,) = Jﬁp(zi“’ d,0.%5), (16)
1=1

wherep<z2’(i) ‘d,g,xk) is thegroup measurement mod@ee Section IV-B for one alternative). In (16),
it is assumed that the measurements are independent,icorditon their associations. Finally, the graph
likelihood is given by
R
p(Zk‘g,d,xk> = M. H p<ZZ(2)‘d,g,sz>7 17)
‘FOV‘ .

where M}, . and M}, , are known, giverd.

IV. MODELS FOR PAIRWISE RESOLUTION PROBABILITIES AND GROUP MEASUREMENTS

In Section Ill, a novel model structure was presented fordliag sensor resolution modeling for
an arbitrary, but known, number of targets. The model stingctelies on a graph representation of a
resolution event, where each resolution graph describeg#irwise interactions between the targets,

under the resolution event.
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The fundamental unit of the graph probabilities is the reoh probability P, (xg),x,&j)» which
states the probability that two targets with staté@andx,(j) are unresolved. To complete the resolution
model we hence need a model for the probabilily. Here, we consider radar sensors, and use the
two-target resolution model by Koch and van Keuk [18], présd in Section IV-A. It should be noted
that the proposed resolution framework of this article i$ restricted to radar sensors, and that the
described radar resolution model does not rely on the uskeofwo-target model in [18] as a basis for
the resolution probability, but that it is used due to its egding properties.

The resolution modeling framework also includes the grakélihood p(Zk‘g,d,xk>. The general
expression for the likelihood is given in (17). To complétattlikelihood, a group measurement model
is needed, which provides an explicit expression of theetangeasurement densi}y(zz(i)‘g,d,xk),
conditioned on a graph, an association vector and a joigetastate vector. In this article, we use a
simple group measurement model which is presented in $ebi®. However, the proposed resolution
model does not hinge on that group measurement model, ngetrdahother group measurement models

are possible to use instead.

A. Two-target resolution model

For a certain pair of targets(i), x,gj) in a setS in (13), the probability that they are unresolved is,

according to [18],

Pu(X/(j),X(j)) _ e_(Ar”)T(Ru,NreS)’lAr”7 (18)

where Nygs is the dimension of the measurement spacéo( range and azimuth)Ar®/ is a vector with
the distances between the predicted positions of taigatsl j in the measurement space, aRg v, iS

given by

Ro .. = diag{oﬁ, o a?v} (19)

(2111(2))%5/2
The parametersy; to ay,. in (19) describe the resolution capability of the sensorhe tespective
measurement dimensions. Note that the diagonal strucfukle, gy, implies that the resolution in one
dimension is independent of the resolutions in the otheredsions.

The probabilityPu(xg),x,(j)) can also be written as a scaled multivariate Gaussian

. . 1/2
PU(XI(CZ)’X](CJ)) = ‘27TRU7Nres

N (o; Ar®i Ru,Nres) . (20)

Depending on the measurement model, the relation betwaén and the statex,(f) and x,gj) is either

linear or non-linear.
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B. Group measurement model

For an explicit expression of the graph Iikelihowzk‘g,d,xk» we need a group measurement
model which describes the properties of a merged measutdrnana group. The assumed model states
that a group measurement can be described as a measurertiententer of gravity in the measurement
dimension. That is, for a group of, targets (possibly one), whose state vectors are gatheribe ijoint

vectorx{, their group measuremelai’(j) is described by
lei:’(j) = (XZ> +ul™, (21)

wherehzg (xz) provides the arithmetic mean of the group targets in the oreasent dimension. For

linear measurement models,

zz(j) =H, x] +ul"™, (22)
where
1
H, =—[H, - H|. (23)
’I’Lg %,_/
ngy times

The vectoruZ’"g ~ N(O, RZQ) models the measurement spread frommgstarget group, which depends
on the number of targets in the group and the measuremerd.nijipically, the spread increases with
the number of targets,, due to the radar target glint phenomenon.

Other group measurement models have been presented itettatulie. A model for two targets, using
amplitude information, is given in [8], and is simplified i9][ while a measurement model for automotive

applications is proposed in [14].

V. CALCULATION OF THE POSTERIOR PROBABILITY DENSITY FUNCTION

In this section we describe the exact calculation of the gr@st probability density function (pdf)
p(xk‘zk) under unknown resolution and data association events. We sy describing the general
calculation of the density, and then describe how the diffeparts of the general expression are obtained.

To express the posterior density, we marginalize over thsiliée resolution graphs;, and the set of

data association hypothesB$G) for each graph. By also using Bayes’ rule and the Markov pitgpe
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we obtain

p(2)6. a1 )p (30, G, | 25

Sol#) % S slalz) oY ¥ e

G deD(9) G deD(g) p(z’“‘zk_l)
) p(2i]g.d %) (xe[2" )
_ zg:pr{g(xk}dgp;g) Pr{d‘g,xk} p(Zk‘Zk_l) (25)

Whel’ep(xk‘zk_l) is the predicted density of the target stat@ézk
(see (17)),Pr{d

g,d,xk) is the graph likelihood
g,xk} is the probability of a data association hypothasisand Pr{g xk} is the

graph probability, given by the resolution model (see (I8)d general expression).

As seen in (25), the calculation of the posterior densityuides ameasurement updatgiven by the
second sum, andr@solution model updajgiven by the total expression. In the following sectiohgse
calculations are described in more detail. Note that theudision here does not make any assumptions

on the models. For calculation under Gaussian assumpseesSection VI.

A. Calculation of the predicted density

Given the prior densityo<xk_1‘z’f—1), we calculate the predicted densﬁ(xk‘z’f—l) by means of

marginalization over the previous statg_1,

p(xk‘zk_l) = /p(xlmxk—l‘zk_l)dxk—l = /p(xk‘xk—lyZk_l)?(xk—l‘zk_1>dxk—l (26)
= /p<xk‘xk—1>p<xk—1‘Zk_1>dxk—1a (27)

where we in the final step assume that the prediction processhie Markov property. In the prediction

step, the prior density is propagated through the procesiem((xk‘xk_l).

B. Measurement update

The measurement update includes the calculation of theadataciation probabilities under a resolution
graph and the received data set, and the update of the meédlensity function with the measurement
likelihood. We start with the data association hypotheses.

1) Data association probabilitiesWe here state an expression for the conditional data as&ocia

hypothesis probabilityPr {d

g, xk} in (25). Using the definition of the data association vedtdmn (14),

M, — M,,)! _ _
Q,xk} = Pc(Mk,c)<k]w—|k7t) H (1 — Plj)) H Pl (28)
m {j:d(j)=0} {j:d(j)>0}

Pr{d
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where {j : d(j) = 0} is the set of clutter detectiong; : d(j) > 0} is the set of target-generated
measurements, an@.(M}, .) is the probability of receiving/;, . clutter measurements, which is given by
the Poisson mass function with parameteliFoV|. Further, the detection probabilif% for measurement
index j is the group detection probability, which can be modeledttaira different values for different
number of targets in the group. Thus, we here assume thatetieetibn probability only depends on the
number of targets in the group, and not on their states.

2) Density update:The second part of the measurement update is to refine thécieediensity
p<xk‘zk—1) with information from the current measuremer#g, under the graph and data association
d € D(G). That is, we seek an expression for the pl‘OdpléZk‘g,d,xk)p<xk‘zk_1), ignoring the
scalingp<Zk‘Z’f‘1).

A general measurement model, under the assumption of omifadistributed clutter in the measure-

ment space, is given by (17). Using that model, the densibgymwt is

TR e E——— Y
=1

‘FOV‘

The calculation of the measurement-updated pdf dependseoméasurement mod;e(zk‘g,d,xk).

) p(xk‘zk_1>. (29)

If it is linear and Gaussian, the first two moments of the updatensity is calculated by the Kalman
filter [17], for each group. For non-linear models, the Exlket Kalman filter (EKF) [15] or the Unscented
Kalman filter (UKF) [16] can be used. More details about esipéxpressions under Gaussian assumptions

are found in Section VI. The calculation also depends on tedipted density9<xk‘z’f—1).

C. Update with the resolution model

As seen in (25), the update with the measurement model givéscaease in the number of density
components, for each graph. In the update with the resalutiodel, each such component is multiplied
with the graph probability. For a certain graghand data association hypothesgisve thus make the

update

R T

M, ¢

T Hp< t,(3)

6.0 o)

Fo V\

=TT PGSO TT (1= PulS0))

5 (F (

T Hp( Vg, a.x )p(xe|Z). @0)

Due to thel — P, factors, the resolution update further increases the nurabelensity mixture

components. To get a clearer insight into the update calonkneeded, we study the update in more
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detail, focusing on
|Se] |So|

1P ]] (1 - Pu(SO(j))>
i=1 Jj=1
|Se|

=TT PuSei) (1= PuSo(0)) (1= PulSof2)) x -+ x (1= Pu(So(So])). (3D)
=1

In (31), |So| is the cardinality of the sefy, i.e., the number of resolved pairs in the gr&phThe (1—P,)

factors can be split up, leading to
|Se| |Sol

[17.s-) [ (1 - Pu(So(j)))
i=1

j=1

|Se] |Sol 1Sol |Sol

=TT P.(S.(0)) 1—ZP (So(j +ZZP (So(d So(1))

i=1 1 i=1
J l#j

IS0l |Sol |Sol

Y Y HP (So(w)) | (32)

]111

As seen in (18), the resolution probabiliti€3,(Sy(j)) depend on the state vectss,. Hence, the
multiplication of the measurement-updated density withesolution probability does not only scale
the density, but also affects its shape. The multiplicatan thus be seen as a density update. Hence, for
each term in (32), we can perform an update of the measurempelated density. Each update can either
be performed sequentially or in a single step, as describetler in Section VI. The set of components
generated by a resolution update, for a grgphnd data associaiton hypothedisare gathered in the
setU(G).

VI. GAUSSIAN MIXTURE APPROXIMATION

In this section, we seek to find a Gaussian-mixture exprassidhe posterior densﬂy(xk‘z’“) For

the sake of convenience, we assume that the prior depé:ty 1‘2"C 1) is a single Gaussian, i.e.,

p(Xk—1‘Zk_1> = N<Xic—1;5<k_1|k_1>Pk_uk_l)- (33)

The calculation will concern linear process and measuréemeaels (cf. (3), (4), (21), and (22)) with
Gaussian noise. The generalization to general models caefiermed by linearization, similar to the
EKF, or by approximations with the Unscented Transform [Eg]r the probability that two targets are

unresolved P,, we use the model in (20).
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A. Prediction step

The prediction is given by (cf. (27))

p<X/~c‘Zk—1> = /p<Xk‘Xk—1)p<Xk—1‘Zk_l)ka—1 :N<Xk§§<k|k—1>Pk\k—1>a (34)

where
Kpjh—1 = Fr1Xp_1jp—1 (35)
Pip-1=FraProyp1 Fi_ + Qi (36)

describe the predicted mean value and covariance matsgpgeotively.

B. Measurement update

In the measurement update step, the predicted dep{ﬁ%‘zk—l), is updated with information from
the current measurement s&,. The update relies on the single-target and group-targetsorement
models. A general expression for the measurement updateeis by (29). By assuming that groups are

independent, the predicted density can be split into a tpdu

p(oafz") = Hp(

whereg; is the group index andV, is the number of groups. Note that the group size can be equal t

z’f—l), 37)

one.

The measurement update step thus involves the calculation o
p(Z4]9. a0 )p (x| 27 ) = —7— H p(#:"|6,d.x¢) [T o(x

(F v‘ j
Due to the independence assumption, the update can bemedaroup by group. We will describe the

g9

;:]2

Pzt @8

1

expressions for one such update,

p<zz() >p<xij Zk—l)j

of group g; with its associated measuremalit(i). Using the group measurement model in (22), the

update is given by

(et ol

By using the following property of a Gaussian product

z2571) = N (2O H, xRN (<&l PE ). (39)

N(x;fc,P)N(z;Hx, R) = N(x; I, Z)N(z;i, S), (40)
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where

7 = Hx (41)
S=HPH” + R (42)
usz—K(z—ch) (43)
== (I-KH)P (44)
K =PH?S™!, (45)

we obtain
N (2, xRN (x5 %0, Pl ) = N (2050, 89 N (x50 PY) (46)

where the mean values and covariance matrices are giverehtifidation from (40)—(45).

The update can also be performed in a single step. For thattiize uhe multi-target measurement

model in (8). Thereby,
p(zk(g, d,xk>p<xk‘zk_1> - N(zk; Hx;, R ® IMk’txMM>N<xk; Kbt P,ﬂk_l) (47)
- N(zk; 1, Sg’d>./\/'(xk;§<k‘k, Pk|k>, (48)

where
H=C{%®Iy vH (49)

describes the relation between target states and the jaasunement vector, in Whioﬁ:g’d represents

the current resolution and data association events. Bytifaerion from (40)—(45),

2] = HXy .1 (50)
894 = HPy,_ H” (51)
K94 =Py, HT(899)~! (52)
Xy = Xppp—1 + K94 (Zk - ﬁf{mk—l)- (53)

C. Sequential update with the resolution model

As seen in (30) and (32), the resolution model update ingotlie calculation of the product between
a measurement-updated density and a sum of products. Theteupdn be performed summand by

summand, producing a density mixture. For each summandupldated density is multiplied with a
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product of P, factors. This calculation can either be carried out sedqaintfactor by factor, or in a
single step. Here we describe the sequential update.

Let us start with a singlé>, factor, P, (x,(j),x,(j)>. From (48), the updated density is described by a
product of two Gaussian densities, where only one dependg, omhe resolution model update is thus

P (xlii)7xlij)>N<xk;ﬁck‘k,Pk‘k> - ‘%Ru,Nres is

N (o; Ard R, Nres)/\f (xk; o Pk‘k), (54)
where
Artd = H(xl(j) — x(j)>. (55)
To describe the product of Gaussians, we would like to expthe resolution model Gaussian as a
function of the joint target state vect®®,. To do so, we use the Kronecker delta
1 ifk=1

i = (56)
0 otherwise,

the 1 x N vector

70D 2 (581, B — O] (57)
and theN, x (N - N,) matrix
6 = 70 @ Ty, . (58)
Then,
Ard = 109 Hx,,, (59)

whereH is defined in (9).
The update with ond’, factor is hence

P, (x,@’x,(g))/\/(xk;xk‘k, Pk|k> - (%Ru,Nm 2

N<0; H(i’j)ﬂXmRu,NreS)N(Xk;ik\k, Pk|k> (60)
when the measurement model is linear. This can be re-writsen
N(o; 0 Fixy, Ru,NreS)./\/'(xk; Rt Pk|k) - N(o; 1109 Fixy ., S )N(xk; % Pj;fk) 61)

wherefcgﬂC and Pka describe the expected value and the covariance matrix ofaifyet states given
measurement update under hypothekidor graphg, and resolution model update for the unresolved

target pair(i, j). The exact form of?, fok andPZ’f}C are given by identification from (40)—(45). As seen
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in the update equation, the 'negative information’ from a$aid detection due to resolution limitations

is hence incorporated in the tracking framework as a meds0reof the separation of the target pair.
When the summands in (32) involves sevearalfactors, similar calculations as in (60) are performed

sequentially, factor by factor. That is, if we have a secaxtdr P, (xg),x,im)>, we perform a similar

calculation of
l m ~1, i,
Py (xl(f)7xl(f )>N<xk’xkfk7pk\3k>’

and so on. In general (cf. (32)),
|So

HP (So(w (Xk§5<k\k7pk\k>

ol
:(QwRu,N,eS o HN (0 nw Hx;gkl,sg)‘k)/v(xm ;ffk,P;jfk) (62)

wherex”~! is the state estimate after the update with resolution pair 1. Further,S* depends on
the previous covarlanch‘k (cf. (42)), where we definégm = Xy |k, and Wherec‘,j“’k andP‘,jfk are the

state estimate and covariance matrix after the sequencpdaites, for the sef,.

D. One-step update with the resolution model

Instead of making a sequential resolution update, as in theiqus section, we can make a single
update for each summand in (32). To do so, we first note thaptbéuct of P, factors (cf. (32)) can

be written as

[Sol [Sol ~ ~
H P,(So(w e~ (Ar)T (Ru, nres) " ATH H e~ (T HX)T (Ru, npes) ™ T Hix, (63)
w=1
—e 2 Z‘Sm (e ])ka) (R1beres)71H(i’j)I:ka (64)
]Xg \1;5:0\1 H(i,j)I:I T Rueres 71H(i'j)ﬁ Xk 1, TR-1
_ {Z ( )7 ( ) } — e 3%k R, Xk (65)
By using the Kronecker product,
~ ‘SO| .. ~ .. ~ ‘SO| ~ .. .. ~
R, 2> @) (Ry,w,) T H =) HT{ (H’J))Tw(w)) ® R;jvres}H. (66)
w=1 w=1

The matricesH and R, v, do not depend ori andj and can hence be moved out of the summation.

So, by defining

G2 Z (Wu,j))Tﬂ(i,j)), (67)
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we get
R, =H"(GoR;), A (68)
Since G is positive semi-definite, it has a matrix square rdot,and we can thus write
G =D'D. (69)

Then, repeatedly using the Kronecker product rule [7]

(A ® B) (c ® D) - (Ac) ® (BD), (70)
we have
GoR., = (D'D) Ry}, = (DT o Ry, ) (D@ Ly.) (71)
= (P"e1y..) (e R, ) (Dely.). (72)
Since
D" 21y, =D 21, = (D IN,GS)T, (73)
the matrixR, ! can be written as
R, =0’ (D& IN%)T (ve ;L) (D@ Ly, H. (74)
So, through
xRy 'xp, = x HT (D ® INreS)T X (IN ® Rﬁvres) (D ® INres) Hxj, (75)
— (Do i) (voR;L,) (D@ Ly ix). (76)
the probability in (65) is described. By further using that
(v o R, Y,) = (Tv @ Ry B (77)
the product ofP, factors can be written as a scaled Gaussian density
ﬁ Po(So(w) = ‘mN ® Ru Neo N(o; (D @ In.)Hxp, Iy @ va,es). (78)

Using the descrlptlon in (78), the update of the measurempdéated density with one of the summation
terms in (32) can be performed in a single Gaussian-prodept he updated density, is for example

given by (48))
N((); (D ® I )Hx, Iy @ Ru,Nres)N<Xk% Xk Pk\k)

= N (05 (D @ Ty, ) Fiyyp, 8 ) (4 %040 P ) (79)
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where

\T -
S = (D @Iy JH) Pee((D @ Ly, )H) + Iy @ Run, (80)
u -\ 7 u\y—1
K" =Py (D@ Iy H) (SY) (81)
S = X + K (0 - (Do IN)kak> (82)
b= <I—KU<D®INreS)ﬂ> P (83)

The one-step update described here is performed for eaoh itethe sums over‘So‘ in (32). The
resolution model update is then finalized by the update with groduct ofP,(S.) factors, which can

also be performed in a single calculation for each term.

E. Summary

The update with measurement and resolution models can lfi@ped in four different ways:

1) Sequential measurement and resolution updates.

2) Sequential measurement update and one-step resolyidates

3) One-step measurement update and sequential resolytaateu

4) One-step measurement and resolution updates.
The advantage with the one-step updates is that they kedprtheof the Gaussian mixture throughout the
updates, since no assumption about independence betwagrsdgs necessary. The drawback, however, is
that the calculations require high-dimensional matrixrapens. Then, the sequential update is a further
approximation which makes it faster but leads to the effeat the order matters and that the graph

feasibility might not be preserved.

VIl. JOINT PROBABILISTIC DATA ASSOCIATION FILTERING USING THE RESOLUTION MODEL

In Section VI, the calculation of the posterior density wasatibed under Gaussian assumptions. If the
prior density is Gaussian, the posterior density is a Gaassiixture, where the number of components
depend on

« the number of resolution graphg,

« the number of open links in the graphs, yieldiﬁg — Pu> factors which doubles the number of

components, and

« the number of data association hypotheﬁé@)‘ for each graph.
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Since processing of the full Gaussian mixture is infeasithlee to memory and processing limitations,
approximations are necessary. For the data associatitaeprtpa common algorithm is the Joint Proba-
bilistic Data Association (JPDA) filter [13]. The approadttime filter is to, at each time step, approximate
a Gaussian mixture with a single Gaussian, using momenthimgtcin [5], the JPDA algorithm was
extended with a resolution model for the two-target caseeHwe describe extensions of the JPDA
algorithm under resolution limitations for arbitrary tatgnumbers. For the extension, two alternatives
are proposed: either to calculate the full Gaussian mixtamd to approximate that with a single Gaussian,
or to perform a two-step approximation, which is less coraponally intensive. The two approaches are

described in the following two sections.

A. JPDA approximation of the full Gaussian mixture

The most accurate moment-matching approximation is giweoabculating the full Gaussian mixture
in (87), and then approximate that with a single Gaussiansé@ugo-code description of such a procedure
is found in Table I, and in the following we discuss the diffier steps in more detail. The algorithmic
description starts with the predicted dengﬁt&xk‘zk‘l).

Step I: Generate all feasible graphsihe first step is to generate all feasible grapfiswhich is
done by first forming the set of possible resolution eveRts(cf., for example, Example 1), and then
generating the feasible resolution graphs for each event.

Step Il: Data association hypotheses formulatiofior each generated resolution graph, the set of
data association hypothesé3(G) is formulated. The set of data association hypothesesdeslall
combinations of group target-to-measurement assignfentsduding missed detections.

Step lll: Measurement and resolution model updatée third step is divided into three sub-steps. All
operations in step Ill are performed for each data assooidtypothesis formulated in Step II.

In Step lll-a), the data association hypothesis probghiitcalculated according to (28).

Step llI-b) is to update the predicted density functlﬁh(xk;ikw,Pk‘k) with the measurement
likelihood under the current resolution and data assaxriatypotheses. The update can either be per-

formed sequentially, as described in (38) and (39), or innglsicalculation, given by (48). After the

ﬁcg’d pYd

measurement update, we obtain the scaled Gaussian déﬁ%j}l\y(xk; wi Pk

) with proportionality

3Note that several graphs lead to the same data associagmthiegis. Thus, in the measurement update, only a singleteipd
is needed for those graphs. The resolution update with taghgprobabilities, however, must be performed for eachhgrap
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TABLE |

COMPLETE GAUSSIAN MIXTURE JPDAFILTER WITH RESOLUTION MODEL

I: Generate all feasible graphg,
Il : For each graph, formulate all data association hypasg3(g).

[ll: For each data association hypothesgiss D(G):

Ill-a) CalculatePr {d g,xk} according to (28).

IlI-b) Perform measurement update according to (38) and, @9by (48). This yields a scaled Gaussian
cgvdj\/(xk,fcil,‘:, Pg“‘:) with weight given by (84).

Ill-c) Update with resolution model according to (30), (32nd either (60)—(62), or by (78) and (79).
The result is a sum of scaled Gaussidis.,, cg-r“vd/\/(xk,fcflg d Pg-r“vd) with weights given
by (85) .

I\V: Approximate the Gaussian mixture in (87) using momentahizng, according to (86), and (88)—(90).

weight (using (48))
d_ p; {d‘g,xk}/\/(zk; X1, sgvd). (84)

In Step llI-c), the resolution update is performed for eaahadassociation hypothesis. The general
update is described in (30). As seen in (32), the resolutjate results in a sum of products. For each
summation term, the calculation can either be performedesgnlly, as given by (60), (61) and (62),
or in a single step, described by (78) and (79). After the tmdae obtain a sum of scaled Gaussians
> ueug) " d/\/(x fcgl;jd ng“vd>, where the weight is given by

Cg’u’d = Pr {d‘g, Xk }N(Zk7 I\:I)A(k‘k—h Sg’d> ‘277]:]\7 & Ru7Nres

N(o; (D" @ o) Hy S“). (85)

In (85), D“ represent the current resolution event (cf. (67) and (69)).
Step IV: Moment matchingthe final step of the full Gaussian mixture JPDA algorithmhwiésolution

modeling is the moment matching approximation. First, theggivt components are normalized,

G,u,d Cg’wd ( )
(_j ) _= . 86
262 ueu(g) 2oden(g) <7

If the prior density is Gaussian, the end result after réBmluand measurement updates is a density

mixture of the form

p(xk‘zk> Z Z ch“d/\/<xk7xg|gd nggd). (87)

G ueld(G) deD(G)
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The final step of the first version of JPDA algorithm is to apimtate this Gaussian mixture density
with a single Gaussian. The best way of making that appratkmain the Kullback-Leibler sense, is to

perform second-order moment matching. We thus make theozippation
p(xk‘Zk) ~ N(xk, A?‘}C,Pﬁllk) (88)
where

A;?Ilk Z Z Z Cgud gud (89)

G uel(G)deD(9)

T
Ay gud] poud | (gGud oA ) (eGud oA
Pip=>. > > & {szk (Xkuf k:\k) (Xk|k: _Xk|k:> } (90)

G ueld(G)deD(9)
B. Two-step JPDA approximation

When the number of targets is large and the clutter level,lglh number of Gaussian components to
calculate in each iteration can be large. Then, a less catipoally demanding method is advantageous.
We here present such a method, where instead of approxgninfull Gaussian mixture, we perform
a two-step procedure including two Gaussian approximation

In Table Il, the two-step JPDA filter is described. In the daling, we describe some of the steps in
more detail. Since Step | to IlI-b) are the same as for therdlguo in Table I, we start with Step IV.

Step IV: Moment matching over data association hypotheséer the measurement update step for
graphG and data association hypothegiswe obtain a scaled Gaussmﬁd/\/(xk,&g‘g,Pg‘ﬁ with
weight given by (84). After having performed measuremertatps for all data association hypotheses,
we have a Gaussian mixture. Step IV of the two-step JPDA fités approximate this Gaussian mixture

with a single Gaussian, using moment matchjrige.,

G.d .G,d pd.d o0 DO
. N<xk’xk\k’Pk\k) N(xk7xk|k’Pk|k)7 (91)
deD(G)
where
G.d
G.d C
I = ———5 (92)
2_deD(@)
G _ 0.4 9.d
Xkl = > Xkl (93)
deD(9)
T
pY 9. g <G.d _ -G
Pli= > { ke T ( Xk — k:\k) (Xkuf _Xk:\k) } (94)
deD(9)

“In fact, this the standard JPDA approximation performedefach resolution graph.
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TABLE Il

Two-STEPJPDAFILTER WITH RESOLUTION MODEL

I: Generate all feasible graphg,
Il : For each graph, formulate all data association hypasg3(g)
Ill: For each data association hypothesgiss D(G)

Ill-a) CalculatePr {d g,xk} according to (28)
Ill-b) Update the predicted density with information fromeasurements, according to (38) and (39), or

by (48). This yields a scaled Gaussie@hdj\/(xk; fci{,f, Pg",‘:) with weight given by (84).

IV: Perform moment matching over the data association Hgs®s, as described in (91)—(94). This gives a
single Gaussiam/(xk; ﬁglk, Pg‘k) .

V. For each graph, perform an update with the resolution rhodhis yields a Gaussian mixture,
Zueu(g) Zdep(g) cg,uj\/(xk;&g";‘, Pg";j), with weights given by (95), and mean value and covariance
matrix by (93) and (94).

VI: Approximate the Gaussian mixture in (97) with a singleuSsian, as described in (98)—(100).

Step V: resolution update for each grapAfter the moment matching in Step IV, we have a single
Gaussian for each graph. In Step V, the resolution model tepdaperformed under each graph. This

gives a Gaussian mixture

LG pV,
> >N (i P,

ueU(G) deD(G)
with weights
G,u
G c
cT = o’ (95)
> ue(g) 2-den(g) ¢
O = 2Ry, |V (03 (D & Ty JHRG, SO (96)

whereSY%* is given by (80), insertingjg‘k instead ofP .
Step VI: Gaussian approximation of posterior densi®ar each graphg, Step V provides a Gaussian
mixture. The posterior density is hence approximated by

p(xk‘Zk) ~ Z ZEQ’UN<Xk;ﬁg|’g,Pg|’g>- (97)

G ueld(G)
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The final step of the algorithm is to make a second moment rimgicthio approximate the posterior

density as a single Gaussian, according to
p(xk‘Zk) ~ N(xk;&?@, P?fk), (98)
where

K= D UK (99)

G wel(Q)

T
Pili=> > cgvu{Pifﬁ(&iﬁ—iﬁz) (% - x) } (100)

G weld(9)

VIII. SIMULATIONS

In this section, we evaluate the JPDA filter with the propassmlution model, and compare the results
to those of the JPDA filter without a resolution model. The sidared tracking scenario includes three
targets whose trajectories are shown in Fig. 4. The targetgerwith a constant speed 6fm/s, and

their separation i$0 m in the middle part of the scenario.

300¢
200

100

0

y [m]

—100r

—200r

—300r

~200 0 200 400 600
a [m]

Fig. 4. Trajectories for the three-target scenario. Theasgpn between the targets 6 m in the middle, and the targets
move from left to right.

As state vector, we usge = [w y @ y} For prediction of future states in the filters, a (nearly)
constant velocity model is used, with system matrix (cf) @)= diag{F,F,F}, where
Iowo T -Iax2

F= , (101)
O2x2  Iaxo
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and wher€eT is the time between measurements. Further, the process coigriance matrix i€ =
diag{Q, Q, Q}, where

_ T3/3 - Toxos T?%/2 Ik
Q=q , (102)
T2/2 - Ioxs T -Ioxo

and gy = 0.2, which is the parameter value that gives the best averaderpemce for this scenario.

At regular time intervals7’, of one second, a sensor, which is located-at0000, —10000), provides
measurements of the rande and azimuth angle> to the targets. The accuracy of the measurements
depends on whether the targets are resolved or not, as sixtirs Section 1V. More specifically, the
range errors are assumed to be constant as the number d&targegroup increases, while the azimuth
errors are assumed to increase due to radar target glintafdpet-number dependent measurement noise

covariance matrix is thus
R = diag{(or)*, (07)*}, (103)

whereog? = n,-0.17/180. Further, the resolution capability of the radar sensoivisrgby the parameters
(cf. (19)) ar equal to60 m anda,, equal t00.37/180. With these parameters, averaged ov@p trials
for the 200 time steps of the scenario, all three targets are resdi9edtimes (time steps), two targets
are unresolved0.7 times and all three targets form a group targ@t times.

The detection probability’, of the sensor is assumed equal for all group sizes. In theatahs, we
test detection probabilities @f£.999 and0.95. On top of target-generated measurements, the sensor also
reports spurious measurements due to clutter. We evalwateesults for two different clutter levels: low
clutter, with 1 false measurement per scan on average (and rarely moretthand moderate clutter,
with 4 false measurements per scan on average (and rarely mor&)than

In Fig. 5, examples of trajectory estimates from the JPDArfvith and without the resolution model
are shown, for the case of no clutter and a detection prababil 0.999. By comparing the outputs,
it is seen that the filter which takes resolution limitatian® account produces more stable, and well-
separated, tracks.

For single-target tracking, or tracking of widely sepadatergets, performance evaluation is straight-
forward. However, for tracking of densely-spaced targeiis, performance evaluation is a major concern,
as noted already in [12]. There, a two-stage evaluatioriegfyawas proposed, where first an optimal
assignment of state estimates to ground truth is perforiened second a measure of choice (for example
root mean squared error (RMSE)) is applied on that assighrRecently, the Mean Optimal Subpattern

Assignment (MOSPA) measure [21] was introduced, and etiahsbased on that measure are increasing
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Fig. 5. Example of the output of the standard JPDA filter JJedind the full Gaussian mixture JPDA filter with a resolution
model (right), for the case of no clutter and a detection abidlily of 0.999, but with resolution limitations expressed by

ar = 60 m anda, = 0.3°. The dots represent the sensor measurements convertedtési@a coordinates.

in number. The measure is a natural extension of the RMSE filtipte targets, and for a known number
of targets it is equivalent to the procedure proposed in.[V#} have therefore used MOSPA in the
evaluations of this article. As basis measure, we use thédeaa distance. We further use the first-order
MOSPA measurep( = 1, see [21]), which means that the unit of the MOSPA distancmesers. As
cut-off value we use: = 300 m.

For the performance evaluations, we first consider the chaedetection probability 06.999. To the
left in Fig. 6, the MOSPA performance oved0 Monte Carlo runs is presented for the low-clutter case for
the JPDA filters with and without a resolution model. As a refee, the performance of the JPDA filter
when the sensor has perfect resolution is also shown. As sdam the targets are closely spaced and
the resolution limitations have effect, the JPDA filter waith resolution model performs worse than the
JPDA filter with a resolution model, which provides evideticat the resolution model indeed accounts
for a better description of the data.

To the right in Fig. 6, the MOSPA results for the moderateteluevel are shown. There, it is seen that
the JPDA filter performs significantly worse than with the éwlutter level, whereas the performance of
the JPDA filter with a resolution model, performs almost adl.Wide reason for the significantly worse
performance of the JPDA filter is that a large number of traxdsés occur (where tracks are attracted to
clutter detections, and move away from the true trajectdfg) the JPDA filter with a resolution model,
on the other hand, the attraction of the clutter detectisngdaker due to the filter considering the events

that the targets are not resolved.
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Fig. 6. MOSPA performance for the JPDA filters averaged awr Monte-Carlo runs for a detection probability 6f999.
Left: one clutter measurement on average, right: four etutteasurements on average. Green: without resolution Imade:

with a resolution model, and red: with perfect resolution.

The final evaluation regards a lower detection probability).®5, and a moderate clutter level. The
results for this setup are shown in Fig. 7. By comparing thgsire with the results shown to the right
in Fig. 6, it is seen that the performance of the JPDA filterasiewhat better with the lower detection
probability than with the higher one. The reason for thishattthe weights of the data association
hypotheses under which clutter detections are assignetietatracks are lower when the detection
probability is lower, and we thus obtain more stable tra8itil, the performance is significantly improved

by using the proposed sensor resolution model.

IX. CONCLUSION

In this article, we consider the modeling of limited sensesalution for an arbitrary, but known,
number of targets. The main contribution is a framework fandiing resolution limitations, which
can be easily incorporated into traditional Bayesian tiragKilters. The framework relies on a graph
description of a resolution event, and on modeling the tag&ol probability as independent between target
pairs. To complete the framework and to attain a multitargeblution model, a model for the resolution
probability for two targets and a group measurement modedricarbitrary number of targets are needed.
By suggesting two such models, the exact calculation of tstguior probability density function under
both data association and resolution conflicts is describeder linear and Gaussian assumptions, the
posterior density is a Gaussian mixture, and the comporminteat mixture are also derived in the

paper. Further, two alternative approximations of the iemsixture by a single Gaussian are proposed,
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Fig. 7. MOSPA performance for the JPDA filters averaged dwér Monte-Carlo runs for a detection probability 0095 and
four clutter measurements on average. Green: without uggnl model, blue: with a resolution model, and red: withfeetr

resolution.

which both can be considered as extensions of the Joint Bilisitia Data Association (JPDA) filter
taking resolution problems into account. Finally, the JPf#ers with and without a resolution model
are evaluated on a three-target tracking scenario withlabed radar data. The results show significantly

improved tracking performance of the resolution filters dirconsidered setups.
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