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Here we show the detection of single gas molecules inside a carbon nanotube based on the change in

resonance frequency and amplitude associated with the inertia trapping phenomenon. As its direct

implication, a method for controlling the sequence of small molecule is then proposed to realize the

concept of manoeuvring of matter atom by atom in one dimension. The detection as well as the

implication is demonstrated numerically with the molecular dynamics method. It is theoretically

assessed that it is possible for a physical model to be fabricated in the very near future. VC 2012
American Institute of Physics. [http://dx.doi.org/10.1063/1.4754617]

The manoeuvring of matter atom by atom may be one of

the ultimate goals of the science of nanotechnology.1–3 This

goal was partially realized by the scanning tunnelling micro-

scope (STM) with its ability to manipulate atoms on the

surface of a metal. There are a number of different approaches

to nanoscale mass transport7–16 based on carbon nanotube

(CNT) nanoelectromechanical systems (NEMS) that attempt

to exhibit promising properties of the CNT. The experimental

approaches include electrophoretic,7–9 thermophoretic,10,11 and

mechanically actuated12–16 methods. However, all these

approaches failed to achieve manoeuvring matter at the atomic

level. On the other hand, in spite of fundamental and applied

interest in the interaction of CNTs and nanoparticles due to

mechanical vibrations of the CNT,17–23 little attention has been

paid to the manipulation of nanoparticles and nanoscale mass

transport based on CNT-enabled NEMS.4–6,12,13 The inertia

trapping phenomenon4–6 which shows that atomic particles in

a vibrating CNT have a tendency to move toward the antinodes

and stay in the antinodes vicinity, due to inertial forces (or cen-

trifugal forces), is then adopted by this paper to realize the con-

cept of matter manipulation. Although it is not a true full three

dimensional (3D) manoeuvring matter at the atomic level, the

work could still be valuable in fields like synthetic biology24

and molecule level data storage7,25,26 and hopefully a key step

to the realization of true 3D nanotechnology.3

The encoding of a molecular chain can be realized by

shooting several kinds of gas molecules into the CNT one by

one as shown in Figure 1. One challenge encountered in the

present work was, the detection of molecules inside the CNT

required by step 2 as shown in Figure 1, which was resolved

using a CNT resonator system. The CNT resonator is able to

detect the change of its vibration amplitude by detecting the

change of electric current in a circuit and thus detect small

changes of its eigenfreqency.17–21 More details about this

detection technique are given in supplementary information

Sec. A.30 The detection process can then be split into two

categories: (a) increasing the vibrational amplitude due to

the insertion of the molecules denoted as “þ,” and (b)

decreasing the amplitude denoted as “�.” For a “þ” detec-

tion, the resonator is initially away from resonation which

causes small amplitude; after the insertion of molecule, it

achieves resonation hence larger amplitude was observed.

For “�” detection the inverse is happens. The situation can

further be divided into two subsets according to the dynami-

cal boundary conditions of the CNT resonator, i.e., the

double-clamped CNT denoted as “a” and the free-ended can-

tilever CNT denoted as “b.” Therefore, 4 types of molecular

chain encoders (namely encoder aþ, a�, bþ, and b�) were

proposed, and we systematically tested all of them. The

encoder aþ for example is composed of a double-clamped

CNT and detects the molecule after detecting an increasing

of the amplitude. Note that “b” can only encode a finite

length of molecular chain due to the restricted length of the

cantilever. Therefore, the schematic in Figure 1 requires a

little modification for “b” encoders by omitting the switch

with capped CNT. The resonator itself acts as a storage area

for the molecular chain.

A molecular dynamics (MD) simulation is performed to

verify if the molecule can remain in the CNT after getting

into the resonator and influence the vibrational amplitude.

Consistent with a previous study,5 a (5,5) CNT and krypton

(Kr) based monatomic molecules were utilized in the simula-

tions. The detailed simulations are given in the supplemen-

tary information Sec. A.30 Encoder aþ was studied as a start.

The molecular model is shown in Figure 2(a). A Kr-atom

was then shot into the CNT which was vibrationally excited.

Figure 2(b) shows trapping process of the particle after its

insertion into the CNT. With details in the supplementary

information Sec. A,30 we concluded that the amplitude of the

CNT resonator vibration increased from 8.80 Å to 8.99 Å

as shown in Table I due to the insertion of the Kr-atom,

which verifies that the particle has indeed entered the CNT.

A further simulation reveals that if the excitation stops, the
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particle will still stay inside the CNT. After this, the switch

(as showed in red part in Figure 2(a)) will be opened and

methods such as temperature gradients10,11 can be used to

transport the particle through the CNT to the storage area to

the right of the switch. In accordance with the schematic

shown in Figure 1, a molecular chain could be encoded.

Hereafter, encoder a- was studied in an analogue fashion,

which concluded that the amplitude decreased from 5.03 Å to

1.65 Å due to the insertion of a Kr-atom, which once again

verified that the particle is in the CNT. This change in the am-

plitude is much larger than that in encoder aþ, because of the

nonlinearity of Duffing oscillator27 in encoder aþ caused by

excessively large amplitude.

For encoder bþ, the molecular model is shown in Figure

2(c). Using a similar strategy as for the encoder aþ, the

model reveals that the amplitude increased from 1.36 Å to

6.95 Å after the insertion of a Kr-atom. This Kr-atom was

trapped near the CNT tip in the same way as for the aþ
encoder as shown in Figure 2(d). After this, a model particle

with a mass 50% heavier than the Kr-atom was shot into the

CNT, which has a previously trapped Kr-atom. It revealed

that the amplitude increased from 1.66 Å to 7.35 Å due to the

insertion and the consequent trapping of the atom. Hence, a

sample molecular chain of two molecules was encoded in

this process.

Finally, encoder b- is studied in the same way. In this

analysis, the vibrational amplitude decreased from 6.29 Å to

1.98 Å after the insertion of a Kr-atom. A further decrease

from 6.95 Å to 2.35 Å is seen after another insertion of the

model atom. Once again, a molecular chain is encoded.

The scheme proposed in Figure 1 is not only limited to an

interesting theoretical exercise, but should also be studied from

a practical viewpoint. The feasibility of the present work is

examined in some detail in supplementary information

Sec. B.30 To begin with, it should be ensured that the molecule

can be shot into the CNT one at a time. In order to do this, the

interval between the insertion of Kr gas molecule was estimated

from Eq. (S1) of supplementary information Sec. B (Ref. 30) as

0.07 ms, with a gas pressure of 1 Pa, gas temperature 30 K, and

a (5,5) CNT. This should be quite enough for steps 1-3 shown

in Figure 1, let alone that in the laboratory condition the gas

pressure can be several orders lower than 1 Pa,19 resulting in a

much longer interval. The simulations reveal that the time for

detection can be much shorter than the above-mentioned inter-

val. Therefore, the possibility that more than one molecule will

enter the CNT can be omitted by a fast shuttering of the slot.

FIG. 1. Schematics of the encoding device. The encoding process can be realized by the execution of three steps. Step 1 shows the initial state of the system,

in which a gas A is stored in a chamber with a slot. A small amount of gas A will be emitted from the slot and afterwards should be immediately pumped out.

The right side of step 1 shows a schematic structure of a CNT resonator, which is placed in vacuum. The CNT is located via the two fixed positions and extends

beyond the right fixing point. This extended length of the CNT will act as a storage space for the molecular chain. A switch is designed to the left side of this

storage space. Step 2 shows that once the molecule is detected inside the CNT, the slot of the gas chamber will be shut down so as to interrupt the shooting

before another molecule is inserted into the CNT. Step 3 illustrates the transportation of the molecule of gas A to the storage portion of the CNT which can pos-

sibly be done using methods such as temperature gradients (see Refs. 10 and 11). By repeating the above process (Step 4) with other kinds of gas molecule,

while controlling the sequence of kind of gas, an encoded molecular chain may be obtained.
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For “þ” encoders, the process of inertia trapping should

be verified. We then assessed from parameter c in Eq. (S6)

of supplementary information Sec. B (Ref. 30) that for either

encoder bþ or aþ, the trapping is feasible. This parameter

can be calculated as

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT=x2r2

pm
q

; (1)

where kB is the Boltzmann constant, T is the temperature of

the system, x is the angular frequency, m is the mass of the

particle, rp is the amplitude of particle’s circular motion. If

c� 1, there should be stable inertia trapping of the particle.

Another important aspect to be verified is the sensitivity

of the CNT resonator with respect to the mass of the particle.

This paper assessed that monatomic molecule, e.g., Kr or

bio-molecules like nucleic acid should be detectable19–21 for

two “þ” encoders if good inertia trapping, as defined in sup-

plementary information Sec. B,30 can be achieved. For the

“�” encoders, the sensitivity would, however, be signifi-

cantly lower.

Finally, to show the fabrication feasibility of the pro-

posed method, we hereby present a possible design for “a”

encoders as presented in Figure 3. The switch can be realized

as either a silicon cantilever valve or based on electrostatic

bending. Both solutions require the etching of a cavity below

the CNT. Bending buckling,15 kinking28 or perhaps other

bucklings16 are thus planned for closing the path of the CNT

since direct clamp flattening of the CNT is not likely. This

TABLE I. A summary of main simulation results.

Encodera F (GHz)b A0(Å)c A1(Å)c A2(Å)c

aþ 157.2 8.80 8.99 …

a� 146.4 5.03 1.65 …

b� 106.5 6.29 1.98 …

b� 103.6 … 6.95 2.35

bþ 103.6 1.36 6.95 …

bþ 101.2 … 1.66 7.35

aType of encoder.
bDriving frequencies. They are some eigenfrequencies of the CNT with or with-

out the particles. Detailed physical meaning is in supplementary material Sec. A.
cA0, A1, and A2 are the amplitudes of vibration of the CNT with 0, 1, and 2

particles at the antinode, respectively. Notice that encoder aþ and a� act

differently with respect to activation.

FIG. 3. A proposed fabrication process for “a” encoders. (a) Placing CNT

on the wafer. (b) Depositing a Si layer to embed the CNT. (c) Opening the

left by polishing/etching the wafer (see Ref. 23). (d) Suspending the CNT by

etching to make the double-clamped beam (see Ref. 21), and to make the

switch. The sealing is implemented due to the requirement of vacuum for

the resonator.

FIG. 2. Simulation information. (a) Initial state of “a” encoders at t¼ 2.5 ps. The white particle to the left is the Kr-atom with remaining part carbon. Blue

atoms are clamped. The red part is under a pressure of 21 GPa and therefore buckles radially in order to shut down the path as a switch. The area between the

blue clamped positions is excited vibrationally. (b) Trapping of a Kr-atom expressed by its position in the z-direction as a function of time, during which an ini-

tially >700 m/s speed of the particle will gradually decrease and the particle will gradually approach the centre of the beam. According to inertia trapping, the

particle will finally stay near the antinode of the CNT resonator, i.e. z¼ 70 Å. (c) the initial configuration for “b” encoders, where the white particle to the left

is the Kr-atom with remaining part carbon. Blue atoms are clamped. The atoms to the right of the blue parts are vibrating. (d) Trapping of a Kr-atom expressed

by its position in the z-direction as a function of time.
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fabrication is readily available in any advanced clean room

facility. After the molecular chain has been encoded, the ver-

ification of the product can possibly be done by observing

the chain with a microscope,29 in order to detect if the mole-

cules have different shapes.

In summary, we show the detection of single gas mole-

cules inside a CNT based on the change in resonance fre-

quency and amplitude of the CNT associated with the inertia

trapping phenomenon. As its direct implication, a method has

been proposed to control molecular sequences inside a CNT.

The method has been demonstrated by encoding a molecular

chain inside a CNT with MD method. A theoretical assess-

ment shows that it is possible that a physical model could be

fabricated in the very near future in a suitable nanofabrication

facility. There are several types of encoders. The analysis

suggests that one should consider the bþ encoder, which

requires lower driving frequencies, as a suitable starting point.

The aþ encoder that requires higher driving frequencies as

well as the fabrication of the switch, due to the double-

clamped nature of the scheme, will perhaps be expensive, but

worthy of our attention, due to the infinite length of the mo-

lecular chain that can thus be encoded. The “�” encoders are,

however, not suitable due to their lower sensitivities.
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