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A Two-Dimensional Signal Space for
Intensity-Modulated Channels

Johnny Karout,Student Member, IEEE, Gerhard Kramer,Fellow, IEEE, Frank R. Kschischang,Fellow, IEEE,
and Erik Agrell

Abstract—A two-dimensional signal space for intensity-
modulated channels is presented. Modulation formats usingthis
signal space are designed to minimize average and peak powerfor
a fixed minimum distance between signal points. The uncoded,
high-signal-to-noise ratio, power and spectral efficiencies are
compared to those of the best known formats. The new formats
are simpler than existing subcarrier formats, and are superior
if the bandwidth is measured as 90% in-band power. Existing
subcarrier formats are better if the bandwidth is measured as
99% in-band power.

Index Terms—Direct detection, intensity modulation, nonco-
herent communications, power efficiency, spectral efficiency.

I. I NTRODUCTION

I NTENSITY modulation with direct detection (IM/DD)
is widespread for low-cost optical communication sys-

tems, e.g., wireless optical links [1]–[3] and short-haul fiber
links [4]. IM/DD permits only the intensity of light to carry
information. In contrast, coherent optical systems such aslong-
haul fiber links let data modulate the optical carrier’s amplitude
and phase via, e.g.,M -ary quadrature amplitude modulation
(M -QAM). Designing IM/DD formats with good power and
spectral characteristics is challenging [1], [2], [5]–[7].

In the absence of optical amplification, IM/DD systems
can be modeled as additive white Gaussian noise (AWGN)
channels with nonnegative inputs [1, Ch. 5], [2], [5], [8,
Sec. 11.2.3]. NonnegativeM -ary pulse amplitude modulation
(M -PAM) such as on-off keying (OOK) [1, Eq. (5.8)] is
a natural modulation format but it is power inefficient for
M > 2 [9]. Subcarrier modulation (SCM) allows usingM -
QAM by adding a direct current (DC) bias to the electrical
signal to make it nonnegative [1, Ch. 5]. The DC bias does
not carry information if it is independent of the transmitted
information. A signal space for IM/DD channels was presented
in [5] and power-efficient subcarrier modulation formats were
designed. In our prior work, a three-dimensional signal space
for IM/DD, whose signal sets are denoted as raised-QAM [5],
was used to numerically optimize modulation formats for
different power constraints [6], [7].
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Fig. 1. Passband transceiver of IM/DD systems.

In this work, we present a two-dimensional signal space
for optical IM/DD systems. The resulting modulation formats
have simpler modulator and demodulator structures than the
three-dimensional formats studied before. Their power and
spectral efficiencies are evaluated and compared to the pre-
viously best known formats.

II. SYSTEM MODEL

Consider an AWGN channel whose inputx(t) is nonneg-
ative. The symbolsu(k), for k = . . . ,−1, 0, 1, . . ., are inde-
pendent and uniformly distributed over{0, 1, . . . ,M−1}. The
modulator maps eachu(k) to a real and nonnegative waveform
belonging to the signal setS = {s0(t), s1(t), . . . , sM−1(t)},
wheresi(t) = 0 for t /∈ [0, T ), i = 0, 1, . . . ,M − 1, andT is
the symbol period. The transmitted waveform is

x(t) =

∞
∑

k=−∞

su(k)(t− kT ). (1)

The received signal is modeled as

y(t) = x(t) + n(t), (2)

where n(t) is a zero-mean white Gaussian process with
double-sided power spectral densityN0/2. The demodulator
is a correlator or matched filter receiver with a minimum-
distance detector, i.e., it minimizes the symbol error rateat a
given signal-to-noise (SNR) ratio [10, Sec. 4.1] and puts out
û(k) as the estimate ofu(k).

The AWGN model is reasonable for wireless IM/DD sys-
tems under the assumption that the channel is nondistorting
in the frequency range of interest [1, Ch. 5], [2], [5], and for
short-haul fiber links with negligible dispersion1 and when
the dominating noise is from the receiver itself, and not from
optical amplifiers [8, Sec. 11.2.3], [11, p. 155]. In Sec. III-A,
power constraints are imposed onx(t) to reflect some of the
physical characteristics of the IM/DD channel. A passband
model for IM/DD systems is depicted in Fig. 1. The electrical

1For an OM3+ graded index multimode fiber (MMF), the bandwidth–
distance product is 4.7 GHz·km. This means, roughly, that MMF links can be
considered dispersion-free at 10 Gbaud if their length is much shorter than
470 m.
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Fig. 2. Two-dimensional constellations optimized for average and peak optical power. Circles which are different between constellations of the same size
are shaded differently. The coordinates of these constellations are listed in Appendix A.

nonnegative waveformx(t) modulates a light source such as
a laser diode. The information is carried by the intensity of
the passband signal

z(t) =
√

2cx(t) cos(2πfot+ θ(t)), (3)

where c represents the electro-optical conversion factor in
watts per ampere (W/A) [12],fo is the optical carrier fre-
quency, andθ(t) is a random phase, uniformly distributed
in [0, 2π) and varying slowly witht relative to the symbol
rate. The optical signal propagates through the optical medium
depicted as an optical fiber in Fig. 1, but which could also be a
free-space optical link. The photodetector at the receiver, with
responsivityr in A/W, detects the intensity ofz(t). Without
loss of generality,c andr are normalized so that the received
electrical signaly(t) can be written as (2) [11, p. 155].

III. S IGNAL SPACE ANALYSIS

The signals in S can be represented assi(t) =
∑N

k=1 si,k φk(t) for i = 0, . . . ,M − 1, where {φk(t)}Nk=1,
N ≤ M , is a set of orthonormal basis functions [5]. The vector
representation ofsi(t) with respect to these basis functions is
si = (si,1, si,2, . . . , si,N). We may thus alternatively represent
the signal set asS = {s0, s1, . . . , sM−1}.

Consider a two-dimensional signal space for IM/DD
spanned by the basis functions

φ1(t) =

√

1

T
rect

(

t

T

)

, (4)

φ2(t) =

√

2

T
cos (2πft) rect

(

t

T

)

, (5)

whererect(t/T ) = 1 for t ∈ [0, T ) and0 elsewhere, and the
electrical subcarrier frequencyf = 1/2T . In [5] and our prior
work [6], [7], a three-dimensional signal space with signalsets
called raised-QAM was used to design modulation formats.
This three-dimensional signal space is spanned byφ1(t) in (4),
and the in-phase and quadrature phase modulation formats’
basis functions withf = 1/T [7, Eqs. (13)–(14)]. The basis
function φ1(t) represents the DC bias, and is used as in [5]
to guarantee signal nonnegativity.

We follow the same steps as in Theorem 1 in [7] for
raised-QAM. The admissible regionΥ, defined as the set
of two-dimensional signal vectors satisfying a nonnegativity
constraint, is a two-dimensional cone with vertex at the origin,
an apex angle ofcos−1(1/3) = 70.528◦, and an opening in
the dimension spanned byφ1(t).

A. Example Modulation Formats

Fig. 2 presents several modulation formats designed for the
admissible regionΥ. The constellation points, regarded as
the centers of circles with diameter equal to the minimum
distance, are placed inΥ such that they minimize a certain
power criterion. As in [5], [7], the average optical power

P̄o = lim
T→∞

1

2T

∫ T

−T

z2(t) dt = lim
T→∞

c

2T

∫ T

−T

x(t) dt, (6)

and peak optical power

P̂o = max
t

z2(t)

2
= cmax

t
x(t) (7)

are used as design criteria. The modulation formats numer-
ically optimized for average optical power are denoted as
TP̄o,M

, and for peak optical power asT
P̂o,M

. They are listed
in Appendix A. T4 is a 4-ary constellation optimized for
both power measures. Together withTP̄o,3 and TP̄o,8, they
are subsets of a lattice where the angle between its two basis
vectors iscos−1(1/3), which is the apex angle of the cone.

B. Performance Measures

To evaluate performance, the uncoded and asymptotic (high-
SNR) power gains with respect to OOK are considered [1],
[2], [7]. The average optical power gain̄Po, gain over OOK for
the same error rate performance is defined in [7, Eq. (32)],
and the peak optical power gain̂Po, gain with respect to OOK
is defined in [7, Eq. (33)]. The average optical power is an
important figure of merit for skin- and eye-safety in wireless
optical links [1, Ch. 5], [2], [5], and the peak power measures
tolerance against nonlinearities [13].

The spectral efficiency measures the bit rate achieved in a
given bandwidth. It is defined as

η =
Rb

W
[bit/s/Hz], (8)

where Rb = (1/T ) log2 M is the bit rate, andW is the
baseband bandwidth ofx(t). In [1], [6], [7], W was defined as
the first null in the spectrum, i.e., the width of the main lobe,
since most of the energy of a signal is contained in this main
lobe. However, some modulation formats designed using the
signal space in Sec. III have no spectral nulls. Fig. 2 shows
five formats that lack spectral nulls. This makes this definition
of bandwidth misleading. Instead, as in [3, p. 49], we will use
the fractional power bandwidthW defined as the length of
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refers to three-dimensional constellations in [7]. Further, constellations of the
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(K = 0.9).
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Fig. 6. Asymptotic peak optical power gain of modulation formats over OOK
(K = 0.99).

the smallest frequency interval carrying a certain fraction of
the total power. Note, however, that [3, Eq. (3.15)] accounts
only for the continuous spectrum ofx(t). We will include
both the discrete and continuous spectrum as in [14]. For
IM/DD channels, the discrete spectral component atf = 0 (at
DC) represents the average optical power of a constellation[3,
p. 47]. The fractional power bandwidthW is the solution to

∫W

−W
Sx(f) df

∫

∞

−∞
Sx(f) df

= K, (9)

where Sx(f) is the power spectral density ofx(t), and
K ∈ (0, 1). Specifically,W is reduced if a DC bias is added to
the signal. The power spectral density depends on the choice
of basis functions, constellation points, and the correlation
between symbols. For constellations with uniform probability
distribution, Sx(f) can be obtained using [15, Eq. (3.7.6)],

which is evaluated using only the Fourier transform of the
signals inS.

IV. PERFORMANCEANALYSIS

Figs. 3–6 depict the (uncoded, high-SNR) average and peak
optical power gains of our modulation formats with respect to
OOK, and as a function of spectral efficiencyη. The fractional
power bandwidthW was computed usingK = 0.9 andK =
0.99, which are somewhat arbitrary but commonly used.

In addition to the modulation formats introduced in this
paper, we consider subcarrier QPSK, nonnegative 4-PAM,
and three-dimensional modulation formats from previous work
optimized for average optical power (CP̄o,M

) and peak optical
power (C

P̂o,M
) [7]. We next discuss the plots in Figs. 3–6.

1) P̄o, gain vs. η with K = 0.9 (Fig. 3): For a fixed
M , modulation formats optimized for average power have a
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largerP̄o, gain than those optimized for peak power. The three-
dimensional constellation optimized for both power measures,
C4, has a similarη and P̄o, gain as TP̄o,3, whereasT4 has
better power and spectral efficiency thanCP̄o,8. The three-
dimensional constellations optimized for peak power,C

P̂o,8

andC
P̂o,16

, have higherη thanCP̄o,8 andCP̄o,16. This comes
at the price of a lower power efficiency.T

P̂o,8
has a higherη

than TP̄o,8, and 4-PAM has the highestη and lowestP̄o, gain.
For K = 0.9, the modulation formats designed using the
two-dimensional signal space have better spectral-efficiency
characteristics than formats designed using raised-QAM. For
example,T

P̂o,8
has a betterη thanC

P̂o,16
.

2) P̂o, gain vs. η with K = 0.9 (Fig. 4): For a fixedM ,
modulation formats optimized for peak power have better
spectral as well as power efficiency than those optimized for
average power. OOK has the bestP̂o, gain among all studied
modulation formats. Further, OOK andT4 have a betterη
than C4, T

P̂o,3
, TP̄o,3, and QPSK. The two-dimensional 8-

ary formats have higherη than the three-dimensional 16-ary
formats, and 4-PAM has the highestη and the lowestP̂o, gain

among the studied modulation formats.
3) P̄o, gain vs. η with K = 0.99 (Fig. 5): As before,

modulation formats optimized for average power have a higher
P̄o, gain than those optimized for peak power.TP̄o,3 andC4 have
the highestP̄o, gain among the studied formats. QPSK and 4-
PAM have similarη which is the highest among the 2-, 3-,
and 4-ary constellations. Unlike the case whereK = 0.9, the
three-dimensional 8-ary constellations are better in spectral
and power efficiency in comparison to the two-dimensional 8-
ary constellations. In addition,C

P̂o,16
has the highestη among

the studied constellations. The two-dimensional constellations
have more power close to DC, whereas the three-dimensional
constellations have a wider main lobe. This makes the 99%
in-band power for the three-dimensional constellations occur
at frequencies lower than those for the two-dimensional ones.

4) P̂o, gain vs. η with K = 0.99 (Fig. 6): As in the case
whereK = 0.9, OOK has the highest̂Po, gain. C4 has the
same power efficiency asT4, but has a higherη. QPSK
and 4-PAM, as in the previous case, have similarη which
is the highest among the 2-, 3-, and 4-ary constellations. The
three-dimensional 8- and 16-ary constellations have higher η
than the two-dimensional formats, and the 16-ary constellation
optimized for peak power has the highestη.

V. CONCLUSIONS

We presented a two-dimensional signal space for IM/DD
that provides a good trade-off between implementation com-
plexity and spectral efficiency. This signal space suggestssim-
pler modulator and demodulator structures than for the three-
dimensional raised-QAM signal space. For a fractional power
bandwidth ofK = 0.9, the two-dimensional formats have
better spectral characteristics than the three-dimensional ones.
Therefore, the two-dimensional formats are a good choice for
single-wavelength optical systems. However, for a fractional
power bandwidth ofK = 0.99, the three-dimensional formats
have better spectral characteristics. Therefore, they aresuitable
for wavelength-division multiplexing (WDM) systems where
crosstalk between adjacent channels is important. For both

signal spaces, modulation formats optimized for peak power
achieve a higher spectral efficiency than those optimized for
average power.

APPENDIX A
OBTAINED CONSTELLATIONS

Constellations are normalized to unit minimum distance.

TP̄o,3 = {(0, 0), (
√

2/3,±1/
√
3)}.

T
P̂o,3

= {(0, 0), (
√
3/2,±1/2)}.

T4 = TP̄o,3 ∪ {(2
√

2/3, 0)}.
TP̄o,8 = T4 ∪ {(2

√

2/3,±2/
√
3), (

√
6,±1/

√
3)}.

T
P̂o,8

= T4 ∪ {(
√

2/3 +
√
3/2,±(1/2 + 1/

√
3)),

(2
√

2/3 +
√
3/2,±1/2)}.
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