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Abstract: A review of the relationship between the frequency response function of linear system
and the DFT of the input and output signals show that the output DFT is a sum of two terms.
The first term contain the FRF multiplied with the input DFT and the second term capture
the effect when the system is not operating in a periodic fashion. The utilization of these two
terms when performing non-parametric frequency response function estimation has led to the
previously developed Local Polynomial Method. This paper acknowledge that the two terms
can better be approximated by local rational functions with a common denominator polynomial
and a new method called Local Rational Method has been developed. Numerical simulations
illustrate the performance of the new rational method in comparison with the polynomial one.
The results suggest that the new rational method gives better performance when the system
has a resonant behavior.
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1. INTRODUCTION

The frequency response function (FRF) is a key compo-
nent in many domains for system analysis and design.
Given experimental measurements from a system it is
thus highly desirable to derive a high quality estimate of
the FRF without imposing assumptions which will reduce
the flexibility to accurately reproduce the true FRF. In
principle there are two issues which need to be balanced
when estimating a FRF. The complexity of the FRF itself
and the noise in the data record. In parametric modeling
a low order model is fitted to the data where the number
of estimated parameters are significantly fewer than the
length of the data record. If the true system is a member of
the low order model structure a very high quality estimate
of the FRF is possible. In non-parametric modeling the
number of estimated parameters are of the same order as
the length of the data record enabling a very flexible model
but with a much higher sensitivity to noise.

The empirical transfer function estimate (ETFE) is a
very simple non-parametric FRF estimate employing the
Discrete Fourier Transform (DFT). The FRF estimate
at DFT frequency k is formed by dividing the DFT
of the output with the DFT of the input. The leakage
effects inherent in Discrete Fourier Transform (DFT) of
non-periodic signals will yield a systematic error unless
the input is periodic and the measurement record has a
length equal to the period length. To mitigate these effects
techniques from spectral analysis have been employed to
smooth the estimate of the signal level, see e.g. Brillinger
[1981], Ljung [1999], Wellstead [1981]
By also taking into account the linear system relation
it is possible to mitigate the leakage effects by explicit
modeling. This has been utilized for parametric system
identification in the frequency domain Pintelon et al.
[1997], Schoukens et al. [1999], McKelvey [2000, 2002].
Recently the Local Polynomial Method (LPM) has been
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presented which employ polynomials to explicitly model
the leakage effects for non-parametric FRF estimation,
see Schoukens et al. [2009]. In this paper this method is
extended to utilize local rational models to better capture
FRF from resonant systems.
In the next section the relationship between the DFT
of the input and output signals are carefully reviewed
and form a basis for the development of a new method
in Section 3. Numerical simulations are presented and
discussed in Section 4 and conclusions are given in the
final section.

2. FREQUENCY RESPONSE FUNCTION

This section is devoted to an analysis of data from linear
systems using the Discrete Fourier Transform (DFT). In
this section noise effects are not discussed and we return
to this issue when describing the estimation problem.
The output of a general discrete time causal linear system
is given by the relation

y(t) =

∞∑
k=0

g(k)u(t− k) (1)

where u(t) is the input signal and g(k) is the impulse re-
sponse of the system. The discrete time Fourier transform
(DTFT) of a signal x(t) is defined by

X(ω) ,
∞∑

t=−∞
x(t)e−jωt (2)

Here X(ω) is a 2π-periodic complex function. The inverse
transform is given by

x(t) =
1

2π

∫ 2π

0

X(ω)ejωt dω (3)

It is well known that the convolution equation (1) can be
expressed as a multiplication in the Fourier domain

Y (ω) = G(ω)U(ω). (4)
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where the DTFT of the impulse response, G(ω), is called
the frequency response function (FRF) of the linear sys-
tem. Given Y (ω) and U(ω) it is from (4) straight-forward
to derive the FRF. However, in reality only a finite amount
of input-output data is available which makes it impossible
to directly employ (4) to calculate the FRF.

The discrete Fourier transform (DFT) is the practical tool
to perform Fourier analysis based on finite length data
records. The N -point DFT is defined as

X(k) ,
N−1∑
t=0

x(t)e−j2πkt/N (5)

for k = 0, 1, . . . , N − 1 which imply the inverse is given by

x(t) =
1

N

N−1∑
k=0

X(k)ej2πkt/N (6)

t = 0, 1, . . . , N − 1. The DFT is a linear invertible
transformation in the space CN . We use the notational
convention that an integer argument, k, to X(·) refers to
the DFT while a real argument ω refers to the DTFT. The
connection between the DFT and the DTFT can directly
be established for a few cases. First, if the signal x(t) is
identically zero outside the interval 0 ≤ t < N . Then it is
clear by comparing (2) and (5) that

X(k) = X(ωk), where ωk = 2πk/N. (7)
Hence, in this case the DFT are discrete values of the
continuous DTFT.
If x(t) is a periodic signal with period N , the signal
energy is infinite and the classical DTFT does not exist.
However, using distributions the theory can be extended
to also include sinusoidal signals. Hence if x(t) = ejω0t

then X(ω) = 2πδ(ω − ω0) where δ(·) is the Dirac delta
function. The IDFT in (6) is indeed a complex Fourier
series representation of a periodic signal and the DTFT
for a periodic signal is given by

X(ω) =
1

N

N−1∑
k=0

X(k)2πδ(ω − 2πk/N) (8)

Three distinct cases can be identified where different
assumptions are made based on the character of the input
and the linear system.

Case 1: Periodic input. Employing the DTFT represen-
tation (8) of a periodic input with period N and the
relation (4) we obtain the output DTFT as

Y (ω) =
1

N

N−1∑
k=0

G(ω)U(k)2πδ(ω − 2πk/N) (9)

after an inverse DTFT we obtain

y(t) =
1

N

N−1∑
k=0

G(ωk)U(k)ej2πkt/N (10)

where ωk = 2πk/N . Clearly, (10) is a complex Fourier
series representation of a periodic signal. Hence, y(t) is
periodic with period N . Furthermore the DFT of one
period of y(t) is

Y (k) = G(ωk)U(k). (11)

Case 2: Finite length input If the input has a finite
duration of N samples the DTFT-DFT relation is given
by (7). The resulting output though is in general not zero

at t = N and beyond. However, for stable systems the
response beyond t = N − 1 will decay at the same rate
as the impulse response. For systems with a finite impulse
response of length Nh the output has a finite non-zero
duration for at most N+Nh−1 time instances. If we zero-
pad the input and impulse response sequences to a total
length of N +Nh − 1 and then calculate the N +Nh − 1
points DFT we obtain

Y (k) = G(k)U(k) (12)
for k = 0, 1, . . . , N + Nh − 2. If the system has an
infinite impulse response an approximation is obtained if
Nh is selected such that the impulse response has decayed
significantly.

Case 3: Arbitrary input The third case consideres a
common situation where a plant, or system is operating
with an arbitrary input and it is not possible to set the
input to zero for large portions of time nor make the
input periodic. This means that the output will always
be subject not only to the present input sequence but also
past sequences, which are not known to us. A finite linear
model of arbitrary order will be used to analyze this case.
Assume the causal discrete time linear system has a finite
McMillan degree n. Then it can be described by a state
space model of order n, see Kailath [1980]:

x(t+ 1) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
(13)

where x(t) ∈ Rn is the state vector. Now the N -point DFT
of x(t+ 1) is
N−1∑
t=0

x(t+ 1)e−
j2πkt
N = e

j2πk
N (X(k) + x(N)− x(0)) (14)

Employing the N -point DFT on the two equations in the
state space model yields

e
j2πk
N (X(k) + x(N)− x(0)) = AX(k) +BU(k)

Y (k) = CX(k) +DU(k)
(15)

By eliminating the state from the state-space equations
the DFT input-output relation for an arbitrary input is
obtained as

Y (k) = G(ωk)U(k) + T (ωk) (16)
where

G(ωk) = D+C(ejωkI−A)−1B

T (ωk) = C(ejωkI−A)−1(x(0)− x(N))ejωk
(17)

and ωk = 2πk/N . This result shows that the DFT-relation
between the input and output can be expressed as the
summation of the effect of the input, G(ωk)U(k), and a
second term T (ωk). This result was presented in a poly-
nomial context by Pintelon et al. [1996, 1997], Schoukens
et al. [1999] and in a state-space context by McKelvey
[2000]. Investigating (17), it can be noted that G(ωk) is
the frequency function of the state-space model in (13).
Furthermore the extra term T (ωk) has the same dynamics,
i.e. poles, as the state-space model. One interpretation is
that T (ωk) represents the effect of an additional additive
unit input which is non-zero only for t = −1, since the
DTFT of such a signal is ejω. This extra input effect the
state-equation through the "B" vector defined by x(0) −
x(N). The effect of this artificial input is to move the state
at t = 0 to a a value equal to the value which would have
been obtained if the input u(t) would have been a true
N -periodic signal.

The description in (16) of course also applies to the two
previously described cases. For Case 1 with a periodic
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input we directly note that x(0) − x(N) = 0 and hence
T (ωk) ≡ 0. For Case 2 we first assumed the input is finite
and hence u(t) = 0 for n < 0 hence x(0) = 0. Secondly
it was also assumed the output was zero for t ≥ N which
then implies x(N) = 0 and consequently T (ωk) ≡ 0 also
for this case.
Finally, it is also worth pointing out that the theoretical
discussion above has not made any assumption on the size
of the input and output signals and the results are thus
also valid for multivariable systems without any change of
notation.

3. LOCAL FRF MODELING

Estimating the frequency response function of a linear
system based on a data record of samples of the input and
output can be made with in different ways. In the paramet-
ric approach a model class of low order is assigned and the
parameters of the model are determined by a numerical
algorithm based on arguments based on approximation,
statistical or geometrical properties. In a non-parametric
approach the frequency function is estimated locally by
employing various smoothing techniques to reduce noise
and bias effects. An overview of both approaches can be
found in many books e.g. Ljung [1999], Söderström and
Stoica [1989], Pintelon and Schoukens [2001].
In this section we assume the following data and system
model

y(t) =

∞∑
k=0

g(k)u(t− k) + v(t) (18)

where as before g(k) is the impulse response and v(t) is
a zero-mean stochastic process modeling the measurement
and process noise. The input u(t) and measured output
y(t) are assumed known in the interval t = 0, 1, . . . , N −1.
Furthermore Y (k) and U(k) denote the N -point DFT of
the signals respectively and V (k) denote the N -point DFT
of the disturbance v(t). Finally ωk , 2πk/N .
The classical approach to local FRF modeling is known as
the Empirical Transfer Function Estimate (ETFE). In its
simplest form the estimate is given by

ĜETFE(ωk) =
Y (k)

U(k)
. (19)

This estimate has good properties only when the input
is periodic (Case 1) or when input and output are zero
outside the interval (Case 2) and |U(k)| is not too small.
In this case we have

ĜETFE(ωk) =
Y (k)

U(k)
= G(ωk) +

V (k)

U(k)
. (20)

Clearly if |U(k)| is close to zero for some k the FRF
estimate at that frequency will be dominated by the noise
term. In order to improve this problem the estimate can
be smoothed by also employing values at neighboring
frequencies in the estimate, see e.g. Chapter 6.4 in Ljung
[1999]. These techniques has also been used for data
records not collected in circumstances when Case 1 or Case
2 are applicable. For such cases an additional term will
end up in the FRF estimate as illustrated in the previous
section.

ĜETFE(ωk) =
Y (k)

U(k)
= G(ωk) +

T (ωk)

U(k)
+
V (k)

U(k)
(21)

which will add additional errors in the FRF estimate.
However, it is only recently that the structure of the
addition term, the transient term, T (ωk) has been utilized
for non-parametric estimation. Clearly, it is impossible

to uniquely estimate both G(ωk) and T (ωk) based only
on the values Y (k) and U(k) for a single frequency k.
Instead we must add an assumption that the function
values for nearby frequencies are closely related for the
system frequency response functions and the transient
term. The analysis of Case 3 above show that not only the
FRF G(ω) but also the transient frequency function T (ω)
is a rational function of the same dimension as the true
system. Frequency response functions for most systems
are smooth and hence local smoothing can be applied not
only for G(ωk) but also T (ωk). In Schoukens et al. [2009]
a new method known as the Local Polynomial Method
(LPM) was developed. In LPM local polynomial models
are estimated both for the FRF and the transient term si-
multaneously. This technique improve the FRF estimation
quality significantly as compared to the standard ETFE.
In LPM the frequency response and transient term are
modeled locally around the DFT frequency k as

Gk+r =

R∑
s=0

gs(k)r
s

Tk+r =

R∑
s=0

ts(k)r
s

(22)

Let θk be a vector comprising the parameters {gs(k)}Rs=0

and {ts(k)}Rs=0. The parameters of the local model for
DFT frequency k are estimated by minimizing the least-
squares problem

θ̂k , argmin
θk

Nw∑
r=−Nw

|Y (k + r)−Gk+rU(k + r)− Tk+r|2

(23)

over a frequency window symmetric around k and of total
length 2Nw + 1. The LMP frequency response estimate is
then simply

ĜLPM(k) , Ĝk+0 = ĝ0(k). (24)

This optimization is repeated for all frequencies in the
DFT grid.
Returning back to the assumption underlying the success
of the LPM method reveals that the smoothness of the
functions are essential. The polynomial model is suitable
when the local behavior of the functions can be well ap-
proximated by polynomials. If this is not a good approx-
imation other local model structures could lead to better
results. If we consider finite dimensional models with poles
close to the unit circle the frequency response function
have peaks which are not well modeled by a polynomial
function. Instead we propose to use local rational models
both for G and T . Since the analysis revealed that G and
T have the same poles it is natural to incorporate this also
in the local model. We propose the following local rational
method (LRM) where the local model (22) is extended as
follows.

Gk+r =
Nk+r
Dk+r

Tk+r =
Mk+r

Dk+r

(25)

where
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Nk+r =

R∑
s=0

ns(k)r
s

Dk+r = 1 +

R∑
s=1

ds(k)r
s

Mk+r =

R∑
s=0

ms(k)r
s

(26)

The vector θk is defined to be a vector with the local
rational model parameters {ns(k)}Rs=0 and {ds(k)}Rs=0 and
{ms(k)}Rs=1. The local model linking Y (k) with U(k) can
now be expressed as

Y (k + r) =
Nk+r
Dk+r

U(k + r) +
Mk+r

Dk+r
+ V (k + r). (27)

The parameters of the rational local model are not linear
in Gk+r and Tk+r. However, by multiplying the equation
withDk+r all parameters appear linear in the equation and
the parameters can be estimated by solving the equation
in a least-squares sense.

θ̂k = argmin
θk

Nw∑
r=−Nw

|Y (k + r)Dk+r

−Nk+rU(k + r)−Mk+r|2 (28)
The Local Rational Method estimate of the FRF at
frequency k is then defined by

ĜLRM(k) , Ĝk+0 =
N̂k+0

D̂k+0

= n̂0(k) (29)

The total number of parmeters to be estimated is 3R+ 2.
A necessary condition for the LS-problem to have a unique
solution is that the window size Nw is selected such that

2Nw + 1 ≥ 3R+ 2. (30)
For LPM the requirement on the window size is

2Nw + 1 ≥ 2R+ 2. (31)
The N− periodic property of Y (k) and U(k) is utilized
when the index summations (k + r) in (28) are negative,
i.e. Y (−1) = Y (N − 1), Y (−2) = Y (N − 2), etc.

4. SIMULATION RESULTS

In this section results from numerical Monte-Carlo simu-
lations are presented to highlight some properties of the
proposed LRM. Two related example systems will be used
for data generation. Both systems are of order 8 and
are constructed by adding 4 second order resonant sub-
systems. The pole locations of the four sub-systems are
given by

p1 = ρe±j2π0.1, p2 = ρe±j2π0.11

p3 = ρe±j2π0.2, p4 = ρe±j2π0.3
(32)

None of the four subsystems have any zeros and the gain
is adjusted to obtain a unit DC-gain for each subsystem.
The time domain noise signal is a zero-mean, temporally
white normally distributed random variable with standard
deviation σv. The input to the system is selected as a
zero-mean, temporally white normally distributed random
variable with a unit standard deviation. The system is
driven by an input signal of length 2048. The first 1024
samples of the input and output signals are discarded
and the remaining N = 1024 are used for the estimation.
In each Monte-Carlo run a new input and a new noise
realization are generated. Five different experiments E1
to E5, have been performed where the magnitude of the
pole location, ρ have been varied between 0.9 and 0.98

Table 1. RMS magnitude error values for the
five different simulations cases. The squared
magnitude error is averaged over both the
Monte-Carlo simulations and over frequencies.

RMSE ETFE LPM LRM
E1 ρ = 0.9, σv = 0 0.16 3.2E-3 7.9E-6
E2 ρ = 0.9, σv = 0.01 0.12 8.2E-3 12E-3
E3 ρ = 0.98, σv = 0 0.42 0.73 326E-6
E4 ρ = 0.98, σv = 0.01 0.64 0.72 0.012
E5 as E4 but Nw = 8 for LRM 0.33 0.73 5.5E-3

and the noise level has been changed between noise-free
case σv = 0 and σv = 0.01. During all experiments the
local model order has been keept constant at a value of
R = 2. During the first four experiments the window
size has been selected to Nw = 4 for both methods while
in the fifth experiment Nw was increased to 8 for LRM.
To obtain a scalar measure of the performance the root
mean square of the error magnitude has been calculated
where the average is over all frequencies and all Monte-
Carlo runs. The RMSE results are presented in Table 1.
In Figures 1 to 5 the frequency response function G(ω)
is shown as the blue graph, the RMS estimation error
magnitude for ETFE, LPM and LRM are shown as green,
red and cyan graphs respectively.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

10 8

10 6

10 4

10 2

100

102

Normalized frequency [rad/sample]

R
M

S 
Er

ro
r

 

 
G
RMSE ETFE
RMSE LPM
RMSE LRM

Fig. 1. Experiment 1, ρ = 0.9, σv = 0: Blue graph is
the true frequency response function. RMS magni-
tude error for the estimation methods, ETFE, LPM
and LRM are shown as green, red and cyan graphs
respectively.

4.1 Discussion

LRM is a more flexible model structure since it has more
parameters to be estimated. This is clearly evident in both
Experiment 1 and 3 since the RMSE error is uniformly
lower for LRM compared to LPM when the data is noise
free, i.e. the bias error is less for LRM than LPM. When
noise is added as in Experiment 2 we notice that LPM
has lower RMSE for most frequencies. The estimation
variance increases with a more flexible model and here
the total error for LRM is larger. Since the window size
Nw is equal for both methods it is expected that the
noise will influence the LRM more than LPM. However,
when the system has a FRF with sharper peaks the bias
error at the peak locations for LPM are even larger than
the ETFE as clearly seen in Figure 3. Even with noise
added this bias error dominates around the peaks. Far
away from the peaks LPM has the lowest RMSE again due
to fewer estimated parameters. Since the LRM has a low
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Fig. 2. Experiment 2, ρ = 0.9, σv = 0.01: Blue graph
is the true frequency response function. RMS magni-
tude error for the estimation methods, ETFE, LPM
and LRM are shown as green, red and cyan graphs
respectively.
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Fig. 3. Experiment 3, ρ = 0.98, σv = 0: Blue graph is
the true frequency response function. RMS magni-
tude error for the estimation methods, ETFE, LPM
and LRM are shown as green, red and cyan graphs
respectively.

bias error it is possible to improve the situation further
by allowing for a larger estimation window in order to
try to balance the variance and bias error. Experiment 5
illustrates the effect where now LRM has a uniformly lower
RMS magnitude error than the LPM. The results suggest
that usage of the rational method is highly beneficial when
the system has resonant behavior.

5. CONCLUSIONS

A review of the relationship between the FRF of a system
and the DFT of an input and output sequence illustrate
that the output DFT is a sum of two terms. The first
term contain the FRF multiplied with the input DFT and
the second term capture the effect when the system is not
operating in a periodic fashion. The utilization of these
two terms when performing non-parametric estimation has
led to the previously developed Local Polynomial Method.
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Fig. 4. Experiment 4, ρ = 0.98, σv = 0.01: Blue graph
is the true frequency response function. RMS magni-
tude error for the estimation methods, ETFE, LPM
and LRM are shown as green, red and cyan graphs
respectively.
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Fig. 5. Experiment 5, ρ = 0.98, σv = 0.01, Nw = 8 for
LRM and NW = 4 for LPM: Blue graph is the true
frequency response function. RMS magnitude error
for the estimation methods, ETFE, LPM and LRM
are shown as green, red and cyan graphs respectively.

This paper acknowledge that the two terms indeed can
be approximated by rational functions with a common
denominator polynomial and a new method called Lo-
cal Rational Method has been developed. Numerical sim-
ulations illustrate the performance of the new rational
method in comparison with the polynomial one and the
results suggest that the new rational method gives better
performance when the system has a resonant behavior.
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