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Reachability Analysis of Cooperative Adaptive Cruise Controller

Roozbeh Kianfar, Paolo Falcone, Jonas Fredriksson

Abstract— In this paper, a set based approach to safety
analysis of Adaptive Cruise Control (ACC) and Cooperative
Adaptive Cruise Control (CACC) is presented. Reachability anal-
ysis techniques are used to compare the minimum safe inter-
vehicle distances which can be achieved with ACC and CACC
controllers. Not surprisingly, the results indicate that a shorter
inter-vehicle distance can be achieved with a CACC controller.
The presented method can also be used to design the required
inter-vehicle distance for a given controller. Furthermore, we
show how backward reachability analysis and invariant set
theory can be used to find the Maximal Asymptotic Safe Set.
This is defined as a set of position error, relative speeds and
acceleration, which a given controller is guaranteed to control
to the desired speed and inter-vehicle distance, while fulfilling
vehicle physical constraints and avoiding rear-end collisions
with the preceding vehicle. The calculation of the Maximal
Asymptotic Safe Set is demonstrated for ACC and CACC
controller designed based on mixed H2/∞ state feedback.
Finally, the calculation of the Maximal Asymptotic Safe Set
is extended to the case of vehicle model uncertainties.

I. INTRODUCTION

Road congestions are common ground in transportation
systems, which can result in increased emissions and fuel
consumption, accident risk and traveling time. Intelligent
transportation systems can mitigate congestion problems, see
[1]. Platooning is an example of intelligent transportation
systems. Controlling the inter-vehicle distances while avoid-
ing rear-end collisions in a train of vehicles is the idea
underlying vehicles platoon control. The main outcome of
platooning is reduced inter-vehicle distance between vehi-
cles, solely increased traffic throughput and better usage of
roads capacity. The idea of platooning can be traced back to
the eighties when California’s Partners for Advanced Transit
and Highways (PATH) program was established to study
and develop vehicle-highway cooperation and communica-
tion systems, [2] and [3]. Platooning has been furthered
investigated by many researchers, e.g., [4] and [5].

Nowadays, adaptive cruise control (ACC) and Cooperative
adaptive cruise control (CACC) can be employed as means of
enabling platooning, [6]. Adaptive cruise control (ACC) is a
functionality which can be found in many modern vehicles.
ACC is used to automatically adjust the vehicle’s velocity
with respect to the preceding vehicle. Cooperative adaptive
cruise control (CACC) is an enhanced version of ACC, which
exploits communicated information from the preceding vehi-
cle. Results of studies in [1] and [7] indicate the potential of
CACC in improving the traffic flow and reducing congestion.
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Fig. 1. Two adjacent vehicles in the platoon.

Recently, CACC, as a practical approach to improve the
traffic flow, has attracted the attention of many researchers
[8] and [9]. In [9], it is shown that, using CACC makes
it possible to reduce the inter-vehicle distance compared
to ACC. In [10], the minimum required headway time to
preserve string stability in a homogeneous platoon equipped
with local CACC controllers is derived. It is of interest
to investigate how much the inter-vehicle distance can be
reduced without jeopardizing safety using CACC rather than
an ACC. In [4], it is shown that the quantitative aspect of this
analysis depends on the specific structure of the controller.

In this work, the aforementioned results are extended to the
safety verification of a platoon equipped with CACC. Hence,
reachability techniques and invariant set theory are employed
as a tool for safety analysis of vehicles equipped with ACC
and CACC. Forward reachability analysis technique is used
to calculate the minimum required safe distance between
vehicles to avoid collisions. As an example, the proposed
technique is applied to an ACC and a CACC controller.
Furthermore, a set of constraints on the vehicle states are
introduces, which represent the safe driving mode. An algo-
rithm based on backward reachability analysis and invariant
set theory is provided to compute the maximal asymptotic
safe set, that is, the set of initial states which guarantees
constraints satisfaction over future time. The algorithm is
also extended to handle parametric uncertainty in the vehicle
model. As an example the algorithm is applied to a CACC
with uncertainty in the vehicle model.

II. VEHICLE MODELING

Consider two adjacent vehicles, as shown in Fig. 1. Let
pi, vi and ai denote the position, velocity and acceleration
of the preceding vehicle and pi+1, vi+1 and ai+1 denote the
position, velocity and acceleration of the following vehicle
(the ego vehicle), respectively. Denote by ep the position
error w.r.t. a desired distance from the preceding vehicle,
i.e., ep = pi− pi+1− d0− vi+1hi+1, where d0 and hi+1 are
a constant safety distance and the constant headway time,
respectively. The headway time is the time that the ego
vehicle takes to reach the preceding vehicle while traveling
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at its current speed. The error dynamics are then described
by the following set of equations

ėp = ev − ai+1hi+1,
ėv = ai − ai+1.

(1)

where ev is the relative velocity. The acceleration of the
ego vehicle, ai+1 is assumed to be described by a first order
system,

ai+1 =
Ki+1

τi+1s+ 1
e−θi+1sadesi+1, (2)

where Ki+1, τi+1 and θi+1 are the steady state gain, the
time constant of the actuator (engine and brake) and the
actuator delay, respectively and adesi+1 is the demanded ac-
celeration, [11]. The model (1)-(2) can then be written in a
state-space form as

ẋ(t) = Ax(t) +Buu(t− θ) +Bωω(t), (3)

where

A =

 0 1 −hi+1

0 0 −1
0 0 −1/τi+1

 , (4)

Bu =

 0
0

Ki+1

τi+1

 , Bω =

 0
1
0

 , (5)

and

x =
[
ep ev ai+1

]T
, (6)

u = adesi+1, (7)
ω = ai, (8)

are the state, the control and the disturbance vectors, respec-
tively. Notice that the acceleration of the preceding vehicle
is considered as a disturbance.

III. CONTROL DESIGN

Primary objective of autonomous systems, i.e., ACC and
CACC controllers is to provide comfort for the drivers by
maintaing the desired speed and position. However, such
systems can also improve safety by avoiding collision. In
this work, the focus is mainly on safety analysis of ACC
and CACC controllers. The safety analysis is demonstrated
on a H2/∞ state feedback controller, which is designed using
Linear Matrix Inequality (LMI), see [12]. Controller design
problem is formulated as an optimization problem where a
weighted sum of the two objective functions is minimized
by the controller depicted in Fig. 2.

min
u
α‖F‖∞ + β‖H‖2

s.t ‖F‖∞ ≤ γ (9)
‖H‖2 ≤ η

where u is the control input and H and F are transfer
functions from the disturbance ω to the desired outputs,

z2 =
[
ep u

]T
, z∞ =

[
ai+1 ep

]T
,

w
P(s)

z

K

u y

Fig. 2. closed loop system with P the open loop dynamic and K the
controller

respectively. z2 and z∞ can be written in a state space form
as follows,

z2(t) = C2x(t) +D2,1ω(t) +D2,2u(t), (10)
z∞(t) = C∞x(t) +D∞,1ω(t) +D∞,2u(t), (11)

In this paper, u is calculated for two cases where i) only
the state measurement is available and the disturbance ω is
unknown (feedback control, ACC) ii) where the disturbance
ω is also measured (feedback/feedforward, CACC).

A. ACC and CACC controllers

The ACC controller as mentioned earlier is a state feed-
back controller u = Kx(t). Under this control law the closed
loop dynamic can be written as:

ẋ(t) = (A+BuK)x(t) +Bωω(t), (12)
z∞(t) = (C∞ +D∞,2K)x(t) +D∞,1ω(t),

z2(t) = (C2 +D2,2K)x(t) +D2,1ω(t),

where x, u and ω are the state, control signal and disturbance,
respectively. In this case, the acceleration of the preceding
vehicle ω = ai is treated as an unknown but bounded
disturbance.
To design the CACC controller, the disturbance ω = ai is
assumed to be measured. The feedback/feedforward control
law is represented as u = Kx(t) + Kfω(t), where K and
Kf are the feedback and feedforward gain, respectively. The
closed loop system then becomes,

ẋ(t) = (A+BuK)x(t) + (BuKf +Bω)ω(t), (13)
z∞(t) = (C∞ +D∞,2K)x(t) + (D∞,1 +D∞,2Kf )ω(t),

z2(t) = (C2 +D2,2K)x(t) +D2,1ω(t),

The closed loop transfer function from ω → z∞, can be
written as,

H(s) = CH(SI −AH)−1BH +DH , (14)

where AH = A+ BuK, BH = BuKf + Bω , CH = C∞ +
D∞,2K and DH = D∞,1 +D∞,2Kf . Equation (14), shows
that, the feedforward gain Kf adds an additional degree of
freedom to the optimization problem (9).

It should be noted that, the advantages of designing the
controller using the described approach for the analysis is,
since the controller design is formulated as an optimiza-
tion problem, both controllers, i.e., the ACC controller and
CACC controller are the optimal controllers according to (9).
Therefore, issues like, controller tuning and controller design
criterion are not a hinder in the analysis.
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IV. REACHABILITY ANALYSIS OF PLATOON

To guarantee safety, it is necessary to guarantee that error
trajectories do not violate certain constraints. In this work,
reachability analysis technique is employed to i) investigate
the effect of additional information to the controller, i.e.,
acceleration of preceding vehicle provided by V2V com-
munication, on the inter-vehicle distance. This means, a
comparison between the introduced position error ep for an
ACC and a CACC ii) finding the largest set of initial state,
which guarantees persistent feasibility. This will be defined
formally next.

A. Background and preliminaries

In this section, a few definitions are introduced and basic
results on reachability analysis, which are used in the rest
of the paper, are presented. For further information regarding
invariant set theory and reachability analysis, we refer to [13]
and [14].

Definition 1 A polyhedron P ∈ Rn is the intersection of
finite number of closed halfspaces in Rn

P = {x ∈ Rn|Hx ≤ h} (15)

Remark: A closed polyhedron is called a polytope.

Definition 2 The Minkowski sum of two polytopes R and Q
is a polytope defines as,

R⊕Q = {x+ y ∈ Rn|x ∈ R, y ∈ Q} (16)

Definition 3 The Pontryagin difference of two polytopes R
and Q is a polytope defines as,

R	Q = {x ∈ Rn|x+ q ∈ R,∀q ∈ Q} (17)

Definition 4 Composition of an affine mapping f and a
polyhedron P , with f as,

f : z ∈ Rm 7→ Az + b, A ∈ RmA×m, b ∈ Rm (18)

is defined as,

f ◦P = {y ∈ Rm|y = Ax+b ∀x ∈ Rn, Hx ≤ h} (19)

Denote by fa the state update function of an autonomous
system,

x(k + 1) = fa(x(k), ω(k)), (20)

where x(k) and ω(k) are the state and disturbance vector,
respectively. The system (20) is subject to the following
constraint,

x ∈ X , ω ∈ W, (21)

where X and W are polytopes in Rn and Rd, respectively.

Definition 5 For the autonomous system (20), we denote the
robust one-step reachable set for initial states x(0) contained
in the set S as,

Reachfa(S,W) = {x ∈ Rn : ∃x(0) ∈ S, ∃ω ∈ W|x = fa(x(0), ω)}

Definition 6 For the autonomous system (20), the robust Pre
set is defined as the dual of one-step reachable set,

Prefa(T ,W) = {x ∈ Rn : fa(x(k), ω(k)) ∈ T ,∀ω ∈ W},

where T is the target set.

In the next section, using reachability analysis technique,
the effect of disturbance on the dynamic states, i.e., position
error, velocity error and acceleration is investigated. The
study comprises previously introduced ACC and CACC
controllers.

B. Reachable set for ACC and CACC controllers

The closed loop systems (12) and (13) are discretized with
sampling time Ts. The discretized autonomous systems are
represented for ACC and CACC controller, respectively.

x(k + 1) = Adx(k) + Edω(k), (22)
x(k + 1) = Ãdx(k) + Ẽdω(k) (23)

The robust forward reachable set of the closed loop
systems (22) and (23) can be computed as,

Reach(Ad,Ed)(S,W) = (Ad ◦ S)⊕ (Ed ◦W), (24)

Reach(Ãd,Ẽd)(S,W) = (Ãd ◦ S)⊕ (Ẽd ◦W) (25)

Next we show how reachability analysis methods can be used
to study the minimum ”safe” distance in case of emergency
braking of the preceding vehicle. Assume the maximum
deceleration of the preceding vehicle is ω = amax

i = −6ms2 .
Hence, a vehicle traveling with velocity v = 21ms needs t =
3.5s to stop. However, we should note that the deceleration
amax
i = −6ms2 is considered as the maximum deceleration

to ease our computation, though it does not cover the whole
range of emergency braking.

In Fig. 3(a) and Fig. 3(b), the projections of reachable
sets on (ep, ev) plane from an initial set S around origin,
i.e., equilibrium point of platoon, is depicted. The initial set
S represents the set of states steady state operation of the
two vehicles, i.e., small position and velocity errors. The
reachable set are calculated for the closed loop systems with
the ACC (22) and the CACC controller (23). The closed
loop systems are driven by the disturbance ω ∈ [−6,−1].
The headway time hi+1 is set to zero for this analysis.
Note that, the reachable sets are computed for 35 steps
with the sampling time Ts = 0.1s. The reachable sets
could be calculated over longer time horizons. However,
since Minkowski sum and projection are computationally
expensive operations, for the sake of simplicity only used
35 steps are used. The reachable sets are calculated by using
the Mutiparametric toolbox for Matlab, [15].

Fig. 3, shows that the CACC controller introduces smaller
position and velocity errors compared to the ACC controller.
Fig. 3(a) indicates that, for an ACC controller, at least a
safety distance of d0,min = 3.4m is required to avoid colli-
sion in emergency braking. While, for a CACC controller, a
minimum safety distance d0,min = 1.5m is enough to ensure
that collision does not occur under the considered conditions.
In Fig. 4, the projection of reachable sets on the plane
(a, ep) are shown. Fig. 4 indicates that, the ACC controller
commanded slightly larger acceleration which may saturate
the actuators earlier compared to the CACC controller.
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(a) Forward reachable set for ACC
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(b) Forward reachable set for CACC

Fig. 3. Projection of forward reachable set for 35 steps and the set of initial
state, in case of emergency braking ω ∈ (−6,−1) are shown in green and
red, respectively. h = 0 (headway)

C. Maximal asymptotic safe set

In this section, backward reachability analysis is employed
to find a safe set which guarantees safety while satisfying
vehicle’s actuators limitations in presence of a bounded
disturbance. Hence, a safe region on the state space is
introduced where platoon safety is guaranteed for any state
belonging to this region. To guarantee safety, maintaining
performance and fulfilling actuators limitations, following
constraints must be fulfilled by the ego vehicle.

1) Safety: Safety requirements imply that a safe minimum
distance should be maintained from the preceding vehicle
in order to reduce the risk of collisions. Hence, the safety
requirements on the inter-vehicle spacing can be rewritten as

ep,min ≤ ep(k) ≤ ep,max, ∀k ≥ 0, (26)

where ep,min and ep,max are the minimum and maximum
allowed distance error, respectively. We observe that, while
ep,max can be selected according to performance criteria, the
lower bound in (26) forces the distance between the ego and
the preceding vehicle to be higher than d0 + vi+1hi+1.

2) Performance: Since the primary objective of the co-
operative driving system is to regulate the vehicle velocity
to the platoon velocity, the relative speed between the two
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−4

−3

−2

−1

0

1
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Forward Reachable set for 35 steps (ACC)

(a) Forward reachable set for ACC, in case of emer-
gency braking ω ∈ (−6,−1)
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Forward Reachable set for 35 steps (CACC)

(b) Forward reachable set for CACC, in case of emergency
braking ω ∈ (−6,−1)

Fig. 4. Projection of forward reachable set for 35 steps and the set of
initial state are shown in green and red, respectively. h = 0 (headway)

adjacent vehicles is constrained, i.e.,

ev,min ≤ ev(k) ≤ ev,max, ∀k ≥ 0, (27)

where ev,min and ev,max are the minimum and maximum
allowed deviation from the preceding vehicle’s velocity,
respectively.

3) Actuator limitations: Due to actuator limitation (the
controlled engine and brake), the amount of accelera-
tion/deceleration that the vehicle can deliver is also limited.
Hence, to comply with the actuator limits, the acceleration
of the vehicle is constrained as following,

amin ≤ a(k) ≤ amax, ∀k ≥ 0, (28)

where amin and amax, are the minimum and maximum
acceleration that the actuator can deliver, respectively. The
constraints (26), (27) and (28) can be written as a polytope,

Hxx ≤ hx (29)

Equation (29) corresponds to the set of admissible state
which is denoted by Xad and for the system (22) or (23)
can be written as,

Xad = {x ∈ R3 | Hxx ≤ hx} (30)

Let’s introduce the maximal asymptotic safe set as:
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Definition 7 A set C∞ ⊂ Xad, is said to be the maximal
asymptotic safe set for the autonomous system (20) subject
to constraints (29), if the evolution of any state belonging to
this set stay within the admissible set for all future time and
for any disturbance ω(k) ∈ W . More formally, the maximal
asymptotic safe set can be written as,

x(k) ∈ C∞ ⇒ fa(x(k), ω(k)) ∈ Xad, ∀ω ∈ W, k = 1, 2, ... (31)

The maximal asymptotic safe set (C∞) is conservative since
it counts for all possible disturbances ω ∈ W . The following
algorithm can be used to calculate C∞.

Algorithm 1 Maximal asymptotic safe set

1: Input admissible set Xad, system dynamic fa =
(Ad, Ed) or fa = (Ãd, Ẽd), polytopic constraint Hx, h
, disturbance polytope W and k = 0;

2: Output Maximal asymptotic safe set C∞
3: Let Ωk = Xad
4: Repeat
5: k = k + 1
6: Let Ωk+1 = Pre(Ωk,W)

⋂
Xad

7: If Ωk+1 = Ωk Then
8: C∞ = Ωk+1

9: break
10: return C∞
11: until Ωk+1 = Ωk

As can be seen from Algorithm (1), computing max-
imal asymptotic safe set, requires to compute the robust
Pre set. For the dynamical system (23), robust Pre set of
Prefa(X ,W), can be written as,

Pre(S,W) = {x ∈ R3 : HxÃx ≤ hx − Ẽω(k),∀ω ∈ W}(32)

The set (32), can be equivalently written as,

Pre(S,W) = {x ∈ R3 : HxÃx ≤ h̃, ∀ω ∈ W},

where h̃i = min
w
hix −Hi

xω (33)

s.t ω ∈ W, (34)

where hi is the row-wise minimum of the objective function.
The optimization problem (33), can be solved efficiently
using linear programming (LP) solvers. The robust Pre
set Prefa(X ,W) can be also calculated using Pontryagin
difference and affine mapping of polyhedra as,

Pre(Ã,Ẽ)(X ,W) = (X 	 W̃) ◦ Ã, (35)

where W̃ = Ẽ ◦W .
In Fig. 5, the admissible set Xad and the maximal

asymptotic safe set of CACC and ACC controllers for a
headway time h = 0.5s are depicted, respectively. The green
boxes are the projection of admissible set Xad on (ep, ev)
where ep,max = 3m, ep,min = −3m, ev,max = 4ms and
ep,min = −4ms are the maximum/minimum of constraints on
the position and velocity errors, respectively. The red figure
represents the maximal asymptotic safe set for a disturbance
ω ∈ [−4,−1]. The figures indicate a slightly larger asymp-
totic safe set for CACC controller in this case. However,

in this work the focus is on the concept of asymptotic safe
set rather than comparing the asymptotic safe set of the two
controllers, since it requires further investigation. The blue
curves show simulations from random initial conditions. As
can be seen, for initial conditions outside the red figures,
the trajectories evolve outside the admissible set for some
disturbances ω(k) ∈ ω, while for any initial condition within
the C∞, constraint satisfaction is guaranteed. In Fig. 6, the
asymptotic safe set of CACC controller is shown for a shorter
headway time hi+1 = 0s. As can be seen from the figure the
maximal asymptotic safe set is smaller for a shorter headway
time.
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(a) Green box and red figure represent the admissible
set and maximal asymptotic safe for CACC controller,
respectively
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Maximal asymptotic safe set

(b) Green box and red figure represent the admissible set
and maximal asymptotic safe for ACC controller, respec-
tively

Fig. 5. Blue dashed curves shows the simulation results from random
initial points. Stars represent the initial conditions.

V. ROBUSTNESS ANALYSIS

The analysis presented in the previous section was done
under the assumption of perfect knowledge of the system.
However, the results can be extended to a model with
parametric uncertainty, i.e., uncertainty in the time constant
τi+1 and static gain Ki+1. The uncertainty in (2) may
arise from uncertainty in the time constant or static gain
of actuator. Here, the analysis is limited to the CACC, i.e.,
closed loop system (23), but the same approach can be
applied to ACC (22). Uncertainty in (2), results in uncertainty
in matrix Ãd. Assume that the parametric uncertainty in Ãd
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Fig. 6. Admissible set and the maximal asymptotic safe set are shown in
green and red, respectively

can be represented by polytopic uncertainty, i.e., Ãd ∈ Ã
where,

Ã = {Ãd ∈ Rn×n | Ãd =

NA∑
i=1

λiÃdi,

NA∑
i=1

λi = 1, λi ≥ 0}, (36)

where Ãdi are the vertices of the polytope Ã and NA is the
number of vertices. The Pre operator for the system (23) with
parametric uncertainty defined in (36), can be calculated as,

Pre(Ã(ωp),Ẽ)(X ,W) =
⋂

Ã(ωp)∈Ã

Pre(Ã(ωp),Ẽ)(X ,W), (37)

where wp ∈ Wp represents the parametric uncertainty in
the system matrix. Computing Pre in (37), requires infinite
number of polytope intersection. However, it can be shown
that equation (37), may be computed as finite number of
intersections, i.e.,

Pre(Ã(ωp),Ẽ)(X ,W) =

NA⋂
i=1

Pre(Ãdi,Ẽ)(X ,W) (38)

Proof of (38) is given in [16]. In this study we consider
the effect of uncertain time constant τi+1 in (2). We assume
that the time constant τi+1 ∈ [0.3, 0.8] and the headway
time hi+1 = 0.5. The maximal asymptotic safe set for the
nominal system (3) with τi+1 = 0.5 and the asymptote safe
set for the system with uncertain time constant is depicted
in Fig. 7. As can be seen from Fig. 7, maximal asymptotic
set is shrinking when the parametric uncertainty is taken to
account, which seems very reasonable.

VI. CONCLUSION

In this paper a tool based on reachability analysis and
invariant set theory is introduced for safety analysis of a
platoon of vehicles equipped with CACC and/or ACC. It is
shown that using forward reachability analysis, the reachable
set of ACC and CACC controller can be computed. This
analysis can be used to design the minimum safety distance
for such controller where the closed loop dynamics is subject
to disturbance. The results not only indicate that a shorter
inter-vehicle distance can be achieved using CACC but
also provide a quantitative measure for such comparison.
Furthermore, the concept of asymptotic safe set is introduced.
This type of analysis provide a tool for analyzing safety,
performance, effect of uncertainty and so on.
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Fig. 7. Green box is the admissible set. The maximal asymptotic safe set
for the nominal case and for the system with parametric uncertainty are
plotted on top of each other, in yellow and red, respectively
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