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Efficient Prediction of Array Element Patterns
Using Physics-Based Expansions and a Single

Far-Field Measurement
R. Maaskant, Member, IEEE, M. V. Ivashina, Member, IEEE, S. J. Wijnholds, Member, IEEE,

and K. F. Warnick, Senior Member, IEEE

Abstract—A method is proposed to predict the antenna array
beam through employing a relatively small set of physics-based
basis functions – called Characteristic Basis Function Patterns
(CBFPs) – for modeling the embedded element patterns. The pri-
mary CBFP can be measured or extracted from numerical simu-
lations, while additional (secondary) CBFPs are derived from the
primary one. Furthermore, each numerically generated CBFP,
which is typically simulated/measured for discrete directions
only, can in turn be approximated by analytical basis functions
with fixed expansion coefficients to evaluate the resulting array
pattern at any angle through interpolation. This hierarchical
basis reduces the number of unknown expansion coefficients
significantly. Accordingly, the CBFP expansion coefficients can
be determined through a single far-field measurement of only
a few reference sources in the field of view. This is particularly
important for multibeam array applications where only a limited
number of reference sources are available for predicting the beam
shape. Furthermore, this instantaneous beam calibration is fast,
i.e. potentially capable to speed up the array calibration by one
or two orders of magnitude, which is particularly important if
the antenna radiation characteristics are subject to drifts.

Index Terms—phased array antennas, far-field pattern, beam
calibration.

I. INTRODUCTION

IN many antenna array applications it is vitally important
to accurately measure the far-field beams as a function of

angle, so as to monitor and control the side-lobe level, the
beam stability and beam overlap in multibeam applications,
to resolve the direction-dependent errors of interferometric
imaging arrays, etc. Very fine sampling of the pattern, however,
requires a long measurement time during which the system
performance must be time-invariant to prevent the radiation
characteristics of high-sensitivity antenna systems from drift-
ing. Consequently, practical beam calibration becomes difficult
– if not impossible – if the number of required measurement
samples is large. To reduce the beam calibration time, one
could measure a number of sky reference sources at once,
rather than on a source-by-source basis. More specifically,
we will assume that all N antenna element output ports
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are accessible and that their output voltages are correlated1

to form an N × N output covariance matrix R. Although
this complicates the beamforming network, R contains the
information of all measured sources via a single measurement.
For instance, for r perfectly-polarized incoherent sources in
the sky, R is of rank r, that is, a sum of r rank-one matrices,
one for each source. Indeed, a consecutive measurement of
r output voltage vectors, one for each source, may be a
time-consuming process, particularly if the antenna has to be
physically rotated or the sky reference sources have to move
to a different location within the field of view (FoV).

Once R is measured, one can employ antenna array sig-
nal processing algorithms to retrieve information about the
source(s) [1], which is common practice for interferometric
imaging array antennas for radio astronomy [2], MIMO com-
munication, and radar applications. In this paper, however, our
objective is to use a known set of incoherent sky reference
sources to be able to identify the antenna beam pattern. Note
that, even though the presented methodology is general, if only
cosmic incoherent power point sources are used, the phase
of the pattern cannot be calibrated for, so that we will limit
ourselves to modeling the power pattern only. Research is
ongoing to eliminate this so-called phase ambiguity by using
additional artificial reference sources in the vicinity of the
antenna whose radiated fields are known in both amplitude
and phase.

Since the number of natural reference sources in the an-
tenna’s FoV may be very limited, we will employ a suitable
set of complex-valued vector basis function patterns for in-
terpolating the pattern between distant samples. Furthermore,
since the basis functions should account for the array element
positioning and the intrinsic physics of each radiator, we
propose to employ physics-based basis function patterns (e.g.
simulated ones, which account for the element geometry and
obey Maxwell’s equations) to limit the degrees of freedom of
the pattern to those that are physically relevant. This generally
leads to a much smaller number of basis functions than a more
general mathematical-function-based expansion alone.

It is pointed out that, over the past decade, much attention
has been devoted to reducing the number of basis functions
for the currents in method-of-moment approaches, so that the

1For narrowband signals, the correlation R12 is obtained by first multi-
plying the two instantaneously measured output voltage phasors V1 and V2,
one of which is complex conjugated, after which the relatively slowly-varying
product V1(t)V ∗

2 (t) is estimated (time-averaged) to yield R12 = ⟨V1V ∗
2 ⟩.
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matrix equation can be solved in-core on standard desktop
computers without compromising the solution accuracy much.
These methods have not yet been applied to generate a small
set of basis functions for the far-field patterns. Hence, and
analogous to the Characteristic Basis Function Method for
the current (CBFM, [3], [4]), we expand the practical/actual
unknown embedded element pattern (EEP) of an antenna array
element – thus antenna coupling included – in terms of a few
discretely sampled (simulated) characteristic basis function
patterns (CBFPs). The first (primary) CBFP is chosen to be
the ideal EEP obtained from numerical simulations, which
is supposed to be very close to the actual EEP. To further
minimize the pattern modeling error, additional (secondary)
CBFPs are generated which should be chosen with care as
they are expected to compensate certain types of pattern errors.
For example; if a manufacturing tolerance in the element
geometry is to be expected, it seems natural to simulate the
EEP of a few perturbed element geometries and use these
as higher-order CBFPs. Hence, the methodology is general
but hinges on the way higher-order CBFPs are generated. In
this paper, we consider the specific case that the elements
are expected to be mismatched. Thus, exciting one element
in an array environment causes the output waves to reflect
at the mismatched terminations, which in turn excite the
elements to contribute to the radiation pattern. Hence, to
compensate/model for this pattern change, it seems natural
to use the EEPs of the direct neighboring antenna elements
as secondary CBFPs and append it to the primary CBFP for
the element under consideration. This procedure is repeated
for each antenna array element, so that each antenna element
supports a set of CBFPs.

Furthermore, the number of pattern expansion coefficients is
kept to a minimum by neglecting array truncation effects. As
a result, all EEPs are identical (apart from a phase correction)
and can therefore be expanded into the same set of CBFPs
(apart from a phase correction) with identical expansion co-
efficients. This is accurate if systematic errors in the EEP are
expected for very large regular arrays – dense or sparse –
but also for weakly-coupled sparse arrays, or stronger-coupled
irregular arrays whenever the synthesized EEP is viewed as
an average EEP [5]. Note that the pattern change due to
mismatch effects is minimal in sparse or weakly-coupled
arrays, so that we will consider strongly-coupled antenna
arrays only. The methodology allows to use several CBFP
expansions for several parts of the array (say central and
edge elements) to model differences in EEPs from element to
element. However, this would increase the degrees of freedom
(number of unknown expansion coefficients) and may lead to
non-unique solutions if the number of expansion coefficients
becomes too large [6]. Consequently, the sources should move
to other places in the field of view to perform additional
independent measurements, which is undesired if the beam
calibration measurement has to be performed instantaneously
in order to prevent drifts in the system performance. For one
expansion, only a few CBFP expansion coefficients of a single
(average) array element have to be determined, which requires
an equally low amount of incoherent far-field reference sources
in the antenna’s FoV during the measurement. Accordingly,

the expansion coefficients for the pattern are determined indi-
rectly by least-squares fitting the modeled output covariance
matrix to the measured one, following similar techniques as
in phased array self-calibration [7, Ch. 5].

If desired, and without increasing the number of unknowns,
each so-generated CBFP can be represented analytically by a
series of mathematical basis functions with fixed expansion
coefficients to ease pattern interpolation, such as the Jacobi-
Bessel series [8] if the CBFPs are generated by sources
distributed over a large aperture, or spherical wave functions if
the CBFPs originate from localized source, etc. Expanding a
pattern in terms of analytical basis functions is common prac-
tice and therefore not discussed further. The herein proposed
hierarchical basis therefore expands the numerically-generated
CBFPs into many lower-order ones, as opposed to employing
a series expansion of analytical functions alone.

The generation of basis function patterns (CBFPs) is dis-
cussed in Sec. II. Afterwards, in Sec. III, a model is developed
for the output covariance matrix, both for perfectly-polarized
and unpolarized reference sources. The determination of the
pattern expansion coefficients through a least-squares fitting
procedure is discussed in Sec. IV. In Sec. V, numerical results
are presented for an 11-element array of dipoles and strongly
coupled tapered-slot antennas whose CBFPs are first extracted
from an ideal numerical antenna model, after which these
CBFPs are used to model the actual non-ideal array beam,
which is herein simulated by summing a perturbed set of
embedded element patterns. Finally, in Sec. VI, the solution
stability of the expansion coefficients as a function of the
location and distance between the reference point sources is
assessed through the matrix condition number.

II. MODELING THE FAR-FIELD BEAMS

It is assumed that the actual/measured unknown E-field EEP
of the pth antenna array element, fp(θ, ϕ) = Eθ;p(θ, ϕ)θ̂ +

Eϕ;p(θ, ϕ)ϕ̂, at position rp can be described by the Mp basis
function patterns {gmp}

Mp

m=1, i.e.

fp(θ, ϕ) =

Mp∑
m=1

αmpgmp(θ, ϕ), (1)

where {αmp} are the Mp unknown complex-valued CBFP
expansion coefficients for the pth antenna element. The EEP
fp arises if element p is excited by a current source of unit
amplitude while all other terminals are open-circuited. The
loaded case is discussed in Sec. IV.

As stated in the introduction, if edge-truncation effects
can be neglected, all EEPs are identical, apart from a phase
transformation in accordance to the translated position of the
antenna element (array factor), i.e., the qth element pattern is
derived from the pth reference one as

f q(θ, ϕ) = fp(θ, ϕ)e
−jk(θ,ϕ)·[rq−rp], (2)

where the free-space wave vector is herein defined as
k(θ, ϕ) = − 2π

λ0
[sin(θ) cos(ϕ)x̂ + sin(θ) sin(ϕ)ŷ + cos(θ)ẑ].

Note that [rq − rp] realizes a phase correction relative to
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the element p, instead of to the global origin of the array.
Accordingly, the qth EEP is expanded as

f q(θ, ϕ) = e−jk(θ,ϕ)·[rq−rp]
M∑

m=1

αmgm(θ, ϕ) (3)

for q = 1, . . . , N , where we now have only M CBFP
complex-valued expansion coefficients {αm} that need to be
determined.

The set of basis function patterns {gm} can be determined
on physical grounds. The most dominant basis function g1

(primary CBFP) is the one that is closest to the actual EEP.
For this CBFP one can use the simulated (or measured)
EEP extracted from a large array environment. The EEP
in a real system will only be slightly perturbed from that.
If this perturbation is due to slightly mismatched antennas,
this change in EEP occurs because of the reflected waves
at the antenna terminations that, in turn, excite the nearest
antenna neighbors. Our suggestion is therefore to employ the
neighboring EEPs as secondary CBFPs to be able to correct for
this type of perturbation. As a result, the entire set of CBFPs
for a centralized antenna element becomes

{gm}Mm=1 = {g1, g1e
−jk(θ,ϕ)·d1 , . . . , g1e

−jk(θ,ϕ)·dM } (4)

where the M nearest EEPs are selected, each of which is
derived by applying a phase-pattern correction to g1 in ac-
cordance with the geometric offset dm relative to the element
under consideration. It is pointed out that each CBFP can be
expanded in terms of a set of analytical basis functions with
fixed coefficients to ease pattern interpolation.

In matrix-vector notation, and when dropping the (θ, ϕ)
dependence, Eq. (3) can be written as

f q = e−jk·[rq−rp]Gα, for q = 1, . . . , N, (5)

where the column-augmented matrix G = [g1, g2, · · · , gM ]
is of size 2 × M (2 far-field components), and the M × 1
column vector α = [α1, α2, · · · , αM ]T , where T denotes the
transposition operator. Note that, by assuming G constant for
all array elements, the same relative offset positions of the
neighboring antenna elements is assumed, which may not be
true for edge elements, but this is a consequence of assuming
that all EEPs are identical.

Eq. (5) provides a mathematical model for all EEPs, where
α is the only unknown vector that needs to be determined,
which can be done through performing a single far-field
measurement. More specifically, for a sky containing a number
of relatively strong and incoherent far-field sources in the FoV,
one commonly measures a voltage covariance matrix at the
receiver outputs. Our approach is therefore to least-squares-fit
the N × N modeled covariance matrix to the measured one
in order to find α as discussed below.

III. MODELING THE VOLTAGE COVARIANCE MATRIX

A. Far-Field Point Sources (no noise)

The open-circuited pth output port voltage, which arises due
to a deterministic perfectly-polarized plane-wave field Ei(Ω)
incident from direction Ω, can be computed through antenna
reciprocity as: V oc

p = 1
jωµ0

fp(Ω) · E
i(Ω) [4, p. 27]. Upon

neglecting estimation error, the element Roc
pq of the N × N

output voltage covariance matrix Roc is thus computed as

Roc
pq =

⟨
V oc
p

(
V oc
q

)∗⟩
=

[
fp(Ω) ·E

i(Ω)
] [

f q(Ω) ·E
i(Ω)

]∗
ω2µ2

0
(6)

where ∗ indicates conjugation. Substituting (5) in (6), yields

Roc
pq =

ejk·[rq−rp]

ω2µ2
0

[
(Gα) ·Ei

] [
(Gα) ·Ei

]∗
= αH

[
ejk·[rq−rp]

ω2µ2
0

GHEi
(
Ei

)H

G

]
α

= αHApqα (7)

where the matrix block Apq is of size M ×M and given as

Apq =

r∑
s=1

ejk·[rq−rp]

ω2µ2
0

GH(Ωs)E
i(Ωs)

(
Ei(Ωs)

)H

G(Ωs)

(8)

for r incoherent reference sources observed at the r distinct
directions2 Ω1, . . . ,Ωr. Note that the matrix block Apq can
be readily computed, since the basis functions and reference
sources are supposed to be known. The problem is therefore
to find α in (7) so that Roc

pq is modeled best in a least-squares
sense ∀p, q ∈ {1, . . . , N}.

B. Distributed Far-Field Sources (noise present)

In the more general case of distributed sources, and in the
presence of noise, the statistical expectation E{V oc

p

(
V oc
q

)∗}
of each voltage covariance matrix element must be estimated.
Assuming that the statistical noise sources are (wide-sense)
stationary random processes which exhibit ergodicity, ensem-
ble averages may be replaced by a time average of a suffi-
ciently long sample (realization) of the process to minimize
estimation error. Hence,

E{Roc
pq} =

⟨
V oc
p

(
V oc
q

)∗⟩
= αHApqα (9)

where ⟨·⟩ denotes the time average, and where

Apq =

∫
S∞

∫
ejk·[rq−rp]

ω2µ2
0

GH(Ω)

⟨
Ei(Ω)

(
Ei(Ω)

)H
⟩
G(Ω) dΩ

(10)

has been generalized to the distributed sky source⟨
Ei(Ω)(Ei(Ω))

H
⟩

, which is a matrix of power densities
in steradians. This matrix is called the coherency matrix of
the source, which is assumed to be known. Note that (10)
reduces to (8) in the noiseless case and for point sources (i.e.
Dirac distribution functions for the source directions).

A special case occurs for unpolarized sources [9], [10].
Then, the source coherency matrix becomes diagonal, i.e.,
⟨Ei

θ(E
i
ϕ)

∗⟩ = ⟨Ei
ϕ(E

i
θ)

∗⟩ = 0 and ⟨|Ei
θ|

2⟩ = ⟨|Ei
θ|

2⟩ =

P i(Ω)/2, where P i(Ω) is the spectral power of the incident
field. The unpolarized field can be viewed as radiated by a

2Alternatively, one can also choose to consider two orthogonally-polarized
reference sources in the same direction.
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black body at an equivalent noise temperature Tsky(Ω). Hence,
when using the Rayleigh-Jeans approximation of Planck’s
law, we have that P i(Ω) = 4kBTsky(Ω)Z0f

2/c20, where f is
frequency, c0 is the speed of light in vacuum, and Z0 is the
impedance of free-space. For unpolarized sources, Eq. (10)
therefore reduces to

Apq =
kB

2π2Z0

∫
S∞

∫
Tsky(Ω)G

HGejk·[rq−rp] dΩ, (11)

where the M×M Gramian matrix GHG of the basis function
patterns needs to be determined only once.

It is important to note that GHG = GHUHUG, where U
is a unitary matrix. Hence, applying a unitary transformation
to an unpolarized source field yields an identical matrix block
Apq. This unitary ambiguity [11] may here lead to an am-
biguous way of determining the pattern expansion coefficients.
To resolve this ambiguity, one needs to perform additional
measurements on (artificial) polarized sources. Also, since we
assume all EEPs to be equal, the open circuit voltage response
of the elements will be the same except for the phase shift.
In the correlation process the voltage response of one element
is multiplied by the conjugated voltage response of another
element, which implies that the phase of the common EEP
cancels and hence becomes unidentifiable [7, Ch. 5]. This may
cause an ambiguity in the solutions for the complex-valued
CBFP coefficients {αm}. This ambiguity vanishes for real-
valued coefficients. Our numerical simulations show that the
use of real-valued coefficients already provides percent level
accuracy.

IV. DETERMINATION OF PATTERN EXPANSION
COEFFICIENTS

Following the above approach, the open-circuit voltage
covariance matrix Roc is modeled as

Roc =

αHA11α · · · αHA1Nα
...

. . .
...

αHAN1α · · · αHANNα

 , (12)

which can be least-squares-fit to the measured open-circuited
voltage covariance matrix Roc,m to find α. However, if only the
matched-terminated voltage covariance matrix Rm is available,
one can use the transformation

Roc,m = L−1RmL−H (13)

where L =
√
Z0,ref (Z+ Z0,refI)

−1, and where Z0,ref is the
terminated load impedance, Z is the (modeled or measured)
input impedance matrix of the receiver (or antenna) outputs,
and I is the identity matrix.

The difference matrix Roc,d between the measured and
modeled open-circuit voltage covariance matrix is computed
as

Roc,d = Roc,m − Roc

=

R
oc,m
11 · · · Roc,m

1N
...

. . .
...

Roc,m
N1 · · · Roc,m

NN

−
αHA11α · · · αHA1Nα

...
. . .

...
αHAN1α · · · αHANNα

 ,

(14)

so that α can be found by minimizing the relative error (ratio
of Frobenius norms)

ϵ = argmin
α


√√√√√√

∑
p,q

|Roc,m
pq −αHApqα|2∑
p,q

|Roc,m
pq |2

 . (15)

where the number of incoherent point sources r [cf. Eq. (8)]
must be larger or equal to the number of basis functions M
to obtain a unique solution for α.

V. NUMERICAL RESULTS

To demonstrate the capabilities of the proposed method,
we have considered two examples of relatively small one-
dimensional phased-arrays of 11 antenna elements that have
been modeled using the numerical method described in [12].
The first example is an array of x-oriented half wavelength
dipoles having an inter-element spacing of λ0/2 that are
positioned along the y-axis, and λ0/4 meters above an infinite
ground plane (see Fig. 1). Each dipole has a strip width of
1 mm. The second example represents a more complex and
strongly coupled array of interconnected tapered-slot antennas
(TSAs, see Fig. 2) whose geometrical dimensions are similar
to those described in [13], albeit with an element separation
distance of 0.38λ0. The antennas are illuminated by five x-
polarized reference plane wave fields incident from θ =
{10o, 20o, 30o, 40o, 50o}, which give rise to a rank-five voltage
covariance matrix. In practice, however, the array patterns
(and thus the covariance matrix) will be slightly different
from the ideal (simulated) ones. To emulate this difference,
we have perturbed the simulated patterns by replacing the
open-circuited EEPs by the short-circuited ones. This yields
a covariance matrix which we then attempt to model through
open-circuited CBFPs.
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Fig. 1. Relative least-squares fitting error ϵ of the modeled voltage output
covariance matrix Roc [cf. Eq. (15)] as a function of the number of antenna
outputs used for fitting. Results are for the 11-element dipole array and for
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and the results are shown for various numbers of CBFPs.

Figs. 1 and 2 show the relative least-squares fitting error
[cf. Eq. (15)] of the modeled voltage covariance matrix for
the 11-element dipole and TSA arrays, respectively. For this
purpose, we have used Matlab’s “fminsearch” optimization
function with the initial estimate α = C[1, 0, . . . , 0]T , since
the first basis function is expected to be dominant in modeling
the EEP. The scaling constant C is chosen to approximately
match the gain in the observations. This initial choice also
ensures that the minimization yields a physically meaningful
result. Furthermore, to ease the minimization, we searched
for real-valued expansion coefficients only, which already give
sufficiently accurate results as indicated by Figs. 1 and 2.

The method does work for complex-valued expansion coef-
ficients, however, there exists a phase ambiguity for the case
of incoherent reference sources. For instance, for θ-polarized

reference sources, the 2×2 source coherency matrix Ei(Ei)H

in (8) has only one real-valued element corresponding to the
power of the incident source field. Because we measure the
powers of incoherent source fields, one can calibrate for the
amplitude of the beam pattern only, even though the relative
phase difference between the antenna output signals can be
modeled for each received source field. The phase variation of
each EEP follows from the summed basis function patterns,
however, not in an unambiguous manner if one solves for
complex-valued expansion coefficients for incoherent source
fields. The phase ambiguity disappears by choosing real-
valued expansion coefficients, so that the relative phase dif-
ference between the basis function patterns for each element
is fixed and set to zero. Limiting to real-valued expansion
coefficients means that one can compensate for matching
errors pertaining to real-valued terminations only. An open
question therefore is: how can this phase degeneracy can be
broken? One possible solution that has been proposed is to
measure on a few additional artificial reference sources whose
incident field is given in both amplitude and phase.

To demonstrate the effect of including edge elements in
the error minimization, the fitting is performed for a limited
number of receiver outputs, i.e. for an Nact ×Nact covariance
matrix block. The fitting error is therefore shown as a function
of Nact. Furthermore, this error is shown for various numbers
of CBFPs. It turns out that, as few as 3 CBFPs are needed
to predict the antenna covariance matrix down to an error
of about 2-3%. However, the results also demonstrate that,
if Nact → N , i.e. if edge-element are included in the fitting,
the basic assumption that all EEPs are identical ceases to hold.
This is manifested by the rapid increase in the fitting error for
Nact > 8, particularly for the strongly-coupled TSAs in Fig. 2.
Hence, and as expected, the accuracy increases for larger ar-
rays (smaller edge-truncation effects). A further improvement
may be possible by different optimization algorithms which
specifically solve for the structure in (15) (possibly semi-
analytical), or by more general particle swarm optimizers (see
e.g. [14], [15]).

Fig. 3 confirms the above hypothesis that, as the array
size increases (larger Nel), the fitting error of the output
covariance matrix generally decreases. This can be understood
by realizing that the proposed method is entirely founded
on the assumption that all embedded element patterns are
identical. Indeed, our method essentially implies that the array
beam can be modeled by an array factor multiplied by a
single unknown embedded element pattern which is expanded
in terms of a few relatively slowly varying CBFPs. Note,
however, that the error ϵ does not decrease monotonically as
Nel increases, which may be caused by the mechanism of
field interference across the face of the array which differs for
different array sizes (array truncation effects). Furthermore,
and in accordance with Figs. 1 and 2, one can observe that
the fitting error decreases if more CBFPs are employed.

Figs. 4(a) and (b) show the actual and resulting modeled
power far-field patterns when the array beam is scanned to
θ = 30o. In addition, the relative local gain difference (RLGD)
is shown for both the 11-element dipole and TSA arrays. The
RLGD is computed as the the absolute local gain difference
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Fig. 4. Reference and modeled normalized array power gain patterns for various numbers of employed CBFPs, for (a) the 11-element dipole antenna array
(30o scan in the H-plane); (b) the 11-element tapered slot antenna array (30o scan in the E-plane). The power gain pattern difference is computed relative to
the maximum pattern gain.

relative to the global maximum gain. The modeled beams
pertain to the cases where a single (primary) CBFP and the
larger sets of 3 and 5 CBFPs are employed. It is observed
that by employing only 3 CBFPs, the RLGD reaches a level
which is smaller than -40dB for the dipole array, and -30dB
for the TSA array, over the entire range of observation angles.
Increasing the number of secondary CBFPs does not lead to an
improved accuracy, because we have reached the point beyond
which the EEPs cannot be regarded identical anymore. This
effect is more pronounced for the TSA array, which support
our conclusions on the validity of the proposed method.
Another interesting observation is that the beam-pointing error
has been correctly predicted in Fig. 4. At this point, one can
adjust the weights to compensate for this error (calibration).

VI. SOLUTION STABILITY

It is important to examine the solution stability of the
expansion coefficient vector α as a function of the location
of the sky reference sources for a given set of basis function
patterns (CBFPs). Toward this end, we recall the analogous
situation that, in a method-of-moment approach, the unknown
current is expanded in M known basis functions and the
integral equation is tested M times to yield a matrix equation
which can be solved for the unknown expansion coefficient
vector. The matrix condition number is then a measure for
the solution stability, which depends on the chosen basis and
test functions [4, pp. 41–44]. Note the similarity with the

herein proposed method, where each radiation pattern (EEP)
is expanded in terms of M CBFPs and where the (least-
squares) residual pattern error is measured (tested) in several
different directions using r ≥ M point sources in the sky
(point matching). Also, and as opposed to solving a linear
matrix equation as in conventional MoM approaches, the un-
known expansion coefficient vector α is determined by solving
the non-linear covariance-matrix-fitting problem (15) whose
solution is not known in closed form. For the present stability
analysis, we therefore reduce the non-linear fitting problem (of
complex correlator output powers) to a linear one (of complex
antenna output voltages) and assess the solution stability of
α through the matrix condition number. The penalty for not
fitting at once to a rank r covariance matrix for r incoherent
perfectly-polarized sources (as done above), is that we must
now measure the antenna output voltage vector for each source
at a time. Nonetheless, the qualitative observations/conclusions
for the actual non-linear fitting problem in (15) are believed
to be similar to the linear fitting problem insofar the effect of
the position of sky reference sources on the solution stability
is concerned.

Consider a hypothetical infinite array of radiators placed a
distance λ0/2 apart along the y-axis (similar to Fig. 1), each
having the same cos(θ)-type of EEP. The r incoherent sky
reference sources are x-polarized and located in the ϕ = π/2
plane at θ = {∆θ, 2∆θ, . . . ,M∆θ}. In addition, a total of
M ≤ r CBFPs are employed for the EEP, whose set is found
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through (4), i.e.,

{gx;m}Mm=1 =
{
cos(θ)ejπ(

M+1
2 −m) sin(θ)

}M

m=1
(16)

for M ∈ {3, 5, 7, . . .} and ϕ = π/2. Note that gx = cos(θ)
for M = 1.

In the receiving situation (cf. Sec. III), the pth open-circuited
port voltage is defined as V oc

p = (jωµ0)
−1fp(Ωm) ·Ei(Ωm),

where fp =
∑M

m=1 αmgx;m(θm)x̂ is the modeled transmit
pattern of the pth antenna element in the source direction θm,
and Ei = x̂. Next, the r modeled receive voltages for each
source direction can be least-squares-fit to the measured ones
to obtain the M expansion coefficients. To this end, we solve

Aα = V (17)

where the matrix A is of size r×M whose elements are given
as

Asm = (jωµ0)
−1gx;m(θs) (18)

for s = 1, . . . , r and m = 1, . . . ,M . The vector α is of size
M × 1, and the elements of the measured voltage vector V of
size r × 1 are given as

Vs = Vp(θs) (19)

which are the output voltages of the pth element, measured
consecutively for each source direction. The solution of (17)
is given through the Moore-Penrose pseudoinverse [16]

α = (AHA)−1AHV. (20)

In our example, we choose that M = r and we consider the
condition number κ of A. Generally, for non-square matrices
A, one could consider the ratio of the largest singular value
to the smallest one. The condition number normally improves
for more sources than basis functions, so we limit ourselves
to the case that M = r. The results are shown in Fig. 5 for
1, 3, 5, and 7 CBFPs or sources as a function of the source
separation distance ∆θ.
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Fig. 5. Matrix condition number κ of the matrix A for determining the
expansion coefficient vector α as a function of the number of point sources
and their angular separation distance.

Clearly, for M > 1 CBF or source, and as the sky
reference sources start to cluster (smaller ∆θ), the matrix
condition number increases. Consequently, the stability of the
solution deteriorates which causes the solution accuracy of α
to decrease. As a result, the calibration accuracy may decrease
rapidly depending upon the system noise level. Generally,
the problem is better conditioned for well-separated sources.
Furthermore, the matrix condition number improves for fewer
sources or CBFPs, however; the improved solution stability is
traded against a decreased solution accuracy if fewer CBFPs
are employed (see e.g. Fig. 1). Finally, for the case of M
sources or CBFPs, and for ∆θ = 90/M degrees, one source
is placed exactly in the null of all basis function patterns,
cos(θ) = 0, as a result of which the problem cannot be solved
uniquely. Hence, one should prevent to measure sources near
pattern nulls for improved stability, particularly if the number
of sources is not much larger than the number of CBFPs (i.e.
for weakly overdetermined systems).

VII. CONCLUSIONS AND RECOMMENDATIONS

A novel method has been proposed to model the antenna
array far-field pattern by a superposition of physics-based basis
function patterns, called Characteristic Basis Function Patterns
(CBFPs). The expansion coefficients are determined experi-
mentally through a single far-field measurement. In this paper,
the proposed expansion method is applied to aperture phased
array antennas. If edge-truncation effects are negligible, all
embedded element patterns (EEPs) are identical, apart from a
phase transformation. Accordingly, CBFPs can be employed
for expanding the (average) EEP, while the element positions
are incorporated in an array factor. It has been demonstrated
for an 11-element array of dipoles and arrays of strongly-
coupled tapered slot antennas that only 3 CBFPs are sufficient
to achieve a 2-3% least-squares fitting error of the modeled to
the reference output voltage covariance matrix. Furthermore,
the computed resulting array beam exhibits a local gain error
smaller than -30dB relative to the global gain maximum. The
accuracy increases for arrays with smaller edge-truncation
effects (larger array size, sparser). We concluded from the
stability analysis of the expansion coefficient vector that the
clustering of sky reference sources should be avoided and that
the location of sources should not coincides with the nulls of
the CBFPs, particularly for weakly overdetermined systems.

It has been shown that CBFPs are particularly well suited
to model beams that are radiated by antenna arrays. Future
research directions include: (i) the generation of separate edge-
element CBFPs to further increase the beam modeling accu-
racy; (ii) the development of dedicated optimization solvers
for determining the expansion coefficients; (iii) to apply the
proposed method in resolving the unitary matrix ambiguities
for unpolarized sources, and; (iv) to extend the method to
phased array feeds for reflector antennas, where each CBFP is
generated from an aperture source distribution, which results
from a primary EEP illuminating the reflector. In the latter
case it is natural to represent each CBFP, in turn, by Jacobi
and Fourier-Bessel series expansions with fixed expansion
coefficients to ease the pattern interpolation.
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Finally, we conclude that the proposed technique is poten-
tially capable of speeding up array calibration by one or two
orders of magnitude, which is beneficial for applications such
as astronomical receivers where antenna radiation characteris-
tics are subject to drifts and must be periodically remeasured
to accurately calibrate the instrument.
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