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Abstract: This paper proposes an algorithm to simplify automata in such a way that composi-
tional synthesis results are preserved in every possible context. It relaxes some requirements of
synthesis observation equivalence from previous work, so that better abstractions can be made.
The paper describes the algorithm, adapted from known bisimulation equivalence algorithms,
for the improved abstraction method. The algorithm has been implemented in the DES software
tool Supremica and has been used to compute modular supervisors for several large benchmark
examples. It successfully computes modular supervisors, even for systems with more than
1012 reachable states.
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1. INTRODUCTION

Compositional methods are of great interest in supervisory
control theory (Ramadge and Wonham, 1989), firstly in
order to find more comprehensible supervisor representa-
tions, and secondly to overcome the problem of state-space
explosion for systems with a large number of components.

Compositional synthesis (Flordal et al., 2007; Malik and
Flordal, 2008; Mohajerani et al., 2011a) seeks to compute a
supervisor for a large discrete event system by abstraction.
Individual system components are replaced by simpler ver-
sions obtained from abstraction, and synchronous compo-
sition is computed step-by-step on abstracted components.
At each step, partial supervisors are computed, which in
the end give a modular supervisor for the original system.
In this way, the state-space explosion is mitigated, making
synthesis possible for very large systems.

Several methods of compositional synthesis exist that dif-
fer in how abstractions are computed. Natural projection
is easy to compute, but it is restrictive and additional
conditions must be imposed to ensure synthesis of least
restrictive nonblocking supervisors (Feng and Wonham,
2006; Schmidt and Breindl, 2008). Conflict-preserving ab-
stractions and observation equivalence are adequate for the
synthesis of nonblocking supervisors, but least restrictive-
ness is only guaranteed if all observable events are retained
in the abstraction (Malik et al., 2007; Su et al., 2010).

More recently (Mohajerani et al., 2011b) proposed syn-
thesis observation equivalence, a stronger version of ob-
servation equivalence that is adequate for compositional
synthesis of least restrictive supervisors. The approach has
been integrated in a framework with other abstraction
methods and can be used to compute supervisors for
practical applications (Mohajerani et al., 2011a).

This paper proposes a relaxation of synthesis observation
equivalence, called weak synthesis observation equivalence,
which allows to achieve more abstraction. A polynomial
complexity algorithm to compute the abstraction is pre-
sented. After the preliminaries in Sect. 2, weak synthesis
observation equivalence is defined in Sect. 3. The algorithm
to compute it is given in Sect. 4, followed by experimental
results in Sect. 5. Then Sect. 6 adds some concluding
remarks.

2. PRELIMINARIES AND NOTATION

2.1 Events and Languages

Discrete event systems are modelled using events and
languages (Ramadge and Wonham, 1989). Events are
taken from a finite alphabet Σ, which is partitioned into
two disjoint subsets, the set Σc of controllable events and
the set Σu of uncontrollable events. Uncontrollable events
are prefixed by an exclamation mark (!) in this paper. The
special event ω ∈ Σc denotes termination and does not
appear anywhere else but to mark such completions.

The set of all finite traces of elements of Σ, including the
empty trace ε, is denoted by Σ∗. A subset L ⊆ Σ∗ is called
a language. The concatenation of two traces s, t ∈ Σ∗ is
written as st. A trace s ∈ Σ∗ is called a prefix of t ∈ Σ∗,
written s ⊑ t, if t = su for some u ∈ Σ∗. For Ω ⊆ Σ,
the natural projection PΩ : Σ∗ → Ω∗ is the operation that
removes from traces s ∈ Σ∗ all events not in Ω.

2.2 Nondeterministic Automata

System behaviours are typically modelled by deterministic
automata, but nondeterministic automata may arise as
intermediate results during abstraction.



Definition 1. A (nondeterministic) finite-state automaton
is a tuple G = 〈Σ, Q,→, Q◦〉, where Σ is a finite set of
events, Q is a finite set of states, → ⊆ Q × Σ × Q is the
state transition relation, and Q◦ ⊆ Q is the set of initial

states. G is deterministic, if |Q◦| ≤ 1 and x
σ
→ y1 and

x
σ
→ y2 always implies y1 = y2.

The transition relation is written in infix notation x
σ
→ y,

and is extended to traces in Σ∗ by letting x
ε
→ x for all

x ∈ Q, and x
sσ
→ z if x

s
→ y and y

σ
→ z for some y ∈ Q.

Furthermore, x
s
→ means x

s
→ y for some y ∈ Q, and

x → y means x
s
→ y for some s ∈ Σ∗. These notations

also apply to state sets and to automata: X
s
→ Y for

X,Y ⊆ Q means x
s
→ y for some x ∈ X and y ∈ Y ,

and G
s
→ means Q◦ s

→, etc. The language of automaton G

is L(G) = { s ∈ Σ∗ | G
s
→}.

A special requirement is that states reached by the termi-
nation event ω do not have any outgoing transitions. This
ensures that the termination event, if it occurs, is always
the final event of any trace. The traditional set of marked

states is Qω = {x ∈ Q | x
ω
→} in this notation. For

graphical simplicity, states in Qω are shaded in the figures
of this paper instead of explicitly showing ω-transitions.

When automata are brought together to interact, lock-step
synchronisation in the style of (Hoare, 1985) is used.

Definition 2. Let G1 = 〈Σ1, Q1,→1, Q
◦
1〉 and G2 = 〈Σ2,

Q2,→2, Q
◦
2〉 be two automata. The synchronous composi-

tion of G1 and G2 is defined as

G1 ‖G2 = 〈Σ1 ∪ Σ2, Q1 ×Q2,→, Q◦
1 ×Q◦

2〉 (1)

where

(x, y)
σ
→ (x′, y′) if σ ∈ (Σ1 ∩ Σ2), x

σ
→1 x′, y

σ
→2 y′ ;

(x, y)
σ
→ (x′, y) if σ ∈ (Σ1 \ Σ2), x

σ
→1 x′ ;

(x, y)
σ
→ (x, y′) if σ ∈ (Σ2 \ Σ1), y

σ
→2 y′ .

Another common automaton operation is the quotient
modulo an equivalence relation on the state set.

Definition 3. Let G = 〈Σ, Q,→, Q◦〉 be an automaton and
let ∼ ⊆ Q × Q be an equivalence relation. The quotient
automaton of G modulo ∼ is

G/∼ = 〈Σ, Q/∼,→/∼, Q̃◦〉 , (2)

where →/∼ = { [x]
σ
→ [y] | x

σ
→ y } and Q̃◦ = { [x◦] |

x◦ ∈ Q◦ }. Here, [x] = {x′ ∈ Q | x ∼ x′ } denotes the
equivalence class of x ∈ Q, and Q/∼ = { [x] | x ∈ Q } is
the set of all equivalence classes modulo ∼.

2.3 Supervisory Control Theory

Given a plant automaton G and a specification automa-
ton K, supervisory control theory (Ramadge and Won-
ham, 1989) provides a method to synthesise a supervisor
that restricts the behaviour of the plant such that the
specification is always fulfilled. Two common requirements
for the supervisor are controllability and nonblocking.

Definition 4. Let G and K be two automata using the
same alphabet Σ. K is controllable with respect to G if,
for every trace s ∈ Σ∗, every state x of K, and every

uncontrollable event υ ∈ Σu such that K
s
→ x and G

sυ
→,

it holds that x
υ
→ in K.

Definition 5. An automaton G = 〈Σ, Q,→, Q◦〉 is non-
blocking, if for every state x ∈ Q and every trace s ∈
(Σ \ {ω})∗ such that G

s
→ x there exists t ∈ Σ∗ such that

x
tω
→.

For a deterministic plant G and specification K, it is shown
in (Ramadge and Wonham, 1989) that there exists a least
restrictive controllable sublanguage

supCG(K) ⊆ L(K) (3)

such that supCG(K) is controllable with respect to G
and nonblocking, and this language can be computed
using a fixpoint iteration. For nondeterministic automata,
synthesis produces a subautomaton instead of a language,
and the controllability condition is modified accordingly
(Malik and Flordal, 2008).

Definition 6. (Malik and Flordal, 2008) G1 = 〈Σ, Q1,→1,
Q◦

1〉 is a subautomaton of G2 = 〈Σ, Q2,→2, Q
◦
2〉, written

G1 ⊆ G2, if Q1 ⊆ Q2, →1 ⊆ →2, and Q◦
1 ⊆ Q◦

2.

Definition 7. (Malik and Flordal, 2008) Let G = 〈Σ, QG,
→G, Q◦

G〉 and K = 〈Σ, QK ,→K , Q◦
K〉 be automata such

that K ⊆ G. Then K is called controllable in G if, for all
states x ∈ QK and y ∈ QG and for every uncontrollable

event υ ∈ Σu such that x
υ
→G y, it also holds that x

υ
→K y.

Traditionally, a supervisor synthesis problem involves both
plants and specifications. However, a simple transforma-
tion (Flordal et al., 2007) can make specifications regard-
able as plants, which makes it possible to consider plant-
only synthesis problems.

Theorem 1. Let G = 〈Σ, Q,→, Q◦〉. There exists a unique
subautomaton supCN (G) ⊆ G such that supCN (G) is
nonblocking and controllable in G, and such that for
every subautomaton S ⊆ G that is also nonblocking and
controllable in G, it holds that S ⊆ supCN (G).

The synthesis result supCN (G) can be computed by it-
eratively removing blocking and uncontrollable states of
the plant, until a fixpoint is reached, and restricting the
original automaton G to these states.

Definition 8. (Malik and Flordal, 2008) The restriction of
G = 〈Σ, Q,→, Q◦〉 to X ⊆ Q is

G|X = 〈Σ, Q,→|X , Q◦ ∩X〉 , (4)

where →|X = { (x, σ, y) ∈ → | x, y ∈ X }.

Definition 9. (Malik and Flordal, 2008) The synthesis step
operator ΘG : 2Q → 2Q for G = 〈Σ, Q,→, Q◦〉 is defined
as ΘG(X) = Θcont

G (X) ∩Θnonb
G (X), where

Θcont
G (X) = {x ∈ X | ∀σ ∈ Σu, x

σ
→ y implies y ∈ X } ;

Θnonb
G (X) = {x ∈ X | x

tω
→|X for some t ∈ Σ∗ } .

Theorem 2. (Malik and Flordal, 2008) Let G = 〈Σ, Q,
→, Q◦〉. The synthesis step operator ΘG has a greatest

fixpoint gfpΘG = Θ̂G ⊆ Q, such that G|Θ̂G
is the greatest

subautomaton of G that is both controllable in G and
coreachable, i.e.,

supCN (G) = G|Θ̂G
. (5)

If the state set Q is finite, the sequence X0 = Q, Xi+1 =
ΘG(Xi) reaches this fixpoint in a finite number of steps,

i.e., Θ̂G = Xn for some n ≥ 0.
2



2.4 Compositional Synthesis

Most discrete event systems are modular and consist
of several interacting components. Then the synthesis
problem is to find a least restrictive, controllable and
nonblocking supervisor for a set of plants,

G = {G1, G2, · · · , Gn} . (6)

Compositional methods seek to build the synchronous
product incrementally, replacing individual components Gi

by simpler abstractions G′
i. Such simplification typically

exploits a set Υ ⊆ Σ of local events. These events are used
only in the automaton being abstracted and contribute
substantially to its simplification.

The abstraction relation must ensure that the results
obtained from the abstracted model are the same as for
the original model. An appropriate condition that works
for compositional synthesis is synthesis abstraction.

Definition 10. (Mohajerani et al., 2011b) Let G and H
be deterministic automata with alphabet Σ. Then H is
a synthesis abstraction of G with respect to Υ ⊆ Σ,
written G .synth,Υ H, if for every deterministic automaton
T = 〈ΣT , QT ,→T , Q◦

T 〉 such that ΣT ∩Υ = ∅ the following
holds,

L(G‖T ‖supCN (H ‖T )) = L(G‖T ‖supCN (G‖T )) . (7)

Synthesis abstraction requires that the supervisor syn-
thesised from the abstracted automaton H together with
the rest of the system T , yields the same language when
controlling the system, as would the supervisor synthesised
from the original automaton G together with T .

3. SYNTHESIS OBSERVATION EQUIVALENCE

Synthesis abstraction describes in a general way what kind
of abstraction is feasible for a compositional synthesis. For
practical use, it is necessary to have algorithmic means to
simplify a given automaton in such a way that synthesis
abstraction is preserved.

Bisimulation and observation equivalence are standard
examples of branching equivalences, which are easy to
compute (Milner, 1989). For two states to be equivalent,
they must have the same nondeterministic future, which
is described as an equivalence relation that is stable with
respect to certain transition relations.

Definition 11. Let → ⊆ X ×X be a relation on a set X.
An equivalence relation ∼ ⊆ X ×X is stable with respect
to →, if for all x1, x2, y1 ∈ X such that x1 ∼ x2 and
x1 → y1 there exists y2 ∈ X such that x2 → y2 and
y1 ∼ y2.

Definition 12. Let G = 〈Σ, Q,→, Q◦〉 be an automaton.
An equivalence relation ∼ ⊆ Q×Q is called a bisimulation

on G, if ∼ is stable with respect to
σ
→ for all σ ∈ Σ.

Definition 13. Let G = 〈Σ, Q,→, Q◦〉 be an automaton
with Σ = Ω ∪̇ Υ. An equivalence relation ∼ ⊆ Q × Q is
called an observation equivalence on G with respect to Υ,

if ∼ is stable with respect to
σ
⇒ for all σ ∈ Σ, where x

σ
⇒ y

if and only if x
t1PΩ(σ)t2
−−−−−−→ y for some t1, t2 ∈ Υ∗.

Unlike bisimulation, observation equivalence takes local
events into account. Both equivalences preserve all tem-
poral logic properties (Milner, 1989). Once an appropriate

G
q0 q1

(α)

(β) !υ!µ

G/∼

!υ!µ

q01 (α, β)
T

!υ!µ

Fig. 1. Example of observation equivalence.
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Fig. 2. Examples of synthesis observation equivalence.

equivalence ∼ on G is found, the quotient automaton G/∼
can be considered as an abstraction. For bisimulation this
results in a synthesis abstraction, but it does not for
observation equivalence (Mohajerani et al., 2011b).

Example 1. (Mohajerani et al., 2011b) Consider automata
G and T in Fig. 1, where Υ = {α, β} and Σu = {!µ, !υ}.
States q0 and q1 are observation equivalent and merging
them results in G/∼. However, G/∼‖T does not have the
same least restrictive supervisor as G‖T . A supervisor for
G ‖ T can disable α to prevent blocking via !υ, but after
merging q0 and q1, disabling α is not enough to prevent
the dangerous uncontrollable event !υ.

While observation equivalence does not lead to synthesis
abstraction in general, it can be strengthened such that
synthesis results are preserved.

Definition 14. Let G = 〈Σ, Q,→, Q◦〉 be an automaton
with Σ = Ω ∪̇ Υ. An equivalence relation ∼ ⊆ Q × Q
is a synthesis observation equivalence on G with respect

to Υ, if ∼ is stable with respect to
Υ
⇒soe, to

σ
⇒soe for each

σ ∈ Σc∩Ω, and to
υ
⇒u for each υ ∈ Σu, defined as follows.

• x
Υ
⇒soe y if there exists a path z0

τ1→ · · ·
τk→ zk, such

that z0 = x, and zk = y, and τ1, . . . , τk ∈ Υ, and
τj ∈ Σc implies x ∼ zj or j = k.

• x
σ
⇒soe y if there exists a path x = z0

τ1→ · · ·
τk→ zk

σ
→ y

such that τ1, . . . , τk ∈ Υ, and τj ∈ Σc implies x ∼ zj .

• x
υ
⇒u y if x

t1PΩ(υ)t2
−−−−−−→ y for some t1, t2 ∈ (Σu ∩Υ)∗.

Example 2. Consider automaton G1 in Fig. 2, where all
events are controllable and Υ = {β}. The equivalence
relation ∼ with q1 ∼ q2 ∼ q3 is a synthesis observation

equivalence relation. For example, the transition q2
α
→ q4

is matched by q1
β
→ q3

α
→ q4 where state q3, reached by

the local controllable event β, is equivalent to q2. Merging
the equivalent states results in the synthesis observation
equivalent abstraction G1/∼ shown in Fig. 2.

Synthesis observation equivalence implies synthesis ab-
straction (Mohajerani et al., 2011b). Def. 14 modifies ob-
servation equivalence based on event types. For uncontrol-
lable events, ⇒u is observation equivalence restricted to
uncontrollable events. For controllable events, ⇒soe does
not allow local events after the controllable event. It is
shown in the following how this condition can be relaxed
to allow some local events after the controllable event.
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Definition 15. Let G = 〈Σ, Q,→, Q◦〉 be an automaton
with Σ = Ω ∪̇Υ. An equivalence relation ∼ ⊆ Q ×Q is a
weak synthesis observation equivalence on G with respect

to Υ, if ∼ is stable with respect to
Υ
⇒wsoe, to

σ
⇒wsoe for

each σ ∈ Σc ∩ Ω, and to
υ
⇒u for each υ ∈ Σu.

• x
Υ
⇒wsoe y if x

Υ
⇒soe z

Υ
⇒c y for some z ∈ Q.

• x
σ
⇒wsoe y if x

σ
⇒soe z

Υ
⇒c y for some z ∈ Q.

• x
Υ
⇒c y if there exists a path z0

τ1→ · · ·
τk→ zk, such that

z0 = x, and zk = y, and τ1, . . . , τk ∈ Υ, and zj
u
→ z′

for u ∈ (Σu ∩Υ)∗ implies z′ ∼ zi for some 0 ≤ i ≤ k,

and zj
υ
⇒u z′ for υ ∈ Σu∩Ω implies y

υ
⇒u z′′ for some

z′′ ∼ z′.

The modified relation ⇒wsoe allows for a path of local
events after a controllable event, if local uncontrollable
transitions outgoing from the path lead to a state equiv-
alent to a state on the path, and shared uncontrollable
transitions are also possible in the end state of the path.

Example 3. Consider automaton G2 in Fig. 2, with all
events controllable and Υ = {β}. An equivalence relation
with q1 ∼ q2 ∼ q3 and q4 ∼ q7 is a weak synthesis

observation equivalence. For example, transition q2
α
→ q6

is matched by q1
α
→ q7

β
→ q6, and state q7 has no un-

controllable transitions outgoing. Merging the equivalent
states results in the synthesis observation equivalent ab-
straction G2/∼ shown in Fig. 2. Note that these states are
not synthesis observation equivalent.

Weak synthesis observation equivalence can be shown to
be more general than synthesis observation equivalence.
Therefore, the following result confirms that both methods
are feasible for compositional synthesis.

Theorem 3. Let G = 〈Σ, Q,→, Q◦〉 and Υ ⊆ Σ, and let
∼ be a weak synthesis observation equivalence on G with
respect to Υ. Then G .synth,Υ G/∼.

4. ALGORITHM

Given an automaton G = 〈Σ, Q,→, Q◦〉 and a set Υ of
local events, a coarsest weak synthesis observation equiv-
alence relation can be computed by a partition refinement
algorithm similar to (Fernandez, 1990). This algorithm
represents an equivalence relation as a partition, i.e., a
set of equivalence classes each representing a set of equiv-
alent states. The algorithm starts with an initial partition
consisting of a single equivalence class, which is iteratively
refined until a stable partition is reached. At each step, a
split is performed on each known equivalence class C for
each relation ⇒ for which stability is required, separating
states with x ⇒ C from other states. This principle is
shown in Algorithm 1.

The bisimulation algorithm (Fernandez, 1990) performs
clever bookkeeping when classes are split, which reduces
the need to check whether further splits are necessary and
ensures an overall time complexity of O(|→| log |Q|). For
observation equivalence, the transitive closure of the local
event transitions needs to be computed, and this transitive
closure computation dominates complexity. A partition
based on observation equivalence can be computed in
O(|Σ||Q|3) time complexity (Bolognesi and Smolka, 1987).

The partition refinement algorithm uses several data struc-
tures to facilitate the splitting of classes (Fernandez, 1990).

Algorithm 1 Weak Synthesis Observation Equivalence

1: input G = 〈Σ, Q,→, Q◦〉
2: partition ← {Q}
3: repeat
4: for all splitter ∈ partition do
5: for all σ ∈ Σ do
6: SplitOn(partition, splitter , σ)
7: end for
8: end for
9: until there has been no further split

10: return partition

Algorithm 2 SplitOn(partition⊆2Q, splitter⊆Q,σ∈Σ)

1: if σ ∈ Σu then
2: for all end ∈ splitter do

3: for all src
t1PΩ(σ)t2
−−−−−−→end with t1, t2∈(Σu∩Υ)∗ do

4: move src to split list in [src]
5: end for
6: end for
7: else
8: for all end ∈ splitter do
9: BS (σ, end)

10: end for
11: end if
12: for all class ∈ partition do
13: if class has a non-trivial split list then
14: split class and update partition
15: end if
16: end for

Each equivalence class is an object containing a list of the
states in the class, and each state has a reference back to
the class containing it. In addition, each equivalence class
has a split list containing states to be split off from it.

The SplitOn algorithm (Algorithm 2) performs the split-
ting for paths leading to a target class, called a splitter .
States with a path to the splitter based on each relation
⇒wsoe and⇒u in Def. 15 are separated from states without
such a path. This is done by visiting each state end in the
splitter and searching backwards for all states src with
appropriate paths to end . These states are put in the split
list of their class. After exploring the predecessors of all
end states, the split lists are checked in lines 12–16. Classes
with an empty split list or a split list containing all states
in the class are left unchanged, other classes are split and
replaced by two new classes.

For uncontrollable events, the source states for ⇒u are
found by a standard backwards search using the pre-
computed transitive closure of the local uncontrollable
transitions (lines 2–6), whereas for controllable events a
special procedure BS is used to follow the paths generated
by ⇒wsoe (lines 8–10).

The BS algorithm (Algorithm 3) performs a backward
search for a given controllable event σ and end state. It
uses a queue of search records 〈current , part , startclass〉
containing a current state, whether the search is in the
first or second part of the path, and the startclass of the
path. The search starts with the end state, in the second
part of the path, with an unassigned startclass. Thus, the
initial search record 〈end , 2, none〉 is added to the queue.
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Algorithm 3 Backward search BS (σ ∈ Σc, end ∈ Q)

1: queue ← ∅
2: add 〈end , 2, none〉 to queue
3: while queue 6= ∅ do
4: remove 〈current , part , startclass〉 from queue
5: if part = 1 then
6: if startclass ∈ {[current ], none} then
7: move current to split list in [current ]
8: end if
9: for all transitions src

υ
→ current with υ ∈ Υ do

10: if υ ∈ Σu then
11: add 〈src, 1, startclass〉 to queue
12: else if startclass ∈ {[current ], none} then
13: add 〈src, 1, [current ]〉 to queue
14: end if
15: end for
16: else
17: for all transitions src

υ
→ current with υ ∈ Υ do

18: controllable ← true

19: for all src
u
→ succ with u ∈ (Σu ∩Υ)∗ do

20: if succ /∈ [src] ∪ [current ] ∪ [end ] then
21: controllable ← false

22: else
23: for all succ

γ
→ succ′ with γ ∈ Σu ∩ Ω do

24: if not [end ]
γ
⇒u [succ′] then

25: controllable ← false

26: end if
27: end for
28: end if
29: end for
30: if controllable then
31: add 〈src, 2, none〉 to queue
32: end if
33: end for
34: if σ ∈ Υ then
35: add 〈current , 1, none〉 to queue
36: else
37: for all transitions src

σ
→ current do

38: add 〈src, 1, none〉 to queue
39: end for
40: end if
41: end if
42: end while

When exploring a current state in the first part of the
path, it is first checked whether this state can be the start
of a path generated by ⇒soe. This is possible if it belongs
to the startclass, or if the startclass is unassigned, and in
this case the current state is marked as a candidate to be
split off from its class (lines 6–8).

Afterwards the loop in line 9 scans all local transition
leading to the current state. If the event is uncontrollable,
a new search record with the previous startclass is created
in line 11. If the event is controllable, then based on Def. 14
the current state must be equivalent to the yet unknown
start state x of the path. If the startclass is unassigned
or the same as the class of current , then current can
potentially be x, so its class is used to form a new search
record in line 13.

If the algorithm is in the second part of the path, it
also scans the transition leading to the current state.
First it checks in lines 18–32 whether the source state

src is controllable. This is done by exploring all successors
reachable by local uncontrollable events. If one of these
states is not equivalent to the src, current , or end state,
or a state has a shared uncontrollable outgoing transition
to a state with no matching state reachable from the end
class, then the src state is not controllable. Otherwise,
a new search record is created in line 31. The condition
checked here is stronger than ⇒c in Def. 15, which allows
the target states of uncontrollable local transitions to be
anywhere along the second part of the path. An exact
implementation of ⇒c requires search records to store
complete paths, making the algorithm exponential.

Next the algorithms scans for σ-transition to the current
state, and depending on whether σ is a local event or
not, the algorithm moves to appropriate states in the
first part of the path (lines 34–40). Synthesis observation
equivalence can be checked by the same algorithm if lines
17–33 are deleted from BS .

The algorithm terminates when the queue of search records
is empty. To prevent duplicates, the queue is linked to
a hash set to ensure that search records that have been
enqueued once are never added to the queue again. The
hash set is reset for each split operation, i.e., before line 8
in Algorithm 2.

Complexity. In the worst case, the main loop in line 3
of Algorithm 1 is executed once for each state, giving up
to |Q| iterations. Inside the loop, a split on each class is
performed. This causes each state to be processed once
for each event, using either the loop in lines 2–6 or 8–
10 of Algorithm 2. The bodies of these loops are executed
|Σ||Q| times in total during each iteration of the main loop
of Algorithm 1. The splitting of classes after line 12 can
be executed in lower complexity using the data structures
outlined above.

The loop in line 2 of Algorithm 2 can be executed in
O(|Q|2) time, by performing a search that visits each
state at most twice, and each time checks all incoming
transitions. This is dominated by the loop in line 8 which
calls Algorithm BS .

In the worst case, Algorithm BS visits two search records
for each combination of a state and class, i.e., up to 2|Q|2

search records. Each time, it executes either the loop in
lines 9–15 or 17–33. The loop in lines 9–15 visits all local
incoming transitions to a state, up to |Q| operations if
the local transitions are appropriately stored in advance.
The loop in lines 17–33 also processes up to |Q| local
predecessor states, however each time the loop in lines 19–
29 must be executed, potentially increasing complexity.
Fortunately, this can be avoided by caching. The ⇒u-
successors of the end class can be computed in advance,
and it can be checked for each state x whether it has ex-
actly one successor class reachable by local uncontrollable
events that is different from the class of x and from the
end class. By caching this class, it is possible to execute
the loop in lines 19–29 only once for each state x during
the execution of the Algorithm 3. With this caching, the
complexity of Algorithm BS is O(|Q|3).

Therefore, the execution of Algorithm 1 involves O(|Q|)
iterations of the main loop, each performing O(|Σ||Q|)
search operations with of O(|Q|3) complexity. The worst-
case time complexity of Algorithm 1 is O(|Σ||Q|5).
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Table 1. Experimental Results

SOE WSOE

Model Aut States Time States Time States

agv 16 2.6·107 17.8 s 107747 18.2 s 106169

agvb 17 2.3·107 11.7 s 83577 11.5 s 82353

aip0alps 35 3.0·108 0.9 s 867 0.9 s 867

fencaiwon09b 31 8.9·107 0.1 s 73 0.1 s 73

fms 2003 31 1.4·107 83.6 s 673868 69.7 s 444922

koordwsp b 24 1.1·107 0.5 s 756 0.4 s 743

tbed noderailb 84 3.1·1012 5.7 s 18134 4.4 s 18134

tbed uncont 84 3.6·1012 5.0 s 9148 4.4 s 9148

5. EXPERIMENTAL RESULTS

The synthesis observation equivalence and weak synthe-
sis observation equivalence algorithms have been imple-
mented in the DES software tool Supremica (Åkesson
et al., 2006). They are used for abstraction within a
compositional supervisor synthesis algorithm that com-
putes modular supervisors for large systems (Mohajerani
et al., 2011a).

This program has been used to compute synthesis ab-
stractions for a set of benchmark examples that include
complex industrial models and case studies taken from
various application areas such as manufacturing systems
and automotive body electronics. The automata in each
example are iteratively composed and simplified, until a
final abstraction is obtained and passed on to standard
synthesis. All tests were run on a standard desktop PC
using a single core 2.66 GHz microprocessor.

Table 1 shows for each test case the number of auto-
mata (Aut) in the model and the size of the reachable state
space (States). It also shows the total runtime of compo-
sitional synthesis (Time) and the number of states in the
final abstraction passed on to standard synthesis (States),
when using synthesis observation equivalence (SOE) or
weak synthesis observation equivalence (WSOE).

Supervisors can be calculated for all models in less than
two minutes, with memory usage no more than 600 MB.
The size of the models are substantially reduced compared
to the size of the original systems. A closer look at the table
reveals that weak synthesis observation equivalence gives
slightly more abstraction with about the same computa-
tional cost.

All examples are too large for supervisors to be computed
by standard synthesis alone, and abstraction using only
bisimulation results in a final abstraction with at least
2 · 106 states for all test cases.

6. CONCLUSIONS

Weak synthesis observation equivalence has been intro-
duced as a means of abstraction for compositional syn-
thesis algorithms. Weak observation equivalence allows
for more abstraction than previously possible with syn-
thesis observation equivalence. A polynomial complexity
algorithm for synthesis observation equivalence and weak
synthesis observation equivalence has been proposed and
implemented in the DES software tool Supremica. The
experimental results show that the algorithm can compute
abstractions of automata with several thousand states,
making it possible to construct modular supervisors for
systems with more than 1012 reachable states.
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