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ABSTRACT 

Spike EEG source localization result is influenced by different errors and approximations, 
e.g., head-model complexity, EEG signal noise, tissue conductivity noise and electrode 
misplacements. For accurate interpretation of source localization it is crucial to understand 
the influence of these errors on the source localization results. In this paper the influence of 
these sources of noise on the EEG source localization were examined in details. Six finite 
element head models were selected for head-model complexity study. A reference head 
model was used to create synthetic EEG signals by placing the dipole source inside the 
model to mimic the epileptic spike signal. For the inverse source localizations an exhaustive 
search method was used to estimate the best dipole parameters with the EEG signals. Results 
showed that the inverse problem is significantly influenced by the head-model complexity. A 
head model with more tissues has better localization results as compared with one with fewer 
tissues. Moreover, CSF layer plays an important role to achieve an accurate source 
localization results. To understand the influence of other sources of noise on the EEG source 
localization, different level of noises were added to EEG signals, tissue conductivities and 
electrode positions, independently. Simulation results showed that source localization is very 
sensitive to the tissue conductivity noises. 4% noise on conductivities cause approximately 
13mm localization error. Moreover, an electrode misplacement error makes approximately 
17% relative error and 8mm localization error for 1cm electrode misplacements. The EEG 
signal with SNR equal to 6 and higher had an acceptable localization error. 
 
Keywords: - epilepsy, inverse problem, and source localization. 
  



 

II 

 

ACKNOWLEDGEMENTS 

Thanks to Almighty. 
The existence of this thesis work would not be possible without the constant support, 

great effort and unmatchable gesture and encouragement from our supervisor Yazdan 
Shirvany.  

We would also like to thank Mikael Persson for the acceptance of our thesis and let us be 
a part of the ongoing research. We deeply appreciate the assistance and help he provided in 
accomplishing this thesis. In the due course of this work, we learnt a lot from him and which 
is priceless. We would also like to thank Hoi-Shun Lui for giving us valuable feedback and 
suggestion to help us improve our results and report. 

We are very grateful to our parents, siblings and family members who were always there 
by our side and prayed for our welfare. 

We would also like to thank our colleagues and friends who always made things easier 
and simpler for us and made us happy. 
Prathamesh Sharad Dhanpalwar & Xinyuan Chen 
Examiner: Hoi-Shun Lui 
 



 

 

Tables of contents 

ABSTRACT .................................................................................................................................. I	  

ACKNOWLEDGEMENTS .............................................................................................................. II	  

CHAPTER 1 INTRODUCTION ....................................................................................................... 1	  

CHAPTER 2 BACKGROUND ........................................................................................................ 3	  

2.1	  Aim	  ............................................................................................................................................................	  3	  

2.2	  Forward	  Problem	  ......................................................................................................................................	  3	  

2.2.1	  Theory	  ................................................................................................................................................	  3	  

2.2.2	  Finite	  element	  method	  (FEM)	  ............................................................................................................	  5	  

2.3	  Inverse	  Problem	  ........................................................................................................................................	  7	  

CHAPTER 3 CHALLENGES AND LIMITATIONS ......................................................................... 10	  

CHAPTER 4 METHODOLOGY .................................................................................................... 12	  

4.1	  Tissue	  Model	  Study	  and	  Noise	  Effect	  Study	  ............................................................................................	  12	  

4.1.1	  Different	  tissue	  models	  ....................................................................................................................	  15	  

4.1.2	  Signal	  noise	  study	  .............................................................................................................................	  17	  

4.1.3	  Conductivity	  noise	  study	  ..................................................................................................................	  18	  

4.2	  Segmentation	  Tools	  .................................................................................................................................	  18	  

4.3	  Segmentation	  effect	  studies	  ...................................................................................................................	  19	  

CHAPTER 5 RESULTS ............................................................................................................... 22	  

5.1	  Model	  study	  ............................................................................................................................................	  22	  

5.2	  Noise	  effects	  ............................................................................................................................................	  25	  

5.2.1	  Signal	  noise	  .......................................................................................................................................	  25	  

5.2.2	  Conductivity	  noise	  ............................................................................................................................	  26	  

5.3	  Segmentation	  effect	  study	  ......................................................................................................................	  31	  

CHAPTER 6 DISCUSSIONS AND CONCLUSIONS ....................................................................... 34	  

References ............................................................................................................................... 35	  

 



 

1 

 

CHAPTER 1 INTRODUCTION 

 Surgical therapy has become an important therapeutic alternative for patients with 
medically intractable epilepsy. Correct and anatomically precise localization of the epileptic 
focus is mandatory to decide if resection of brain tissue is possible. Lot of research and 
methods have been developed for the non-invasive measurement of the electrical brain 
activity. The most important diagnosis tool used at epilepsy surgery centers is 
electroencephalography (EEG), which is used to find the source of activities inside the brain 
by measuring the voltage potential on the scalp with the EEG electrodes at different locations. 
The brain activity is often modelled as a current dipole. It is shown1 that this current dipole is 
an acceptable approximation for modelling the neural activities in the brain. 

The localization of brain sources is vital in different ways and in various areas of medical 
diagnosis of brain such as clinical neuroscience, epilepsy treatment, etc. As the brain sources 
are the cause of the potential at the scalp, it can be used to localize the source and also can be 
used to know the underlying neural activity. Different criteria like modelling the brain’s 
electrical activity, modelling the brain’s volume conduction, geometry of the head model, 
reconstructing the brain’s electrical activity in accordance to the EEG are the keys to source 
localization. 

The procedure of the EEG source localization deals with two problems. First, the forward 
problem to find the scalp potentials for the given current dipole(s) inside the brain, and 
second the inverse problem to estimate the source(s) that fits with the given potential 
distribution at the scalp electrodes. Thus, source localization requires an accurate solution of 
the inverse problem with a realistic computational effort for the forward problem. Source 
localization is heavily dependent on the choice of dipole model and several different 
alternatives have been suggested in the literature2, 3. Also its accuracy is affected by different 
factors including, head-modelling complexity, EEG signal noise, tissue conductivity noise, 
and electrode misplacements.  

Understanding the influence of these errors is very important to have source localization 
as reliable pre-surgical workup. In this project, four parameters were studied. These four 
parameters are: different head models, signal noise, conductivity noise and segmentation 
errors. EEG-based source localization is an active field of research4, but partly due to the 
mentioned shortcomings the computational techniques are not yet part of the standard 
pre-surgical diagnostic workup. 

 Realistic head models of the human brain are quite complex with the tissue 



 

 

 

conductivities, which are highly anisotropic and inhomogeneous. The conductivity values of 
the tissues play a crucial role in the source localization. These conductivities are also 
associated with respective noise levels and the project throws light on the sensitivity of this 
noise level on the source localization. 

 The complexity of the realistic head models of human brain also leads to huge time 
consumption during forward problem. It is not a big problem. However, it would be better if 
the time could be decreased. Simplifying the head models could significantly save time, but 
the accuracy would be lower. As a result, different tissue-component head models were 
tested to try and obtain the balance between the accuracy and the time consumption. 

 Another parameter that influences the accuracy of the estimated source position is the 
segmentation errors. As the human brain is very complex, exact segmentation is highly 
impossible. The segmentation also plays a crucial role in the source localization process. The 
subsequent of the tissues is made based on the analysis done through segmentation tools like 
FMIRB software library (FSL), widely used imaging segmentation software. Thereby, this 
process is tested by three threshold levels, each segmented by FSL with different threshold 
values. By this, one can understand the effects of segmentation in the EEG source 
localization. Therefore, the influence of the segmentation at different thresholds on source 
localization is studied. 

 While using EEG to measure the potentials generated by the epilepsy source, the signals 
are easy to be disturbed by the noise and interference existing in the surrounding 
environment. Thus, signal noise is another parameter that must be considered to know its 
influence on the accuracy of the EEG source localization. Various noise levels were applied 
to carry out this analysis. 

 The rest of the report is structured as follow: Chapter 2 discusses the challenges and 
limitations in EEG source localization. Chapter 3 introduces the methodology of this study. 
The results are given in Chapter 4. In Chapter 5, the results are discussed and finally, in 
Chapter 6, the conclusions are made. 

  



 

 

 

CHAPTER 2 BACKGROUND 

2.1 Aim 

 The aim of the EEG source localization is to find out the areas of brains that are 
responsible for brain waves of interest. The aim is achieved by solving two problems. They 
are forward and inverse problems. The forward problem consists of finding the potentials at 
the electrodes, which is initiated by the given electrical source. The inverse problem is about 
finding the source responsible for the obtained electrode potentials by making use of these 
potentials. During the last two decades, the development in the computational techniques and 
extensive research had given a new approach in solving the forward and inverse problems4. 

2.2 Forward Problem 

2.2.1 Theory 

The forward model describes the propagation of current from the source to the scalp. 
There could be errors in the construction of the volume conductor and the geometry. Thereby, 
the errors can also cause subsequently in inverse problem also. That is miss localization of 
the neural source5. 

Historically, concentric nested spheres with homogeneous and isotropic conductivities 
were assumed to be the most commonly used head model from the modelling point of view 
and also from solution point of view. But with the due course of the extensive research in 
solving the forward and inverse problems in the realistic non-spherical head model, various 
numerical methods were used to model the realistic and the most approximate head model 
with respect to its shape, heterogeneity, conductivity of tissues6. 

 Also, the quasi-static condition is considered as the current in the conducting brain 
changes with time, but this change takes place very slowly and therefore, seems like a stable 
state. The wavelength becomes much larger than the radius of the brain. Therefore, it is 
named as quasi-static condition. The Maxwell equation for the potential can be used to model 
the quasi-static approximation. 

In order to relate the current dipole and the potential at a distance in the conducting 
medium, Poisson’s equation can be used. This equation is developed from the divergence 
operator. Applying the divergence operator to the vector field J(x, y, z), the flux density of 
the vector field from an infinitesimal volume around a specific point can be represented. It is 



 

 

 

defined as follows4: 

 ∇ ∙ 𝑱 = lim
!→!

1
𝐺 𝑱𝑑𝑺

!"
 (1) 

where ∇ ∙ 𝑱 is the current source density, 𝑱𝑑𝑺!"  is the flux or a current, S is the area 

of a closed surface encircling the specific point, and G is the volume of the region delimited 
by the closed surface. 
 
 The current source density can also be symbolized with Im, which is: 

 ∇ ∙ 𝑱 = 𝐼! (2) 

 Ohm’s law shows the relationship between the current density J and the electric field E, 
which is: 

 𝑱 = 𝜎𝑬 (3) 

where σ is the conductivity value and can be a position-depended variable. 

 Due to the quasi-static conditions, Faraday’s law equals zero. Therefore, a link between 
the potential field V and the electric field E can be constructed using the gradient operator: 

 𝑬 = −∇𝑉 (4) 

 The vector 𝛻𝑉 at a point shows the direction where the potential V most rapidly 
increases, and the minus sign tells the orientation of the electric field is from the high 
potential area to a low potential area. 

 Combining all the equations above together, the Poisson’s differential equation is 
obtained. That is: 

 ∇ ∙ 𝜎∇ 𝑉 = −𝐼! (5) 

Figure 2.1 below shows the dipole moment and its potential distribution. The figure also 
shows the polarity of the dipole. 



 

 

 

 

2.2.2 Finite element method (FEM) 

Finite Element Method (FEM) is a method for numerical solutions of field problems 
relying on the development of computer techniques7. In 1943, R. Courant applied the 
piecewise continuous functions in triangular domain8. This is thought to be the generation of 
FEM. This method came into the industry since 1950s, starting from the airframe problem 
and structural analysis9. In 1960, Ray W. Clough first raised the term finite element. In the 
late 1960s and early 1970s, this method was extensively used to solve different engineering 
problems7. Now, it has become a commonly utilized numerical method in many industries 
such as aerospace, automotive, chemical, civil, electrical, mechanical, and medical10. 

Many engineering and applied science problems can be described by “governing 
equations” and “boundary conditions”, and partial differential equations (PDE) are common 
used to express the governing equations and boundary conditions7. Nowadays, the 
engineering problems become more complex than before. It is impossible to use the 
traditional PDE methods to solve these problems due to the complex geometry and other 
issues such as the complex properties and boundary solutions. Besides, current product 
design cycle requires getting the optimized solutions in short time while the traditional PDE 
methods always cost too much time11. Because of the two main problems, engineers consider 
to perform some approximate solutions instead, which spend acceptable time but can give 

 

Figure 2.1 Potential distribution of the current dipole 
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reasonable result. FEM is such kind of method. 

The fundamental concepts behind the method are given here. In FEM, a system is 
divided into some small elements, which have simple geometric shapes. Then these elements 
are expressed using some unknown values at specific positions in the elements, with some 
assumptions about the points and the governing relationships. These specific points are called 
nodes. Apply the boundary conditions to these elements to connect them again, a set of 
algebraic equations are acquired11. These equations can be expressed in this form: 

 𝐾 𝑢 = 𝐹  (6) 

where [K] is the property, {F} is the action, and {u} is the behaviour. 

In these three parameters, {u} is the unknowns one that should be solved. Thus, the above 
equation can be rewritten like this: 

 𝑢 = 𝐾 !! 𝐹  (7) 

Solutions of these equations tell the engineers the approximate behaviour of this system7. 
These solutions can be used later for further calculations. For these approximate solutions, 
error analysis is necessary. 

Hence, the various steps of FEM are8: 

(1) Select suitable field variables and the elements, 
(2) Discritize the system, 
(3) Select proper nodes (select interpolation functions), 
(4) Find the properties of element, 
(5) Put element properties together to obtain the global properties, 
(6) Apply the boundary conditions, 
(7) Solve the system equations to get the unknown values, 
(8) Make the additional calculations to get the required values, and 
(9) Error analysis. 

Compared with other EEG source localization projects, this project did not select the 
simple spherical model to represent the head geometry but used the realistic model. This 
made the problem more complex and it is difficult to solve this problem. Therefore, FEM 
was introduced in this project. 

Following the steps of FEM given above, the potential values at specific positions on the 
scalp were the required variables. Those positions are the points where the EEG electrodes 
were put. In order to measure those potentials, the 2D/3D head model was divided into many 
meshes first. The size of each mesh is 1mm×1mm/1mm×1mm×1mm. 



 

 

 

2.3 Inverse Problem 

 EEG inverse problem uses the scalp EEG signal to estimate the corresponding current 
source inside the brain. It is an ill-posed problem, i.e., an underdetermined problem and no 
unique solution can be given12. The reasons for these issues are the space of possible source 
distribution has infinite dimension and the number of electrodes is finite. 

 Different inverse approaches can be classified into two groups, non-parametric method 
and parametric method. The non-parametric method works on the distributed source model 
where the number of dipoles is unknown but the locations and orientations are fixed. 
Parametric method, on the other hand, needs fewer dipoles and the number of dipoles is fixed. 
Compared with the non-parametric method, parametric method can estimate the current 
dipole nicely. Therefore, the parametric method was applied to solve the EEG inverse 
problem in this project. 

 In order to get unique result, the location and the moment of the current dipole was given 
in this project. Also, the least squares sense was used and a minimization problem was solved 
to obtain the estimated source position. 

 There are three main steps in this project. Firstly, initiate the dipole at a proper position 
in the reference model and calculate the corresponding scalp potentials. Then calculate the 
potentials of each grey matter point in the modelling group. Both the steps are forward 
problem in a way. Comparing all sets of potentials in the modelling group with the potentials 
of reference model, one set of data in the modelling group that has the smallest difference is 
selected and the corresponding position in the grey matter is termed as estimated dipole. This 
step is inverse problem. 

 According to (5), the EEG forward problem is to solve the Poisson’s equation to find the 
scalp potentials V. This parameter is determined by three factors, the electrode position r, the 
dipole position rdip and the dipole moment ed. For one dipole and one electrode, the electrode 
potential is: 

 𝒖 𝒓 = 𝑔 𝒓, 𝒓𝒅𝒊𝒑, 𝒆𝒅  (8) 

 In this equation, 𝑔 𝒓, 𝒓𝒅𝒊𝒑, 𝒆𝒅  indicates the potential at an electrode positioned at a 

point on the scalp with position vector r generated by a single dipole with dipole moment ed 
located at rdip inside the brain. 

Assume the superposition principle, another form of (8) could be given, which is: 



 

 

 

 𝒖 𝒓 = 𝑔 𝒓, 𝒓𝒅𝒊𝒑 𝒆𝒅 (9) 

If the number of electrodes is extended to N, (9) can be re-written in the following way: 

 𝑼 =

𝒖 𝒓𝟏
𝒖 𝒓𝟐
⋮

𝒖 𝒓𝑵

=

𝑔 𝒓𝟏, 𝒓𝒅𝒊𝒑
𝑔 𝒓𝟐, 𝒓𝒅𝒊𝒑

⋮
𝑔 𝒓𝑵, 𝒓𝒅𝒊𝒑

𝒆𝒅 = 𝑮𝑴 (10) 

where G is called gain matrix, each row of which gives the current flow for the specific 
electrode12, and M is the dipole moment matrix. 

 According to (10), both the scalp potentials of the dipole in the reference model Umeas 
and the potentials of each grey matter point in the modelling group Ucal can be received 

 For the comparison work, the least squares sense was applied, which is: 

 𝑑! = 𝑼𝒎𝒆𝒂𝒔 − 𝑼𝒄𝒂𝒍
! = 𝑼𝒎𝒆𝒂𝒔 𝑗 − 𝑼𝒄𝒂𝒍

! 𝑗 𝟐
!

!!𝟏

 (11) 

where i is the index of the grey matter points vector. 

 The set of Ucal which gave the smallest d was generated by the position where the 
estimated dipole should be placed. Thus, the minimization problem should be solved, which 
is: 

 𝐷 = 𝑚𝑖𝑛 𝑼𝒎𝒆𝒂𝒔 − 𝑼𝒄𝒂𝒍 𝒓!  (12) 

where rg is the position which is considered as the estimated source position. 

 To evaluate the results, three parameters were calculated, which are localization error 
(LE), relative error (RE) of the potentials and the orientation error (OE). The localization 
error is the distance between the estimated source position and the actual dipole position. It is 
defined as: 

 𝐿𝐸 = 𝐷𝑖𝑝𝑜𝑙𝑒  𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 − 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑  𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛  (13) 

The relative error is defined as: 



 

 

 

 𝑅𝐸 =     
(𝑉!"#! − 𝑉!"#$! ）

!!
!!!

𝑉!"#$! !!
!!!

      (14) 

where e is the index of the electrode vector, Vmeas is the potentials of the actual dipole, and 
Vcal is the potentials of the estimated source. The orientation error is defined as: 

 𝑂𝐸 = cos!!
𝑴𝒅𝒊𝒑𝒐𝒍𝒆 ∙𝑴𝒆𝒔𝒕

𝑴𝒅𝒊𝒑𝒐𝒍𝒆 𝑴𝒆𝒔𝒕
 (15) 

where Mdipole is the actual dipole moment and Mest is the estimated source moment. 

  



 

 

 

CHAPTER 3 CHALLENGES AND LIMITATIONS 

 In EEG source localization, there are some challenges and limitations that restrict the 
result accuracy. These challenges and limitations could be caused by different factors. This 
chapter will discuss these issues. 

Inaccurate Conductivity Values 

 The EEG source localization is a method relying on electrical tissue conductivities13. 
Accurate conductivity values can improve the accuracy of the head model and give better 
estimation. However, it is a big problem to determine most of the tissues’ conductivity values. 
The ideal condition is to use the in vivo conductivity values, but it is impossible to measure 
these values in living patient without surgery14. Thus, some assumptions are needed. 
Unfortunately, due to the high inhomogeneity and even anisotropy of the tissue 
conductivities15, even the assumptions are hard to make. If some lesions exist inside the brain, 
the problem becomes even more complex. As the lesion’s conductivity value is totally 
different from the normal tissues surrounding them, eccentric conductive inhomogeneity in 
the head volume conductor is generated14. Because of the above reasons, there exists a big 
challenge in EEG source localization. 

Intensity Inhomogeneity  

 Magnetic Resonance Imaging (MRI) is used in EEG source localization due to its several 
advantages compared with other diagnostic imaging techniques. It has high spatial resolution, 
which makes this technique sensitive to the subtle structure changes or abnormities. It can 
describe the soft tissues perfectly, especially for clinical diagnosis of cerebral and cardiac 
diagnose. More important, it is not hazardous for patients. For many years, 1.5T is the gold 
standard magnetic flux density in MR systems. Currently, the high field MRI has been 
applied, which gives higher signal-to-noise ratio (SNR) and shorter acquisition time. 
However, high field MRI also has some defects. The main problem is that the high field MRI 
introduces RF inhomogeneity. This problem leads to the intensity inhomogeneity: the pixels 
of the same tissue may have totally different intensity values while the pixels belonging to 
different tissues may have the similar intensities16. This means that in the intensity histogram, 
each tissue covers large area and there could be big overlapping between two tissues. The 
overlapping causes big challenge when doing tissue segmentation: Tissues cannot be 
segmented perfectly. As a result, the estimation accuracy will be affected. 

Software Limitation 

 There are several software packages that can be used in brain tissue segmentation, such 



 

 

 

as SPM, FreeSurfer, FSL, and etc. In this EEG source localization project, FMRIB Software 
Library (FSL) is utilized to segment the MR images. This is a comprehensive, self-contained 
package for MRI data analysis. It has some advantages compared with other segmentation 
software packages. According to17, FSL can segment more tissues than SPM and give better 
segmentation results than FreeSurfer. However, the limitation of this software cannot be 
ignored. Maximally, it can only segment five tissues efficiently: Scalp, skull, white matter, 
grey matter and CSF. It is possible to segment more tissues, but the errors will be very high. 

CSF Segmentation 

 Cerebrospinal fluid (CSF) is produced by the choroid plexus in the ventricles (cavities 
within the brain). It occupies the subarachnoid space constructed by the arachnoid mater (the 
middle layer of the brain cover) and the pia mater (the innermost layer of the membranes 
covering the brain). Because the brain and the CSF are similar in density, the brain can float 
in and be protected by CSF. This means that CSF spreads widely inside the brain, either 
around the skull or surrounding the grey matter and other tissues.  

 

This wide distribution brings problem when CSF should be segmented. The analysis 
described in17 showed that FSL performed erroneous CSF segmentation. There are other 
software that can do better CSF segmentation, e.g. SPM. However, as FSL was used in this 
EEG source localization project, CSF segmentation could be a big challenge for getting good 
estimated source position. 

  

 

Figure 3.1 The distributions of grey matter, white matter and CSF 



 

 

 

CHAPTER 4 METHODOLOGY 

 This chapter describes different methods applied in this research work and the way it was 
carried out. In this project work, the modified subtraction method18 is used to model the 
dipole for forward problem. The inverse problem in EEG source localization uses the scalp 
EEG signal to estimate the corresponding current source inside the brain and it is an ill-posed 
problem. To attain uniqueness it is necessary to impose a priori knowledge on the source 
distribution. For the inverse problem, the common practice is followed and the parameters 
that give the best fit in least squares sense are chosen. An exhaustive search pattern, i.e., 
inversion was performed for each possible source location in the cortex area inside the brain, 
and the location producing the smallest residual norm was selected as the best possible 
source location.  

There are two data sources applied in this project, the virtual family database and the real 
MR images. Depending on the materials used for simulation, the whole project was mainly 
divided into two phases: model studies and noise effects using virtual family data in 2D and 
segmentation effect studies using real MR images in 3D. The segmentation was performed 
using FSL. 

4.1 Tissue Model Study and Noise Effect Study 

In this section, the performance of different tissue models was assessed, i.e. different 
models were generated with different combinations of the tissues. Then signal noise and 
conductivity noise were introduced separately to understand how they effect and influence 
the source localization. The general procedures are: 

Step 1: Use all the available tissues to build the reference model and calculate the potentials 
of the fixed dipole. These potentials are used as the reference EEG signal. 

In case of the signal noise study, the noise will be added to the reference EEG signal. 

Step 2: Construct different head models using different tissue components. In each head 
model, calculate the potentials of all grey matter points. 

 In case of the conductivity noise study, the noise is added to the head model that 
performs the best in tissue model study. 

Step 3: Calculate the goal function between the potentials of each grey matter point in the 
estimated head model and the potentials of the actual dipole according to (11). Exhaustive 
search was performed in this step in order to find all the grey matter points. 



 

 

 

Step 4: Normalize the goal function values of each grey matter point and find the minimum 
value in these normalized values. 

Step 5: Find the estimated dipole position and check the localization, error relative error and 
the orientation error between the estimated source and the actual dipole using (13), (14) and 
(15). 

The above algorithm is shown in the form of a flowchart below: 
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Figure 4.1 Work frame of simulation using virtual family 
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4.1.1 Different tissue models 

 The existence of the significant tissues was verified before starting the study. The 
virtual family model utilized in this project contains 10 tissues: scalp, marrow red, fat, skull, 
grey matter, connective tissue, blood vessels, white matter, cerebellum and cerebral spinal 
fluid (CSF). The conductivity values were taken from a database19. The conductivities of 
tissues of less significance were changed to the important tissues with respect to the 
structural proximity. This study was simulated to understand the effects of head-model 
complexity on the EEG source localization and find out the optimal number of tissues for the 
head-model. Six head models with number of tissue vary from 4 to 9 were compared with a 
reference head model, i.e., a model with all available tissues. The model configuration is 
given below: 

Model 0: This head model consists of all ten tissues, which are listed in Table 1 and this head 
model is considered as the reference model (Model ref). 

Model 1: This head model is derived from Model 0 in which the conductivity of grey matter 
is set equal to the white matter, i.e. a nine tissue-type head model. 

Model 2: This head model is derived from Model 0 and the conductivities of grey matter and 
CSF are set equal to the white matter, i.e. an eight tissue-type head model. 

Model 3: This head model consists of scalp, skull, white matter, grey matter and CSF, i.e. a 
five tissue-type head model. This head model is also derived from Model 1 by replacing 
other tissue’s conductivity values with the adjacent tissue’s values. 

Model 4: This head model is derived from Model 3 where the conductivity of CSF is given 
the grey matter’s value, i.e. a four tissue-type head model. 

Model 5: This head model is also derived from Model 3 and it is a four tissue-type head 
model. In this head model, the CSF is set the same as the white matter. 

Model 6: This head model is derived from Model 3 but with conductivity of CSF equal to the 
bone, i.e. a four tissue-type head model. 

Table 4-1 shows the relative percentage of occupancy of each tissue, tissue availabilities 
and conductivity values in each model. In this table, the letter “Y” means that the 
corresponding tissue is available on the model and “N” means the tissue is not available on 
the model. A reference head model was used to create synthetic EEG signals by placing the 
artificial source inside the model to mimic the clinical data from patients. For the inverse 
source localizations an exhaustive search method was used to estimate the best dipole 
position and orientation with the synthetic EEG data thus all the possible positions were 



 

 

 

searched in the cortex. The estimated mean localization errors were the best results one could 
localize from a given model. 

 

Compared with the first three models (Model 1, Model 2 and Model 3), Model 4, Model 
5 and Model 6 replaced the CSF with the tissues that exist around CSF in the brain. In 
practice, it is common that the conductivity value of CSF can be replaced by the conductivity 
values of adjacent tissues. Therefore, it is necessary to consider this condition. 

In this 2-D study, all the head models have the mesh resolution of 1×1 mm. All the 
models had 14,078 cells and 16,004 nodes. 30 electrodes were placed around the model and 
the distances between each two adjacent electrodes are equal. The forward problem was 
solved for both the actual dipole in the reference head model and each grey matter point in all 
other head models. The dipole was set to be y oriented dipole and the x and y coordinates of 

Table 4-1: Head tissue percentage, tissue availabilities and conductivity values in each model 

 Ref. Model Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Tissues Percent 

(%) 
Value Y/N Value Y/N Value Y/N Value Y/N Value Y/N Vlaue Y/N Value Y/N 

GM 38.3 0.089 Y 0.058 N 0.058 N 0.089 Y 0.089 Y 0.089 Y 0.089 Y 

WM 21.9 0.058 Y 0.058 Y 0.058 Y 0.058 Y 0.058 Y 0.058 Y 0.058 Y 

CSF 13.4 2.000 Y 2.000 Y 0.058 N 2.000 Y 0.089 N 0.058 N 0.020 N 

Fat 6.4 0.021 Y 0.021 Y 0.021 Y 0.020 N 0.020 N 0.020 N 0.020 N 

Marrow 
red 

2.5 0.002 Y 0.002 Y 0.002 Y 0.020 N 0.020 N 0.020 N 0.020 N 

Skin 5.9 0.000 Y 0.000 Y 0.000 Y 0.000 Y 0.000 Y 0.000 Y 0.000 Y 

Skull 8.9 0.020 Y 0.020 Y 0.020 Y 0.020 Y 0.020 Y 0.020 Y 0.020 Y 

Connective 
tissue 

1.7 0.163 Y 0.163 Y 0.163 Y 0.089 N 0.089 N 0.089 N 0.089 N 

Cerebellum 0.8 0.109 Y 0.109 Y 0.109 Y 0.089 N 0.089 N 0.089 N 0.089 N 

Blood 
vessels 

0.3 0.7 Y 0.7 Y 0.7 Y 2.000 N 0.089 N 0.058 N 0.058 N 

 



 

 

 

this dipole were 0.0470 and 0.0550 and the dipole moment was (0.0000, 0.1000). Figure 4.2 
shows the reference head model, the actual dipole position and the dipole moment. 

 

4.1.2 Signal noise study 

A more realistic case closer to the clinical practice is to add noise to the model. In 
practice, noise exists everywhere. There are aberrations and disturbances in the signal 
obtained from the scalp using the electrodes. Therefore, in this EEG source localization 
project, the random Gaussian white noise was added to achieve the desired signal to noise 
ratio (SNR). In the real EEG, SNR usually has a value between 6 to 10 where the SNR is 
defined as: 

 𝑆𝑁𝑅 = 10 log
𝑃!"#$%&
𝑃!"#$%

 (16) 

where Psignal is the power of the signal, and Pnoise is the power of the noise. The additive noise 
was generated such that its power spectrum matches the power spectrum of human EEG6. As 
a result, the influence caused by noise could be studied. For each value of SNR, it was 
repeated for 200 times. 

To analyze the results, the standard derivations (STD) for all the SNR values in all the 

 

Figure 4.2 The reference head model and the actual dipole. The star shows the dipole position and the blue 

arrow gives the moment of this dipole. 



 

 

 

head models were calculated. This is the parameter that describes the dispersion of a set of 
data from the average. Low standard derivation value means that all data points are close to 
the mean value. Standard derivation is the square root of variance and can be defined as: 

 𝑆𝑇𝐷 =     
1
𝑁 𝑥! − 𝑥 !

!

!!!

 (17) 

where xi is the ith point in this data set and 𝑥 is the average value of the data set. 

4.1.3 Conductivity noise study 

 Conductivity noise is also called conductivity uncertainty. There are two main reasons for 
the occurrence of this problem. Firstly, it is impossible to measure the actual conductivity 
values in a living body. Another reason is that little attention is paid to brain lesion, which 
could create dramatic effect from normal tissues14. In this part of study, the influence of the 
conductivity noise was analyzed and the acceptable range of noise was obtained. 

 In this study, a random Gaussian noise with δ was added to the tissue conductivity values 
according to the following formula: 

 𝜎!"# =   𝜎 +   𝛿×𝑟𝑎𝑛𝑑 (18) 

where σnew is the new conductivity values after adding conductivity noise, σ is the original 
conductivity values, δ is the variance values, rand() is a random Gaussian noise with zero 
mean and variance one. 15 variances were applied in this study. Those seven values are 0.005, 
0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04, 0.045, 0.05, 0.06, 0.07, 0.08, 0.09 and 0.1. For 
each variance, the same procedure was repeated for 200 times. 

4.2 Segmentation Tools 

 FSL can be defined as an integrated library with the analysis tools for functional 
magnetic resonance imaging (fMRI), diffusion tensor imaging (DTI) and MRI brain image 
data. It is developed by the functional MRI of the brain (FMRIB) analysis group at the 
Oxford Centre in United Kingdom (UK)20, 21. 

 The tools available in FSL can be used to segment the brain into its constituent tissues; it 
can also be used to extract only the brain and also to register two images. There are many 
other tools used with respect to the need. The tools are available separately for functional 



 

 

 

MRI data, structural MRI data and diffusion MRI data. This section is about the structural 
MRI tool used in the project and the way it helps in obtaining structural importance of the 
anatomical structures in order to compare them.  

The main concern in any medical imaging application is the accurate brain segmentation. 
Also, the brain must be segmented into its constituent parts from the non-brain tissues. FSL 
implement brain segmentation by doing the following steps: Firstly, the input image should 
be registered with the reference image using FMRIB’s Linear Image Registration Tool 
(FLIRT); Secondly, Brain Extraction Tool (BET) is applies to extract scalp and skull from the 
registered image; Then the brain is segmented into grey matter, white matter and CSF using 
the function called FAST, which is the abbreviation of FMRIB’s Automated Segmentation 
Tool. Finally, five tissues were given as the outputs, which are scalp, skull, white matter, 
grey matter and CSF20.  

 In order to get rid of the motion artefacts, a tool called MCFLIRT is also used. 
MCFLIRT and FLIRT use the same technique. 

4.3 Segmentation effect studies 

This section discusses the effects of segmentation on the source localization. 
Segmentation in medical imaging is one of the most critical and important concepts. In order 
to realize and get the realistic analysis, the brain has to be segmented into its constituent parts 
correctly. The most accurate segmentation gives the most realistic head model. 

In this project, FSL, the most common used segmentation software, was utilized to 
segment the 3D MR images. Giving different threshold values and by applying BET, three 
different models were generated by extracting the skull from the image generated. This 
threshold determines the amount of skull extracted from the MR image. The smaller this 
value is, the larger the brain’s outline is estimated. The threshold values used were 0.3, 0.4 
and 0.5. 

 When the segmentation process was performed, the Dice’s coefficient was calculated. 
This coefficient is a similarity coefficient indicating the agreement between two data sets22, 23. 
The definition of the Dice’s coefficient is given below. Assume i1 and i2 are two individuals. 
Each of them has a binary vector, which describe the distribution of the data. For these 
binary vectors, 1 designates presence and 0 designates absence of a sample at some position. 
Denoting a = the number of positions shared by both individuals, b = the number of positions 
occupied only by i1, c = the number of positions taken only by i2

23, d = the number of 
positions belonging to none of these two individuals, and n = the total number of the two 
individuals, that is n = a+b+c+d. Then the Dice’s coefficient is given in the following 



 

 

 

formula23: 

 𝐷 𝑖!, 𝑖! =   
2𝑎

2𝑎 + 𝑏 + 𝑐 (19) 

 In this project, one of the individuals is the ground truth and the other is the estimated 
model. Table 4-2 to Table 4-4 show the Dice’s coefficients for the three models in this 
project. 

 

 

Table 4-2: Dice’s coefficients for model with threshold = 0.3 

 
White 
Matter 

Grey 
Matter 

CSF Skull Inner Skin Outer Skin 

White Matter 629919 44502 0 0 265 2 

Grey Matter 13324 801639 84082 0 0 257 

CSF 0 69156 301166 0 0 1623 

Skull 0 0 3493 358602 0 466 

Inner Skin 0 0 12222 39433 674679 315 

Outer Skin 45 0 0 0 0 4045428 

 

Table 4-3: Dice’s coefficients for model with threshold = 0.4 

 
White 
Matter 

Grey 
Matter 

CSF Skull Inner Skin Outer Skin 

White Matter 630565 44212 0 0 0 0 

Grey Matter 9646 790751 102515 0 0 0 

CSF 0 62 371883 0 0 0 

Skull 0 0 3959 358602 0 0 

Inner Skin 0 0 12537 0 714112 0 

Outer Skin 12 0 0 0 0 4055395 

 



 

 

 

 

 The source localization was done using these three models in MATLAB. The procedures 
are the same as the simulations using virtual family data in 2D. The coordinates of the initial 
dipole’s position are 0.1125, 0.1100 and 0.1020.  

  

Table 4-4: Dice’s coefficients for model with threshold = 0.5 

 
White 
Matter 

Grey 
Matter 

CSF Skull Inner Skin Outer Skin 

White Matter 630471 44247 0 0 23 23 

Grey Matter 10527 788226 102184 0 0 1178 

CSF 0 6908 357544 0 0 7493 

Skull 0 0 3046 357855 0 913 

Inner Skin 0 0 11002 1516 712596 1535 

Outer Skin 12 0 0 0 0 4054877 

 



 

 

 

CHAPTER 5 RESULTS 

5.1 Model study 

To check the performance of different head models, the potentials generated by the same 
dipole in different head models and the goal function of each head model are given. Figure 
5.1a shows scalp potentials of the real dipole in the reference model and Figure 5.1b shows 
goal functions in the reference model.  

 

The patch plot of scalp potentials of a Y-oriented dipole of six tested head models are 
shown in Figure 5.2. Compared with the potentials generated in the reference model, the 
potentials generated by Model 3 are closest to the reference potentials. Model 2, Model 4, 
Model 5 and Model 6 give the potentials that are very different from the reference potentials. 
Also, the Model 1 with 9 tissues, have error more than the Model 3 with 5 tissues. To get 
better understanding, Table 5-1 was given. This table shows the relative error between the 
potentials generated by the actual dipole in the reference model and the potentials generated 
by the same dipole but in the reconstructed head model. Both the table and the figures show 
that Model 3 performed the best. This means that the number of tissues used to build the 
head model is not immaterial. But, the type of the tissues is the key factor. 

  

(a)                                      (b) 

Figure 5.1 (a) Potentials inside reference model and (b) the goal functions of reference model. The 

yellow star shows the position of the actual dipole and the blue arrow shows the moment of this actual 

dipole. The green point shows the estimated source position and the red arrow shows the moment of 
the estimated dipole. 

 



 

 

 

 

 

Figure 5.3 is the goal functions of different estimated models. The goal function gives 
the relative error between the potentials at scalp due to real dipole and potentials at scalp due 
to each grey matter’s scalp potentials in each model. In order to get better visulization, the 
logarithmic scale is chosen in the figures. In Figure 5.3, white meshes belong to the non-grey 
matter tissue types. Those meshes were not considered during exhaustive search; Colour 
meshes are meshes that belong to grey matter. The darker the colour is the smaller relative 
error this mesh has, and the darkest place is the position where the estimated dipole should be 
located. Compare each model’s goal functions with the goal functions shown in Figure 5.1b 
and consider about the real dipole’s position as well, it is found that Model 3 works the best. 
The position estimated by using Model 3 is almost the same as the real dipole’s position. 

   

   

Figure 5.2 Scalp potentials of six head models for an x oriented dipole in patch plot. (A) Model 1 with 

nine tissue-types. (B) Model 2 with eight tissue-types. (C) Model 3 with five tissue-types. (D) Model 4 

with four tissue-types. CSF is given grey matter’s conductivity value. (E) Model 5 with four tissue-types. 

CSF is given white matter’s value. (F) Model 6 with four tissue-types. CSF is given bone’s value. The 
potentials are given in logarithmic format. The star shows the position of the actual dipole and the arrow 

shows the moment of the actual dipole. 

Table 5-1: Relative errors between the reference model potentials and the reconstructed model 
potentials of the actual dipole (REsame) 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

REsame (%) 38.03 61.40 0.34 24.77 28.31 36.78 

 



 

 

 

Model 2, Model 4, Model 5 and Model 6 gave the bad results. Areas with minimum relative 
errors are far from the reference dipole position compared with Model 1 and Model 3. All 
these models had CSF merged with some other tissue. This indicates that CSF plays a vital 
role in EEG source localization method. 

 

Table 5-2 lists the estimated dipole positions in all models. The localization errors (LE), 
orientation errors (OE) and the relative (RE) for different models are also represented in this 
table. The relative errors in this table are the one between potentials of the actual dipole and 
potentials of the estimated source (REdiff).  

   

   

Figure 5.3 Goal functions of different head models. (A) Goal functions for Model 1 with nine 

tissue-types. (B) Goal functions for Model 2 with eight tissue-types. (C) Goal functions for Model 3 

with five tissue-types. (D) Goal functions for Model 4 with four tissue-types. CSF is given grey 

matter’s conductivity value. (E) Goal functions for Model 5 with four tissue-types. CSF is given white 
matter’s value. (F) Goal functions for Model 6 with four tissue-types. CSF is given bone’s value. The 

blue star indicates the actual dipole’s position and the blue arrow indicates the actual dipole’s moment. 

The green point indicates the estimated dipole’s position and the red line is the estimated dipole’s 

moment. 



 

 

 

 

5.2 Noise effects 

5.2.1 Signal noise 

 Based on the model study’s results, Model 3 was used for the noise study part. In real 
EEG the background signals have frequency between 8 to 13Hz, known as Alpha rhythm, 
and its amplitude is in the range 30 to 40 µV. The spike signals usually have duration in the 
range 30 to 70ms. The amplitude of these signals could be from 100 to 200 µV. Noises with 
different levels of SNR were added to the reference EEG signals. Table 5-3 lists the results 
for different noise levels. Figure 5.6 shows results for EEG signals contaminated with noises. 
As shown in Figure 5.6a the EEG source localization results have LE less than 1mm, which 
is the model resolution for SNR 6 and higher. Figure 5.6b shows the orientation results and 
Figure5.6c shows the standard derivation results. Both the table and the figure show that, 
with the increasing of SNR values, the errors will decrease. 

Table 5-2: Estimated positions and errors of different head models 

Models Estimated Positions LE (cm) Estimated Moments OE (deg) REdiff (%) 

Reference (0.0470, 0.0550) 0 (0.0000, 0.1000) 0 0 

Model 1 (0.0450, 0.0530) 0.28 (-0.0148, 0.0813) 0.1796 21.13 

Model 2 (0.0435, 0.0355) 1.98 (-0.0000, -0.0000) 3.0568 54.97 

Model 3 (0.0470, 0.0550) 0 (-0.0010, 0.0859) 0.0111 21.91 

Model 4 (0.0435, 0.0345) 2.08 (-0.0000, -0.0000) 3.0453 55.30 

Model 5 (0.0435, 0.0345) 2.08 (-0.0000, -0.0000) 3.0432 55.20 

Model 6 (0.0435, 0.0345) 2.08 (-0.0000, -0.0000) 3.0384 55.11 

 



 

 

 

 

 

5.2.2 Conductivity noise 

 Figure 5.7a shows the Model 3 with no conductivity noise and Figure 5.7b shows the 
reference EEG of the actual dipole. The noise is added randomly to the variance to generate 
the new conductivity values. In order to get good statistical results, for each variance value, 
the same procedure is repeated 200 times so that the average value gives the optimum result. 

Table 5-3 Numerical analysis of the signal noise study 

SNR LE (cm) OE (deg) REdiff (%) STD (mm) 

4 0.81 2.3390 85.4 16.3 

5 0.11 0.3865 81.85 2 

6 0.04 0.3152 72.35 0.9 

7 0.07 0.0515 63.21 1.2 

8 0.05 0.0416 45.49 1.1 

9 0.02 0.0263 33.2 0.7 

10 0 0.0152 27.41 0 

 

     

(a)                           (b)                          (c) 

Figure 5.6 (a) LE, (b) OE and (c) STD for Model 3 with added noise to the EEG signals. 
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 Figure 5.8 and Figure 5.9 show the EEG differences. Figure 5.8 is the potentials of the 
same dipole (reference dipole) but generated in different conductivity noise conditions. 
Figure 5.9 shows the potential differences between the potentials generated by the reference 
dipole and the potentials generated by the estimated dipole in different conductivity noise 
conditions. Table 5-4 shows the numerical analysis results. 

 Figure 5.8 shows that EEG source localization problem is not sensitive to conductivity 
noise. With the increasing of variance values, the differences of potentials generated by the 
reference dipole and the reference potentials are not very big until the variance equals to 0.07. 
However, the accuracy became very poor when the variance value is higher than 0.02. The 
potentials generated by the reference dipole and the potentials generated by the estimated 
dipole had significant differences even when the variance is higher than 0.01. This can be 
seen from Figure 5.9 and Table 5-4. Figure 5.9 also shows that different positions could 
generate similar or even the same EEG signals. Potentials generated by the third estimated 
dipole (Figure 5.9c) and potentials generated by the forth estimated dipole (Figure 5.9d) are 
almost the same, and potentials generated by the seventh estimated dipole and potentials 
generated by the ninth estimated dipole are very similar. Figure 5.10 shows results for 
conductivity noise study. As shown in Figure 5.10a the EEG source localization results have 
LE less than 1cm, which is the conductivity noise less than 0.02. Figure 5.6b shows the 
relative errors between the potentials generated by the reference dipole and the potentials 
generated by the estimated dipole and Figure5.6c shows the standard derivation results. Both 
the table and the figure show that, with the increasing of variance values, the errors will 
increase as well. 

   

(a)                                         (b) 

Figure 5.7 (a) Model 3 with no conductivity noise (variance = 0) and (b) the reference EEG from the 

actual dipole in Model 3 with no conductivity noise. In Figure (b), the x axis is the index of the electrodes. 



 

 

 

 

   

   

   

   

   

Figure 5.8 EEG of the reference dipole of Model 3 with different conductivity noises (variance, Var.). 

(A) Var. = 0.005. (B) Var. = 0.01. (C) Var. = 0.015. (D) Var. = 0.02. (E) Var. = 0.025. (F) Var. = 0.03. 
(G) Var. = 0.035 (H) Var. = 0.04 (I) Var. = 0.045 (J) Var. = 0.05 (K) Var. = 0.06 (L) Var. = 0.07 (M) 

Var. = 0.08 (N) Var. = 0.09 (O) Var. = 0.1. Red curve is the reference dipole EEG and the blue one is the 

estimated dipole EEG. 



 

 

 

 

   

   

   

   

   

Figure 5.9 Reference dipole EEG and estimated dipole EEG of Model 3 with different conductivity 
noises (variance, Var.). (A) Var. = 0.005. (B) Var. = 0.01. (C) Var. = 0.015. (D) Var. = 0.02. (E) Var. = 

0.025. (F) Var. = 0.03. (G) Var. = 0.035 (H) Var. = 0.04 (I) Var. = 0.045 (J) Var. = 0.05 (K) Var. = 0.06 

(L) Var. = 0.07 (M) Var. = 0.08 (N) Var. = 0.09 (O) Var. = 0.1. Red curve is the reference dipole EEG 

and the blue one is the estimated dipole EEG. 



 

 

 

 

 

 

Table 5-4: Numerical analysis of the conductivity noise study 

Variances Estimated Positions LE (cm) Estimated Moments OE (deg) REdiff (%)  STD (mm) 

0.005 (0.0471, 0.0535) 0.15 (0.0072, 0.0859) 0.0836 16.37 6.5 

0.010 (0.0466, 0.0512) 0.38 (0.0069, 0.0755) 0.7384 25.70 9.9 

0.015 (0.0469, 0.0476) 0.74 (0.0121, 0.0093) 0.9155 35.88 11.1 

0.020 (0.0469, 0.0464) 0.69 (0.0054, -0.0011) 1.7718 39.65 12.7 

0.025 (0.0467, 0.0440) 1.02 (0.0037, 0.0007) 1.3838 42.51 14.0 

0.030 (0.0465, 0.0432) 1.10 (0.0062, 0.0257) 0.2367 45.52 13.9 

0.035 (0.0473, 0.0424) 1.21 (-0.0056, 0.0193) 0.2824 46.84 14.0 

0.040 (0.0463, 0.0417) 1.34 (0.0107, 0.0387) 0.2697 47.71 12.4 

0.045 (0.0475, 0.0428) 1.21 (-0.0276, -0.0138) 2.0344 47.28 14.7 

0.050 (0.0464, 0.0428) 1.29 (-0.0011, -0.0029) 2.7790 48.29 14.9 

0.060 (0.0467, 0.0442) 1.42 (0.0014, 0.0008) 1.0517 49.93 15.0 

0.070 (0.0486, 0.0421) 1.37 (-0.0024, -0.0061) 2.7668 50.49 14.6 

0.080 (0.0477, 0.0416) 1.42 (0.0004, 0.0002) 1.1071 51.38 13.6 

0.090 (0.0480, 0.0406) 1.31 (0.0056, 0.0054) 0.8036 52.39 15.5 

0.100 (0.0472, 0.0403) 1.47 (-0.0034, -0.0006) 1.7455 53.26 15.3 

53. 

 

Figure 5.10 (a) LE, (b) OE and (c) STD for Model 3 with different conductivity noises. 



 

 

 

5.3 Segmentation effect study 

 To analyze the results of the segmentation effect study, the software called ParaView 
was used to visualize these results. Figure 5.16 to Figure 5.19 are the outputs. Figure 5.16 
and Figure 5.17 show the top view and side view of grey matter and the region of interest. 
They are coloured by the goal function. According to the Dice’s coefficients, segmentation 
done by threshold 0.4 and threshold 0.5 are almost the same. Thereby, the results based on 
threshold 0.5 were shown here. 

 

 

 

Figure 5.16 The top view of the grey matter and the region of interest for threshold 0.3.  

 

Figure 5.17 The side view of the grey matter and the region of interest for threshold 0.5.  



 

 

 

 Figure 5.18 and Figure 5.19 are the visualization of the initial dipole and the estimated 
dipole for the models with threshold 0.3 and threshold 0. In these two figures, the black 
arrow is the real dipole and the red one is the estimated dipole. The localization error given 
by the model with threshold 0.3 is 0.0129 and the relative error is 11.95%. For the model 
with threshold 0.5, the distance error is 0.0142 and the relative error is 20.72%. Table 5-5 
lists the estimated dipole positions, the distance errors and the relative errors of the two 
models. 

 

 

 

Figure 5.18 The reference dipole and the estimated dipole for threshold 0.3. The black 
arrow is the reference dipole and the red one is the estimated dipole. 

 

Figure 5.19 The reference dipole and the estimated dipole for threshold 0.5. The black 
arrow is the reference dipole and the red one is the estimated dipole. 



 

 

 

 

 Figure 5.20 is the electrode errors for the two models. In these two figures, the blue curve 
is the reference EEG and the red one is the estimated EEG. The two curves match better in 
threshold 0.3 model than in threshold 0.5 model. 

 
 From the above figures, it is evident that the model with threshold 0.5 has different 
potentials to that of the reference model which in turn gives errors in source localization. The 
model with threshold 0.3 has negligible error and proves to be good in source localization. 

  

Table 5-5: Estimated positions and errors of different segmentation models 

Models Dipole Positions Localization Errors (m) Relative Errors (%) 

Reference (0.1125, 0.1100, 0.1020)   

Model 1   
(Threshold = 0.3) 

(0.1145, 0.1195, 0.1105) 0.0129 11.95 

Model 2   
(Threshold = 0.5) 

(0.1125, 0.1205, 0.1115) 0.0142 20.72 

 

  

(a)                                 (b) 

Figure 5.20 The electrode errors for (a) Threshold 0.3 and (b) Threshold 0.5. The blue 
curve is the potentials for reference model and the red one is the potentials for the 
estimated model. RE indicates the relative error. 



 

 

 

CHAPTER 6 DISCUSSIONS AND CONCLUSIONS 

 According to the different tissue models’ study, head model plays an important role in 
EEG source localization. Both the forward problem (potentials of the same dipole in different 
models) and the inverse problem (goal functions of different models) gave high errors with 
the models with modified CSF in tissue study. Thereby, CSF is a significant tissue and 
should be paid more attention than other tissues. 

 The results of the signal noise study also gave the importance of the head models. This 
study also showed the acceptable signal noise range. Based on the simulated results, when 
the SNR value is higher than 25, the errors are acceptable. This means that in practice, the 
EEG measurement should be done in an environment which is not impacted by many noises. 
Better solution is to apply some de-noising techniques on the EEG signal to improve the 
SNR value. 

 From the conductivity study, the following conclusions can be made. Compared with 
other tissues, skin and skull are more sensitive to conductivity noise. More useful 
information given by this study is the acceptable noise range. The results indicated that if the 
variance is no bigger than 0.0025, all the results are considered accurate. With the increase in 
variance value, the relative errors become too high that cannot be accepted while the 
localization errors can still be considered as accurate until the variance value is higher than 
0.0025. This means that the relative error is more sensitive to conductivity noise than the 
localization error.  

 As the model with threshold equal to 0.3 has less relative error and less localization error 
than the model with threshold 0.5, it proves to be good in source localization. 
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