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Abstract  

Array processing deals with signals received by an array which consists of spatially 

separated sensors. The purpose of array processing is to extract the interesting signal 

characteristics by enhancing useful signals and suppressing the noise. Along with the 

development of digital signal processing techniques, array processing has been an 

important tool for spatial signal analysis and processing.  

 

As a very important content of array processing, DOA (Direction-of-Arrival) estimation 

is of great importance in many application areas, and due to this, more and more DOA 

estimation methods have been proposed over several decades. Generally, these DOA 

estimation methods rely on several critical assumptions; two of them are listed here: 1) 

that the response of the sensor array is known in all directions of interest, 2) the spatial 

covariance of the background noise is known. But neither of them is satisfied in practice, 

which often results in a serious degradation in algorithm performance [2]. Under this 

condition, calibration methods are developed to improve the performance of DOA 

estimation. These methods improve the knowledge of array response, by correcting the 

modeling errors, such as coupling between sensor elements, mismatch of gain or phase, 

and direction-dependent perturbations to the sensor response [1]. Thereby, the 

performance of these DOA estimation methods can be improved by calibration.    

 

This thesis focuses on finding a calibration method to compensate for the non-ideal 

properties of a specified array, which is the receive transducer unit of multibeam echo 

sounder system. This array is designed as a uniform linear array with 128 elements and 

we assume all the elements perform equally. But in practice，due to the deviation of 

production and components，the elements are not necessarily equally spaced, and they 

may also have gain/phase shift and mutual coupling. In this thesis, three calibration 

methods – global diagonal matrix calibration, global full matrix calibration, local 

calibration- are evaluated to compensate for these non-ideal properties. The 

implementations of three methods are presented and their performances are also compared. 

The results show that the local calibration method achieves the best performance and the 

global calibration methods improve the beamforming in limited DOA range. In addition 

to this, a brief discussion on frequency dependency of array response is given, and finally 

a newly developed global calibration method is introduced.  

 

Keywords:   
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Chapter 1    Introduction  

Array processing is an important branch of signal processing. A sensor array 

is composed of multiple spatially separated sensors, used to receive and 

process the signals. The two most popular geometrical shapes of sensor 

arrays are ULA (Uniform Linear Array) and UCA (Uniform Circular Array). 

They are widely used in both military and civilian fields, such as radar, sonar, 

telecommunication, seismic exploration and medical imaging. 

 

DOA (Direction of Arrival) estimation and Beamforming are the two main 

concepts in array signal processing. The oldest DOA estimation method, also 

known as Classical beamforming, used the concepts of spatial match filtering. 

Later with the development of high-resolution spectrum-based estimation 

techniques, DOA estimation is distinguished from beamfoming. The goal of 

DOA estimation techniques is to find a spatial spectrum of the sensor array 

and calculate the DOAs from this spectrum. They generally take advantage 

of a precise mathematical model of received array data [1] [6]. Therefore, the 

resolution and estimation accuracy is limited by noise as well as errors in the 

assumed data model.        

 

How to improve the performance of DOA estimation when errors exist in the 

assumed data model has been a hot research topic. In order to correct these 

errors, many calibration methods have been proposed. Mainly there are two 

types of methods, one is auto-calibration techniques, which exploit a 

parametric model of the array response, and include some ‚array 

parameters‚ [1]. The other one is to use sources at known locations. This 

work focuses on the second type of calibration methods. Three different 

calibration models with the measured data at known positions are evaluated. 

The first global diagonal matrix calibration model can only correct the 

channel errors. The second one, the global full matrix calibration model, can 

compensate for not only channel errors but also the unknown coupling 

between array elements [1]. But if there are DOA- dependent errors in the 

array, the accuracy of DOA estimation cannot be improved significantly by 

using these two methods. In this case, the third one, local calibration method 

is proposed. The local calibration method is completely general, but requires 

more computation and complexity.  

 

The goal of this thesis is to find a suitable calibration method to compensate 

for the non-ideal properties of the specified array and improve its 

beamforming. Towards this goal, we set up different calibration models in 

MATLAB and apply them on the practical measurements. The thesis is 

organized as follows: Chapter 2 gives a brief introduction to DOA estimation 



CHAPTER 1.  INTRODUCTION 

2 
 

methods, including the geometric data models and two selected DOA 

estimation algorithms. Chapter 3 continues with a description of the data 

model under realistic conditions, and also introduces three error models. 

Then the corresponding calibration methods are presented in Chapter 4. 

Chapter 5 shows the experimental processes and gives a comparison of three 

calibration approaches. Moreover, a frequency dependency analysis of the 

array response is also included in this section. Chapter 6 gives a further 

discussion on the calibration method with unknown phase and gain. 

Concluding comments are placed in Chapter 7. 
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Chapter 2    DOA Estimation 

Estimating the directions of incoming waves from distant sources is a     

generic problem in array processing. It involves detecting the electromagnetic 

energy transmitted and captured by antennas or acoustic signals propagated 

by transducers underwater [1]. Classical beamforming as well as 

high-resolution DOA estimation methods generally need a prior knowledge 

of the array response. Thereby, a better knowledge of the array response will 

provide higher accuracy of DOA estimation. In a purely geometric data 

model, many real-world factors are not modeled, they are the reasons why 

the ‘’real’’ array response deviate from the ideal one. 

 

This section introduces the ULA geometric data model including the 

geometric model of the specified array. Then two selected DOA estimation 

methods, Classical beamforming and MUSIC (MUltiple Signal Classification), 

are briefly introduced. 

2.1 Geometric data model 

The ULA geometry is shown in Figure 1: M sensors of the same type are 

mounted through a linear array with the same inter-element distance d. 

Assume the signal comes from the DOA θ. It will be captured by all the 

elements, but with time delays that depend on the DOAs. Assume there are 

N time samples available from each sensor. Then, use s(n) and 𝐱(n) to 

denote the incoming signal vector and array received signal, which is 

narrowband with center frequency 𝑓  [1] [6]. 

  

 𝐱(n)=   (n)   (n)      (n)  ,    n=1,2, … … ,N (1) 

  
where  n=1, 2, … , N denotes discrete time, corresponding to arbitrary 

continuous-time instances t_n, n=1, 2, …, N. 
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Fig. 1. Uniform Linear Array geometry 

 

According to [1], the ideal sensor array can be modeled by a linear relation as  

          

 𝐱(n)= a(θ) s(n),  (2)

                                              

where 𝐚(θ) is the array response vector, which takes the form 

 

 𝐚(θ)            ( )         ( )            ( )  ，  (3) 

 

Here, g denotes a common gain factor for all elements. It can be g=1 for all 

elements, or a DOA-dependent gain like g=cos(θ). Further,   (θ) denotes 

the time-delay of a signal at element m, it is a θ-dependent parameter [1]. 

Assume the signal source is placed in the near field, which means that the 

incident angle of the signal is different for each element, and the amplitude 

of the received signal also can be different in each sensor. Here we ignore the 

amplitude differences and model only the phase response. Using the length 

between the signal source and a specified element as reference, called   ; and 

using    to represent the length from the signal source to element m, then 

the time delay for element m can be calculated as  

     

   (θ)     (θ)    (θ)   ,  (4) 

 

here v is the speed of the signal. Thus, 𝐚(θ) in (3) can be written as  

 

   𝐚(θ)=           ( )   ( )             ( )   ( )                ( )   ( )     .  (5) 

 

Under the assumption of linearity, the superposition principle applies, so the 

sensor output due to Q near-field emitters can be written as 

 

 𝐱(n)=∑ 𝐚(θ ) s (n)  
 
      (n),  n=1,2,……,N,  (6) 
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where θ  are the DOAs of the signal sources, s (n) are the corresponding 

signal, and  (n) represents an additive noise term.  

 

Write (6) in compact matrix form, defining the DOA parameters 

 = θ  θ     θ   , array response matrix A( )=[ 𝐚(θ ) 𝐚(θ )   ， 𝐚(θ )], 

and the signal vector s(n)= s (n) s (n)    s (n)  . The resulting model is  

 

 𝐱(n)= A( )s(n) + (n),  n=1,2,……,N .  (7)                          

    

If we define    𝐱( ) 𝐱( )   𝐱( ) , 𝐒    ( )  ( )    ( ) , it can be written 

more compactly as  

                

 X= A( )𝐒   .    (8) 

 

 

Fig. 2. Measurement Set-up 

 

Figure 2 shows the measurement set-up of the specified array: This array has 

128 elements, spaced in a line with the inter-element distance d. Point A is 

the center of the array, B is the rotation point, and the emitter is fixed at point 

C. When the array rotates around point B, the direction of arrival θ is 

changed correspondingly.  m and    can be seen in Figure 2. The reference 

length    is defined as the length from the transducer to the middle, and  m 

is the distance from the emitter to each element. The distance between 

element m and the center of the array is denoted by D. It can be computed as 
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D = (m + 0.5)d   for  m < 0 

D = (m - 0.5)d   for  m > 0,                      (9) 

which can be expressed as:  

 

 D= [m-sign(m) 0.5]d.  (10) 

          

The distance between point A and B is a, and the distance between point B 

and C is b. In order to compute the    and  m, the law of cosines is used, 

which gives following results: 

  

   =√          os(  θ) ,    (11) 

     = √           √        os (  θ   ) ,  (12) 

 

where  =arctan(D/a). 

 

Assume that all the elements have a DOA-dependent gain, and the gain for 

each element is approximately equal and given by g=cos(θ). Then, according 

to (5), the ideal array response vector can be set up as 

                

  𝐚(θ)= os (θ)           ( )   ( )             ( )   ( )                ( )   ( )     . 

  (13) 

 

The ideal array response matrix  ( )  for DOA parameters 

 = θ  θ     θ    is expressed as 

  ( )=[ 𝐚(θ ) 𝐚(θ )   ， 𝐚(θ )].  (14) 
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2.2 DOA estimation methods 

DOA estimation methods exploit either the parametric structure of the array 

response or properties of the signals. With the knowledge of ideal array 

response vector 𝐚(θ), the directions of incoming signals can be determined by 

applying the DOA estimation methods on the given observations 𝐱(n).  

 

Equation (7) expresses the sensor output when there are Q signals incident on 

the M-element array. Assume the covariance Matrix of the white noise vector         

N = [n(1) n(2) …… n(N)] is   I. Then the array covariance matrix can be 

written as 

 

  𝐱𝐱    𝐱(n)𝐱 (n)   ( )    
 ( )     , n=1,2,……,N , (15) 

   

where        (n)  (n)  is the signal covariance matrix. We use  ̂𝐱𝐱 to 

denote the estimated array covariance matrix, based on the available 

measurements, given by 

   

  ̂   
 

 
∑ 𝐱(n)𝐱 (n)   

   
 

 
   .   (16) 

2.2.1 Classical beamforming 

The Classical Beamforming method estimates the DOAs by using a spatially 

matched filter, which is to coherently combine all sensor outputs as 

𝐚 (θ)𝐱(n), then measure the average power. It is computed as follows: 

 

                          (θ)  
 

 
∑ |𝐚 (θ)𝐱(n)|  

    

                  𝐚 (θ) [
 

 
∑ 𝐱(n)𝐱 (n) 

   ] 𝐚(θ) 

    𝐚 (θ) ̂𝐱𝐱 𝐚(θ) .  (17) 

 

The Q DOA estimates can be obtained by finding the Q highest peaks of the 

spectrum    (θ).  

2.2.2 MUSIC algorithm 

In most practical methods, DOA estimation is done by multiplying a weight 

matrix by the received data matrix. The output power is then calculated. 

Searching for maximum output power as a function of direction, then gives 
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the DOA estimates [1] [5]. 

 

The MUSIC algorithm is a high resolution subspace-based technique that 

exploits the eigen structure of the input covariance matrix. In practice, the 

eigenvectors of  ̂𝐱𝐱  are separated into two orthogonal subspaces as in 

equation (18). They are the principle eigen subspace and the non-principle 

eigen subspace, also named as signal subspace and noise subspace. The 

dimension of the signal subspace is Q, while the dimension of the noise 

subspace is M-Q. Their relation can be expressed as  

   

   ̂𝐱𝐱  ∑  ̂ 
 
    ̂  ̂ 

  =  ̂  ̂  ̂ 
   ̂  ̂  ̂ 

   , (18) 

             

where  ̂  is the signal subspace, containing the signal eigenvectors  ̂ , 

k=1,…,Q. The noise subspace contains the M-Q smallest eigenvectors of  ̂  , 

it is formed as  ̂ . The DOAs  = θ  θ     θ    can be determined by 

searching through all possible array steering vectors to find those which are 

orthogonal to the noise subspace. It takes the form 

 

    (θ)  
 

𝐚 ( ) ̂  ̂ 
 𝐚( )

 .   (19) 

            

The resolution of MUSIC is very high when N and the SNR are sufficiently 

high. The algorithm fails if the incoming signals are highly correlated [1] [5]. 

The reason is that in this case the dimension of the signal subspace degrades 

to some    ,      . Thus, the noise subspace is ‚too large‛, and its 

corresponding eigenvectors are not all orthogonal to a( θ ), q=1,… ,Q. 

Therefore, (19) does not exhibit high peaks near the true DOAs, as is the case 

for uncorrelated signals.   
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Chapter 3   Model Errors 

As introduced in Chapter 2, the array response  ( ) used in these DOA 

estimation methods is obtained from the geometric data model. Those 

non-ideal properties, without taking into consideration, will inevitably 

corrupt the performances of DOA estimation methods. For example, the 

sensor has its own characteristics, determined by the sensor type or the 

inter-distance between elements, etc. The presence of each element affects the 

wave-field, this leads to mutual coupling [1][6]. If it is not correctly accounted 

for, the estimation performance will be influenced significantly.  

Besides mutual coupling, some other sources of array modeling errors are : 

 

 Uncertain element positions or orientations. 

 Channel imbalance, leading to gain and phase errors at the different 

sensors. 

 Imbalances between the I and Q channels. 

 Near-field scattering due to platform or terrain. 

 Non-linearity in amplifier, A/D converters, modulators and other 

hardware. 

 

It is common to model these unknown errors using a so-called correction 

matrix Q, which modifies the steering vectors from the ideal 𝐚(θ) to  𝐚(θ). 

 

The error models used here are the following: 

 

1)     𝐚          𝐚(θ), 

2)     𝐚      𝐚(θ), 

3)     𝐚          (θ)𝐚(θ). 

where       is diagonal matrix, whereas   is generally a full matrix.  

 

One common thing in Model 1) and Model 2) is that the correction matrix   

is direction independent. But in Model 1), the global diagonal matrix, can 

only correct for channel imbalance. Model 2), the global full matrix, can 

correct for mutual coupling and channel imbalance. The correction matrix 

     (θ)  in Model 3) is direction dependent, which is completely general 

and requires the additional assumption that      (θ) is a smooth function of 

θ to be useful. 
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Chapter 4   Array Calibration 

To remedy these model errors, many calibration methods have been 

proposed. Reference [1] presents auto-calibration techniques and calibration 

methods using sources at known positions. In the auto-calibration approach, 

all parameters are estimated simultaneously, but it requires a parametric 

model with known structure and relatively few parameters, which is not 

always satisfied in practice. The second type of calibration methods, with the 

help of calibration sources at known locations, is a useful remedy. The 

calibration data is collected by placing a single emitter at several known 

places, and then it is used to compute the array response vectors for the 

different source directions [1]. 

 

Section 4.1 describes two different ways to estimate the array response vector 

using the available measurements. With the estimated ‘’real’’ array response, 

three calibration methods, corresponding to the three error models stated in 

chapter 3, are introduced in section 4.2. 

4.1 Estimation of the ‘’real’’ array response vector 

Assume the emitter is placed at known positions θc, c=1,……，C, where C is 

the number of emitter positions, and use  c to denote the number of data 

samples taken at position c. Then the calibration data for a signal coming 

from θc can be modeled by 

 

 𝐱 (n)= 𝐚 sc(n) +  (n) , n=1,2,……, c;  c=1,……，C , (20) 

 

where 𝐚 =𝐚 (θc) is the ‚real‛ array response vector at θc.  

 

The array response vector 𝐚̂  can be estimated in two ways, depending on if 

the incoming signal sc(n) is known or not. If sc(n) is known, it can be used 

to compute 𝐚̂  in coherent calibration. If it is unknown, we can use 

non-coherent calibration to estimate 𝐚̂ .  

4.1.1 Coherent calibration 

   In this case, sc(n) is known, the array response vectors can be estimated as 

 

 𝐚̂ = 
∑ 𝐱 ( )  

 ( )  
   

∑ |  ( )|   
   

 ,   n=1, 2, ……,  c;  c=1,……，C , (21) 
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In our case, the continuous-time pulse sc (t) transmitted by the hydrophone 

under water is described as  

 

 sc(t)   os(  𝑓 t   )    t   ，  (22) 

       

where T is the observation time, 𝑓  is the frequency and   is the phase. One 

thing needed to be pointed out is that the amplitude and phase of sc(t) are 

unknown. Thus, we assume its amplitude is 1 and the phase   is equal to   . 

With this information, the sampled signal sc(n)  can be simulated in 

MATLAB. 

4.1.2 Non-coherent calibration 

When sc is unknown, the array response is computed from the principal 

eigenvector of the covariance matrix 

 

   ̂ =
 

 c
∑ 𝐱 (n)𝐱 

 (n) c
    ∑  ̂  ̂ 

  
    𝐚̂   ̂ .   (23) 

    

In this case, the resulting estimates have a gain and phase ambiguity, and 

need to be normalized before the calibration vectors are used [1]. 
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4.2 Calibration methods  

As introduced in Chapter 3, we use   to modify the ideal array response 

vector 𝐚(θc) to the ‚real‛ array response vector 𝐚̂ (θc), which can be formed 

as 

 

 𝐚̂ (θc)   𝐚(θc).  (24) 

 

If   is a calibration matrix which is unchanged for all DOAs, like in error 

model 1) and 2), then these models are called global calibration model; if   

is a DOA-dependent correction matrix like in error model 3), then it is a local 

calibration model. 

 

For both global and local calibration, the correction matrix is determined by 

using a least-squares fit (LS-fit). This is written as 

 

  ̂   r m n ‖ ̂    (θ )‖
 
,  (25) 

      

where  (θ )   𝐚(θ )   𝐚(θ )  is the ideal steering vectors at calibration 

locations, and  ̂   𝐚̂    𝐚̂   is the estimated array response using either 

(21) or (23). 

4.2.1 Global calibration methods 

1) If Q is a diagonal matrix, which can correct for channel errors only. In this 

case, Q=diag{q}, the elements of q =  q    ，q    are estimated by 

solving from (25) as 

 

 q̂  =  ̂c    
 (θc)(  (θc)  

 (θc))
  , (26) 

    

where  ̂c   is the mth row of the estimated ‚real‛ array response matrix, 

and   (θc) is the mth row of the ideal array response matrix. 

 

2) If Q is a full matrix, this model can correct not only channel errors but also 

mutual coupling, and the solution for (25) is now  

         

  ̂   ̂  
 (θc)( (θc) 

 (θc))
  .  (27) 

         

      Here,     is necessary to guarantee a unique solution.  
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4.2.2 Local calibration methods 

3) Global calibration methods are simple and efficient, but they cannot 

handle DOA-dependent errors, for example due to uncertain element 

positions. Local calibration methods are developed to solve this drawback; 

its correction matrix is DOA-dependent and can be expressed as 

 

 𝐚̂   Q(θc)a(θc),  (28) 

        

   where Q(θc)=diag{𝐪(θc)}, and 𝐪(θc) is computed as 

           

 𝐪̂(θc)  𝐚̂   𝐚(θc),  (29) 

         

here ./ denotes element-wise division. The correction matrix is computed as 

a function of θc. By doing interpolation in the real and imaginary parts of 

𝐪̂(θc), 𝐪̂(θ) at a certain desired DOA θ can be obtained. 

 

Compared to the global calibration, local calibration is more complicated, 

but its ability of handling general model errors gives a great improvement 

on DOA estimation performance under severe modeling errors. 
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Chapter 5   Experimental Results and Analysis 

The available measurements are obtained on the specific sensor array 

underwater, which is a uniform linear array with M=128 elements. The 

geometrical structure of the emitter and the array is described in Figure 2. 

Measurements are made for       θc      . The number of emitter 

positions C could not be fixed for each measurement, it is a number between 

230 and 270. Also the calibration positions   = [θ    ，θc] are not exactly 

the same for each measurement, but the angle difference between any two 

neighboring positions is around 0.7 degrees，which can be expressed as 

θc   θc      .  

 

For each emitter position θc, the output of the array defined is as x(θc). It is a 

M Nc matrix, where M=128 is the number of elements and Nc=100 is the 

number of data samples taken at position c. When the array rotates from 

      to     , the received data x(θc) can be regarded as a function of the 

DOA θc. The full data set is thus a three dimensional object expressed as a 

M Nc C tensor.  

 

Since the receiver array operates on frequencies ranging from 200 KHz to 400 

KHz, measurements are collected from 160 KHz to 450 KHz at intervals of 10 

KHz. One dataset contains 30 data bins covering the 30 different carrier 

frequencies, and each data bin contains a M Nc C matrix. Each new 

produced array has its own number, so the datasets are named after the 

tested array. For example, dataset 112 means the measurements are done on 

the array number 112; and datasets 124_1, 124_2 and 124_3 mean that these 

measurements are done on the very same arrays.   

 

For an easier presentation, the carrier frequency 𝑓  is first fixed to 250 KHz, 

and dataset 112 is chosen to explain how to obtain the ideal and ‘’real’’ array 

response from Sections 5.1 and 5.2. Sections 5.3 and 5.4 also use the same 

dataset and frequency to show the implementation of the global and local 

calibration methods. So if there is no special notation, the figures in these 

four sections are obtained by using dataset 112 and 𝑓 =250 KHz.  

 

In order to compare the calibration performance overall and observe the 

frequency dependency of the array response, Sections 5.5 and 5.6 use 

different datasets and change frequencies from 200 KHz to 400 KHz. The 

used dataset and frequency are stated in the respective figure/table caption.   
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5.1 Ideal array response A 

Section 2.1 describes how we set up the ideal array response model according 

to the geometric model. It is expressed in the following equations. 

 

 𝐚(θ)= os (θ)           ( )   ( )             ( )   ( )                ( )   ( )     , (30) 

  A( ) =[ 𝐚(θ ) 𝐚(θ )   ， 𝐚(θ )],  = θ  θ     θ   . (31) 

      

Here, 𝑓  is fixed to 250 KHz and the underwater speed of sound v is 1481 m/s. 

Since the useful DOA range in our case is [-80 80] degree, we use a little larger 

DOA range [-85 85] degree to generate the ideal array response.  

 

Figures 3 and 4 plot the gain and phase of the ideal array response A(θ)  

respectively. In Figure 3, the gain is cosine shaped g = cos(θ) as assumed in 

the geometric data model. It is DOA-dependent and has the same gain for all 

elements for a selected DOA. The phase in figure 4 is smooth and continuous, 

but for the elements at the edge, like element 1 and element 128, their phases 

have larger variations. The phases of the elements in the middle vary gently. 

That is because the ideal phase of element m is   𝑓   m(θ)   r(θ)   , it relies 

on the distance between the emitter and element m,   (θ). For the middle 

elements,    varies slightly versus the DOA θ.         

 

 

 
Fig. 3. Gain of the ideal array response 

𝑓 =250 KHz, DOA=[-85, 85] deg 

 
Fig. 4. Phase of the ideal array response 

𝑓 =250 KHz, DOA=[-85, 85] deg 
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5.2 Estimated array response 

With the measurements at known positions, the ‚real‛ array response can be 

estimated. Sections 4.1.1 and 4.1.2 describe two methods to obtain the 

estimated array response. One is coherent calibration, which needs the 

information of transmitted signal. The transmitted signal sc[n] is generated 

in MATLAB under the assumptions of amplitude 1 and phase   . In practice, 

that means that sc[n] has unknown gain and phase. This may result in a fact 

that coherent calibration could not get a better estimation than the second 

method, non-coherent calibration. In non-coherent calibration, the estimated 

array response is computed from the principal eigenvector of the covariance 

matrix, without using sc[n].  

 

By applying these two calibration methods on the measured data 𝐱(θc), the 

‚real‛ array response  ̂c can be estimated and it is shown in the following 

figures. Figures 5, 6, 7 and 8 show the estimated results from the coherent 

calibration and non-coherent calibration methods respectively. The results 

are almost the same, which may be due to the unknown phase and gain. In 

section 6, we will have a further discussion on calibration methods with 

unknown phase and gain.  

 

Figures 5 and 7 show the gain of the estimated ‚real‛ array response vector, 

which is not as smooth as the ideal array response gain g=cos(θ). It can be 

explained by elements position deviations and mutual coupling in the 

practical environment. 

 

Figure 6 and 8 show the phase of the estimated array response, which looks 

different from Figure 4 - the phase of the ideal array response, especially for 

the elements in the middle, their performances are quite different. In order to 

observe it clearly, Figure 9 plots the phase of element 64. The estimated array 

response phase does not have the similar behavior as the ideal model. It’s 

easy to observe that there is a turning point around the DOA = 10 degree, 

which may be due to mutual coupling and phase shifting.  
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Fig. 5. Coherent calibration 

Amplitude of the estimated array response 

𝑓 =250KHz, DOA=[-100, 100] deg 

 
Fig. 6. Coherent calibration        

   Phase of the estimated array response 

  𝑓 =250KHz, DOA=[-100, 100]

 
Fig. 7. Non-coherent calibration 

Amplitude of the estimated array response 

𝑓 =250KHz, DOA=[-100, 100] deg 

 
Fig. 8. Non-coherent calibration 

Phase of the estimated array response 

𝑓 =250KHz, DOA=[-100, 100] deg 

 

Fig. 9. Phase of the ideal and estimated array response for element 64 
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Figures 10, 11, 12 and 13 show the performance when using the ideal array 

response A and estimated array response  ̂  in the two DOA estimation 

methods, classical beamforming and MUSIC. Figures 10 and 11 use the 

estimated array response from coherent calibration, Figures 12 and 13 use the 

estimated array response from non-coherent calibration. Figures 10, 12 and 

Figures 11, 13 are similar, which also proves that the  ̂  obtained from the 

two methods are almost the same. So in the following analysis, only the 

estimated array response from the coherent calibration method is used. In 

these figures, the spectrum when using the ideal array response matrix A is 

very close to the one using the estimated ‘‘real’’ array response matrix  ̂ . 

Comparing the two DOA estimation methods, MUSIC has higher resolution 

than the beamforming method. And for the classical beamforming method, 

the two curves are close to each other, it is hard to distinguish which one has 

lower side lobe level. 

 

 

Fig. 10. Coherent calibration 

Classical Beamforming method. Signal’s angle of incidence is 63.49 degree. 

Estimated direction using estimated array response is 63.60 degree. 

                   Estimated direction using ideal array response is 63.20 degree. 
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Fig. 11. Coherent calibration 

        MUSIC method. Signal’s angle of incidence is 63.49 degree, 

Estimated direction using estimated array response is 63.60 degree, 

    Estimated direction using ideal array response is 63.30 degree. 

 
 

 

Fig. 12. Non_coherent calibration 

      Classical Beamforming method. Signal’s angle of incidence is 63.49 degree, 

          Estimated direction using estimated array response is 62.80 degree, 

               Estimated direction using ideal array response is 63.20 degree. 
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Fig. 13. Non_ coherent calibration 

           MUSIC method. Signal’s angle of incidence is 63.49 degree, 

  Estimated direction using estimated array response is 63.50 degree, 

      Estimated direction using ideal array response is 63.30 degree. 
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5.3 Global calibration  

The purpose of calibration is to correct errors which could not be considered 

when setting up the ideal array response model, such as element’s position 

deviation, unknown mutual coupling and channel errors. The correction 

matrix Q is used to compensate these errors, expressed as  ̂c= QA. It is 

generally obtained by dividing the ‚real‛ array response by the ideal array 

response, but according to the different calibration models, there are different 

ways to perform this task.  

 

In these two global calibration models introduced in Section 4.2, Q is a fixed 

matrix for all DOAs, it’s simple and efficient when there are no 

DOA-dependent errors.  

 

5.3.1 Global diagonal matrix calibration  

The diagonal global calibration matrix can be computed as in (26). Here 

 (θc)  is the ideal array response shown in figures 3-4, and  ̂  is the 

estimated array response shown in figures 5-6 (using coherent calibration 

results). Both of them are 128 C matrixes.  ̂    and   (  ) denote the m-th 

row of corresponding matrix. 

 

Figures 14 and 15 show the amplitude and phase of corrected array response, 

which is computed as  ̂  𝐚  . The effects of the correction matrix can be seen 

by comparing to the ideal array response in Figures 3 and 4. Obviously the 

gain of the corrected array response is less smooth than the the ideal one.  

 

 
Fig. 14. Global diagonal matrix calibration 

Amplitude of the corrected array response 

 
Fig. 15. Global diagonal matrix calibration 

Phase of the corrected array response 
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Figures 16 and 17 display the amplitude and phase of the ideal array 

response, estimated array response and corrected array response for element 

64. These figures illustrate that the diagonal global calibration method cannot 

compensate for the model errors very well. 

 

 

Fig. 16. Global diagonal matrix calibration 

Comparison of the amplitude of array response for element 64 

 

Fig. 17. Global diagonal matrix calibration 

Comparison of the phase of array response for element 64  
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5.3.2 Global full matrix calibration 

Global calibration using a full matrix works better than the diagonal one, 

since it can compensate not only for the channel errors but also for the 

unknown mutual coupling.  

 

  ̂   ̂  
 (  )( (  ) 

 (  ))
   (32) 

     

 ̂ can be computed as in (32). It can also be implemented as  ̂  p n ( (  )) 

in MATLAB to avoid numerical problems. Figures 18 and 19 illustrate the 

estimated correction matrix  ̂.  

 

In Figure 18, the maximum amplitude of the correction matrix  ̂ is around 

1.5      , which is extremely huge and means that the results are 

meaningless.   

 

 

 
Fig.18. Global full matrix calibration 

Amplitude of the correction matrix 

 
Fig. 19. Global full matrix calibration 

Phase of the correction matrix 

 

After some analysis, we found that this may be because the simulated ideal 

array response  (  )  is not full rank. Computing the singular value 

decomposition (SVD) as follows, 

 

 A(  )=    ,  (33) 

       

where U is a M×M complex unitary matrix, and Σ is a M×C rectangular 

diagonal matrix with nonnegative real numbers on the diagonal, it can be 

expressed as Σ =[

   
   

  
  

  
  

  
   

|

  
  
 
 

 
 

], V* (the conjugate transpose of V) is 

a C×C complex unitary matrix. The rank of  (  ) equals the number of 

http://en.wikipedia.org/wiki/Unitary_matrix
http://en.wikipedia.org/wiki/Rectangular_diagonal_matrix
http://en.wikipedia.org/wiki/Rectangular_diagonal_matrix
http://en.wikipedia.org/wiki/Conjugate_transpose
http://en.wikipedia.org/wiki/Rank_of_a_matrix
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non-zero singular values, which is the same as the number of non-zero 

diagonal elements in Σ.  

 

Figure 20 plots the singular values S=[  ,   , ... ,   ]. The minimum singular 

value is close to      . When computing the correction matrix  ̂  by 

 ̂ /  (  ), or  ̂  p n ( (  )), it makes the amplitude of  ̂ to be as huge as 

    . 

     

        

Fig. 20. Singular values of ideal array response matrix 

 

There are two ways to solve this problem:  

 

a) one solution is to set a tolerance value in  ̂   p n  ( (  )  tol). Thus, all 

the singular values less than ‘tol’ will be treated as zero.  

 

b) the other solution is to use so-called regularization [8].   

 

  ̂   ̂  
 (  )( (  ) 

 (  )    )  ,  (34) 

 

where   is called the regularization parameter that can be set as 1, 0.1 or 

other suitable values. Further,   is a M M identity matrix. In this way, a 

small value is added on the singular values shown in Figure 20, which 

influences little on the large singular values but move the small singular 

values away from zero. Figures 21 and 22 show the correction matrix  ̂ 

computed by (34) using      . This  ̂ is a diagonal dominated matrix as 

we expected. Because the full correction matrix can compensate for the 

mutual coupling, and theoretically, the mutual coupling between 
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neighboring elements is much stronger than the one between distant 

elements, so as a compensation for the ideal array response, the reasonable  ̂ 

should be a diagonal dominated matrix.  

 

 

Fig.21. Global full matrix calibration 

Amplitude of the correction matrix 

 

Fig.22. Global full matrix calibration 

    Phase of the correction matrix 

 

By using this estimated  ̂ to correct the model errors, we get a corrected 

array response which is close to the ‘real’ array response as shown in figures 

23 and 24.  

 

 

 
Fig. 23. Global full matrix calibration 

Amplitude of the corrected array response 

 
Fig. 24. Global full matrix calibration 

     Phase of the corrected array response

 

Figures 25 and 26 also plot the array response for element 64 as a comparison. 

The corrected array response is very close to the estimated one in both 

amplitude and phase. 
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Fig. 25. Global full matrix calibration 

 Comparison of the amplitude of array response for element 64 

                              

 

 

Fig. 26. Global full matrix calibration 

Comparison of the phase of array response for element 64 
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5.4 Local calibration 

Compared with global calibration methods, local calibration is more 

complicated. The local calibration method exploits a DOA-dependent matrix 

𝐪̂(θc), which is computed as in (29). The real part and imaginary part of 𝐪̂(θc) 

are shown in Figures 27 and 28. It satisfies the only requirement for local 

calibration, that is 𝐪̂(θc) should be a smooth function of the DOA θc to be 

useful.  

 

 

 
Fig.27. Local calibration 

The real part of q̂(θc) 

 
Fig.28. Local calibration 

   The imaginary part of q̂(θc) 

 

Then, linear interpolation can be performed on 𝐪̂(θc) to obtain the correction 

matrix for any desired θ. The interesting DOA range in this case is [-80 80], 

with intervals of 0.1 degree. Figures 29 and 30 show the corrected array 

response using a local calibration matrix. It is very close to the estimated 

array response, which means that the local calibration method compensated 

the model errors very well.   

 

 

 
Fig. 29. Local calibration 

Amplitude of the corrected array response 

 
Fig. 30. Local calibration 

Phase of the corrected array response
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For the local calibration method, the three array responses are also shown in 

Figures 31 and 32. The corrected array response coincides with the estimated 

array response.  

 

 

Fig. 31. Local calibration 

Comparison of the amplitude of array response for element 64 

 

 

Fig. 32. Local calibration 

Comparison of the phase of array response for element 64 
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5.5 Performance comparison.   

In order to compare the accuracy of DOA estimation, the average DOA RMS 

error   is defined as 

                  

  =√
∑ ( ̂    )  

   

 
,  (35) 

  

where θ̂c is the estimated direction at position c, and θc denotes the real 

direction. But gross errors exist in the estimated DOAs as shown in Figure 33. 

The signal comes from 60 degree direction in one experiment, but the 

estimated DOA is -60 degree. This error is regarded as gross error. In order to 

obtain a robust approach to describe the performances of calibration methods, 

we remove the five maximum and minimum errors, and then compute the 

DOA RMS error   as (35).      

 

       

Fig. 33. Estimated directions using global full matrix calibration 

 ̂ is obtained from dataset 112, x[n] is obtained from dataset 124 

𝑓  = 350 KHz 

 

Table 1 states the results when using the three different calibration ways: 

global diagonal matrix calibration, global full matrix calibration and local 

calibration.  ̂ is computed by using dataset 112. Comparing with the cases 

without calibration, the diagonal matrix method results in larger DOA RMS 

errors, it fails to improve the performance of DOA estimation. The full matrix 

calibration only works on dataset 124 when the DOA range is [-80 80] deg. 
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The local calibration method achieves good performance for the entire 

datasets. It returns the corrected steering vectors  ̂( )a( ), which are almost 

collinear to the estimated ‘’real’’ steering vectors 𝐚̂( ).  

 

Table 1  DOA RMS error   

( ̂ is obtained from dataset 112, 𝑓 =250KHz, θc             ) 

 

Datasets 112 124 125 

Diagonal matrix calibration  0.1122 deg 0.1752 deg 0.1588 deg 

Full matrix calibration 0.2347 deg 0.1082 deg 0.2015 deg 

Local calibration 0.0288 deg 0.0759 deg 0.0834 deg 

Without calibration 0.0964 deg 0.1664 deg 0.1427 deg 

 

If we decrease the range by setting θc              , as shown in Table 2, 

the global full matrix calibration method does improve the estimation 

accuracy on the three datasets. From this we also conclude that it is more 

difficult to correct errors near the limits of the useful DOA range.   

  

Table 2  DOA RMS error   

 ( ̂ is obtained from dataset 112, 𝑓 =250KHz, θc             ) 

 

Datasets 112 124 125 

Diagonal matrix calibration  0.0964 deg 0.1377 deg 0.1284 deg 

Full matrix calibration 0.0439 deg 0.0498 deg 0.0478 deg 

Local calibration 0.0285 deg 0.0568 deg 0.0524 deg 

Without calibration 0.0934 deg 0.1352 deg 0.1178 deg 

 

 

Datasets 124_1, 124_2 and 124_3 are three independent measurements using 

the very same arrays. Table 3 shows the results when applying the 

calibration matrix obtained from 124_1 on the other two independent 

measurements. For DOA range [-80 80] deg, the global full matrix calibration 

still doesn’t work, while local calibration perform very well.  

 

Table 3  DOA RMS error   

( ̂ is obtained from dataset 124_1, 𝑓 =250 KHz, θc             ) 

 

 

 

Datasets 124_1 124_2 124_3 

Global full matrix calibration 0.1633 deg 0.1679 deg 0.1453 deg 

Local calibration 0.0290 deg 0.0322 deg 0.0337 deg 

Without calibration 0.0764 deg 0.0798 deg 0.0782 deg 
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Table 4 shows the results after decreasing the DOA range as [-70 70] deg, 

global full matrix calibration improves the performance significantly. 

 

Table 4  DOA RMS error   

( ̂ is obtained from dataset 124_1, 𝑓 =250 KHz, θc             ) 

 

 

To compare the improvements more straightly, we calculate the percentage 

of improvements as ( -  )/   . Here,   is the DOA RMS error without 

calibration, and    is the DOA RMS error with calibration.   

 

As a conclusion, for DOA range [-80 80] degree, the local calibration method 

can improve the estimation accuracy 34%, global calibration methods don’t 

work in this case. For DOA range [-70 70] degree, global full matrix method 

achieved similar performance (50% improvement) as local calibration 

method (53% improvement). Obviously, the local calibration method is 

comparatively robust to different modeling errors and improves the 

performance superiorly.  

Datasets 124_1 124_2 124_3 

Global full matrix calibration 0.0433 deg 0.0454 deg 0.0411 deg 

Local calibration 0.0495 deg 0.0380 deg 0.0359 deg 

Without calibration 0.0717 deg 0.0784 deg 0.0770 deg 
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5.6 Frequency dependency of the array response 

Figures 34-41 indicate that the array response of this array is frequency 

dependent. By increasing the carrier frequency 𝑓  from 200 KHz to 400 KHz, 

the estimated array response is varying.  

 

Fig. 34. Gain of the estimated array response 

𝑓 = 200 KHz, DOA=[-100, 100] deg 

 
Fig. 35. Phase of the estimated array response 

   𝑓 = 200 KHz, DOA=[-100, 100] deg 

 

 
Fig. 36. Gain of the estimated array response 

   𝑓 = 300 KHz, DOA=[-100, 100] deg 

 
Fig. 37. Phase of the estimated array response 

𝑓 = 300 KHz, DOA=[-100, 100] deg 

 
Fig. 38. Gain of the estimated array response 

     𝑓 = 350 KHz, DOA=[-100, 100] deg 

 
Fig. 39. Phase of the estimated array response 

    𝑓 = 350 KHz, DOA=[-100, 100] deg 
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Fig. 40. Gain of the estimated array response 

𝑓 = 400 KHz, DOA=[-100, 100] deg 

 
Fig. 41. Phase of the estimated array response 

    𝑓 = 400 KHz, DOA=[-100, 100] deg

 

Using the global full matrix calibration method on dataset 112 with different 

𝑓  (200 KHz, 250 KHz, 300 KHz, 350 KHz, and 400 KHz); Figures 42-51 show 

the corresponding correction matrix  ̂. Obviously,  ̂ is also varying with 𝑓 , 

which means that the mutual coupling between elements is affected by 

carrier frequency. 

 
Fig. 42. Amplitude of the correction matrix 

𝑓 = 200 KHz 

 
Fig. 43. Phase of the correction matrix 

              𝑓 = 200 KHz 

 

 
Fig. 44. Amplitude of the correction matrix 

𝑓 = 250 KHz 

 
Fig. 45. Phase of the correction matrix 

             𝑓 = 250 KHz 
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Fig. 46. Amplitude of the correction matrix 

𝑓 = 300 KHz 

 
Fig. 47. Phase of the correction matrix  

𝑓 = 300 KHz 

 

 
Fig. 48. Amplitude of the correction matrix 

𝑓 = 350 KHz 

 
Fig. 49. Phase of the correction matrix                                   

𝑓 = 350 KHz 

 

 
Fig. 50. Amplitude of the correction matrix 

𝑓 = 400 KHz 

 
Fig. 51. Phase of the correction matrix 

𝑓 = 400 KHz                                 

 

Figures 52-59 plot the corrected array response by using the calibration 

matrix  ̂ in the ideal model. The correction matrix  ̂ works for 𝑓 = 200 

KHz. As shown in Figures 52 and 53, the corrected array response perfectly 

coincides with the estimated array response. The case of 𝑓 =250 KHz has 

been discussed in section 5.3.2, it also works very well.  
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Fig. 52. Amplitude of array response for element 64  

                          Global full matrix calibration, 𝑓 = 200 KHz 

 

Fig. 53. Phase of array response for element 64 

                          Global full matrix calibration, 𝑓  = 200 KHz 
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Figures 54 and 55 show that this global calibration method can only compensate 

for the amplitude error for 𝑓 = 300 KHz, it is not perfect for the phase error 

compensation. 

 

 

Fig. 54. Amplitude of array response for element 64 

      Global full matrix calibration, 𝑓  = 300 KHz   

 

Fig. 55. Phase of array response for element 64 

       Global full matrix calibration, 𝑓 = 300 KHz 
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In the cases of 𝑓  = 350 KHz and 𝑓  = 400 KHz, the corrected array response 

still deviates from the estimated ‚real‛ array response, especially in the edge 

of the DOA range, as shown in Figures 56-59. That means that this global 

calibration matrix  ̂  cannot work very well to compensate the non-ideal 

properties when 𝑓  is high. 

 

Fig. 56. Amplitude of array response for element 64 

      Global full matrix calibration, 𝑓  = 350 KHz 

    

 

Fig. 57. Phase of array response for element 64 

    Global full matrix calibration, 𝑓 = 350 KHz 
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Fig. 58. Amplitude of array response for element 64 

      Global full matrix calibration, 𝑓  = 400 KHz 

 

 

 

Fig. 59. Phase of array response for element 64 

       Global full matrix calibration, 𝑓 = 400 KHz 
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Comparing to the global calibration method, local calibration is always 

effective for different carrier frequencies. Table 5 shows the performances of 

global full matrix calibration and local calibration when 𝑓  is fixed to 200 

KHz, 300 KHz, 350 KHz and 400 KHz. The full matrix calibration method 

doesn’t work for any frequency when θc             , but the local 

calibration method improves the estimation accuracy a lot. 

     

Table 5  Global and Local Calibration, DOA RMS error 

( ̂ is obtained from dataset 112, x[n] is obtained from dataset 124, θc             ) 

 

Frequency 200 KHz 300 KHz 350 KHz 400KHz 

Full matrix calibration 0.0817 deg 0.1293 deg 0.1844 deg 0.1740 deg 

Local calibration 0.0852 deg 0.0772 deg 0.0692 deg 0.0983 deg 

Without calibration 0.1820 deg 0.1456 deg 0.1436 deg 0.1561 deg 

 

 

In Table 6, the DOA range is changed to [-70 70] deg. The global full matrix 

calibration method works for every frequency in this DOA range. For some 

frequencies, it even has better performance.  

 

 

Table 6  Global and Local Calibration, DOA RMS error 

( ̂ is obtained from dataset 112, x[n] is obtained from dataset 124, θc             ) 

 

Frequency 200 KHz 300 KHz 350 KHz 400KHz 

Full matrix calibration 0.0468 deg 0.0446 deg 0.1110 deg 0.0498 deg 

Local calibration 0.0506 deg 0.0519 deg 0.0449 deg 0.0568 deg 

Without calibration 0.1333 deg 0.1194 deg 0.1202 deg 0.1352 deg 

 

  



                      CHAPTER 6. FURTHER DISCUSSIONS                                            

40 
 

Chapter 6   Further Discussion 

Sections 4.1 and 4.2 describe two ways to estimate the ‘’real’’ array response, 

they are coherent calibration and non-coherent calibration. Since the phase 

and gain of s(t) used in the coherent calibration method are unknown, we 

assume the gain is 1 and phase   is    when generating s(t) in MATLAB. 

Due to this, the 𝐱c(n) and sc(n) used in equation (21) are coherent, but with 

different amplitude and phase. Generally, coherent calibration will get a 

better performance than non-coherent calibration. But in this case, we get the 

same estimated array response from these two methods. In order to improve 

the performance of calibration, a new global calibration method with 

unknown phase and gain is proposed in [7]. This section will give a brief 

introduction of this newly-developed method, and also show some 

experimental results. 

 

In local or global calibration, the correction matrix is achieved by using the 

least-square technique as follows: 

 

  ̂   r  m n  
 

‖ ̂    (θc)‖ 

 
 , (36) 

 

where  ̂    𝐚̂(θ ) 𝐚̂(θ )  𝐚̂(θ )  and  (θc)   𝐚(θ ) 𝐚(θ )   𝐚(θc)   

denote the estimated array response and ideal array response respectively. 

The subscript F means Frobenius norm. 

 

Assume the estimated array response vector 𝐚̂(θc) have corresponding gain 

 c and phase  c, then the unknown gain and phase can be represented as 

rc   c  p (  c) . Let   be a diagonal matrix generated by the vector 

[r  r     r ],  

                       

   [

r  
 r 

  
  

  
  

   
 r 

]. (37) 

           

So the calibration model in this case is  

                

   ̂     (θc). (38) 

                  

Then equation (36) can now be changed as  

        ̂   r  m n  
   

‖ ̂     (θc)‖ 

 
 , (39) 
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Which means that we estimate both the correction matrix Q and the 

unknown gain and phases in  . 

 

To solve this equation,   is initialized as a unit matrix in the first step, it’s 

expressed by     . Then the solution is the same as the global full matrix 

calibration, so   ̂ can be computed in the same way. Let k denote the 

iteration counts of updating   and Q. 

 

k=0 ,       ,  ̂   ̂  
 (θc)( (θc) 

 (  )    )  . (40) 

        

The next step is to update   by fixing    ̂ ,  

k=1,   ̂   r  m n  
 

‖ ̂    ̂  (θc)‖F

 
 

                  r  m n (
 

‖𝐚̂ r   ̂ 𝐚(θ )‖ 

 
   ‖𝐚̂crc   ̂ 𝐚(θc)‖ 

 
). (41) 

     

Since r  r     r  are not related, they can be found independently. Then 

use this updated  ̂  to compute  ̂   

            

k=1,   ̂   ̂      
 (θc)( (θc) 

 (  )    )  . (42) 

    

Determine if   and   has converged or not, by checking if it satisfies some 

stopping criterion or not. For example  

              

 ‖ ( ̂      ̂   )   ( ̂    ̂ )‖    ,    (43) 

            

where  (   )= ‖ ̂     (θc)‖ 

 
 . If it does not satisfy this inequality, then 

update   and   again as in (41) and (42) until the method converges:  

           

  ̂   r  m n  
 

‖ ̂    ̂    (θc)‖ 

 
 ,  (44) 

  ̂   ̂      
 (θc)( (θc) 

 (  )    )  .  (45) 

       

We implemented this method in MATLAB with a small modification. The 

gain of the emitting signals should be the same, but the phases are hard to 

predict if the signal emits continuously while the array rotates. Assume 

 c   ,  rc    p (  c). Then we modify (41) to search for the phase only:  

   

    c   r  m n  
  

‖𝐚̂c  p (  c)   ̂ 𝐚(θc)‖ 

 
 . (46) 

              

Then  c can be found by a grid search in MATLAB. 
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Figure 60 shows the estimated phase versus DOAs. It indicates that the phase 

of the emitted signal is      (or    ) for DOA = [-60 60] deg. The phase is 

almost linearly increasing / decreasing near the limits of the incidence angles.  

    

 

Fig. 60. Estimated phases of emitted signals using dataset 112, 𝑓  = 250 KHz 

 

Figures 61 and 62 show the amplitude and phase of the correction matrix   ̂. 

It is similar to the   ̂ obtained from the global full matrix calibration method, 

as shown in Figures 21 and 22. Figure 63 plot the diagonal entries of these 

two calibration matrices, it is now easier to see that this method, calibration 

with unknown phase, changed the correction matrix a little, especially in the 

edge. 

 

 
Fig. 61. Calibration with unknown phase 

The amplitude of the correction matrix 

 
Fig. 62. Calibration with unknown phase 

The phase of the correction matrix 
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 Fig. 63. Diagonal entries of the two correction matrix  ̂  

 

Table 7 states the DOA RMS errors when using this method and global full 

matrix calibration. As compared to global full matrix calibration, the calibration 

method with unknown phase gets better performance when the DOA range is 

[-80 80] degree, it improves the DOA estimation accuracy around 25%. 

 

Table 7  DOA RMS error   

(  ̂ is obtained from data set 112, 𝑓 =250 KHz, θc             ) 

 

       112 124 124_1 124_2 124_3 125 

  Full Matrix Calibration  0.2347  0.1082  0.1633 0.1679 0.1453 0.2015 

Unknown phase calibration 0.0502 0.0701 0.0933 0.0750 0.0707 0.0667 

Without calibration 0.0964 0.1664 0.0764 0.0798 0.0782 0.1427 

 

Table 8 shows the DOA RMS errors when setting DOA range as [-70 70] degree. 

The two calibration methods have similar performance. Both of them improve 

the accuracy around 50%.  

 

Table 8  DOA RMS error   

(  ̂ is obtained from data set 112, 𝑓 =250 KHz, θc             ) 

 

       112 124 124_1 124_2 124_3 125 

  Full Matrix Calibration  0.0439  0.0498  0.0672 0.0552 0.0479 0.0478 

Unknown phase calibration 0.0330 0.0509 0.0552 0.0446 0.0432 0.0457 

Without calibration 0.0934 0.1352 0.0717 0.0784 0.0770 0.1178 
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In Table 9, the DOA RMS error is computed with different 𝑓 . It shows that the 

calibration method with unknown phase has a better performance than the 

global full matrix calibration. Still, for higher frequencies the performance is not 

much better than using no calibration. 

 

Table 9  DOA RMS error   

(  ̂ is obtained from dataset 112, x[n] is obtained from dataset 124, θc             ) 

 

Frequency 200 KHz 300 KHz 350 KHz 400KHz 

Full Matrix Calibration 0.0817 deg 0.1293 deg 0.1844 deg 0.1740 deg 

Unknown Phase Calibration 0.0823 deg 0.0685 deg 0.1426 deg 0.1440 deg 

Without Calibration 0.1820 deg 0.1456 deg 0.1436 deg 0.1561 deg 
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Chapter 7   Conclusions 

In this thesis, we tried different approaches for global and local calibration on 

the specified uniform linear array. Algorithms to estimate the array response 

vectors and strategies to use it in beamforming algorithms were discussed. 

Their performances are discussed in Section 5.5, and it can be summarized as 

follows: 

 

1) The global diagonal matrix calibration is unable to improve the 

beamforming performance of this array, since it can only compensate for 

channel errors. But except channel errors, mutual coupling and 

DOA-dependent errors also exist in this system. 

2) Except channel errors, the global full matrix calibration works on the 

mutual coupling as well. It achieves 50% improvement on DOA 

estimation accuracy for DOA range [-70 70] degree, but it doesn’t work 

when the DOA range is enlarged to [-80 80] degree. This can be concluded 

as this method has difficulties to correct model errors near the limits of the 

useful DOA range. 

3) Local calibration shows its superior performance compared to the global 

calibration methods. The corrected steering vector is almost collinear to 

the true steering vector, and it provides high improvement on the 

accuracy of DOA estimation. Unlike global calibration, local calibration 

deals with general errors including DOA-dependent errors, so it works 

well for all the frequencies with DOA range [-80 80] degree. The 

performances are improved 34% and 53% for DOA range [-80 80] and [-70 

70] degree separately. But local calibration method needs more 

computational effort and higher memory requirement.  

 

In the experiment to estimate array response for different 𝑓  ranging from 

200 KHz to 400 KHz, the frequency dependency of the array response can be 

observed. The array response is varying in both amplitude and phase, which 

means that the array response is frequency dependent. And it’s impossible to 

obtain a constant calibration matrix that can be used on different frequencies. 

To some extent, the full calibration matrix can be regarded as a mutual 

coupling matrix, it is also shown in Section 5.5. 

 

Calibration with unknown phase and gain is introduced in the end. It has a 

similar performance as global full matrix calibration when the DOA range is 

[-70 70] degree (50% improvement).. And it improves the performance for 

DOA range [-80 80] degree as well (25% improvement). The estimated phase 

also explained why the global full matrix calibration method is unable to 

work near the edge of the useful DOA range. 
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