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Abstract: The particle filter (PF) has emerged as a powerful tool for solving nonlinear and/or
non-Gaussian filtering problems. When some of the states enter the model linearly, this can be
exploited by using particles only for the “nonlinear” states and employing conditional Kalman
filters for the “linear” states; this leads to the Rao-Blackwellised particle filter (RBPF). However,
it is well known that the PF fails when the state of the model contains some static parameter.
This is true also for the RBPF, even if the static states are marginalised analytically by a Kalman
filter. The reason is that the posterior density of the static states is computed conditioned on
the nonlinear particle trajectories, which are bound to degenerate over time. To circumvent
this problem, we propose a method for targeting the posterior parameter density, conditioned
on just the current nonlinear state. This results in an RBPF-like method, capable of recursive
identification of nonlinear dynamical models with affine parameter dependencies.

1. INTRODUCTION

We consider the filtering problem for a certain type of
nonlinear dynamical state-space models, with static state
components. The typical case for when such models arise
is when the state is augmented with some unknown,
static parameter. This is common in e.g. simultaneous
localisation and mapping [Thrun and Leonard, 2008] and
in recursive, Bayesian parameter estimation [Ljung and
Söderström, 1983].

Let {xt}t≥1 be the state process in a state-space model
(SSM). That is, {xt}t≥1 is a discrete-time Markov process
evolving according to a transition density p(xt+1 | xt, θ).
The states are hidden, but observed through the measure-
ments yt, according to the observation density p(yt | xt, θ).
Here, θ is an unknown static parameter with prior density
p(θ). For the purpose of joint estimation of xt and θ, we
augment the state with a static component θt ≡ θ. Hence,
the SSM is described by,

xt+1 ∼ p(xt+1 | xt, θt), (1a)

θt+1 = θt, (1b)

yt ∼ p(yt | xt, θt). (1c)

Let ξt = {xt, θt}. We are interested in finding the joint
filtering density p(ξt | y1:t), i.e. the posterior density of
the state xt and the parameter θt given a sequence of
measurements y1:t , {y1, . . . , yt}. Let p(ξ1) be the joint
prior density of the state and the parameter. The filtering
density is then given by the Bayesian filtering recursions,
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p(ξt | y1:t) ∝ p(yt | ξt)p(ξt | y1:t–1),

p(ξt+1 | y1:t) =

∫
p(ξt+1 | ξt)p(ξt | y1:t) dξt,

for any t ≥ 1, using the convention p(ξ1 | y1:0) = p(ξ1).

Despite the simplicity of these expressions, they are known
to be intractable for basically any model, except linear
Gaussian state-space (LGSS) models and models with
finite state-space. For general, nonlinear and/or non-
Gaussian models, some approximate method for comput-
ing the filtering density is required. One popular approach
is to use sequential Monte Carlo (SMC) methods, com-
monly referred to as particle filters (PFs); see e.g. [Doucet
and Johansen, 2011, Gustafsson, 2010, Cappé et al., 2007].
However, it is well known that the PF will fail when the
state contains some static parameter [Andrieu et al., 2004,
Cappé et al., 2007]. The reason is that the exploration of
the parameter space is restricted to the first time instant.
Once the particles are initiated, their positions are fixed.
At consecutive time points, the particles will be reweighted
and resampled, but not moved to new positions.

In this paper we shall study the filtering problem for a
special case of (1). More precisely, we assume that model
is Gaussian with an affine dependence on the parameters,

xt+1 = f(xt) +A(xt)θt + vt, (2a)

θt+1 = θt, (2b)

yt = h(xt) + C(xt)θt + et, (2c)

where the process noise and measurement noise are white
and Gaussian. Hence, conditioned on the trajectory x1:t,
the θ-process is given by an LGSS model. For each time
t ≥ 0, the model can be seen as an LGSS with state θt,
if we fix the state trajectory x1:t up to that time. Hence,
the conditional filtering density of θt given x1:t is Gaussian
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and available through the Kalman filter (KF). Models with
this property are known as conditionally linear Gaussian
state-space (CLGSS) models. It is worth to note that
the method proposed in subsequent sections is applicable
to any CLGSS model, and can be of interest also when
the “linear state” is non-static, but slowly mixing (see
[Lindsten, 2011] for details). However, we have chosen to
present the method for the special case (2) for clarity.

The conditionally linear Gaussian substructure in a
CLGSS model can be exploited when addressing the filter-
ing problem using SMC methods. This leads to the Rao-
Blackwellised particle filter (RBPF); see Section 2 and [Liu
and Chen, 1998, Doucet et al., 2000, Schön et al., 2005].
Basically, the idea behind the RBPF is to marginalise out
the “linear” states (here θt) analytically (using a KF), and
employ particles only for the “nonlinear” state.

One might think that the RBPF will circumvent the
problems that arise in the PF, when the static parameters
can be marginalised out analytically. However, as we will
see in the coming section, this is not the case, due to the
degeneracy of the RBPF. In this paper, we address this
problem and propose an RBPF-like method, suitable for
handling CLGSS models with static state components.

Remark 1. An alternative approach to enable the appli-
cation of the PF or the RBPF to a model with static
parameters is to add some artificial dynamic evolution to
the static state, and hope that this has negligible effect on
the estimates. The artificial dynamics are often of random
walk type, with a small and possibly decaying (over time)
variance. This technique is sometimes called roughening
or jittering. It is employed by for instance Gordon et al.
[1993], Kitagawa [1998], Liu and West [2001], using the
PF. Similarly, Schön and Gustafsson [2003] use jittering
noise in an RBPF setting.

2. DEGENERACY OF THE RBPF – THE
MOTIVATION FOR A NEW APPROACH

The presence of a conditionally linear Gaussian substruc-
ture can be exploited when addressing the filtering prob-
lem using SMC methods, leading to the RBPF by Doucet
et al. [2000], Schön et al. [2005]. The RBPF utilises the fact
that the joint filtering density can be expressed according
to

p(xt, θt | y1:t) =

∫
p(θt | x1:t, y1:t)p(x1:t | y1:t) dx1:t–1.

(3)

Now, since the model under study is CLGSS, the first
factor of the integrand above is Gaussian and analytically
tractable, using the KF. More precisely, it holds that

p(θt | x1:t, y1:t) = N (θt; θ̄t|t(x1:t), Pt|t(x1:t)), (4)

for some (tractable) sequence of mean and covariance
functions, θ̄t|t and Pt|t, respectively. Note that these are
functions of the state trajectory x1:t. Clearly, they also
depend on the measurement sequence, but we shall not
make that dependence explicit.

The second factor of the integrand in (3), referred to as
the smoothing density, is targeted with an SMC sampler.
This is done by generating a sequence of weighted parti-
cle systems {xi1:t, ωit}Ni=1 for t = 1, 2, . . . , each defining

an empirical point-mass distribution approximating the
smoothing distribution at time t according to

p(dx1:t | y1:t) ≈
N∑
i=1

ωitδxi
1:t

(dx1:t), (5)

where the importance weights {ωit}Ni=1 are normalised to
sum to one.

There exist a vast amount of literature, concerning how
to generate such particle systems; see e.g. [Doucet and
Johansen, 2011, Gustafsson, 2010, Cappé et al., 2007] for
an in-depth treatment. The basic procedure is as follows.
Assume that we have generated a weighted particle system
{xi1:t–1, ωit–1}Ni=1 targeting the smoothing distribution at
time t − 1. We then proceed to time t by proposing new
particles from a (quite arbitrary) proposal kernel xit ∼
rt(xt | xi1:t–1, y1:t) for i = 1, . . . , N . These samples are
appended to the existing particle trajectories, i.e., xi1:t :=
{xi1:t–1, xit}. The particles are then assigned importance
weights according to

ωit ∝ ωit–1
p(yt | xi1:t, y1:t–1)p(xit | xi1:t–1, y1:t–1)

rt(xit | xi1:t–1, y1:t)
, (6)

where the weights are normalised to sum to one. For a
CLGSS model, the densities involved in the expression
(6) are of known form. In particular, for the model (2)
the densities in the numerator are both Gaussian; see
[Schön et al., 2005] for details. Finally, when the sampling
procedure outlined above is iterated over time, it is crucial
to complement it with a resampling stage to avoid weight
depletion [Cappé et al., 2007]. This has the effect of
discarding particles with low weights and duplicating
particles with high weights.

As indicated by (5), the SMC sampler does in fact gener-
ate weighted particle trajectories targeting the smoothing
density p(x1:t | y1:t). However, due to the consecutive
resampling steps, the particle trajectories will suffer from
degeneracy; see e.g. [Cappé et al., 2007]. This means that
the SMC method underlying the RBPF in general only
can provide good approximations of the marginal filtering
density p(xt | y1:t), or a fixed-lag smoothing density with
a short enough lag. Hence, we are not able to provide
any good approximation of the smoothing density, which
in turn means that we do not have all the components
required to approximate the joint filtering density by using
(3).

To get around this, one often relies on the mixing of
the system. More precisely, the linear state at time t is
supposed to be more or less independent of xt−`, if the
lag ` is large enough. If this is the case, we can obtain
an accurate representation of the linear states despite the
degeneracy of the nonlinear particle trajectories. Clearly,
the success of this approach heavily depends on how good
the mixing assumption is. In our case, where the linear
state is static, the dependence of θt | {x1:t, y1:t} on {xs,
s ≤ t−`} can be substantial. That is, if the approximation
of the density p(x1:t−` | y1:t) is poor, using (3) to compute
the joint filtering density can give very poor results. We
illustrate the RBPF degeneracy problem in Example 1.

Example 1. (RBPF for a partially static system). The first
order LGSS system,
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Fig. 1. RBPF and RBMPF (Algorithm 1) estimates of θt
(thick black lines) and the estimated 3σ-confidence
interval (thin grey lines), as function of time t. The
true value is −0.8.

xt+1 = axt + vt, vt ∼ N (0, 0.1),

yt = xt + et, et ∼ N (0, 1),

where a = −0.8, is simulated for T = 10000 time steps.
We wish to estimate the parameter a recursively and
we therefore augment the state with θt ≡ a. The prior
distribution of a is taken as Gaussian with mean θ̄1|0 = 1

and covariance P̄1|0 = 3. A bootstrap RBPF using N =
100 particles is applied to the data and the results is shown
in Figure 1.

The initial distribution of θ1 should have negligible effect
at time T = 10000. Hence, we expect the estimate to
converge to the “true” value −0.8. As can be seen in the
figure, this is not the case. Also, the estimated confidence
interval is way too small, i.e. the covariance of the linear
state is underestimated. The intuitive explanation is that
the RBPF particle trajectories, in some sense, degenerate
faster than the estimate of θt converges. As a comparison,
we also show the estimate provided by the proposed
method, given in the consecutive section 1 . �

3. A NON-DEGENERATE RBPF FOR MODELS
WITH STATIC PARAMETERS

In this paper, we propose an alternative to (3), which is
to factorise the joint filtering density as,

p(xt, θt | y1:t) = p(θt | xt, y1:t)p(xt | y1:t). (7)

The marginal filtering density p(xt | y1:t) can be ap-
proximated using SMC without suffering from degener-
acy. Thus, an approximation of the joint filtering den-
sity based on the factorisation (7), does not rely on the
mixing properties of the system. However, as opposed to
p(θt | x1:t, y1:t) given in (4), the density

p(θt | xt, y1:t), (8)

is in general non-Gaussian and intractable. The problem
we face is thus to find an appropriate way to approximate
(8), while still enjoying the benefits of a Rao-Blackwellised
setting.

Since this approach resembles the RBPF, but is based
on the marginal density p(xt, θt | y1:t) rather than the
density p(x1:t, θt | y1:t) it will be referred to as the Rao-
Blackwellised marginal particle filter (RBMPF). We start

1 We emphasise that this example is provided as an illustration of
the concept, and not an evaluation of the proposed method. We
have only considered one realisation of data, which of course is not
enough to draw any general conclusions. A more rigorous numerical
evaluation is given in Section 4.

the presentation of the RBMPF with a discussion on how
to sample from the marginal filtering density. After this,
we turn to the more central problem of approximating the
conditional filtering density (8).

3.1 Sampling from the marginals

As indicated by (7), we wish to target the marginal
filtering density p(xt | y1:t) with an SMC sampler. In fact,
one way to do this is to perform the sampling exactly
as in the RBPF, and then simply discard the particle
trajectories up to time t − 1. However, here we outline a
different approach, inspired by the marginal particle filter
(MPF) [Klaas et al., 2005].

Assume that we have completed the sampling at time
t − 1. We have thus generated a weighted particle sys-
tem {xjt–1, ω

j
t–1}Nj=1 targeting p(xt–1 | y1:t–1). Similarly to

[Klaas et al., 2005] 2 , we then construct a proposal as a
mixture density

r′t(xt | y1:t) =

N∑
j=1

ωjt–1rt(xt | x
j
t–1, y1:t), (9)

from which we draw a set of new particles {xit}Ni=1. To
compute the importance weights, i.e. the quotient between
the target and the proposal densities, we note that the
target density can be expanded according to,

p(xt | y1:t) =∫
p(yt | xt–1:t, y1:t–1)p(xt | xt–1, y1:t–1)

p(yt | y1:t–1)
p(xt–1 | y1:t–1) dxt–1.

By approximating p(xt–1 | y1:t–1), using the weighted
particles given at time t− 1, we get

p(xt | y1:t) ≈
N∑
j=1

ωjt–1
p(yt | xjt–1, xt, y1:t–1)p(xt | xjt–1, y1:t–1)

p(yt | y1:t–1)
.

Using the above approximation, we can compute the
importance weights according to,

ωit ∝
∑N
j=1 ω

j
t–1p(yt | x

j
t–1, x

i
t, y1:t–1)p(xit | x

j
t–1, y1:t–1)∑N

j=1 ω
j
t–1rt(x

i
t | x

j
t–1, y1:t)

,

(10)

where the weights are normalised to sum to one.

3.2 Gaussian mixture approximation

We now turn to the more central problem in the RBMPF,
namely to find an approximation of the density (8). The
general idea that we will employ is to approximate it as
Gaussian. Hence, let us assume that, for some t ≥ 2,

p(θt–1 | xt–1, y1:t–1) ≈ p̂(θt–1 | xt–1, y1:t–1)

, N
(
θt–1; θ̄t–1|t–1(xt–1), Pt–1|t–1(xt–1)

)
, (11)

for some mean and covariance functions, θ̄t–1|t–1 and
Pt–1|t–1, respectively. At time t = 2, no approximation is
needed, since (11) then coincides with (4).

Just as in the standard RBPF, if we augment the condi-
tioning on the nonlinear state to xt–1:t, and make a time
update and a measurement update of (11), we obtain

2 The difference is that Klaas et al. [2005] targets p(ξt | y1:t) rather
than p(xt | y1:t).
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p̂(θt | xt–1, xt, y1:t) = N
(
θt; θ̃t|t(xt–1:t), P̃t|t(xt–1:t)

)
,

(12)

for some mean and covariance functions, θ̃t|t and P̃t|t,
respectively. The problem is that once we “remove” the
conditioning on xt–1, the Gaussianity is lost. Hence, to
obtain a recursion, i.e. to end up with (11) with time
index t − 1 replaced by t, we need to find a Gaussian
approximation of p(θt | xt, y1:t) based on (12).

To achieve this, we start by noting that the sought density
(8) can be written,

p(θt | xt, y1:t) =

∫
p(θt | xt–1:t, y1:t)p(xt–1 | xt, y1:t) dxt–1

=

∫
p(θt | xt–1:t, y1:t)

p(yt | xt–1:t, y1:t–1)p(xt | xt–1, y1:t–1)

p(xt, yt | y1:t–1)

× p(xt–1 | y1:t–1) dxt–1. (13)

At time t−1, we have acquired a weighted particle system
{xjt–1, ω

j
t–1}Nj=1 targeting the marginal filtering density

p(xt–1 | y1:t–1). By plugging this into (13), conditioned
on xit, we obtain,

p(θt | xit, y1:t) ≈
N∑
j=1

γj,it p(θt | xjt–1, xit, y1:t), (14a)

with,

γj,it ,
ωjt–1p(yt | x

j
t–1, x

i
t, y1:t–1)p(xit | x

j
t–1, y1:t–1)∑N

k=1 ω
k
t–1p(yt | xkt–1, xit, y1:t–1)p(xit | xkt–1, y1:t–1)

.

(14b)

Furthermore, by the Gaussianity assumption (12), we see
that (14) is a Gaussian mixture model (GMM). Recall that
we seek to approximate the left hand side of (14a) with
a single Gaussian. To keep the full GMM representation
is generally not an option, since this would result in a
mixture with a number of components increasing expo-
nentially over time. Hence, we propose to approximate the
GMM with a single Gaussian, by using moment matching.
From (12), the mean and covariance of the GMM (14a)
are given by,

θ̄t|t(x
i
t) =

N∑
j=1

γj,it θ̃j,it|t , (15a)

Pt|t(x
i
t) =

N∑
j=1

γj,it

(
P̃ j,it|t + (θ̃j,it|t − θ̄

i
t|t)(θ̃

j,i
t|t − θ̄

i
t|t)

T
)
,

(15b)

respectively. Here we have used the shorthand notation
θ̃j,it|t instead of θ̃t|t(x

j
t–1, x

i
t), etc. In conclusion, the above

results provide a Gaussian approximation of (8) according

to, p̂(θt | xit, y1:t) , N
(
θt; θ̄t|t(x

i
t), Pt|t(x

i
t)
)
.

3.3 Resulting Algorithm

The procedure outlined in the previous two sections pro-
vides an RBPF-like method targeting the filtering density
using the factorisation (7). To be able to carry out the
steps of this method, we require p(yt | xt–1, xt, y1:t–1) and
p(xt | xt–1, y1:t–1) to be available for evaluation, since these
are used in (10) and in (14b), to compute the particle
weights and the mixing weights, respectively (note the

similarity between the two expressions). Strictly speaking,
these densities are not analytically tractable in the general
case, since we condition on just xt–1:t and not the full
nonlinear state trajectory x1:t (cf. the densities appearing
in the RBPF weight expression (6), which are tractable for
any CLGSS model).

However, this will in fact not be an issue in the RBMPF
setting. The reason is that the conditional filtering density
for the linear state is approximated by a Gaussian at
time t − 1, according to (11). Given this approximation,
conditioning on just xt–1 in the RBMPF, will have the
“same effect” as conditioning on x1:t–1 in the RBPF.
Hence, the densities appearing in (10) and (14b) will
indeed be available for evaluation, under this Gaussianity
approximation (see [Lindsten, 2011] for details). It can be
said that the whole idea with the RBMPF, is to replace
the conditioning on the nonlinear state trajectory, with a
conditioning on the nonlinear state at a single time point.
We summarise the RBMPF method in Algorithm 1.

Algorithm 1 RBMPF (one time step)

1: Sample particles, {xit}Ni=1 from (9).
2: for i = 1 to N do
3: for j = 1 to N do

4: Compute the mean θ̃j,it|t–1 and the covariance P̃ j,it|t
of the density (12), conditioned on {xjt–1, xit},
using RBPF time and measurement updates.

5: Compute the mixture weights γj,it according to
(14b). The involved densities are available from
the RBPF time and measurement updates.

6: end for
7: Compute the mean θ̄it|t and covariance P it|t of the

GMM according to (15).
8: Compute the importance weights {ωit}Ni=1 according

to (10).
9: end for

4. NUMERICAL ILLUSTRATION

In this section we evaluate the RBMPF method for recur-
sive identification on simulated data. We will consider the
first order nonlinear system,

xt+1 = axt + b
xt

1 + x2t
+ c cos(1.2t) + vt, (16a)

yt = dx2t + et, (16b)

with vt ∼ N (0, 0.01) and et ∼ N (0, 0.1). The initial
state of the system is x1 ≡ 0. The true parameters

are given by θ? = (a b c d)
T

= (0.5 25 8 0.05)
T

. This
system has been studied e.g. by Gordon et al. [1993]
and has become something of a benchmark example for
nonlinear filtering. By augmenting the model with the

static parameter state θt ≡ (a b c d)
T

, we obtain a fifth
order mixed linear/nonlinear system, where four of the
states are conditionally linear. We can thus employ the
RBMPF given in Algorithm 1 for recursive parameter
estimation.

The RBMPF is compared with the RBPF, where the latter
uses jittering noise as discussed in Remark 1. As suggested
by Schön and Gustafsson [2003], we apply Gaussian jitter-
ing noise with decaying variance on both states and pa-
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rameters. These artificial noise sources are Gaussian with
time-decaying variances, σ2

x/t and (σ2
θ/t)I4×4, respectively.

Of course, the jittering noises are internal to the RBPF
and are not used when simulating data from the system.

The evaluation was made by a Monte Carlo study over
100 realisations of data y1:T from the system (16), each
consisting of T = 200 measurements. The parame-
ters were modeled as Gaussian random variables, θ1 ∼
N (θ̄1|0,diag(0.5, 25, 8, 0.05)). Here, θ̄1|0 corresponds to
the prior mean of the parameter. This vector was cho-
sen randomly for each Monte Carlo simulation, uniformly
over the intervals ±50 % from the true parameter values.
The RBMPF and four versions of the RBPF were run
in parallel, all using N = 500 particles. The first RBPF
did not use any jittering noise, whereas the remaining
three versions used jittering noise with (σ2

x = σ2
θ = σ2),

σ2 = 0.01, σ2 = 0.1 and σ2 = 1, respectively. Furthermore,
to increase the numerical robustness, a weight threshold
was implemented in the filters. That is, if the sum of
the unnormalised importance weights was below a certain
threshold, here 10−12, the particles were discarded, the
filter “rewinded” a few time step and new particles were
generated.

Table 1 summarises the results from the different filters, in
terms of the Monte Carlo means and standard deviations
for the parameter estimates extracted at the final time
point t = T = 200. Also, the rightmost column of the
table shows the percentage of data realisations, in which
the weight threshold (as mentioned above) was hit at
least once. We conclude that jittering noise with σ2 =
0.1 provides the best tuning for the RBPF, among the
values considered here. The results from this filter and
from the RBMPF, over the 100 realisations of data, are
given in Figure 2. It is clear that the jittering noise in
the RBPF introduces extra variance to the estimates and
also that it slows down the convergence, when compared
to the RBMPF. Furthermore, from Table 1 we see that
the accuracy of the RBPF is highly dependent on the
variance of the jittering. Tuning of this parameter can be
problematic in a real world scenario. The absence of a
jittering noise which needs to be tuned properly, is one of
the main advantages with the RBMPF over the RBPF.

5. DISCUSSION AND FUTURE WORK

One of the main drawbacks with the RBMPF method
is that it has quadratic complexity in the number of
particles, as opposed to the RBPF, which has linear
complexity. In fact, just as the RBPF can be seen as
using N parallel Kalman filters, the RBMPF uses N2

Kalman filters. In this way, by viewing each particle as
a separate model, the RBMPF very much resembles the
2nd order, generalised pseudo-Bayesian (GPB2) multiple
model filter. Guided by this insight, we could also derive
an RBMPF similar to the GPB1 filter (see [Bar-Shalom
et al., 2001] for the two GPB filters). This would reduce
the complexity to grow linearly with N , but at the cost of
coarser approximations, likely to degrade the performance
of the filter. A third approach in this direction, is to
start from the interacting multiple model (IMM) filter by
Blom and Bar-Shalom [1988], which is a popular multiple
model filter, since it has lower complexity than GPB2

(still quadratic, but smaller constants), but is known to
have similar performance [Blom and Bar-Shalom, 1988].
However, it is not clear that the ideas underlying the IMM
filter, can be straightforwardly generalised to the RBMPF.
This issue requires further attention.

Another way to reduce the complexity of the algorithm
is by numerical approximations of the mixture models.
Due to the exponential decay of the Gaussian components,
truncation might aid in making fast, sufficiently accurate,
evaluations of the GMM moments. A related approach,
which could be adapted to the RBMPF, is used by Gray
and Moore [2000, 2003] for fast, nonparametric density
estimation. Also, fast summation methods, similar to the
ideas underlying the fast Gauss transform by Greengard
and Strain [1991], Greengard and Sun [1998], might be
of use. However, as discussed by Boyd [2010], truncation
methods should in general have more to offer than fast
summation methods, for Gaussian components which are
quickly decaying.

Finally, another option is of course to seek alternative
approximations of the conditional filtering density (8), not
based on a GMM as in (14). By doing so, one can possibly
find good approximations, which can be evaluated more
efficiently than the ones presented here.

6. CONCLUSIONS

The application of particle filters (PFs) for estimating
static parameters is a well known and challenging problem.
For models where the parameters enter linearly, they
can be marginalised out analytically, by using conditional
Kalman filters, leading to the Rao-Blackwellised particle
filter (RBPF). However, this will not remedy the problem,
as the degeneracy of the particle trajectories in the RBPF
will result in erroneous parameter estimates. This issue
can be traced back to the expression of the filtering
density (3), which is the basis for the RBPF. When this
form is used to approximate the filtering density, good
accuracy is obtained only when the model under study
is mixing sufficiently fast; this is not the case when the
state is augmented with static parameters. Here, we have
proposed a different factorisation of the filtering density,
according to (7). By using a particle representation of the
marginal filtering distribution for the nonlinear state, a
Gaussian mixture arises as the natural approximation of
the conditional filtering density for the parameters. To
obtain a recursive method, we propose to approximate
this mixture density with a single Gaussian, by using
moment matching. This results in an RBPF-like method,
suitable for recursive identification of nonlinear dynamical
systems with affine parameter dependence. The main
drawback with the proposed method is its computational
complexity, which grows quadratically with the number of
particles. However, we believe that this can be reduced
significantly by using truncation techniques, motivated by
the exponential decay of the Gaussian components.
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