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Abstract—While some write once memory (WOM) codes are  3) Forl < i <t D; : {0,...,q — 1} — {1,..., M},
inherently decodable, others require the added knowledge of the and
current generation in order to successfully decode the state of -
the memory. If there is no limit on the code length,n, a binary RS {1} -y Ma}, Di(E1(m)) = m,
non-decodablet-write WOM code can be made decodable at an o for2<i <t V(im,c)e{l,...,M;} x Im(€-1),
insignificant cost in terms of code rate by addingt — 1 cells to D;(Ei(m,c)) =m.

store the current generation after replicating the code enough For simplicity, in the remainder of the paper, we will refer

times for the ¢ — 1 cells to be of negligible weight. This justifies .
the research on non-decodable WOM codes. However, i is to WOM codes simply as codes. The rate of the above code,

bounded, thet — 1 additional cells may introduce a significant referred to as the WOM-rate, is defined as followss [2]:

loss in terms of code rate. In this paper, we propose a new method ~ Definition 2: The rate of generation € {1,...,¢} of an
to make non-decodable WOM codes decodable at a lower price [n7 t:M,... ,]Vft] g-ary codeC is

when n is bounded. The main idea is to add cells that do not

only store the current generation, but also additional data, by Ri(C) A 10gq M; (1)
using a synchronous (¢t — 1)-write WOM code of length ¢ — 1 E n

or slightly above which does not contain the all-zero codeword. _ ; :

A bound on the rate of a simple family of synchronous WOM and the WOM-rate ot is defined as

codes withn = ¢ is given, as well as very short codes from this AC Zle log, M;

family. Better codes are then obtained by local manipulations of R(C) = Z Ri(C) = =———. (2)
these codes. Finally, a construction of synchronous WOM codes i=1 "

with good properties is proposed to reach higher values of. Givent, ¢ and sometimes, one would like to maximize the

|. INTRODUCTION AND DEFINITIONS WOM-rate. In this paper, we only consider binary codes, i.e.,

. . . = 2.
A write once memory (WOM)[J1] is a storage device! .
consisting of memory cells that take gr> 2 possible states in Depending on the structure of the code, the state of the cells

{0,...,q—1}, and such that the state of a given cell cannot gpay or may not suffice to determine the current generation

decreased. The main problem in the WOM model is to kno(he" how many times the block has been written, and which

how much information can be stored into ¢g-ary memory mapDZ— |ShOUIddbe L(steb(il tOV\(;IeC(;(jJI:). Ln é)ltherdwor(:]s, thed code
cells usingt writes (also calledgeneration} starting from IS not always decodable. We calecodablecodes the codes

the all-zero state. Formally, we are looking fewrite WOM such that for any state of the cellsand anyi and,iQ with
codes, which are codes designed to store and update dat§ fn Im(&;,) N Im(E,), Di(¢) = Diy(c). A code is called

the WOMs usingt writes. WOM codes are defined by theilsynchronoum if a given state of the cells can only be reached

t encoding and decoding maps. The following definition @t a given gen_eration, Le., the setm(£;) are disjoint_ for
taken from [2]: I < i < t. A simple way to guarantee that a code is syn-

Definition 1: An [n,¢ : M, ..., M,] t-write g-ary WOM chrpr?ous is to force the Hamming \_/veigz_btof the cells to be
an injective function of the generation, i.e., for € Im(&;,)
andcy € Im(&;,), w(c1) = w(cz) = i1 = iz. These codes
are calledaminar in [1]. By construction, synchronous codes
are decodable. A construction of synchronous (and laminar)
codes was given i [1] forn = t being a power of two, and
WOM-rate log, (t)/2. However, synchronous codes have not
o & i{l, Mif x Im(&i-1) = {0,...,4 = 13", peen extensively studied. Non-synchronous codes can still be
° V(m,c) el Mif x Im(E1), directly decoded if, when the decoder cannot determine the
Vi€ {l... n}, (E(m, €)); = (c);. current generation, the choice @; has no impact on the
Research supported by the Swedish Agency for Innovation Systems (VlgleCOded Symbo" Notice that synchronous codes are decodable,
NOVA) under the P36604-1 MAGIC project. but the reverse does not always hold. For later use, jhah:

code C is a coding scheme fon g-ary WOM cells, which
consists oft pairs of encoding and decoding mafisand D;
(1 <i<t) such that:

1) & :{1,..., My} = {0,...,q— 1}

2) For2<i<t:



M,,...,M;] code is synchronous (respectively decodable)yOM-rate higher than non-decodable ones, thus the highest

we will use the superscriptsync”, [n,t : My,..., M]**° number of cells should be reserved to the non-decodablg.code
(respectively dec”, [n,t : My, ..., M;]9). Also, the binary In particular, our focus is on binary laminar codes, but the
cells that can be written frorfi to 1 but not from1 to 0 are proposed approach can be extended to non-laminar codes and
calledwits [1]. non-binary codes.

A non-decodable codeC with parameters [n,t
My, ..., M) can be turned into a decodable (ang even syn- Il. LAMINAR WOM CODES WITHn =t
chronous) code by simply concatenatistances ot with In this section, we focus on building laminar codes with

a block oft — 1 cells that stores the current generation (by = ¢, that write exactlyl wit at each generation. Also,
being filled one by one at each write, starting at the secoiit order to simplify the problem, we try to maximize the
generation). The resulting code is a synchronous code witdlues of M; generation by generation, rather than globally
parameter$kn +t — 1, : MF, ..., M}]. Note that ifk goes Mmaximizing the WOM-rate. Consider a codewith n = ¢ that
to infinity, the WOM-rate of this code goes to the WOM-rat&rites exactlyl wit per generation, and a generation- 1.
of the original codeC, R(C). A common approach in the Assuming that the previous generations are already fixed, th
literature is to design codes that approach the boundafiescendition we have on/; is that for everyx € Im(&;—1),
the capacity region (see, e.d.] [2]] [3]), and then make thend for everym € {1,..., M;}, there existy € Im(&;) such
decodable using this method. Therefore, most of the sfate-hatx < y andD;(y) = m (wherex <y if z; < y; for
the-art high-rate codes are ndirectly decodable. However, all k, 1 < k < n). Denote byE;* the set of binary vectors
if the target application specifies and n, making a non- of lengthn and Hamming weight. It follows that at each
decodable code decodable using the above-mentioned met@i@aeration, Im(&;) C E;'. We use this set inclusion to make
can significantly degrade its WOM-rate. For instance, agrsi Our maximization at each generation completely independen
n = 6 andt = 4, and assume that we do not know a decodabfi@m the other generations, at the cost of optimality.
code of lengtt6. In this case, we could select a non-decodable Let us define the equivalence relatiesf on Im(¢;) by
4-write code of lengtt$, and append cells to store the currenty =;' y’ if and only if D;(y) = Di(y’). Let us refer to the
generation. The resulting WOM-rate is half the original on@duivalence classes of this relation as theleword classesf
as the additional cells only carry information about therent C' at generation. Codeword classes are subsgts- E}* for
generation. which, if we do not take the previous generations into actoun

Notice that if the system must be able to know, when ttBe following must hold:
state of the memory is the all-zero vector, whether this is n )
because the block is empty or because it contains the all- VxE B, yeYixsy. 3)
zero codeword, then adding— 1 cells is not enough to We are also interested in the partitions Bf as a set of
make the code decodable, butells are required in this case,valid codeword classes. )f denotes such a partition, we want
instead. Here we consider the case wherd additional cells that
are enough. The analysis for the other scenario is extremely VY eV Vxe kb |, JyeY :x<y. 4)
similar.

In this paper, we propose a different approach to maﬁﬁnch valid partition)) corresponds to a valid decoding map

a non-decodableé-write code C' decodable. The key idea odulo reordering), a”‘?' thus each cardir}alﬂ(y to a val_id
is to appendt — 1 additional cells which store not onIyMi' We are therefore interested in finding the maximum

the current generation but also new data, by usingwaite cardinality, denoted byl;(n), of such a partition. We give

synchronous code with length— 1, and writing generations anPupper_pounlq I(_)mi(”): be defined b
of C' and of the synchronous code simultaneously. In the roposition 1: Let B;(n) be defined by

scenario where the system must know the difference between (n)
the all-zero codeword and an empty block of memory;- a B;(n) 2 ~i ) (5)
write synchronous code of lengthwhich does not contain YS.{n[ﬁglhoms'Y'

the all-zero codeword would be required. To unify the searc_:rth h . dinali f . h
for codes for both scenarios, we search for codes with ¢ en, the maximum cardinalitd,(r) of a partition’ that

which do not contain the all-zero codeword, and we tuﬁf"me'eSm‘L) IS upper boundeq.by(n)ng Bi(n).

them into a code suited for the scenario where the distinctio Proof: Let )’ be any partition off}". Then,

between the all-zero codeword and an empty block is not ) " n
required, by adding a generation that only contains the all- I (y 5,?§?ho.ds|y|> < Z Y| =B = (Z) (6)
zero codeword. Then, synchronousness guarantees that by ey
observing the—1 new cells, the decoder can always determinghis holds in particular whe is of maximum cardinality.

the current generation, and use this knowledge to decode the ]
obtained code. We also consider usifgrite synchronous  This bound can be computed using a computer search for
codes with length slightly above-1 (the length should remain the smallest” that satisfies[{3). The search is relatively slow,
small, because we do not expect to find synchronous codesof notice that by lower-bounding’| by 'El—”' (each element



TABLE |
UPPER BOUNDB;(n) ON A;(n). VALUES IN BOLD ARE CONSTRUCTIVE AND ARE SUCH THAT A4;(n) = B;(n).

|

n |1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 1

2 2 1

3 3 1 1

4 4 3 1 1

5 5 3 2 1 1

6 6 5 3 2 1 1

7 7 5 5 2 2 1 1

8 8 7 5 5 2 2 1 1

9 9 7 6 5 3 2 2 1 1

10 | 10 9 6 5 4 3 2 21 1

11 | 11 9 7 6 5 4 3 2 2 1 1

12 | 12 11 8 6 6 5 3 3 2 1 1 1

13113 11 10 7 6 5 4 3 3 2 2 1 1

14 | 14 13 10 9 7 6 5 5 3 3 2 2 1 1

15| 15 13 13 9 9 6 5 5 4 3 3 2 2 1 1
16|16 15 183 13 9 9 7 6 5 4 3 3 2 2 1 1

y € E covers exactlyi elementsx € E! ;), we obtain a in Section(Il by merging several generations togethernigki

closed-form bound: as the new set of codeword classes, the union of the sets
of codeword classes of two or more consecutive generations.
(7;) (7;) For instance, thd4,4 : 4,3,1,1]*"° code can be turned
Ai(n) < Bi(n) < Er | (") (") into a [4,3 : 4,3,2]" code by merging its third and
[TW {Tl-‘ fourth generations together. Instead of having one codé&wor

_ ~ class at generatiof ({1110,1101,1011,0111}) and one at
While the closed-form bound can be computed efficientlyeneration4 ({11111), now the third generation has two
and is reached for some values 0f, i) (for instance, for codeword classe:1110,1101,1011,0111} and {1111}, and
n < 3, 0rfori < 2 0ri=n) even for relatively Iow there is no fourth generation anymore. Likewise[5a3 :

values ofn and i, it can be strictly higher thand;(n). 5,3,4]%1¢ code (of WOM-ratel.181) can be derived from
For instance,A3(4) = 1, while the closed-form bound e 5,5

: 3 h : 5,3,2,1,1]%"¢ code by merging the last three
is 2. Indeed, B3 = {1110,1101,1011,0111} and E; = generations together. However, consider the codewordesas

{11051)’ 1010, 10017011()’010121091_1}' and while each element o yectors of weightd. These were constructed in order to
of E3 covers?; elements off, it is not p053|bI4e to pick two cover every word of weighs, while they now only have to
elements ofZ; that cover distinct elements df,. Therefore, cover every word of weigh?. The optimization also did not

t|r]13e c|odeword classes ifi; have cardinality at least, and not  gjjow codeword classes of mixed weights. We can reorganize
— =2 the set of vectors of weigtt or more into a better balanced

A. Comparison with a Computer Search for Small set of cheword cla_sses. Il (8), we give the codeword classes
of the third generation of &, 3 : 5,3, 6] code (of WOM-

rate 1.298) obtained by reorganizing the third generation of

5,3 : 5,3, 4] code:

For very small values of, the exact value off;(n) can be
computed by conducting a simple exhaustive search on the
of codeword classes. Values &;(n) are also obtained with
an exhaustive search, but on the minimum size of codeword {01111,11001,10110}, {10111,11100,01011},
classes, which is significantly faster. The results of the tw {11011,01110,10101}, {11101,00111,11010}
searches are reported for < 16 in Table[]. The values in ’ ' ’ ’ ’ ’
bold font are A;(n), the others areB;(n). The few values {11110, 10011, 01101}, {11111} (8)
of A;(n) that were computed e>_<act!y matd$; (n), O it is For comparison, thd codeword classes of the third gener-
unknown whether there are paifs,:) such thatd;(n) < ; . syne )

_ . ation of the[5,3: 5, 3,4]%¥»¢ code are:
B;(n). Note that these values are constructive. For instance, a

[4,4:4,3,1,1]¥"¢ and a[5,5 : 5,3,2,1,1]*"¢ code can be {11100, 11010,10101,01011,00111} (weight 3 only),
obtained from the search. {11001, 10110, 10011, 01110, 01101} (weight 3 only),
I1l. L AMINAR WOM CODES WITHn >t {11110,11101,11011,10111,01111} (weight 4 only),
The constraints that we applied on the codes of Seflon I, {11111} (weight 5). (9)
especially the constraint that = ¢, keep the code WOM-
rates relatively low. Lifting the constraint on = ¢ allows Other choices can be made regarding which generations to

for higher WOM-rates, and laminar codes with slightly merge to obtain &-write code from the5,5 : 5, 3,2, 1, 1]*y"¢
larger thant can easily be derived from codes obtained ade, but lower WOM-rates are obtained.



TABLE Il

IV. A CONSTRUCTION FORSYNCHRONOUSWOM CODES RATES OF DECODABLE CODES OBTAINED BY CONCATENATING
OF HIGHER t SYNCHRONOUS CODESWITH TARGET CODE LENGTHn = 64.

We propose a construction to obtain synchronous codes | Rate of non-dec.| Rate of dec. With data
for higher values oft by concatenating:’ instances of a code from[3] | with no data [ ?)Sé”.cécfdﬁ f;égzl
synchronous code of length and using a second syn_chronous4 1.8564 1.7694 [5.3:5.3.6] 18128
code of lengthn’ to decide, at each generation, which of thes 1.9664 1.8435 [4,4:4,3,1,1] 1.8995
n’ instances of the first code are going to be modified. 6 2.1297 1.9633 [(£5}55. 1657535)’2711711}1] g-gggg

Theorem 1:Let C' be an[n,t : M,...,M,] synchronous 7 2.1697 19663 | (3'6:84.6.3.4.2] | 2.0886
code of WOM-rateR, and C’ an [n/,t' : Mj,...,M]]
synchronous code of WOM-rat&®’. Then there exists an . TABLE llI

/ /. / / / / _ ATES OF DECODABLE CODES OBTAINED BY CONCATENATING

[pn, 88" 2 MyM, - MO MY, ]V[t]l/,ll’ e ’tjwt]wt’] syn SYNCHRONOUS CODESWITH TARGET CODE LENGTHn = 256.
chronous cod€’; of WOM-rate Ry = R + ;R’.

A formal proof is omitted here, and we only give the idea of ¢ | Rate of non-dec.| Rate of dec. With data
how the construction works. We first consider only the case—|code from[i4] | with no data fé”,cécfdf acL
wheren’ = t' (in which C’ writes exactly one wit at each 4 1.8564 1.8346 5.3:5.3.6 18455
generation). The key idea is that the’ wits of C are divided 5 1.9664 1.9358 [4,4:4,3,1,1] 1.9498
into n’ blocks of n wits, and thett’ generations are divided _8 2.1297 2.0881 [é%ﬁ 1657535’2’11711}1] g-igzg
H ! H H H ) s Uy Yy Idy Ly Ly .
into ¢ stages oft’ generations. In the first stage, during each? 2.1697 2.1188 [8.6:8.4.6,3.4.2] | 2.1494

of the first¢’ generations we use the encoding function of the

first generation of”' to write in exactly one empty block of

cells.C’ tells us which of the:” blocks is going to be written: encode the same, as in the case’ = ¢’ (since adding\z,,
it writes exactly one wit among’ per generation, which we has no effect moduld,,).

map to one block among the’ blocks at each generation. et us now establish the WOM-rat@, of (.

After this first stage, each block contains a codeword of the . o )

first generation ofC. During the second stage, we use the Ry — Zp:1 211 log(M,, M)

encoding function of the second generatiorChfandC’ once ! nn!

again points to the block that will be written. This process i 1 t

repeated for alk stages. Thus, during thieth generation of =— | log <H Mt + log H (10)
thep-th stage [ < p <t,1 <1 < t'), we pick messages in e p=1 =1

{1,..., M, x M/}, and each message; can be mapped to 1 !

a pair of messagegn,m’) € {1,...,M,} x {1,..., M/} :W( nR+t-n'R) :_/

From the decoder perspective, at all times, either every
block has codewords of the same generagiaf C, or there A. Example
are blocks at generatiop and blocks at generatiop — 1. Let C be the[4,3 : 4,3, 2] code defined by:
Because”' is synchronous, the decoder has knowledge of the

1 2 3 4
value of p (the current stage). Lat' = (¢},..., n) where
¢, = 0 if the k-th block is at generatiop — 1 andc¢), = 1 if Dl_ {0001} {0010} {0100} {1000}
the k-th block is at generatiop. The decoder knows’ and D, %1122’ ?%1111} {1010,0101}  {1001,0110} -
thereforem’. However, it does not have knowledge of whigh ! ’ ’ _ _
g cm3 1101,1110} {111}

block of wits was written last. Therefore, we do not directly

encodem in the block that is written: instead, we encode @et C’ be the[2,2 : 2,1]*"¢ code defined by:

messagen, such that by decoding every block of wits at

generatiorp usingC, and then taking the moduld/,, sum of 1 | ! 2

the decoded messages{,..., M, }, we recovem. my is (D}L1 {01} {10}

(modulo M,) m minus the sum of the decoded messages of (D3) iy -

all the blocks at generatiop (the encoder must therefore be The codeC; obtained with the construction is 8,6 :

able to decode). 8,4,6,3,4,2]"¢ code. Consider that the eight cells are in
Now, if n’ # ¢/, C' may write several wits during somestate(c;,c2) = (1100,0010). Let us first consider the decod-

generations. When this happens, the encoder ofvrites in ing of the message. The generatior(irof the first blocke; is

every block pointed at by, once again so that the modulo2, and that of the second blodk is 1, thusp = 2 (the highest

M, sum of the decoded messagesrisHere, there are more of the two) andc’ = (10). The fact thatC’ is synchronous

degrees of freedom than in the case= t’ (in whichmy was guarantees that only one encoding functiorCéfhasc’ in its

fully determined). A simple way to deterministically ch@osrange: here, it is the encoding function foe 1. Thus, we are

the values that we encode in each of the blocks that will la the first generation/ & 1) of the second stage & 2), so

written is to encodél/,, in each block but the last, and therthe overall generation is= (p—1)t'+1 = (2—1)x2+1 = 3.




We havem’ = Dj(10) = 2. m is the modulo}, sum of V. RESULTS

Dy(cy) for all indices & of a block at generatiop of C. e compare our method of making WOM codes decodable
Here, there is only one block at generatipn= 2 for C \jth the method that adds — 1 data-less cells. For this
block ¢, = (1100), thereforem = Ds(c1) (mod 3) = 1. The  comparison, we consider two different target code lengths:
original message pair was therefgte2). This can be mapped ,, — 64 andn = 256. We then assume, for each value of
tomy € {1,..., My x M} by mi = (m —1)M] +m’, for , and fort betweent and7, that there is a code with WOM-
instance, which givesi, =0 x 2 +2 =2. rate equal to the best currently known WOM-rate ferite

Let us now encode a new message = 2 € {1,2,3} for  cqges (from[[4]), and with length minus the length of the
generationd. Our newm andm' are2 and 1, respectively, gynchronous code that we concatenate to it. We do not use the
so that(m — 1)M; +m’ = (2 - 1) x 141 =2. ¢ = (10)  actual code lengths at which these state-of-the-art WOWbra
will becomec’ = (11) becausefy(1,10) = (11). Therefore, re reached because they are very laige [5].
the second block is going to be written (because the secondrhe results are reported in Tablgs Il dnd IIl. The second
wit of cf changes). We first decode all the blocks aIready 8blumn of each table reports the state-of-the-art WOM-oéite
generatiorp = 2: here, we only have one block at generatiogon_gecodable codes, for each valuetofhe third column
p =2, andDy(c1) = D5(1100) = 1. We therefore encode in ghqys the WOM-rate that would be obtained by appending
the second block:; a messagen, such thatl +mo = m ;1 gata-less cells to a code of length- ¢ + 1 and WOM-
(mod M,), whereM,, = M, =3 andm = 2. Thus,mo = 1. rate equal to the one reported in the second column. The
c; is then replaced by, (1,0010) = (0011). The state of the |55t two columns show, for various synchronous codes, the
cells is (1100, 0011) after this encoding phase. WOM-rate that we obtain for the same target length. The
B. Results 3,3 :3,1,1]%7, [4,4: 4,3,1,1]%", [5,5: 5,3,2, 1, 1]¥"°,

Let us denote by'(C, C") the code obtained by applying@nd [6,6 : 6,5,3,1,1,1]*" codes are from Sectidnlll, the
the construction of Theoref 1 @ andC”. We can iterate the [5:3 : 5,3,6]" code is from Sectiof lll, and thés, 6 :
above construction by choosir@ and C’, and then defining 8,46, 3,4,2]*" code is from the construction of Sectionl IV.
Co = C and for allm > 0, Cp, = F(Cyp,_1,C"). This Note that our technique yields hlgher_WOM_—rates cqmpared to
generates codes with even higher valueg,ofrhich have to 1Ust appending a block of— 1 cells with no information, for
be compared with a construction of synchronous codes frdtfth target lengths. These WOM-rates are (to the best of our
[0] (wheren = ¢ is any power of two and the WOM-rate isknov_vledge) also higher than the best WOM-rates for binary
log,(t)/2). Notice that the two constructions happen to matcRultiple-write codes (and hence better than the rates of any
when we take a€’ = C’ the trivial [2,2 : 2, 1" code. directly decodable code) known prior tol [4], which justifies

First, we restrict ourselves to codes with= ¢ (which are Our approach.
easier to compare) and we fiX¥ = C. The WOM-rate of the

. . . o VI. CONCLUSION
t.,-write codeC,, afterm iterations of the construction is

In this paper, we proposed short synchronous WOM codes

R(Cyn) = mR(C) = log,(tm)R(C) = R(C) logs (tm)- as a basic tool to make non-decodable WOM codes decodable
log, (1) while preserving the WOM-rate as much as possible. We
(11) : . )
R(C) derived bounds for a simple family of short synchronous

Therefore, for codes with = ¢, the higher. is, the better
. . INCHog, 1 .. _WOM codes, and constructed some synchronous WOM codes
this iterated construction works. The code that maximibés tf small values of. Furthermore. we proposed a construction
ratio among those found by our computer search is the ot ) ' ! prop )
R(C) . method to build synchronous WOM codes for higher values of

) Y . 1 )
With n = ¢ = 2 (with log, (1) 2), making the codes from gobtained by concatenating shorter synchronous WOM codes.

[1] the best in terms of asymptotic WOM-rate until code
for higher values ofn = ¢ are found. For instance, Tallk | ACKNOWLEDGMENTS
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