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Abstract
As the demand for high speed and reliable wireless communication increases, the
importance of having a linear transmitter has enhanced. Distortions created by the
transmitter, such as power amplifier nonlinearity and I/Q imbalance, diminish the
fidelity and limit the performance of wireless systems, if left undealt with. Among
the techniques commonly used to mitigate these distortions, digital predistortion
has established itself as a suitable candidate that minimizes the hardware overhead
and only requires modest additional power in the transmitter architecture. An
important pre-requisite for utilizing digital predistorters is developing accurate
and low complex behavioral models, which is the main focus of this thesis.

After analyzing the importance of modeling and compensating for the distor-
tion created by modulators and power amplifiers in the transmitter architecture,
an overview of some commonly used models in the literature is presented. A novel
behavioral modeling approach is proposed which is capable of modeling long term
memory effects in power amplifiers, and a new dual–input modeling approach
for I/Q imbalance compensation is presented that successfully compensates for
distortion created by the modulator. Compared with conventional and recently
proposed techniques, the approaches presented in this thesis show promising re-
sults in modeling transmitters accurately. The important issue of computational
complexity in behavioral models is also discussed, and the accuracy/compexity
tradeoff of some common behavioral models is analyzed. Once behavioral model-
ing techniques are established, they are used for digital predistortion of wireless
transmitters. Issues such as identification of digital predistorters and adaptation
of parameters due to changes in power amplifier behavior are discussed and a
new measurement testbed to evaluate the performance in parameter adaptation
algorithms is proposed.

The methods and techniques proposed in this work provide ways to both
mitigate distortion in and evaluate performance of wireless transmitters in terms
of accuracy and complexity, and can help contribute to a better service of quality
in wireless communication systems.

Keywords: Behavioral modeling, computational complexity, digital predistor-
tion, I/Q imbalance, nonlinear models, power amplifier, transmitter, Volterra se-
ries, wireless communications.
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Chapter 1

Overview

1.1 Introduction

It has been more than a century since Nikola Tesla first introduced us to
the idea and magic of wireless communication with his 1892 lecture “Exper-
iments with Alternate Currents of High Potential and High Frequency" [1].
The prospect of being able to send messages without the need for wires
excited many researchers and engineers and Guglielmo Marconi famously
set out to construct the first technically correct and commercialized com-
munication system a few years later. As always, these early systems were
very unreliable, but they still worked remarkably well. A few more years
had to pass until somebody came along and showed us how to transmit
information in a channel reliably. “A Mathematical Theory in Commu-
nication" [2] (later appropriately renamed “The Mathematical Theory in
Communication") was the landmark work by Claude Shannon paving the
way for modern, reliable communication.

None of these progresses made by researchers and engineers would have
been possible without the earlier works of Michael Faraday, James Maxwell,
and Heinrich Hertz who, among others, tried to find mathematical represen-
tations of our physical world and construct the first “models" for wireless
propagation. Since then modeling physical phenomena has been an ever
important part of understanding the world and how to deal with the chal-
lenges it throws at us, and has been an important tool for researchers and
engineers alike.

Nowadays transmitting data is just an everyday part of our lives. While
the struggle in the beginning of wireless communication era was on finding
applications and ways to commercialize such systems, today the tables have
turned and it is people pushing researchers and engineers for better and
faster systems. We have gone from requiring wireless communication sys-
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tems to transmit clicks of the Morse code over short distances, to demanding
3D movies, webpages, and even images from Mars. This demand has led
to increased requirements on the speed, reliability, availability and mobil-
ity of wireless systems, which coupled with the limited energy and radio
frequency (RF) resources, has put a huge burden on modern wireless data
communication systems. Such systems are nowadays required to be highly
linear and low power consuming, which in itself is normally a tradeoff.

Practical wireless transmitters, like all physical systems, are not ideal
and have hardware impairments which will introduce distortions in the com-
munication signals we would like to transmit. Any distortion created from
these hardware impairments have to be dealt with, and in order to com-
pensate for such effects it is first necessary to represent them with suitable
models. Modeling the transmitter in a wireless systems and compensating
for the distortion created by the imperfect hardware with the help of digital
predistortion is thus, the focus of this thesis.

1.2 Thesis outline

The thesis is organized as follows. In Chapter 2, the different types of distor-
tion created in the modulator and power amplifier due to the non-ideality of
the hardware is presented, and then effect this distortion has on communi-
cation system aspects such such symbol to error ratio and spectral regrowth
is discussed. Metrics to evaluate the linearity of modern transmitters is also
presented.

In Chapter 3, behavioral modeling of transmitters is discussed. A the-
oretical background for behavioral modeling in transmitters is established.
Considerations on the requirements of power amplifier behavioral model
structure, as an important part of wireless transmitters, is explained. Some
commonly-used power amplifier behavioral models are categorized, allowing
for a better understanding of the differences between models and two new
behavioral modeling techniques are presented, one for modulators and one
for power amplifiers. Evaluating the complexity and the accuracy/complexity
tradeoff is also discussed in this section.

In Chapter 4 the basics of digital predistortion as a method to mitigate
errors is presented, and after presenting techniques for identifying digital
predistorters, mitigating distortion is shown with two examples, one for a
modulator and another for a power amplifier. Finally parameter adapta-
tion in modern transmitters is discussed, and a new measurement setup
paradigm that is capable of emulating parameter adaptation in behavioral–
model based predistorters with real–time circuitry is presented. Finally in
Chapter 5, conclusions are drawn from the research done, the contributions
of the appended papers is presented and future work in this field is discussed.



Chapter 2

Requirement for linearity in

RF transmitters

As wireless systems become more widespread in our everyday lives, the
demand and requirements on transmitters, such as linearity and power effi-
ciency, has increased. This chapter deals with linearity in RF transmitters
as one of the important demands that enables reliable wireless communica-
tion. First a short background on the distortion created by the transmitter
is presented and then the effect of distortion on the communication system
is analyzed. Performance metrics that are commonly used to evaluate how
well transmitters operate are proposed, and finally different techniques to
mitigate distortion in the literature are presented.

2.1 Distortion created by imperfect hardware

Transmitters have an important role in wireless systems and are tasked with
modulating a bit stream into a waveform suitable for propagation in the RF
channel [2]. A block diagram of such transmitters can be shown in Fig. 2.1.
From this figure it can be noticed that the modulator is associated with the
analog circuitry that produces a real-valued passband modulated signal from
the complex-valued baseband signal. The output of the modulator is then
fed to the power amplifier (PA), to amplify the signal to a suitable level to
transmit in the channel, and given to the antenna for wireless propagation.

The transmitter architecture shown in Figure 2.1 has two main sources
of distortion: the power amplifier and the modulator. In the rest of this
thesis, the modulator and PA will be referred to as simply the transmitter.
A simple block diagram of a modulator is shown in Figure 2.2. The real
and imaginary part of the complex baseband input signal are fed to two
orthogonal paths, commonly called the Inphase (I) and Quadrature phase
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Figure 2.1: Block diagram of a simplified modern transmitter archi-
tecture.

(Q) paths. Digital to analog converters (DACs) transform the digital signal
into an analog one. These devices commonly introduce nonlinear distortion
in the process, which may show up as a discrete current (DC) offset. The
analog signal is fed through a reconstruction filter, which may introduce
time delays and phase shifts. These phenomena show themselves in the
form of memory effects, i.e., the output sample depends on not only the
sample at time t, but also on samples that have passed before this time.

The output of the reconstruction filter is fed to an upconverter that
takes the baseband signal into the passband domain. This process is prone
to imperfections as well, for example there may be imbalance between the
gain for the two branches, which is commonly called I/Q imbalance [3]. It is
also common that a portion of the local oscillator (LO) signal undesirably
passes through. This phenomena is called called LO leakage. The oscillator
may also introduce a skewness due to phase shifts in the hardware. This
may reduce the orthogonality between the two branches and will severely
impact the communication signal.

Figure 2.3 shows an ideal and imbalanced I/Q modulator (with a center
frequency of fLO) with a single sinusoid (Aej2πft+φ) as the input. The
received signal for this input generally looks like 1:

r(t) =
GI +GQ

2
Aej2πft+φ +

GI −GQ

2
Ae−(j2πft+φ) + LO, (2.1)

where GI and GQ are the complex gains of the different paths and LO is
the leakage from the oscillator that passes through to the output. When

1using considerations for representing passband signals with complex baseband ones
from Section 3.1
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Figure 2.2: Block diagram of a simplified power amplifier architecture.
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Figure 2.3: Block diagram of a simplified power amplifier architecture.

GI 6= GQ, i.e. the complex gain in the two paths are different, IQ imbalance
occurs.

It can be noticed that instead of the single tone at frequency fLO + f as
expected, multiple tones appear that are due to the LO leakage – LO from
(2.1), and I/Q imbalance and skewness – when (GI −GQ) /2 6= 0 from (2.1).
These distortions will affect the communication signal and further induce
more distortions when connected to the PA afterwards.

Power amplifiers are tasked with linearly amplifying the communication
signal to the required output power level to overcome channel losses. In
practice, these devices tend to have a nonlinear behavior, especially when
driven close to saturation. A block diagram of a simple PA architecture is
shown in Figure 2.4. From this figure different types of distortion created
by the PA can be noticed. These distortions can be classified into:
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Figure 2.4: Block diagram of a simplified power amplifier architecture.

• Nonlinear distortion, mainly from the device nonlinear dc character-
istics.

• Short–term memory effects, which are normally attributed to time
delays, or phase shifts, in the matching networks and the device and
circuit elements used.

• Long–term memory effects, which may be caused by non-ideal bias
networks, trapping effects, temperature dependence and other sources.

A typical input-output amplitude characteristic for a power amplifier
is shown in Figure 2.5. It can be noticed from this figure that the in-
put/output no longer has a linear relationship, and a practical PA output
differs from the ideal PA response, i.e., as the output becomes saturated the
PA gain diminishes. This distortion severely effects communication signals
with varying amplitude as the gain is non-uniform.

Another power amplifier distortion that is visible from Figure 2.5 is the
power amplifier memory effect. Since the input-output relationship is no
longer a one-to-one function, the same input sample may result in a range
of output samples depending on the signal history. This shows itself in the
figure as the blurring when the amplitude increases.
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Figure 2.5: Input-output characteristics of an ideal and a practical
power amplifier.

2.2 Effects of transmitter distortion on com-
munication system

After analyzing the different types of distortions created by the modulator
and PA, it is important to understand how these imperfections affect the
communication system. In this section, some of the more important effects
of distortion on system performance is analyzed.

2.2.1 Distortion effects on the constellation diagram

The effect of I/Q imbalance and skewness is shown in Figure 2.6. In order
to construct this figure, a 75% gain mismatch between the I and Q branches
(the gain in the I branch is 0.75 times the gain in the Q branch) and a 8
degree skewness is introduced. From the figure it can be noticed that the
constellation points no longer are in the ideal positions and the I and Q
branches are not orthogonal. Further it can be noticed that the distance
between constellation points has changed, which will result in a loss of
performance of the system.

The effect of PA nonlinear distortion on the constellation diagram at
the receiver after matched filtering of a 16 quadrature amplitude modula-
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Figure 2.6: Adverse effects of I/Q imbalance and skewness on the con-
stellation of the input signal. The ideal 16 QAM is shown
with the red dots, and the distortion created by the mod-
ulator with blue.

tion (QAM) signal with a single-carrier frequency–division multiple access
(SC–FDMA) modulation format is shown in Fig. 2.7, in the presence of
an ideal channel. It can be noticed that even though there is no channel
noise added to the system, the PA nonlinearity creates clouded constellation
points instead of the ideal 16 QAM, and these points are compressed com-
pared to the ideal case. Adding channel noise on top of this distortion would
further diminish the communication system performance, and therefore it
is necessary to compensate for such effects appropriately.

2.2.2 Distortive effects of the on the SER

The distortion created by the non–ideality of the transmitter results in a
loss of information in the communication signal. This in itself increases
the symbol–error–rate (SER) or bit–error–rate (BER) in the overall com-
munication system. The effect of the distortion created by the PA in the
SC–FDMA setup (combined with the effect of the distortion of adjacent
users) on the SER performance is shown in Fig. 2.8 for an additive white
gaussian noise (AWGN) channel. It can be noticed that not only does the
SER performance deviate from the ideal performance, it also suffers from a
performance floor where increasing the transmitting power will not improve
the performance, due to the saturating factor in the transmitter and inter-
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Figure 2.7: Adverse effects of power amplifier distortion on the con-
stellation of the input signal. The ideal 16 QAM is shown
with the red dots, and the distortion created by the PA
after the matched filter in the receiver is shown with blue
crosses.

ference. If not dealt with, this will limit the performance achievable from
wireless systems.

2.2.3 Spectral regrowth distortion

The distortions created by the transmitter also have an impact in the fre-
quency response of the communication system, resulting in what is known
as spectral regrowth. This corresponds to the spectral leakage of power into
adjacent channels of the frequency spectrum. Spectral regrowth is a prod-
uct of the nonlinearity in the transmitter, i.e., linear components do not
result in spectral regrowth. Figure 2.9 shows the effects of the distortion of
a power amplifier in the frequency domain. It can be observed that spectral
regrowth results in out-of-band leakage that may not satisfy the require-
ments set by frequency regularization organizations [4]. For example in this
figure, the out-of-band distortion is so strong that it partially masks an
adjacent user and distorts its communication.
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2.3 Evaluating performance of an RF trans-

mitter

In order to be able to evaluate the amount of distortion created by the
imperfect hardware, it is necessary to develop metrics that represent how
well the transmitter operates. These metrics are often specified by commu-
nication standard regulations to not only maintain suitable performance of
the system, but also as requirements that must be fulfilled to ensure that
the communication system does not interfere with other systems using the
wireless resource. This section presents some of the main metrics used to
evaluate how well the transmitter operates.

2.3.1 Performance evaluation of transmitters

In wireless transmitters, the ultimate goal is to minimize the difference
between the output signal of the system, and the desired output signal we
would have liked to have been fed to the antenna. This difference can be
written as

e[n] = ymeasured[n]− ydesired[n] (2.2)

where e[n] is the error signal, ymeasured[n] is the sampled measured output of
the system and ydesired[n] is the sampled desired output that should be fed
to the antenna. The simplest metric to measure how well the transmitter
performs with the given data set in terms of accuracy is to use (2.2) to find
the mean–squared–error (MSE). The MSE can be written as

MSE =
∑

n

|ymeasured[n]− ydesired[n]|
2. (2.3)

Use of this metric may not be suitable for comparing systems with dif-
ferent power levels, and commonly in the literature the normalized MSE
(NMSE) is used for these cases. The NMSE can be defined as [5]

NMSE =

∑

n |ymeasured[n]− ydesired[n]|
2

∑

n |ymeasured[n]|2
, (2.4)

Since NMSE is a power measure, and the bulk of the transmitter power
is normally in–band (from Fig. 2.9), NMSE is commonly considered an
in–band measure for the transmitter performance. In applications were the
out–of–band is important, the adjacent channel power ratio (ACPR) is used
to measure the amount of power leaked from the transmitter into adjacent
channels (from Fig. 2.9) of the wireless system, and can be defined as

ACPR = max
m=1,2






∫

(adj)m

|Ymeasured(f)|
2

∫

ch

|Ymeasured(f)|2




 , (2.5)
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where the integration in the numerator is over the main channel and in the
denominator over adjacent channels of the wireless system. This measure
can effectively represent the amount of distortion created in the adjacent
channels of a communication system, which is very important in many ap-
plications.

2.4 Mitigating transmitter distortion in liter-

ature

In order to achieve the required performance of wireless transmitters set
by the communication standards, researchers have developed different tech-
niques to mitigate the unwanted distortion created by these devices. The
commonly used methods in the literature to combat this distortion can be
categorized into analog and digital techniques.

Analog techniques can be grouped into feedforward, feedback and pre-
distortion techniques. Analog feedforward linearization is a technique to
mitigate distortion by adding a phase–reversed version of the error to the
output of the PA [6]. In analog feedback a portion of the output signal is
taken, amplified and phase shifted, and injected to the input of the PA to
cancel distortion [7,8]. In analog predistortion, the inverse of the transmit-
ter is applied to the input signal, rendering the overall system linear. These
techniques generally have the benefit of being able to cope with high input
signal bandwidth, however they are normally frequency–sensitive, cumber-
some and expensive to implement [9–11]. Other analog techniques, such as
outphasing, which originally was suggested as a technique to improve power
efficiency [12, 13] but can be seen as a linearization method [14], and en-
velope tracking [15] and envelope elimination and restoration [16] have also
been viewed as techniques for improving the linearization/power efficiency
tradeoff.

The main digital technique for compensating distortion in transmitters,
and specifically for distortion created by the PA, is digital predistortion
(DPD). In this technique the signal is passed through an inverse filter of
the transmitter in the digital domain. This technique has been shown to
reduce the size and cost for distortion mitigation compared to other lin-
earization methods [17], and has the added benefit of being independent of
the operating frequency. Due to the widespread use of digital predistortion
in the literature [18–27] and ease of implementation, the thesis focuses on
mitigating distortion by using DPD. In order to construct the inverse of the
transmitter, it is vital to develop accurate models of the transmitter first.
Classifying and developing models for both the modulator and PA consid-
ering the different types of distortion mentioned, is the focus of Chapter 3.



Chapter 3

Behavioral modeling of RF

transmitters

As discussed in the previous chapter, in order to compensate for distor-
tions created by the imperfect hardware using DPD, finding accurate mod-
els of the transmitter is an important pre-requisite. Different approaches
have been taken to model the transmitter, from detailed models constructed
from physical laws to input/output models utilized in system level simula-
tions. Depending on the type of data needed for identification, models can
generally be divided into two main groups: physical/circuit models, and
empirical models [28,29]. Physical models give an accurate description of a
device based on fundamental physical laws [30]. In circuit models, electrical
circuit elements and circuit theory are used to model the system. Such tech-
niques have high precision limited only by the quality of the device models.
This precision has a high price in simulation time, limiting the practical use
of these type of models for modeling complete wireless systems. Further,
it is unclear how to create an inverse circuit model, to compensate for the
nonideal effects.

Empirical models attempt to model the system with little or no a pri-
ori knowledge of the internal circuitry of the devices. They are commonly
called behavioral models, or black-box models, and are constructed from the
sampled measured input and output signals. Due to the ease of implemen-
tation and fast simulation/processing time of these type of models, they are
commonly used for DPD [31]. In [17], [19] and [28] it was shown that devel-
oping accurate models can lead to suitable DPD performance, and therefore
the focus of this type of modeling.

In order to understand how behavioral models work and their limita-
tions, in this thesis models are classified based on the type of distortion
they describe. As there are many models in the literature, it is a tedious
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task to list all such models. Therefore, in this work, some which are repre-
sentative of most models are chosen and analyzed. An important issue in
PA modeling and later for DPD, namely the computational complexity of
behavioral modeling, is also presented in this section. Finally, parameter
identification in behavioral models is discussed.

3.1 Baseband representation of passband sig-

nals

Power amplifiers used in wireless transmission are passband devices, and
modeling the PAs with passband signals has been suggested in the literature
[32]. However, by assuming that the input signal to the power amplifier is
band-limited, computationally efficient techniques can be constructed to
represent the power amplifier with discrete baseband models [33]. This
greatly reduces the computational complexity, as instead of using passband
samples (at high sample rates), baseband samples (at lower sample rates)
can be used.

In [34] and [35], it was shown that a narrowband passband signal x̃(t)
centered around frequency f0 can be represented by its baseband equivalent
where

x̃(t) = xI(t) cos(2πf0t)− xQ(t) sin(2πf0t), (3.1)

where
xI(t)

def
= ℜ[x(t)] = x̃(t) cos(2πf0t) + x̂(t) sin(2πf0t), (3.2)

and
xQ

def
= ℑ[x(t)] = x̂(t) cos(2πf0t)− x̃(t) sin(2πf0t), (3.3)

where x̂(t) is the Hilbert transform of x̃(t), xI(t) is commonly called the
in-phase component of x(t) and xQ(t) the quadrature. Alternatively this
formulation can be written as [36]

x̃(t) =
ej2πf0tx(t) + e−j2πf0tx∗(t)

2
, (3.4)

where x∗(t) is the complex conjugate of x(t). This complex baseband rep-
resentation for passband signals is used in the rest of this thesis.

3.1.1 Baseband model structures

In the previous section the baseband representation for passband signals was
presented. However, when dealing with behavioral models, it is possible to
find certain characteristics in the baseband model structure that further
simplifies the model structure needed for such devices.
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In the passband frequency range, a memoryless power amplifier can be
thought of as a mapping of a real-valued input signal to a real-valued output
signal [37]. Approximating this nonlinearity by a power series – under a
range of general conditions for the power amplifier like stability, continuity,
fading memory, etc. [28] – the output can be written as

ỹ(t) =

K∑

k=1

b̃kx̃
k(t), (3.5)

where x̃(t) is the passband power amplifier input, b̃k are real-valued coef-
ficients, and ỹ(t) is the passband output. From [19], since the output of
a power amplifier is normally passed through a bandpass filter centered at
±f0, only terms that are centered around this frequency will contribute to
the output signal and the terms that fall out of this range will be filtered
out. Therefore, (3.5) can be constructed in baseband form as [34],[p.69]

y(t) =

K∑

k=1

bkx(t) |x(t)|
2(k−1)

, (3.6)

where

bk =
1

2k−1

(
k

k−1
2

)

b̃k. (3.7)

Two important observations can be made from these equations. First,
in (3.6), only even order power terms of |x(t)| exist . Secondly, that in (3.7),
since b̃k is real-valued, bk are also real-valued. Therefore, only amplitude-
amplitude distortions (AM/AM) are generated by a memoryless power am-
plifier. By allowing the b̃k to be complex-valued, quasi-memoryless models
can be constructed, which can also account for amplitude-phase distortions
(AM/PM). These kinds of complex baseband power series form the basis
for most of the power amplifier models presented in subsequent sections.

While this simple power series representation simplified the model struc-
ture for power amplifiers, it raised an important issue in the literature re-
garding the so called odd and even order power terms. Authors in [38]
first noted that using not only odd–order power for the model and includ-
ing even–order powers improved the modeling performance and rewrote the
power series as

y(t) =

K∑

k=1

bkx(t) |x(t)|
k−1

. (3.8)

It can be noticed that all powers of |x(t)| exist in this formulation, but the
resulting function remains an odd function making it valid for passband
modeling. In this thesis both even and odd order power terms are used for
polynomial–based models.
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By considering the baseband representation, it can be seen that behav-
ioral models can be considerably simplified. Therefore, all models presented
in this thesis will be in baseband form and the reductions discussed in this
section are applied. In general such simplifications may not be applicable
for modulators as they are no longer only passband devices but also operate
in baseband.

3.2 PA behavioral models background

A simple categorization is used to help distinguish the models based on the
type of distortion they represent, using the classifications mentioned in Sec-
tion 2.1. Single-input single-output power amplifier nonlinear behavioral
models can thus be categorized in four main categories: memoryless mod-
els and models with linear memory, and models with short and long term
nonlinear memory effects.

3.2.1 Memoryless and Models with linear memory

As described in the previous section, a complex power series can be used for
power amplifier modeling. As the input-output relationship only depends on
the instantaneous sample, this type of model is commonly called a static or
memoryless model. In this section, first an overview of these type of models
is presented, then some models that considered linear memory effects are
presented.

Memoryless models

Some popular static memoryless models that have been proposed and used
in the literature are the Saleh models [39], both the original and the modified
version, the Rapp model [40], the Fourier series models [41], Bessel-Fourier
models [41], and Hetrakul and Taylor models [41].

Models with linear memory

As communication signal bandwidth increased in wireless systems, memory
effects has become more apparent. The models presented in this section
were the first models that attempted to address these effects, by using linear
memory.

In the simplest case, authors have suggested that the memory effects
and the nonlinearities can be separated. This has resulted in a class of
commonly called two-box models. In this class, a nonlinearity is followed
by a linear filter – known as the Hammerstein model [42] – or a filter is
followed by a nonlinear function – the Wiener model [42] as depicted in
Figure 3.1.
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Figure 3.1: The block diagram of the two-box and three-box models.

It should be noted that the Hammerstein model is linear in the param-
eters, while the Wiener model is not. This will later prove important when
parameter identification is discussed in Section. 3.6.1.

In order to better represent linear memory, a three-box model has also
been used in the literature. These models tend to have a linear filter -
memoryless nonlinearity - linear filter model structure, and are also called
three–box Wiener–Hammerstein models. Examples of such models are the
frequency dependent Saleh model [39], and the Poza-Sarkozy-Berger model
[43]. A simple block diagram of the three classes of models explained is
shown in Figure 3.1.

Another class of models are parallel-cascade models that describe non-
linear system with linear memory effects by constructing severely branches
connected in parallel. Two of the important models in this class are the
polyspectral model [44–46] and the Abuelma’aati model [47].

3.3 PA Behavioral models accounting for non-
linear memory effects

As communication signals become more wideband in modern wireless com-
munication systems, the need for advanced models that can describe nonlin-
ear memory effects becomes evident. Many mathematical tools have been
suggested for such modeling purposes, such as polynomial-based functions
and neural networks. The focus of this thesis is mainly on polynomial based
models, due to interesting properties in identification and ease of use.

3.3.1 Volterra series model

The Volterra series is a widely used mathematical tool for modeling any
nonlinear function including memory. The Volterra series and the Volterra
theory was developed by Vito Volterra in the late 19th century [48]. It has
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been commonly described as a generalized Taylor series with memory, the
discrete baseband representation of the Volterra series can be formulated
as [5, 49],

yVolterra[n] =

P∑

p=1
p odd

M∑

m1=0

M∑

m2=m1

· · ·

M∑

m(p+1)/2=m(p−1)/2

×

M∑

m(p+3)/2=0

· · ·

M∑

mp=mp−1

θp,m1,m2,··· ,mp

×

(p+1)/2
∏

i=1

x[n−mi]

p
∏

k=(p+3)/2

x∗[n−mk]. (3.9)

where P is the nonlinear order and M is the memory depth of the model.
The series can be re-written in matrix form as

yVolterra = Hxθ, (3.10)

where θ is a vector containing all the coefficients θp,m1,m2,··· ,mp , Hx is the
generating matrix containing all the permutations of x[n] from (3.9):

Hx(n, j) =

(p+1)/2
∏

i=1

x[n−mi]

p
∏

k=(p+3)/2

x∗[n−mk], (3.11)

where Hx(n, j) is the nth row and jth column entry, where j represents
different settings for p,m1,m2, · · · ,mp. It is common to call (3.11) the
kernels of the Volterra series.

It has been shown that a wide class of nonlinearities can be represented
at good precision with a Volterra filter [50, 51]. It is also interesting to
note that while the Volterra series is a nonlinear model, it is linear in the
parameters which greatly simplifies the identification process.

It can be noticed further from (3.9), that as the nonlinear order P or
memory depth M increases, the number of parameters grows rapidly. This
has rendered the Volterra series useful for only mildly nonlinear systems [28],
and much research has been focused on finding ways to reduce the number of
parameters and terms in the Volterra model. The following is representative
of the many models in the literature for PA modeling.

3.3.2 Reduced Volterra series-based models

A popular technique to obtain behavioral models from the Volterra series
is to identify and construct a model based on the most important terms
in the series. Therefore in practice, these models are often named reduced
Volterra series models or pruned–Volterra series models. An overview of
some of the most widely-used models are presented in this section.
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Polynomial-based models

An important and widely used model is the memory polynomial (MP) model
[21, 52]. This model can be described as both an extension of the normal
polynomial model to include memory, or as a reduction of the Volterra model
to only include diagonal terms. A similar model has been constructed in the
literature by connecting parallel Hammerstein models [5], and separating
the nonlinear and memory terms. In fact, as shown in [23], the memory
polynomial model is equivalent to the parallel Hammerstein model but with
better compromise between generality and ease of parameter estimation and
implementation. The model can be written as

yMP[n] =
P∑

p=1

M∑

m=0

θp,mx[n−m] |x[n−m]|p−1 . (3.12)

It can be noticed that the memory polynomial model is also linear in the
parameters.

Similar to the parallelization of the Hammerstein model in MP, the
Wiener model can be parallelized as well. This model, known as the parallel-
cascade Wiener model [53], can also model nonlinear memory effects in a
power amplifier. However, it suffers from the same complex identification
as the Wiener model, as it is no longer linear in the parameters.

In [19] a new model is proposed that generalized the memory polynomial
model by including leading and lagging terms. This model is called the
generalized memory polynomial (GMP) model. Compared to the memory
polynomial model, there is an extra degree of freedom in terms of choosing
the leading or lagging delay.

The authors in [54] derive a base-band Volterra series for power ampli-
fier modeling. By rewriting the Volterra series terms with amplitude and
phase as inputs, they generalize the memory polynomial model. The model
structure is somewhat similar to the GMP structure, derived in a more
theoretical manner.

Dynamic Volterra Series

In order to find ways to rewrite the Volterra series, in [55] a new mathemat-
ical model for power amplifiers is presented based on modeling the static
and dynamic parts separately. This work was constructed into the behav-
ioral model format in [56] and [57]. Further work was done in [58] and [59].
This model, known as the Volterra model with dynamic deviation reduction
(Volterra DDR), or the dynamic Volterra series representation, reformulates
the Volterra series based on the number of dynamics involved. In this way,
the number of parameters in the Volterra series may be reduced by choosing
a lower number of maximum dynamics.
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A similar modeling approach was proposed in [60], where the Volterra
series was modified by considering the Fourier integral in place of the con-
volution, and the sliding kernels dynamic Volterra series model was con-
structed.

3.3.3 Generalized Volterra series based models

Another track of Volterra based behavioral modeling has been to find ways
to generalize the Volterra series. This can help reduce the amount of mem-
ory depth needed for modeling. However, these models tend to no longer
be linear in the parameters, which complicates the identification process.

IIR–based models

The Volterra series is a natural expansion from a linear finite impulse re-
sponse (FIR) model [61]. In this format, it is assumed that the output
signal can be modeled with the input signal only. This assumption may not
be generally valid as there is an inherent feedback in the power amplifier
circuit. One proposal was the use of infinite impulse response filters (IIRs)
in [62], but due to the recursive nature, stability was a major problem.

In order to avoid these stability issues, authors have proposed the use of
orthonormal basis functions instead. In [63], the use of Laguerre functions
as the basis for the Volterra expansion is proposed, replacing the Dirac
impulses of the Volterra FIR filter with a fixed-pole orthonormal Laguerre
function. This function decays exponentially to zero at a controlled rate, and
has a similar structure to an IIR filter with a pre-decided pole to alleviate
the stability issues.

In [64], the Kautz function was suggested as an orthonormal basis. This
model is similar to the Laguerre-based model, except that in the Laguerre-
based model the orthonormal-basis poles are chosen to be real, while in the
Kautz-based model the poles are allowed to be complex as well. A similar
model is constructed in contribution [s] but instead of using a full Volterra,
an MP–based model is constructed to reduce complexity.

3.3.4 Models considering long term memory effects

In the models proposed in the previous section, in order to capture memory
effects a memory depth parameter is defined that specifies the maximum
number of memory taps used in the behavioral model. For the models in
Sect. 3.3.2 and Sect. 3.3.3, as the memory depth is increased, the number
of parameters of these models increase dramatically, and the complexity of
such models deems them practically unusable for capturing memory effects
longer than a few samples.
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Models that are capable of modeling long term memory effects which,
as mentioned in Chap. 2, are becoming more important for bursty data
signals have been the focus of research recently. In [65] sparse delay taps
were suggested for capturing long term effects. In [66] gray–box knowledge
of the thermal filter of the PA is utilized to develop a model that includes
long–term memory effects. A lower complex version is proposed in [67] that
seperates the model into static and dynamic terms, similar to the dynamic
Volterra series. In [68] continuous time models are proposed for capturing
long term memory effects, and identification with numerical techniques for
this model is presented in [69].

Long–term memory effects with dynamic parameters

In Paper [A] and in contribution [e], a new behavioral modeling technique
is proposed that enables capturing long–term memory effects in the param-
eters of the model instead of constructing complicated model structures.
The model is written as

ymodel[n] = Hx[n]

(

θ
(0) + s[n]θ(1)

)

, (3.13)

where Hx[n] can be the generating matrix of any of the previously mentioned
models in Sect. 3.3.2, s[n] is a state parameter that tracks slowly–varying
long term memory effects (in this work by linear filtering of |x[n]|2), θ(0) are
the parameters of the behavioral model independent of the state parameter
s[n], and θ

(1) are the dynamic parameters dependent on state s[n]. In
Paper [A], the MP and GMP models are used to construct the behavioral
model. The block diagram of the proposed modeling technique is shown
Fig. 3.2. A simple version of the proposed behavioral model is presented in
contribution [70] and a more detailed version and model generalization in
Paper [A].

3.3.5 Other models

Some other important models which either could not be easily classified into
the groups above or were not the main focus of the thesis are discussed in
this section.

Look-up tables (LUT)

A widely used technique to model and predistort power amplifiers, are
lookup tables. In this technique, typically the AM/AM and AM/PM char-
acteristics of a PA are used to construct tables for modeling and inverting
the PA. In [71], multiple lookup tables for different power levels are used
to model and predistort the power amplifier, enabling a faster response to
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Figure 3.2: Block diagram of a novel modeling technique capable of
capturing long term memory effects. G(ω) is a low–pass
filter.

changes in the PA characteristics. In [72] multi–dimension LUTs are con-
structed to enhance PA linearization.

Switching models

Models which partition the input signal into regions and find different mod-
els for these regions have also been analyzed in the literature. Piecewise
Volterra filters were derived in [73], and it is shown that parameter estima-
tion remains a linear problem when the regions are partitioned. In [74], a
piecewise Hammerstein structure is used to construct the piecewise model.
In [75], spline functions are used to switch between different regions. In [76],
a model is proposed for envelope tracking applications based on vector
threshold decomposition. Normally for these types of models, each output
sample is constructed by summing the output of many models. Therefore,
computational complexity becomes a limiting factor in these type of model
structures. In [77] a new switching behavioral model is proposed where the
output is only involved with a single model at a time to aleviate this issue.
Vector switching is utilized for DPD with good results.

Artificial neural networks

Artificial neural networks (ANNs) have also gained recognition in recent
years [78] for PA modeling. It has been shown that the single-hidden-layer
multilayer perceptron (MLP) ANN have universal approximation capabili-
ties [79, 80]. Two main approaches have been taken in ANN design for be-
havioral modeling, MLP and time-delayed neural networks (TDNN) [81–85],
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and radial-basis function neural networks (RBFNNs) [86, 87]. For TDNNs,
it was shown in [28], that the network is similar to the memory polynomial
model in structure, with a different nonlinear function. Different approaches
have been taken to model the power amplifier using TDNNs, the common
approach has been to use two real-valued TDNNs for the I and Q signals and
then combine the output. Another approach has been the use of a complex
valued neural network [88]. In [81], one real-valued neural network is used
with both I and Q as the input. RBFNNs consist of three layers, an input
layer, a hidden layer, and an output layer. The input layer to the hidden
layer space has a nonlinear transformation using Green’s function [89], while
the hidden layer to output layer has a linear transformation.

NARMA models

The nonlinear autoregressive moving-average (NARMA) model has been
used to model power amplifiers [41,90]. These models could also be treated
as models with nonlinear memory. In this model, a nonlinear feedback path
is added to enable the modeling of IIR terms. However NARMA models
generally suffer from the same stability issues as in [62]. Some studies on
the stability and the stability criterion for this model can be found in [91].

State-space models

Another type of behavioral model that has been used are state-space models
[31]. These models may include linear memory terms, or nonlinear terms,
based on the formulation. The main advantage with these models is the
ability to model the power amplifier behavior as a full two port device, and
not as a single-input single output system, which may be beneficial as they
can represent both voltage and current changes in systems. Such a model is
proposed in [92], where power amplifiers are modeled as nonlinear two-port
RF networks. In [93], a dual-input Volterra series model is proposed that
takes both RF input and supply power as inputs, to remove voltage ripple
of the power supply.

Gray-box models

All models discussed in this thesis were black-box models. However, it
is important to also mention gray-box models. In these type of models,
some knowledge of the internal circuitry is used to find good behavioral
models. Identification of such models is discussed in [94], and in [32], the
circuit structure is used to find the relationship between parameter terms
and physical phenomenon. Authors in [9] and [95] have proposed a low–
complex MP model based on the model from [32] that shows better modeling
performance in low parameter regions.
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3.4 Commonly–used models for modulator mod-

eling

While when modeling power amplifiers some model simplifications – due
to the passband nature of the PA – could be made (as specified in 3.1),
these conditions no longer hold for modulators. The modulator upconverts
the baseband I/Q signal to modulated RF signals to be fed to the PA, and
therefore include both passband and baseband nonlinearities (which can be
different in the I and Q branch while at RF I and Q are identical). Hence
the model structures for modulators may not use the simplifications from
Sect. 3.1.1 and general forms are used [96].

In an RF modulator, I/Q imbalance is considered to be the most impor-
tant distortion [97], and has been categorized in different ways. It has been
categorized based on the physical location of the modeling and compensa-
tion; either at the transmitter and receiver separately [98–100] or jointly for
both transmitter and receiver imbalance at the receiver [101–103], the type
of data needed for modeling and compensation; data–aided techniques that
utilize pilot symbols [104–106] and blind statistical techniques that use prop-
erties like correlation between the I and Q branch for modeling [107–109],
whether they are frequency–dependent [110,111] or independent [112,113],
and finally whether they can model and compensate for linear [108] or both
linear and nonlinear effects [114]. In this thesis, keeping with the catego-
rization used for PA modeling, I/Q imbalance modeling is categorized into
linear and nonlinear I/Q imbalance sections, with focus on modeling the
imbalance in transmitters and for frequency dependent I/Q imbalance as
the dominant effect [115]. Some representative models are presented in this
section.

3.4.1 Linear I/Q imbalance

Gain and phase

In traditional frequency–independent I/Q imbalance models, only gain and
phase mismatch are represented. In [108] and [116] blind estimation tech-
niques are proposed. These techniques, while suitable for narrowband sig-
nals, cannot effectively model for memory effects exhibited by the trans-
mitter, and hence may not be useful for modern wideband communication
signals.

FIR filters

In [117] it was shown that the performance of frequency–independent I/Q
imbalance models is limited by the quadrature down-conversion and the
mismatch in complex filtering. In [118] and [119] finite impulse response
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(FIR) filters are used represent these type of distortions. In [99] and [100]
asymmetrical widely linear filters are used where filtering is done on the
conjugate of the signal for compensation. While the experimental results
from these works show improvement in representing I/Q imbalance, they
are only capable of modeling linear I/Q imbalance and nonlinear effects in
the I and Q branches are not modeled.

3.4.2 Nonlinear I/Q imbalance

Nonlinear equalization

In [120] the effect of nonlinearity in the baseband I and Q channels was
investigated and shown to considerably affect the performance. Nonlinear
equalizers are used in [114] to compensate for static nonlinearities generated
by the clipping in the DACs. The results show an improvement in compen-
sating for I/Q imbalance, however no nonlinear memory effects (which occur
due to slew–rate limits of operational–amplifiers used to implement recon-
struction filters [114]) are modeled and compensated for.

Dual–input I/Q imbalance model

In Paper [B], a new dual–input nonlinear behavioral model is proposed
to model for both frequency–dependent and frequency–independent I/Q
imbalance. In this formulation, the I and Q branches are separately used
to construct two dual–input real–valued DPDs for the I and Q branch,
as shown in Fig. 3.3. This modeling enables representing both static and
dynamic nonlinearities. Details of this model and the measurement setup
used for evaluation is presented in Paper [B]. The model can be further
simplified by MP, DDR or GMP (Sect. 3.3.2) models instead of the Volterra
series, as shown in contribution [r]. The same modeling approach is also
successfully used to jointly compensate I/Q imbalance and PA distortion in
contribution [t]. A similar modeling approach using an extended parallel
Hammerstein structure for joint mitigation of I/Q and PA distortion is also
done in [24], where statistically orthogonal polynomials are used for the
nonlinear distortion.

3.5 Comparative analysis of behavioral models

A common issue that is noticed in behavioral model literature, is how to
compare the model performance [5, 121]. Obviously, by disregarding model
order, the Volterra series will theoretically yield the best performance, since
it can model any mildly nonlinear function accurately. In practice however,
as the number of parameters grow, the performance is restricted by the un-
certainties in parameter identification and computational complexity. Thus,
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Figure 3.3: Cascade of I/Q imbalance pre-compensator and modula-
tor.

for these reasons, the Volterra series and other Volterra–based models have
to be truncated.

Different models are truncated differently, making fair comparisons be-
tween them difficult. For example, it is often seen that the performance of
a Volterra with nonlinear order 3 and memory depth of 2 is compared with
a memory polynomial model with nonlinear order 5 and memory depth 4.
Such a comparison may not be comprehendible or fair.

3.5.1 Metrics used for computational complexity

In order to establish a common fair basis for which behavioral models can
be compared, computational complexity – how much computational effort
is needed to obtain a certain performance – is proposed as an important
metric in Paper [C].

In literature, complexity has been notated by different measures [122].
Often it is measured in orders denoted by the Landau symbol O(·), which
represents the algorithm complexity. Unfortunately, for behavioral model
analysis, this representation is not precise enough for practical considera-
tions [123].

In the area of behavioral modeling, it is common to compare models
based on the number of parameters. This can determine the memory size
needed for a behavioral model. However, this representation may not always
be an appropriate measure. For example, the number of parameters for a
neural network may not correctly represent the computational complexity
of this model, as the main source of complexity stems from the operations
needed per sample, and not necessarily the number of parameters.
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The number of floating point operations or FLOPs is another widely
used measure for complexity. In most DSP hardware, the computational
effort is mainly spent on additions, subtractions and multiplications, which
is precisely what FLOPs count.

3.5.2 Different types of computational complexity

Another important issue in behavioral model complexity is where the com-
plexity originates from. They can be classified as:

Identification complexity

The identification procedure differs for behavioral models, as discussed in
section 3.6.1. Since the identification of the behavioral model is typically
done once and offline, this complexity can normally be considered a rela-
tively minor issue for comparing behavioral models.

Adaptation complexity

In practical systems, due to slight changes in the power amplifier such
as temperature change or different mismatching effects, behavioral mod-
els might need to be updated at time intervals. These time intervals can
normally be much larger than the symbol period. The adaptation of the
behavioral model to these changes is considered adaptation complexity.

Running complexity

Running complexity is the number of calculations that is done on each
sample when the model is utilized. This complexity severely limits the
system due to the fact that it is a real-time problem. Depending on the
application, the maximum acceptable complexity varies. The comparisons
and focus of the work in this thesis is on this type of complexity.

For this type of complexity, in Paper [C], efficient algorithms for some
different PA behavioral models are derived. A general algorithm for imple-
menting Volterra based models from [33] can be simplified in two steps:

Step i) Construct basis functions – matrix Hx from (3.9).

Step ii) Filter the basis with kernels (Hxθ).

The computational complexity of the second step is directly related to
the number of kernels, since each kernel will be multiplied by the according
basis function and then summed with the remaining results. Thus, the
complexity is solely dependent on the number of coefficients. Behavioral
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Figure 3.4: Number of FLOPs per coefficient vs number of coefficients
for different models.

models will, however, differ in the construction of the basis functions. The
complexity C can be written as the sum of the complexity of each part, or

C = Cbasis + Cfilter, (3.14)

where C represents the total complexity, Cbasis represents the basis construc-
tion complexity from Step i, and Cfilter represents the filtering complexity
from Step ii. Details on computational complexity is presented in Paper
[B].

From Fig. 3.4 (derived from contribution [j]), it can be seen that for
different behavioral models, a different number of FLOPs per coefficient
is needed, meaning that not all models have the same amount of compu-
tational complexity for Cbasis. Therefore, any comparative analysis of the
performance of behavioral models with respect to complexity should include
this complexity.

3.5.3 Accuracy/complexity tradeoff

In order to compare different behavioral model performance, the accu-
racy/complexity tradeoff is developed in Paper [C]. To compare different
behavioral models appropriately, all different parameter combinations have
to be swept, and scatter plots such as Fig. 3.5 are constructed. By using
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the convex hull of the all possible configurations the accuracy/complexity
tradeoff for different behavioral models can be compared. It should be noted
that all FLOP-NMSE pairs on the convex hull are not necessarily realizable,
but they represent the approximate performance of the model.

The result of comparing different behavioral models with respect to their
accuracy/complexity tradeoff is shown in Fig. 3.6. It can be noticed that
GMP model performs best and shows the most promise in terms of accuracy
vs. complexity. More comparisons and details are analyzed in Paper [B].
Recently in [9] more models have also been compared in this regard with
number of parameters as the complexity measure, where a newly proposed
model performs better in the low parameter regions.

3.6 Model parameter identification

An important issue in behavioral modeling is parameter identification. It
has been noted that black-box models may suffer from uncertainty in mod-
eling [28], and hence, the parameter estimation process needs to be analyzed
carefully.
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3.6.1 Identification algorithms

Different models will have different parameter identification strategies. All
models that are linear in parameters for example, may be identified by the
least-squares estimate (LSE) algorithm. This is an important advantage for
such models, as the least-squares algorithm guarantees global convergence
[124]. The LSE solution by using a training set data with input signal x
and output y can generally be written as [124]

θ̂ =
(

Hx
HHx

)
−1

Hx
Hy, (3.15)

where Hx is a matrix containing all permutations of the input signal of a
model structure (for example from 3.9–3.10), and θ̂ is the estimated param-
eters. In practice, for efficient implementation in computers, (3.15) can be
calculated using Moore-Penrose pseudoinverse or QR-decomposition tech-
niques [124,125].

For models that are not linear in parameters, iterative procedures are
typically used for parameter identification. There is no guarantee for global
convergence for these models, and in some cases local minima may hinder
the identification process. In this work, for the models discussed in Section
3.3.3 a full search of poles for each nonlinear order is used [64]. With this
technique, after finding the optimum poles, the problem becomes a normal
least squares estimation.
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3.6.2 Bias and variance in parameter identification

When identifying a power amplifier behavioral model, it is important to be
aware of the two types of errors in parameter estimation; bias and variance.
In general, the expected value of the quadratic error in parameter estimation
can be approximated as [126],[p500-504]

E

[∣
∣
∣y(ZN )− ymodel(θ̂k, Z

N)
∣
∣
∣

2
]

≈ VN (θ̂k, Z
N)

︸ ︷︷ ︸

Bias

+ 2λ
k

N
︸ ︷︷ ︸

Variance

, (3.16)

where VN is the sum of the squared errors, θ̂k are the estimated k parame-
ters, ZN is the two–by-N input and output data vector, λ is a scaling for the
expectation of the square of error, and N is the size of the data set. As the
number of parameters grow, the first term, the bias, becomes smaller since
more parameters can reduce the quadratic error, but due to the uncertainty
in parameter estimation, the second term, the variance, grows.

The implications of this fact is that in order to be able to identify the
parameters properly, the data set size has to be large enough to avoid over-
fitting. Overfitting occurs when the number of parameters becomes too large
compared to the data set size. This phenomenon can be observed in the two
tests in Figure 3.7. In the first test, labeled closed test, memory polynomial
models (3.12) with different number of parameters are identified, and the
same data set that was used for identification is also used for validation. In
the second experiment, labeled open test, the model is identified with one
set of data, and another independent set of similarly generated data is used
for validation. In these experiments the data length size is kept fixed.

It can be seen that as the number of parameters increase, in the closed
test, the model performance consistently improves. However, this is mis-
leading, since in the open test the performance diminishes as the number
of parameters increase. This is because the uncertainty in the parameter
estimation grows as k

N grows, and overfitting occurs. The overfitting ef-
fect can be reduced by using different, but statistically similar, data sets
for identification and validation. All model evaluation results presented in
this thesis use different data sets for the model identification and validation,
respectively.
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Chapter 4

Digital predistortion of RF

transmitters

As indicated in Chap. 2, the main challenge in wireless transmitters is the
need for high linearity while spending as little power as possible. In this
chapter, first a short background is given to explain the basic principles and
identification methods for digital predistortion. Some results showing DPD
for PAs and modulators is shown. Finally parameter adaptation in digital
predistorters is discussed and investigated.

4.1 Identifying digital predistorters

In predistortion, the input signal is fed to the inverse function of the trans-
mitter. If the inverse of the transmitter is constructed perfectly, the over-
all response of the system of the combined DPD and transmitter will be
linear. This is shown intuitively in Fig. 4.1. In practice however, not all
nonlinear systems are invertible. This section presents techniques for identi-
fying DPD parameters for Volterra–series and reduced Volterra series based
models, with focus on DPD for power amplifiers as the main contributor to
distortion in the transmitter.

4.1.1 Pth order inverse

In [48, 127] an important theory was developed that states that the inverse
of a Volterra system is itself a Volterra system . In [128], it was shown
that the Pth order pre-inverse of a system is identical to its Pth order post
inverse, effectively meaning that it is possible to utilize the easily obtained
post inverse of a Volterra system and just copy it as a pre-inverse (correct
up to the Pth order for linearization). This technique has the drawbacks
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Figure 4.1: Basic principle of digital predistortion.

of being computationally heavy [27], terms of higher nonlinear order than
P are not considered, and only stable if and only if the linear part of the
system is stable and casual.

4.1.2 Direct learning architecture

In the literature, a different method compared to the Volterra system method
utilized in the Pth order inverse has been developed which is based on the
self-tuning controller [129], called the direct learning architecture. This tech-
nique is done by first constructing a direct model of the transmitter and then
inverting this model. A block diagram of this method is shown in Fig. 4.2.
It should be noticed that inverse of the power amplifier behavioral model
is used directly to construct the DPD. This architecture commonly utilizes
iterative optimization procedures for the parameter of the DPD to minimize
the error [9].

4.1.3 Indirect learning architecture

In practice, the nonlinear function of the transmitter is generally unknown
and needs to be estimated from the data, which can be prone to fitting errors
[130], and inverting a model constructed by noisy data may not be optimal.
A different technique has been developed in the literature by placing the
inverter function after the PA at the output. This post–compensator models
the output into the desired input, and using Schetzen’s theorem, can be used
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Figure 4.2: Direct learning architecture. The PA model parameters
sent to the inverting block, where DPD parameters are
calculated from and sent to the predistorter.

as a pre–inverting model for the DPD [96]. This technique is referred to as
the indirect learning architecture in the literature. This technique is also
a special case of the self tuning controller, and is in fact the same as the
self-tuning control with inverse modeling. A block diagram of this setup is
shown in Fig. 4.3. This method was proposed by [27] and will be used in this
work for parameter identification. The parameter identification is similar to
that in Sect. 3.6 with the output signal used as the input of the model and
the desired output (which is the original input signal before predistortion)
as the output of the model.

Using the indirect learning method (ILA), it has generally been shown
that when a good behavioral model is obtained, a good inverse model can
also be obtained [131]. It was shown in [132], based on the theory from
[48] and for Volterra systems, that the model structures that are useful
for modeling PAs are also suitable for pre–inverses. This observation is
generally applied for non–Volterra based systems successfully as well. For
this reason, the focus on this thesis was mostly on behavioral modeling, and
once suitable models are constructed the are used for DPD of traditional
and non–traditional PA architectures.

Examples of DPD using ILA

In this section two examples of using the ILA for DPD of a power amplifier
and a transmitter is presented.
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Figure 4.3: Indirect learning architecture. The parameters identified
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PA predistortion

Figure 4.4 shows DPD performance using ILA for a PA with a bursty signal
and the setup proposed in Paper [A]. This figures shows the instantaneous
NMSE computed over blocks of 4000 samples after predistortion for different
models. It can be noticed that the model proposed in Paper [A] with an
MP basis (called LT-MP in the figure) successfully improves the linearity
of the system by around 3-4 dB in the high power segment. This effect is
specifically noticeable in the switching of the bursts where the performance
improvement is around 4 dB.

I/Q imbalance compensation

ILA can be used to compensate for distortions created by transmitters as
well. Figure 4.5 shows the power spectrum of the errors between the received
signal y(n) after pre-compensation using ILA technique for different models
and the original input signal x(n), using the setup from Paper [B]. Two
cases are analyzed, case A with artificially introduced distortion and case
B with no artificially introduced distortion. From the two figures it can be
seen that the proposed dual–input nonlinear model has better performance
compared to the other compensation techniques.

4.2 Parameter adaptation in DPD

In practical scenarios, to compensate for varying conditions in the transmit-
ter such as PA aging, bias network variations, temperature shifts, and etc.,
parameter adaptation has been used [135,136]. As communication systems
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Figure 4.6: Block diagram of adaptive DPD in transmitters.

move towards packet–based systems, and communication networks utilize
techniques such as switching PAs off to conserve energy, rapid changes in
PA input signal power and temperature drifts require more advanced adap-
tation systems. This has resulted in the need for complete feedback chains
to construct a closed loop for adaptation in the transmitter. Such feedback
chains however, greatly increase the hardware complexity in the transmit-
ter and it is important to develop efficient, fast converging and as low-
hardware-demanding as possible algorithms. A simplified block diagram of
a transmitter with adaptive DPD is shown in Figure 4.6. It can be noticed
that in order to analyze and develop adaptation algorithms, real–time hard-
ware like field-programmable gate arrays (FPGAs) and application-specific
integrated circuits (ASICs) are needed.

As shown in this figure, parameter adaptation of DPDs is commonly
implemented with real–time hardware, which has high development costs
both in terms of time and hardware. Further, commonly once these sys-
tems are designed, their settings are fixed and changing configurations and
structures to analyze performance is highly time–consuming and expensive.
From Fig. 4.6 it can be noticed that the performance of adaptive DPD sys-
tems is heavily dependent on both the adaptation algorithms used to update
the parameters, and the quality of the signal in the feedback path. Issues
such as bandwidth and quantization noise in the feedback loop, inphase and
out of phase imbalance in the direct and feedback path, timing, convergence
speed etc. are important issues that need to be analyzed and investigated,
which requires a flexible measurement setup.

In the literature, in order to implement and analyze adaptation algo-
rithms, due to the high cost in equipment and time required for designing a
complete closed loop system, two approaches have been taken, using LUTs
instead of Volterra series based behavioral models, and iterative identifica-
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tion and adaptation using block-based techniques.

4.2.1 LUT–based techniques

LUT–based DPDs implementation has been well–studied in the literature.
In [137] an adaptive predistorter is proposed and used to construct one and
two dimensional lookup tables. In [138] Cartesian feedback is used to train
a Cartesian look-up table which resulted in a reduced amount of digital
signal processing (DSP) circuitry. A ∆Σ modulator is utilized in [139] by
placing a LUT in the feedback path which enables the ∆Σ to invert the
PA nonlinearity and perform interpolation between LUT entries. A new
technique is developed in [136] and analyzed further in [140] that combines
analog feedback predistortion by adding a look-up table in the feedback
path and combining it with the forward path LUT, which shows faster
convergence compared to previous techniques. Multiple LUTs are used in
[141] for adaptation, which are also implemented on an FPGA board and
tested on prototyping scenarios. NARMA–based LUTs are used in [72]
and are implemented both in real–time with FPGAs and with an external
adaptation scheme with a DSP. These approaches generally suffer from a
huge increase in size of LUTs needed to compensate for the different drifts
in PA behavior.

4.2.2 Block–based techniques

Another approach has been to use neural networks and Volterra–series based
structures and utilize iterative block–based updates [81, 142–144]. In these
techniques a block of data is uploaded and captured from the setup (this
block can either be the entire data set [81,144] or shorter blocks for faster up-
dates [143]), an adaptation technique, such as ILA or modified least squares
(MLS), is used to update the parameters, then the next block of data (or
the entire signal again) is passed through the adapted DPD and fed to the
setup. Although the block based technique represents parameter adapta-
tion, it is not able to accurately describe the closed loop adaptation that
happens in practice where the PA is constantly run and not turned off for
parameter updates. For example in traditional measurement setups, after
the data is captured from the PA and fed to the PC, the PA receives no
data while the new data is fed to the DPD and uploaded to the system,
which means the the PA will face temperature drifts and the state of the
PA is not consistent with the closed loop performance in real–time. In or-
der to be able to mimic the real–time performance of adaptation systems,
a measurement testbed needs to be constructed that addresses these issues.
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4.2.3 Measurement setup for parameter adaptation in
behavioral model–based DPDs

In order to accurately represent the closed loop adaptation transmitter in
Fig. 4.6 with an open–loop structure, it is vital to ensure that the PA is in
a consistent state with respect to the closed loop architecture. Developing
a flexible measurement setup that enables analysis of parameter adaptation
is a focus of Paper [D]. This is achieved by utilizing multiple measurements
with overlapping blocks, where the final portion of the block is used at each
step to update the DPD. By using enough of an overlap from the previous
block we can ensure that the PA is in a correct state. The block diagram
of the proposed open–loop adaptation testbed is shown in Fig. 4.7.

In order to maintain a known state at the beginning of the process, an
initialization block is added before the original data. The only requirement
on this data is for it to be known, so the start of the data under analysis
is not random. In the initialization step, after capturing the data from the
output of the PA and sending it to the PC, we can add artificial hardware
impairments in the digital domain, such as quantization noise, bandwidth
limitations, etc, as we see fit to investigate robustness of the different adap-
tation algorithms. This is shown in the figure with the feedback impairments
block. It should be noticed that only the final portion of the data is used
for analysis, shown with a gray box, to ensure that the PA is in a correct
state.

After adding artificial impairments to the signal, the captured PA output
is used to update the parameters of the DPD using an adaptation technique.
The next block of data is fed to the DPD with the updated parameters,
and the output of the DPD is placed at the end of the block of data to be
uploaded instead of the original block of data. This is shown for Adaptation
step 1 with the red data used instead of the data labeled Block 2 and for
step 3 with the green data.

The measurement setup is utilized to investigate the performance of
different parameter adaptation techniques. Fig. 4.8 shows the NMSE vs
time for the different adaptation techniques and setup as specified in Paper
[D]. When the input data amplitude increases, it can be noticed that the
models show a loss in performance. However, as the parameters are updated
to reflect on the changing behavior of the PA, the performance is improved.
This is consistent with what is expected in a real–time adaptation setup, but
adds the flexibility to change configurations and settings for a more thorough
analysis on issues such as convergence speed, the effect of quantization noise
in the feedback loop and etc.
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Figure 4.7: Proposed open–loop testbed to mimic the closed loop
adaptation DPD from Fig. 4.6 without real–time hardware.



4.3 Summary 45

0 2 4 6 8
−50

−45

−40

−35

−30

Time (ms)

N
M

S
E

 (
dB

)

 

 

MP with ILA updates
Proactive MP

Figure 4.8: NMSE vs time for the different models. The models and
adaptation algorithms are specified in Paper [D].

4.3 Summary

In this chapter identification and parameter adaptation in DPDs was pre-
sented and discussed. The indirect learning architecture was used to suc-
cessfully linearize distortion created by power amplifiers and also to com-
pensate I/Q imbalance using a newly proposed model. Finally the issue
of parameter adaptation in RF transmitters was addressed, and a mea-
surement setup that emulates a practical adaptive DPD based on utilizing
repeated measurements is developed. This setup alleviates the need for real–
time hardware and allows the flexibility to investigate parameter adaptation
in behavioral model based DPDs.





Chapter 5

Conclusions, Contribution,

and Future work

5.1 Conclusions

This thesis addresses the issues of modeling and distortion compensation in
modern wireless transmitters. Issues such as modeling accuracy, transmitter
linearity and computational complexity have been addressed, and modeling
and linearity of PAs with bursty data signals have been successfully done.

Important issues in power amplifier model structure design has been
addressed, and some representative power amplifier behavioral models in
the literature were presented and organized depending on how they address
memory effects in PAs. A new behavioral model is proposed that is capable
of tracking changes in PA behavior due to bursty input data, which is a
general trend in modern packet–based communication signals. The com-
plexity of behavioral modeling is addressed as an important issue and the
tradeoff between complexity and accuracy for some behavioral models was
presented. It was shown that accuracy by itself can not completely represent
behavioral model performance, but that computational complexity must be
considered as well.

A dual–input model for IQ modulator compensation was introduced,
that enables modeling and compensation of both linear and nonlinear and
memory effect distortion created by modulators. The proposed technique
is also capable of jointly compensating for PA and I/Q imbalance distor-
tions. Finally parameter adaptation in behavioral model–based DPDs is
discussed, and a measurement setup framework capable of mimicking pa-
rameter adaptation without real–time hardware is developed. The setup is
used to investigate convergence speed and the effect of quantization noise
in some parameter adaptation algorithms.
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5.2 Contribution

A short description of the contribution of the author in each paper is pre-
sented in this section.

Paper A - Black-box Modeling and Compensation of Long Term
Memory Effects in RF Power Amplifiers

This paper presents a novel approach to model and compensate for long–
term memory effects in RF power amplifiers due to bursty input signals.
The proposed modeling technique extends commonly used behavioral mod-
els by placing a long term memory effect in the parameter of the model.
Identification and performance of this model is also presented.

My contributions are: Design, analysis, identification, and evaluation of
the behavioral model. Laboratory measurements. Authoring the paper.

Paper B - I/Q imbalance compensation using a nonlinear modeling
approach

This paper constructs a new model that can represent all kinds of distortion
created by an I/Q modulator. In this model, we separate the input signal
into the real and imaginary parts and construct a dual–input model to
compensate for the distortions. Results show that the model successfully
compensates linear and nonlinear distortions in I/Q modulators.

My contributions are in: Identifying the problem, model structure con-
struction, proof–reading and coauthoring paper.

Paper C - A comparative analysis of the complexity/accuracy
tradeoff in power amplifier behavioral models

In this paper, complexity of power amplifier behavioral modeling is discussed
and FLOPs are suggested as a suitable measure to compare behavioral mod-
els. Computational complexity for some behavioral models is calculated,
and experiments are done to analyze the accuracy/complexity tradeoff for
these models. For the models tested, it was shown that the generalized
memory polynomial model showed the best accuracy/complexity tradeoff.

My contributions are: Constructing models in Matlab, finding the com-
plexity for different models. Laboratory measurements. Authoring the pa-
per.

Paper D - Investigation of Parameter Adaptation in RF Power
Amplifier Behavioral Models

In this paper, a new measurement framework is developed to mimic real–
time adaptation systems while maintaining flexibility in the design process.
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This setup is used to investigate different properties such as convergence
speed and the effect of quantization noise in some adaptation algorithms.

My contributions are: Design and construction of the setup framework,
laboratory measurements, analysis of adaptation algorithms and authoring
the paper.

5.3 Future Work

The work presented in this thesis provides solutions to some of the practical
problems in PA and transmitter modeling and linearization and can be
extended in any of the following ways.

Addressing the issue of linearity without considering power efficiency in
transmitter architectures is not complete. As higher power efficiency ar-
chitectures are developed, the need for behavioral models that are better
representative of such systems is becoming more apparent. These models
should be able to capture and compensate distortive effects in such ar-
chitectures with acceptable complexity. Some interesting architectures are
envelope tracking and dynamic supply modulation architectures, dynamic
load modulation architectures, and outphasing architectures.

In modern wireless systems, it is becoming common to include many
standards on the same device, and this has led to needing multiple RF
chains. It would desirable to be able to reduce the number of RF chains
in for example cellphones to reduce power consumption in these devices.
This provides both hardware and software challenges. For example one
common solution is by carrier aggregation, sending two signals with different
center frequency through the same PA. Modeling and compensating for the
distortive effects of the PA on the two different signals will be vital for
use of such techniques. Such a modeling approach can also be taken for
compensating for distortion in MIMO systems.

Another interesting topic is to identify and compensate distortion at
the receiver instead of the transmitter. This will enable the operation of
the transmitter in a more nonlinear, and thus more power efficient, state.
This can be done with or without the knowledge of the PA behavioral model,
either by sending the model information as overhead or estimating it directly
from the data.

Finally parameter adaptation for behavioral model–based DPD systems
can be analyzed further. This is an important area that has been lacking
mainly due to complicated design process involved in real–time systems,
and by utilizing the flexible technique proposed in this work more detailed
analysis can be done.
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