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ABSTRACT

In order for the engineer to correctly predict the operational life of a component it is important to
understand the physical background to fatigue, i.e. the growth of fatigue cracks. In the industry, the
dominating models used for crack propagation analyses use are based on either a pure curve fit
procedure or models that intend to capture the physical phenomenon related to the crack growth. The
present thesis project attempts to make more accurate life predictions of aircraft engine components by
employing a more physical approach to crack propagation modeling. In particular, the thesis deals with
the derivation of five parameters in the NASGRO® equation for crack growth. Four of these parameters
were derived by curve fitting to experimental data and one parameter, the crack closure, was derived by
finite element analysis. This differs from the empirical method, currently in industrial use, determining
life where all five parameters are obtained from curve fitting. Both methods were evaluated and
compared to experimental data for cast Inconel 718 using statistical tools. The crack closure, here
assumed to be induced by plasticity, was determined by numerical simulations of fatigue crack growth
of a semi-circular surface crack in a 3D domain. The objective was to obtain an unequivocal value of
Newman’s plane stress/strain constraint factor, a, which is directly related to the closure level. In this
study experimental data of cast Inconel 718 test specimens at different temperatures, and for three R-
ratios, was utilized. The numerical analysis used a kinematic multi-linear hardening constitutive model
and crack propagation was modeled by releasing all nodes at the crack front after unloading in a one-
node-per-one-cycle debonding scheme. Different values of the plane stress/strain constraint factor were
found for each of the three R-ratios, i.e. an unequivocal value was not obtained and instead an average
was used. The predicted lives were calculated by use of the established parameters in the NASGRO®
equation and were compared to the actual lives observed in the experimental testing. The proposed
method gave similar results as to the empirical pure curve fit method, although the models credibility is
increased due to the better understanding of the crack closure phenomenon. Hence, the model can be
expanded for different geometries with different crack closure levels resulting in more accurate life
predictions. Consequently, the thesis provides a basis for further improvements of the crack
propagation modeling.

Key words: Fatigue crack propagation, Crack closure, NASGRO®, Finite Element Analysis
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Notations

Notation Unit Description

R [-] Stress ratio

T [°C] Temperature

K [MPavmm]  Stress intensity factor, predicting the stress intensity at the crack tip
Kinax [MPavmm]  Maximum stress intensity factor

Kimin [MPavmm]  Minimum stress intensity factor (may also be negative)
AK [MPayvmm]  Stress intensity range

DKo [MPavmm]  Effective stress intensity range

MKy, [MPavmm]  Threshold stress intensity range

K. [MPavmm]  Material fracture toughness

Kop [MPavmm]  Stress intensity factor at crack opening

K, [MPayvmm]  Stress intensity factor at crack closure

f [-] Crack opening function

o [-] Plane stress/strain constraint factor

Omax [MPa] Maximum stress

oy [MPa] Material yield strength

o, [MPa] Material ultimate strength

O [MPa] Material flow stress

& [-] Plastic strain

ro [mm] Plastic zone size

Le [mm] Element length ahead of crack tip in the in propagating direction
[0) [-] Angle in the circumferential direction in the crack plane
t [mm] Specimen thickness

w [mm] Specimen width

H [mm] Specimen height

a [mm] Crack width

c [mm] Crack length

Aa [mm] Crack propagation increment

da/dN [mm/cycle] Crack growth per cycle

C [-] Constant in NASGRO® equation

n [-] Constant in NASGRO® equation

p [-] Constant in NASGRO® equation

q [-] Constant in NASGRO® equation
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1 Introduction

This master’s thesis deals with crack propagation modeling, in particular the derivation of five
parameters in the NASGRO® equation. The crack closure level, which is one of these parameters, is
determined by means of numerical simulations of fatigue crack growth and the other four parameters
are determined by a least square fit to experimental data. Further, the thesis aims to compare this
model to Volvo Aero Corporations (VAC) current method for determining fatigue life. In their method
the closure level is not numerically calculated nor found experimentally, instead it is derived by curve
fitting. Hence, this thesis provides a deeper physical understanding of the crack propagation behavior.
This chapter gives a further introduction to the thesis with focus on presenting relevant background and
methods to solve the problem.

1.1 Background

It is important to understand the fatigue phenomenon in order for the engineer to correctly predict the
operational life for any construction and material. Fatigue crack growth is often described by semi-
empirical equations, many of which contain a large amount of material, geometry and load related
parameters. Some equations describe only specific parts of the crack growth life, such as the Paris law
[1] which is limited to the crack growth in the linear part of the logarithmic relationship between crack
propagation rate and stress intensity range. At VAC the NASGRO® equation is used to describe the entire
crack growth life. In this model the R-ratio correction is modeled by assuming that a crack closure
function is applicable. The crack closure is based on plasticity induced crack closure (PICC), which is
possible to calculate with finite element models (FE-models), and is important to determine since it
influences the crack propagation rate.

It is often difficult and expensive to identify all necessary information about the actual material to
determine all parameters in a complex model such as the ones describing the crack propagation rate.
For this reason the uncertainties in predicted fatigue lives may become very large. The scatter in fatigue
lives can also be seen as due to the fact that fatigue is a local phenomenon. The crack is initiated (or pre-
existing) where there are stress concentrations due to microstructural inhomogeneities, grain structure
influences and/or other influences at micro- or macro scale. This happens even under very controlled
loading conditions and in a very controlled environment with specimens cut from the same sheet.

The dominating material models used for crack propagation analyses are based on either a pure curve fit
procedure or models that intend to capture some physical phenomenon related to them. In the first
case a series of experiments are carried out and models, such as the Walker model, is used and all
parameters are obtained through curve fit. The other type of models has some physical explanation to
limited known phenomenon. Both of the “modeling classes” are likely to give similar accuracy, at least
for average crack propagation rates. The applicability of the models used will be evident when the
material scatter is to be estimated which is useful for probabilistic analyses (i.e in determining safety
factors or when risk of failure is to be calculated). A “poor” model may give an unrealistic material
scatter. In the case of NASGRO® equation the closure level is currently determined at VAC by using a
least square fit procedure. The curve fitting process results in different closure levels for different
temperatures for the same R-ratio, which is unexplained. An alternate way to compute the closure level
is through FE analysis. This approach belongs to the second type of material model discussed above.
However, FE-modeling of the closure level compared to the simplified closure models available in
NASGRO® needs to be evaluated before adopting it as a regular process.

CHALMERS, Applied Mechanics, Master’s Thesis 2012:32 1



It is known that crack propagation rates may differ for different crack geometries (surface flaws vs.
through cracks). One reason for such discrepancy may be different closure levels. A firm understanding
of the available model may allow for expanding the model to different geometries and therefore result
in more accurate predictions. Finally, assuming an erroneous constraint parameter in the simplified
closure model (NASGRO® model) may give unrealistic closure response should load interaction effects
be taken into account.

1.2 Objective

This study uses experimental data of cast Inconel 718 test specimens with a semi-circular surface crack
at different temperatures and for three different R-ratios. The first part of the thesis handles numerical
calculations of crack closure levels for the R-ratios and temperatures for which the crack propagation
test results are derived from. The finite element (FE) calculated closure levels are used to remove the R-
ratio dependence from the experimental tests and thus provide means to evaluate an effective (R-ratio
independent) stress intensity factor.

The goal is to obtain an unequivocal value of the plane stress/strain constraint factor, o, which is directly
related to the closure level. Previous studies have shown that the free surface of the crack resembles
plane stress behavior, and the mid-plane resembles plane strain [2] (see Figure C.2 in Appendix C for
illustration). This also affects the level of closure, and it has been seen that the crack closes earlier at the
surface than at the mid-plane. A 3D analysis is obviously necessary to capture the variation of the crack
closure level at the crack front.

The second part of the thesis deals with statistical modeling of propagation rates. With the closure level
established from FEA the four remaining unknown parameters C, n, p, g in the NASGRO® equation will
be determined by a least square fit to experimental data.

The outcome of the thesis is:

1) FE-model to predict closure levels for surface cracks leading to an unequivocal value of the
parameter, a.

2) Established values of the parameters C, n, p and g based on a least square fit to experimental data.
3) An evaluation of the proposed analysis to the method currently used at VAC for predicting lives.

1.3 Method

To describe crack propagation in the test specimens, already established and accepted fatigue theories
are used. In particular the NASGRO® equation, which is an empirical model describing the entire crack
growth curve from low to high AK, is adopted. For the numerical calculations for establishing the closure
levels, the commercial software ANSYS, which is commonly used at VAC, is employed. Further, MATLAB
and Excel are used for pre- and post-processing of the data. The crack propagation analysis is done in
the NASGRO® software for its simplicity. Further, it is the tool currently used at VAC. Evaluation of the
methods are performed by comparing the actual and predicted lives for a number of cases tested in the
material lab at VAC.

2 CHALMERS, Applied Mechanics, Master’s Thesis 2012:32



1.4 Limitations
Several simplifications are obviously needed in the numerical analysis, which is covered in section 3.
General limitations of work presented in the thesis include:

e Crack closure mechanisms other than plasticity-induced crack closure are not considered.
o The numerical analysis is only used to establish crack closure levels and not to simulate the
actual fatigue crack propagation rate.

CHALMERS, Applied Mechanics, Master’s Thesis 2012:32



2 Theory

This chapter describes the fundamentals of fatigue crack growth and the equations related to this
theory. The phenomenon of crack closure is especially important and is carefully described. One
particular equation of interest is the NASGRO® equation which is explained in detail below including
some remarks on the use of the NASGRO® software.

2.1 Physical description
Experiments of crack propagation during cyclic loading reveals striation on the fracture surface of ductile

materials. The striations represent the increment of growth occurring in one load cycle, which reflect
the operation of slip planes at a crack tip causing plastic blunting and sharpening. During reverse loading
compressive stresses at the crack tip reverse slipping, but the newly created surface cannot be removed
by reconnection of the atomic bonds. At cyclic loading, as the crack propagates, a plastic wake is formed
behind the crack tip and will induce crack closure.

If the plastic zone at the crack tip is sufficiently small compared to other length scales, such that it is
embedded in the elastic singularity zone, the condition at the crack tip is uniquely defined by the current
stress intensity [3]. The typical fatigue crack growth behavior in metals is illustrated Figure 2.1, showing
the logarithmic relationship between crack propagation rate and stress intensity range. The curve

log(da/dN)

v

AKin log(AK) Ke

Figure 2.1: Typical fatigue crack propagation behavior in metals, showing the
logarithmic relationship between crack propagation rate (da/dN) and stress
intensity range (AK).
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consists of three distinct regions. Below a threshold AKy,, da/dN approaches zero and the crack will not
grow. In the intermediate part a linear trend is evident. At high AK-values the crack growth rate
escalates rapidly as the stress intensity factor increases towards a critical value K., the fracture
toughness of the material. The crack growth can, under small scale yielding condition (SSY), be defined
in a general form as:

da
— = f(AK. R 2.1
o = F@K.R) 1)
where:
AK = Kax — Kmin (2.2)
R = Kmin

Kax (2.3)

9 _ rack growth I
N crack growth per cycle (2.4)

A number of equations have been developed similar to this form, most of which are empirical,
describing both short and long cracks. Paris and Erdogan [4] were the first to establish an equation of
such a form. This equation, called Paris law, only describes the linear part of the logarithmic relationship
between crack propagation rate, da/dN, and stress intensity range, AK. Once the crack growth law is
determined the equation can be integrated to compute the operational life of a component, given a
critical crack size and a fracture criterion. The parameters that influence the crack growth rate are the
loading conditions, component geometry, material and its microstructure, temperature and
environment.

2.1.1 Crack closure!

Several mechanisms can cause crack closure such as plasticity induced crack closure (PICC), roughness
induced closure which is influenced by microstructure and oxide induced crack closure which is
associated with an aggressive environment, among others [5]. The roughness induced crack closure is
related to the crack path deflection, and is especially pronounced at relatively low crack growth rates
[6]. PICC is dominant over a broad range of stress intensity or at relatively high crack growth rates [7].
Only PICC will be studied in this thesis.

The PICC level is a complex relation between plastic strains occurring in the vicinity of the crack tip and
the growth of the crack through this plastically deformed material. As the crack propagates it leaves
behind a plastic wake, see Figure 2.2. The residual stretch in the plastic wake brings forth the crack
surface to close at the tip at a certain fraction of the maximum load. Elber was the first to discover crack
closure at tensile loading [3] and suggested that the crack tip deformation and crack propagation rate
are controlled by an effective stress intensity range, AK.¢, defined by:

! Usually most authors do not distinguish between crack closure and crack opening, which may cause some
confusion. In this report the mix of the terms is strived to be avoided, however depending on the context one or
the other term is more suitable to use. See also chapter 3.2.4 for further discussion.
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AKefr = Kmax — Kop (2.5)

Here K, is the stress intensity factor corresponding to the case when the crack surface is completely
opened. Following Elber [7], AK can be replaced by AK,; in equation (2.1) and the crack growth rate can
now be expressed as:

da

W = C(AKeff)n (2.6)

Where C and n are material parameters and are derived empirically.

plastic zone ——

I —

plastic wake

Figure 2.2: The forward plastic zone (plastic zone at maximum loading) at a crack tip and the plastic wake formed after some
growth.

It is especially important to understand how to model the plastic zone in a physically sound, although
simplified, manner. The remote surrounding that encloses the plastic zone can still be modeled as linear-
elastic and linear elastic fracture mechanics (LEFM) is applicable in describing the crack loading if the
plastic zone is sufficiently small compared to other length scales. Such conditions are known as small-
scale yielding (SSY) and are presumed in this thesis; these conditions are illustrated in Figure 2.3. The

1

singularity zone

plastic zone

I

Figure 2.3: Small scale yielding (SSY) conditions.
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stress state in the plastic zone is dependent on the size of the plastic zone, if it is small compared to the
thickness, plane strain conditions exists. If the plastic zone is of the same magnitude as the thickness the
state of stress is mainly plane stress. When examining the crack closure during unloading it can be
observed that the crack closes faster on the free surface as compared to the mid-plane. At the surface
the stress condition can be described by plane stress, because the plastic deformations are less
constrained on the free surface. However towards the center of the component the stress condition is
best described by plane deformation since the plastic deformations are constrained. In between, there
is a transition zone which can neither be described by plane stress nor plane strain. A 3D analysis is
obviously necessary to capture the variation of the crack closure level at the crack front, and crack
closure is therefore indeed a 3D phenomenon.

2.2 Threshold stress intensity range, AKwn

The threshold stress intensity range, AKy,, is the point below which a macroscopic crack does not grow.
The threshold is generally believed to consist of two components [2]: an intrinsic threshold that is a
material property, and extrinsic threshold which is a function of different loading variables, e.g. the R-
ratio. In general, the R-ratio has a strong effect on the behavior at low crack growth rates, and thereby
also the threshold level [1]. It is generally believed that the R-ratio effect on the threshold level is
related to crack closure, however scientists have diverging theories on this matter. The threshold level
may also be very dependent on the environment, e.g. different values can be found for air and vacuum,
even though air is not considered to be a very corrosive environment [2]. In summary, the threshold
stress intensity range is a very complex parameter, which is not yet fully understood. There are also
difficulties when experimentally determining it, which makes crack growth rate predictions especially
hard in this region.

2.3 NASGRO® equation

The NASGRO® equation (2.7) is an extension of equation (2.6) and describes the entire crack growth life,
taking account of both the threshold stress intensity range, AKy, , and the material fracture toughness,
K. [2]. The crack propagation rate is evaluated from the stress intensity factor range, AK, the R-ratio,
threshold levels and fracture toughness. The equation is given by:

(1 BEa)”

where C, n, p and q are empirically derived parameters.

K
The crack opening function is defined as f = Ki. In this thesis it will, as mentioned earlier, be

max

determined numerically by using finite element analysis.

Newman [8] suggested that crack closure is a function of the stress ratio, as well as the stress-state and
the maximum stress level, 0,,.x. He defined the crack opening function, f, as:

o Kop {max(R,AO + AR+ A,R?+ A3R?), R=>0
B Kmax - Ap + AR, —2<R<O0 (2.8)
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where the polynomial coefficients are given by:

The parameter, a, is the plane stress/strain constraint factor an

s
Ay = (0.825 + 0.34a + 0.05a?) [cos (E

(wherel < a <3 and 0<%<1)
0

A, = (0.415 — 0.071a)

Umax
0o

A2=1_A0_A1_A3

A3 =2AO+A1_1

d Omax

Jmax
Op

1

I

(2.9)

(2.10)

(2.11)

(2.12)

is the ratio between maximum

stress and the material flow stress. The material flow stress is usually defined as the average between
the material yielding and ultimate strength [9], and the same definition is used in this thesis:

_O'y+0'u
=T

(2.13)

The plane stress/strain constraint factor, «, is considered as a constant with a value ranging from 1
(plane stress) to 3 (plane strain). Figure 2.4 below shows the crack opening function, f, versus stress

ratio, R, by applying equation (2.8) for different values of (a) a and (b) Imax

1r

0ar

0ar

0rr

06F

Koprmax Fl

0sr

f=

04r

0ar _—

0.z

Kop”ﬂ'nax rl

f=

- o =1
—— 18
— =24

4]

01—
@~ =

_021 0.a 0.6 04 0.z
(b)— -0 - -0. -0

00z
REI

Figure 2.4: Crack opening function, f, versus stress ratio, R, for different values of (a) a (G“""" =0. 3) and (b) % (x=1.8).
0

Co

It is obvious that both the plane stress/strain constraint factor and the maximum stress level have a
significant effect on the crack opening function. In the NASGRO® software the opening function, f, is not

given explicitly. The user instead has to specify o and

Omax

40
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stress/strain constraint factor, a, versus crack opening function, f, for R = 0 and for two different values
of Omax
0o '

Figure 2.5: Plane stress/strain constraint factor, a, versus crack opening function, f, for (a) % = 0.3 and (b) % =0.6.
[ 0

An important observation is that f has a much wider range of values for the low load (0,00 = 0.3), i.e.
an increase in applied load has a constraining effect on f. The numerically established f, the loading
condition giving o.,.x and material property oy is used to solve for a by means of Newman'’s crack
opening function.
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3 Finite element analysis to determine crack closure levels
Crack closure is the contact of crack surfaces during a portion of the load cycle. It is often hard to
determine the crack closure level and one approach is to find it numerically. Experimental techniques
provide only average values for crack closure [10], but with a numerical approach, such as a finite
element (FE) analyses, the 3D effects are easy to find. A 3D analysis will provide an understanding of
how the closure level varies along the crack front of a Kb-specimen and the potential to describe crack
closure, and thereby a, with only one value for such a geometry. In this work the crack closure, of a
surface crack, induced by plasticity, along a 3D crack front has been simulated for different R-ratios and
temperatures. A careful design of the FE-model and the numerical crack propagation scheme is essential
for accurate crack closure results and an investigation of current research has been performed.

A fundamental aspect in the FE analyses is to capture the cyclic elastic-plastic behavior of the material,
this is especially important when unloading occurs. Material test results, produced by VAC, for the cyclic
behavior is used to model hardening. The accuracy for crack propagation analysis of the FE-model is
deeply associated with the mesh; it depends primarily on the type and size of the elements near the
crack tip. An intense mesh refinement is performed around the crack front in order to accurately
compute the strong gradient of the stress field. A coarse mesh far from the crack is necessary to save
computational time. Roychowdhury and Dodds [11, 12] and other researchers suggest a modeling
condition concerning the number of elements in front of the crack tip. A certain number of elements
should be contained within the initial forward and reversed plastic zones. However, larger element size
can be allowed depending on the order of element [10]. The element size at and around the crack tip
also determines the total number of elements needed in the model and smallest crack increment during
growth.

The crack is propagated by releasing all nodes along the crack front by increments of one element (Aa)
per load cycle. The nodes are released by removing the symmetry boundary conditions imposed on
them. The set of nodes is released after unloading and opening and closure levels are calculated for
every load cycle when the first node behind the crack tip loses/comes into contact. The crack is
extended until the steady state is reached where stabilized values of the closure levels are obtained.
Attaining steady state condition determines total number of load cycles simulated. Aspects of
importance for the crack propagation scheme can be summarized:

e Crack tip node release scheme — at what point in the cycle growth occurs (section 3.2.1.)

e Number of load cycles per node release (section 3.2.2).

e  Minimum number of crack growth increments for stabilized crack closure values — the crack
needs to propagate a certain distance in the numerical model to obtain steady state behavior
(section 3.2.3). Steady state behavior means, in this case, that the calculated crack closure level
has stabilized when propagating the crack further (see Figure 3.10).

e The definition of closure. Different definitions have been used by recent researchers and it is
clear that they will give different values [13] (section 3.2.4).

This numerical analysis aims to find closure levels using the same geometry and inputs as in the
experiments already conducted by VAC at their test lab in Trollhdttan. The 3D-geometry is shown in
Figure 3.1 and the actual material modeled is cast Inconel 718.
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3.1 Model

The model of the Kb-specimen considered in this thesis is depicted in Figure 3.1 (a). It consists of a semi-
circular surface crack with an initial size, a; = ¢; = 2 mm with thickness, t = 4.27 mm, width,

W = 10.16 mm and height, H = 31.76 mm. The model is subjected to mode | loading, which makes it
possible to utilize two-fold symmetry allowing modeling of only one-quarter of the specimen, as shown
in Figure 3.1 (b). One symmetry plane is along the crack surface and the other is the center plane
parallel to loading direction extending in the direction of the thickness.

W
(a) (b)
Figure 3.1: (a) Model of the Kb-specimen and (b) model of the Kb-specimen utilizing two-fold symmetry.

The crack is assumed to be semi-circular, i.e. a = ¢, at all times, and thus only one single parameter will
be used to describe the current crack length. This assumption originates from the experimental results
which indeed shows that the crack often grow in a semi-circular manner (see Figure 3.7).

3.1.1 Mesh

The model is built up by 8-node structural solid elements (SOLID185 in ANSYS [14]) with each node
having three degrees of freedom; translations in the nodal x, y and z directions. A typical mesh is shown
in Figure 3.2. Ahead of the crack tip a fine mesh with rectangular elements of equal size in radial
direction is used, shown in Figure 3.2 (c). This allows simultaneous and equidistant propagation of the
crack along the crack front. A typical mesh consists of 55 000 nodes and 70 000 elements.
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Figure 3.2: Typical finite element mesh (scaled): (a) Overall view (b) transition from near crack tip
domain to outer domain (c) close up view at crack front in propagation direction.

In the circumferential direction (¢-direction in Figure C.2) a somewhat large element aspect ratio of
approximately 20 has been used, this is applicable since AK is close to constant in the circumferential
direction due to a balanced geometry (see Appendix C for a comment on this reasoning).

It is important to keep down the number of elements as well as having a smooth transition from the fine
mesh at the crack tip to the coarse mesh. A linear hexahedral element type is used at and around the
crack tip according to the black element in Figure 3.3 (a). A transitional mesh consisting of 4-noded
linear tetrahedral elements has been used according to the red element in Figure 3.3 (a), regardless of
the violation of the C° continuity. Using 4-noded linear tetrahedron will significantly reduce the degrees
of freedom leading to that this meshing issue is a trade-off between loss of accuracy and computational
effort. A test of which method is the most accurate has been performed and it is clear that using
quadratic elements has a very marginal effect of the closure levels (see Appendix C).

(a) (k)

Figure 3.3: Elements in the transitional mesh, (a) non-matching mesh between hexahedral and tetrahedral elements at the
common surface thus violating c° continuity, (b) consistent transition between hexahedral and pyramidal elements that is
recommended by ANSYS for this kind of transitional mesh.

12 CHALMERS, Applied Mechanics, Master’s Thesis 2012:32



3.1.2 Boundary Conditions

The model is subjected to mode | loading. Symmetry conditions are imposed at the symmetry
boundaries according to Figure 3.1 (b). Frictionless contact conditions at the bottom symmetry plane,
are imposed with a rigid target area. Loading of the model occurs through an applied pressure load at
the top boundary. To accurately confine crack growth and contact leading to closure and opening
behavior, the load steps for every cycle need careful designs. It should be refined in areas where the
closure and opening levels are expected to be found since the finite sized load step will resolve the
opening level to the same magnitude as the load increment. See Figure 3.4 (a), (b) and (c) for further
explanation. The figures below illustrate variably sized increments of one load cycle for different R-
ratios. Preliminary studies pointed out a requirement of 40 increments for R =0and R =0.5 and 65
increments for R =-1. Additional substeps are implemented near zero load where contact
nonlinearities require smaller increments.

Figure 3.4: Details of load cycles of (a) R= 0, (b) R=0.5and (c) R = -1. Variable sized increments will provide better
resolution.

3.1.3 Material

Cyclic plastic deformation of the material near the crack tip is difficult to model, since effects such as
strain ratcheting, stress relaxation and cyclic hardening or softening are often apparent. Most common
engineering materials exhibit a linear stress-strain relationship up to a stress level known as the
proportional limit. Beyond this limit, the stress-strain relationship becomes nonlinear. This analysis uses
a multi-linear kinematic hardening constitutive model that can incorporate the Bauschinger effect to
describe the cyclic elastic-plastic response of the material. The particular method of choice is the
Besseling model [14], also called the sublayer or overlay model, which has different yield stresses for
each subvolume that is specified by the same Young’s modulus. The backstress uses a stepwise linear
relation to plastic strain as in Figure 3.5. The material data used in this work is produced by VAC for cast
Inconel 718.

CHALMERS, Applied Mechanics, Master’s Thesis 2012:32 13



Sl __ — —
153
Oy p———-
— 20’1
- "‘202
£

/ -

Figure 3.5: Loading and unloading behavior for a multi-linear kinematic material model in ANSYS.

3.1.4 Mesh requirements for convergence

At the crack tip the stress magnitude is highly intensified and therefore small elements must be placed
both near the crack tip and along the direction of crack propagation. The size of the forward- and the
reversed plastic zones are main parameters to consider and there are many papers on mesh criteria for
2D FE-analysis of fatigue crack growth. However, many researchers have neglected this issue for their 3D
models, which might be due to the computational effort needed. Especially the effect and requirement
of using finite size geometry are lacking investigation. Skinner and Daniewicz [16] did investigate closure
in a finite rectangular plate with a semielliptical surface flaw subjected to remote tension loading. They
concluded that five elements in the forward plastic zone at the deepest point of penetration are
sufficient for mesh independent closure loads. However, they used a simple constitutive material model
that omits the Bauschinger effects which results in that their conclusions are difficult to interpret to the
current analysis. Roychowdhury and Dodds [12] found in their small scale yielding analysis that 10
elements in the forward plastic zone in fact could give an adequate solution. The mesh also needs to
have sufficiently small elements to capture reversed yielding at the crack tip upon unloading [17].
Roychowdhury and Dodds [12] suggest that 2-3 elements should be fully contained within the reversed
plastic zone at the end of the first cycle. They made a detailed study on mesh convergence and suggest
that the mesh needs to satisfy three conditions: (a) the plastic zone on the crack plane at peak load
encloses more than 10 eight-noded brick elements, (b) the reverse plastic zone at zero load encloses at
least two elements, and (c) the half-thickness has at least five elements layers.

For the analysis a multi-linear material model is used and the forward plastic zone size is defined as the
number of elements in the crack plane experiencing equivalent plastic strain magnitudes above 0.002 at
the first peak load. The definition for the reversed plastic zone is the number of elements experiencing a
change of 0.002 equivalent plastic strain between the first peak and minimum load. It is sufficient to
investigate this at the first cycles since these values will remain almost unchanged at later cycles [18].
The mesh seems satisfactory when 2 or more elements are contained in the reversed plastic zone and 5-
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10 elements in the forward plastic zone. In this case, this means that for R = 0 the element length (L.)
needs to be 0.005 mm and for R = 0.5 and R=-1 L, must be equal to 0.0025 mm or smaller. The increased
mesh refinement needed for R = 0.5 is a result of a smaller crack tip reversed plastic zone as discussed in
ref. [19]. The reason for the tougher mesh requirement for R = -1 is due a lower maximum applied load
yielding a smaller plastic zone.

In addition to the requirements on the element size in the radial direction, it is also imperative to have
sufficient number of elements in the circumferential direction. This is especially important near the free
surface, where the results have shown to have a higher variation of the opening levels, which can be
anticipated by inspecting Figure 3.6. The figure shows the plastic zone at the free surface at peak load
and the greatest variation of the size can be seen near the free surface.

(a) (b}

Figure 3.6: Forward plastic zone (a) along the crack front indicating larger forward plastic zone near the free surface and (b)
at the free surface.

3.1.5 Computational code

The global solution is obtained by a built in Newton-Raphson algorithm in ANSYS. On an average 4-6
iterations are needed to reach equilibrium for residual forces and to satisfy contact condition at each
load increment. Each load cycles requires between 40 — 65 load increments, depending on the R-ratio,
with additional substeps close to zero load and unloading for R = -1. The crack extends one element in
each of 20-40 load cycles in order to grow the crack into a steady state condition. A typical analysis takes
about 1 minute per iteration leading to a wall-clock time varying between 3-7 days on a Dell Precision
T7500 machine with 2 Intel® Xeon® X5660 processors.

3.2 Crack propagation scheme

3.2.1 Crack tip node release

The crack propagation in the numerical analysis should ideally reflect the experimental results. It is
observed in the experiments that the crack grows in a semi-circular manner (Figure 3.7). Thus, in the FE-
simulations it is assumed that the crack propagates keeping its semi-circular shape during propagation.
Due to the complexity of modeling the shape evolution, the shape effect is neglected and the crack tip
growth is modeled by advancing the crack through the thickness of the geometry. The crack propagates
uniformly over the crack front by an increment of one element (Aa) in each cycle after releasing all the
nodes at the crack front after the last unloading step. This method does not truly represent a real
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fatigue process since a crack is not expected to propagate in a compressive stress field and the crack
front is not expected to propagate in all directions simultaneously. This procedure is implemented to
overcome convergence issues that often appear by propagating the crack at maximum load. Several
studies have shown that releasing nodes at different stages during the load cycles has an insignificant
effect on the results [3, 20] and this test is therefore omitted in the analysis.

Figure 3.7: Example of the fracture surface of a Kb-specimen.

3.2.2 Load cycles per node release

The analysis uses a 1-node-per-1-cycle debonding scheme, resulting in a growth of 2.5, um/cycle (da =
L), which is significantly higher than actual da/dN. According to VAC’s experiments of cast Inconel 718 a
typical crack growth for R =0 is of a magnitude of 0.04 um/cycle, for R = 0.5 it is 0.02 um/cycle and for R
=-1itis 0.1 um/cycle for measured AK. To mimic the experiments one would either need to increase the
number of load cycles per node release or to reduce the mesh size. Both approaches would lead to
impractically long computational times.

Rodriguez and Antunes [13] discuss the importance of using several load cycles per node release in
order to stabilize the cyclic plastic deformation to achieve reliable results. Apparently 2-cycles-per-node
release should be enough depending on material model used in the analysis. Matos and Nowell [21]
conclude that up to 8 cycles between node releases could be necessary in a 3D analysis. Such a large
number of cycles per node release will drastically increase the computational effort and rule out an
analysis such as this one. Borrego, Antunes, Costa and Ferreira [10] claim that the number of cycles
between node release depend on when the nodes are released in the cycles. If the nodes are released at
peak load, the deformation near the crack tip causes a too large closure stress. If that scheme is applied,
two or more cycles are needed before measuring the closure level. This effect has faded out during
unloading and therefore by using a node release scheme at the last unloading step only 1 cycle is
necessary.

From Figure 3.8 (a) and (b) it is evident that using 2-cycles-per-node release will indeed give different
results compared to 1-cycle-per-node release for R = 0. Along the crack front the closure level is shifted
between 3 — 9% vertically but the shape throughout the crack front is identical. This difference is
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considered to be of acceptable level. In addition, adding one cycle would more than double the analysis
time, which is not feasible. No test of 3 or more cycles-per-node release has been made. Future analysis
should consider a 1-node-per-2 cycle scheme in order to capture closure level accurately.
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Figure 3.8: Comparison of closure level for different number of load cycles per node release. (a) at ¢ = 90° and (b) along the
crack front after 14 node released. The dotted line in (a) signifies onset of an unexpected numerical error in the analysis.
These analyses correspond to: R =0, L, = 0.005 mm, T = 20 °C.

An unexpected feature is noticeable in the same figure; after 14 released nodes are a sudden drop in
closure level for the 1-node-per-2-cycle scheme. This numerical error is most likely due to that a too
loose convergence criterion was used in the global Newton-Raphson algorithm. Rodriguez [13] point out
that this can happen when large deformations exists in the analysis together with other nonlinearities
such as contact conditions. Due to the time constraint of this thesis further investigations of this error
were not conducted.

3.2.3 Crack growth for stabilization

It is desired to have a suitable criterion for minimum crack extension required in order to obtain steady
state values for crack closure and opening. Earlier studies suggest the initial forward plastic zone as a
measure and indicate that to achieve convergence the crack should propagate all through the initially
deformed material [10,12-13, 16, 22]. The reasoning is that a material point right behind the crack tip
needs to accumulate all plastic strain from a complete deformation history, see Figure 3.9 for clarity. A
point located inside the initial forward plastic zone does not accumulate enough plastic strain by the
time the crack has propagated through it. Many authors show different results regarding how far the
crack should propagate in relation to the initial plastic zone. It has been recommended that a
convergence study for every specific analysis should always be performed. The ratio of crack
propagation over the size of the forward plastic zone (Aa/r,) is used as a measure in this analysis.
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Figure 3.9: Plastic zone of (a) before cyclic loading and (b) after a propagating the crack a complete loading history. Note the
location of one material point.

K
The curve in Figure 3.10 demonstrate the development of f = Ki obtained for R = 0 at mid plane

max

(¢ = 90°) by propagating the crack from the initial crack size by increments of one element (Aa). The
normalized opening value, f, first increases and then stabilizes as the effect of the initial plastic wake is
disappearing. Since the crack is only allowed to grow a relatively short distance (compared to other
characteristic dimensions), the longer crack at the end of the growth does not significantly influence the
stress intensity factor. After about 10 increments (10 Aa) the crack closure has stabilized and a steady
state value can be found. Consider the larger plastic zone at the free surface, where the stress gradient
is higher, it is seems obvious that more nodes need to be released to achieve stabilized values there.

0sr
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Figure 3.10: Closure level as a function of increments, R =0, L, = 0.005 mm, T = 20 °C.
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This is also apparent when examining plots similar to Figure 3.10 for those degrees. It would, although,
cause a huge computational effort if stabilized values were strictly to be found around the entire
circumference, however, since the final opening level determined is calculated as a weighted average of
all the opening levels at all degrees at the crack front, it has a minor effect of not fully capturing the
opening level at only a few degrees. Rodriguez [13] proposed an interesting extrapolation method for
this issue which is described in Appendix D.

A convergence study for this numerical analysis was established defining yielding where &, = 0.002.
With this definition of yielding, the forward plastic zone is calculated at peak load and it seems to be
sufficient to let the crack propagate 1-2 times this distance for R = 0, see Table 3.1 for more details. The
great variation of Aa/r,implies that careful consideration should be taken if this measure is to be used
as a criterion. It can be concluded that the ratio is related to the R-ratio. It can also be concluded that
closure levels converge slower at R = 0 and R = -1, where the reversed plastic zone is considerably
smaller.

Table 3.1: Aa/rp for different temperatures, R-ratios and degrees at crack front.

R=0 T=20°C T=650"°C
b=0° >1.8 >1.2
¢ =45° 1.2 1.6
¢ =90° 2.0 2.5
R=0.5

b=0° >0.5 >0.45
¢ =45° 0.1 0.2
¢ =90° 0.3 0.3
R=-1

b=0° >1.1 >1.6
¢ =45° 2.5 3.1
¢ =90° 3.1 5.0

3.2.4 Closure definition

There are many definitions that could be considered when defining crack closure. It is a key issue in a
numerical aspect, because of the large variation of closure results. Most 3D and 2D studies determines
opening levels by monitoring the displacement or the reaction force of each node on the crack surface,
or the stress of each element adjacent to the crack surface behind the crack tip [23]. The present
analysis defines the opening level, K,,, according to [22], i.e. defining opening when the first node
behind the present crack tip loses contact to the symmetry plane. When this occurs the crack will be
fully opened and no point at the crack surface will remain in contact. Likewise, the closure level, K, is
defined when the first node behind the present crack tip first come into contact with the symmetry
plane during unloading. Rodrigues and Antunes [13] conclude that closure levels will increase if nodes
closer to the crack tip are chosen to define closure. In other words, using for example the second node
behind the crack tip will decrease the closure level as is evident by studying Figure 3.11. It also means
that using smaller elements at the crack tip would increase the closer level. They explain this effect by
the occurrence of plastic deformation at the crack tip at the same time that the nodes closest to the
crack tip open. Wu and Ellyin [24] conclude in their 2D study that the above described method is not
accurate enough. They propose that the nodal reaction force at the crack tip should be monitored and
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when it becomes tensile the crack has a potential to propagate, and thus the crack is open. Likewise for
closure, when the reaction force becomes compressive at the crack tip, the crack no longer has a
potential to propagate and hence, the crack is considered as closed. Most researchers, as well as the
current analysis, defines closure based on the first node behind the crack tip [10, 18], however for
further analysis careful consideration should be taken when choosing. The results from a numerically
analysis should ideally be compared to some measured crack closure data as a foundation for finding
best matching definition.

1st node

Znd node

0 I I I I L L L L |
0 10 20 i} 40 S0 B0 70 o 30
¢

Figure 3.11: R =0, L, = 0.005 mm, T = 20 °C. Difference of opening defined by first node behind the crack tip and second node
behind the crack tip. The different definition give a discrepancy of more than 40 % comparing the weighted average of f.

Crack closure and opening levels are normally regarded to differ slightly; closure level is consistently
lower than the opening level. This difference is often neglected since it is usually considered small. This
difference increases when the maximum stresses increases [17]. Opening is commonly regarded to be
more important in a physical sense to the crack propagation mechanism, hence more often used in the
analytical calculations. This FE-simulation shows that for the case studied closure levels are significantly
lower than opening (see Figure 3.12). The reason for this large difference is thought to be that relatively
high maximum stresses over flow stress are applied. It could also be due to effects of the finite size
geometry or that the mesh at the crack front is unable of resolving enough of the reversed plastic zone.

05 05
Clasure
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Opening 045 — Opening
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Figure 3.12: R=0, L, = 0.005 mm, T = 20 °C. Comparison of opening and closure levels, (a) ¢ = 90° and (b) along the crack
front. The numerical analysis resolves closure by magnitude of one load increment.
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3.3 Convergence study

Two criteria to check when analyzing crack closure results are: 1. has the crack propagated into a steady
state region? 2. Does the employed mesh sufficiently fine? In general, the first question has to be
checked upon for every run, however question two is sufficient to investigate only once. Figure 3.13
compares f(¢) curves when releasing 40 and 20 nodes (during 40 and 20 load cycles), respectively, for
R=0and T =20 °C. At the free surface the opening levels are amplified and in this region the largest
difference is approximately 0.035. As was illustrated in Figure 3.15 (a) and (b) the opening level is not
fully stabilized at 20 nodes released for small ¢, which indicates that more crack growth is necessary to
obtain steady state values. Nonetheless, the difference is negligible and it is concluded that a sufficient
number of nodes are released. In addition the weighted average of f along the crack front will reduce
this discrepancy even more. The contribution from the closure levels at the free surface appears
marginal on the weighted average of f.

40 nodes released

20 nodes released

Figure 3.13: Comparison of 40 node released and 20 node released of stabilized opening levels as a function of ¢ for R=0
and T=20°C.

The verification of the mesh has previously been discussed in context of the forward and the reversed
plastic zone. The number of elements in the forward and reversed plastic zone can be found in Table
3.2,

Table 3.2: Elements in forward and reversed plastic zone (T = 20 °C, L, = 0.0025 mm).

$=0° $=45° $=90°
T=20°C Frw. Pz Rev. Pz Frw. Pz Rev. Pz | Frw. Pz. Rev. Pz.
40 17 21 5 13 4
>49 4 36 1 18 1
29 24 13 10 9 8
29 13 13 3 9 3
>49 4 31 1 16 1
25 20 10 8 7 6

CHALMERS, Applied Mechanics, Master’s Thesis 2012:32

21



To show that a mesh of L, = 0.005 mm produces converged results, the opening levels are compared
with a mesh of L, = 0.0025 mm for R = 0.5 at T = 20 °C. The case R = 0.5 is chosen since this ratio has
tougher requirements on the size of forward and reversed plastic zones. The two different meshes have
the same general set-up, although with different element sizes near the crack tip area. Note that 40
nodes are released for the mesh using L, = 0.0025 mm, thus the cracks are grown equally far. From
Figure 3.14 it can be concluded that the mesh indeed satisfy convergence criteria.

3.4 Results

This numerical analysis establishes opening levels for a set of load conditions that corresponds to the
experimental tests performed at VAC. The main objective is to obtain the opening levels, f, for a variety
of temperatures and R-ratios. Finally, to make use of NASGRO® (see NASGRO manual [9]) the opening
values have to be connected to determine an unequivocal value of the parameter a.

L, = 0.0025 [rm]

L, = 0.005 ]

0.5 L I L I L L L I )
o 10 20 a0 40 a0 60 70 60 an

4)
Figure 3.14: Stabilized opening levels as a function of ¢ for L, = 0.0025 mm
(red) and L, = 0.005 mm (blue).

The opening levels have been obtained for two different temperatures, T = 20 °C and 650 °C, and for
three different R-ratios, R = 0,0.5 and -1. Table 3.3 shows applied loads for respective temperature and
R-ratio.

Table 3.3: Applied loads used in the numerical analysis for respective temperature and R-ratio. Only mode | membrane
loading is applied throughout the analysis.

T=20°C T =650 °C
R - ratio | Max stress [Mpa] [Min stress [Mpa] | Max stress [Mpa] | Min stress [Mpa]
0 555 0 400 0
0.5 605 302.5 475 237.5
-1 500 -500 375 -375

Two different meshes have been used in order to contain sufficient number of elements both in the
forward and reversed plastic zone; one with element size, L, = 0.005 mm and one with L, = 0.0025
mm. The definition of the forward plastic zone size is the number of elements in the crack plane
experiencing equivalent plastic strain above 0.002 at the first peak load. The definition for the reversed
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plastic zone is the number of elements experience a change of 0.002 equivalent plastic strain between
the first peak and minimum load. The number of elements in the forward and reversed plastic zone can
be found in Table 3.4 for T=20°C, L, = 0.005 mm, all R-ratios and at three locations at the crack front.
These results are helpful when determining the accuracy of the model and to get an idea of how far the
crack should propagate to achieve steady state behavior. Table 3.1 shows a summary of the ratio Aa/r,
(distance of crack propagation over size of forward plastic zone).

The combination R =0 and T = 20 °C has been used as a template to obtain reliable results. It is assumed
that the mesh with L, = 0.005 mm is sufficiently fine to capture the opening behavior for this case,
since it satisfies recommendations from several researchers [12-13, 17] and provides reliable results.

Table 3.4: Number of elements contained in forward and reversed plastic zone for T = 20 °C, L, = 0.005 mm.

T=20? |

Le = 0.005 0=0° 0=45° 0=90°
Frw.Pz | Rev.Pz | Frw.Pz | Rev.Pz | Frw.Pz. | Rev. Pz.
22 9 10 2 7 2
31 2 18 1 11 0
16 14 6 3 4 3

Figure 3.15 (a), (b), (c) and (d) shows the opening levels for R = 0, T=20°C at ¢ = 0° (free surface),
5.4%, 45° and 90° (mid-plane), respectively, with 20 nodes released. The chosen number of released
nodes is based on the elements in the forward plastic zones. For ¢ = 45° and ¢ = 90° the crack has
propagated into the steady state region and stabilized values are found at around 10 increments, which
corresponds to the number of elements in the forward plastic zone. This agrees well with theory of crack
growth for stabilization described in section 3.2.3. At ¢ = 0°, the steady state region has not yet been
reached and a strict stabilized value cannot be confirmed, as expected by examining the size of the
forward plastic zone. In this region the plastic zone is significantly larger and the crack has not grown far
enough for stabilization to occur.
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Figure 3.15: Opening level for R=0, T = 20 °C and 20 node released at (a) ¢ = 0°(free surface), (b) ¢ = 5.4, (c) ¢ =
45°and (d) ¢ = 90°(mid-plane).

Hou [15] concludes that the plastic wake for a semi-circular crack can be separated in two categories: (1)
wake near the surface, and (2) wake in the interior region. For visualization, study Figure 3.6 which
shows the forward plastic zone as a function of ¢. The near-surface wake is caused by the surface plane
stress and is larger than towards the interior region. This indicates opening occurs later since the shape
of the contact region of the crack surface is similar to the shape of plastic wake. Figure 3.16 depicts
opening level across the crack front from the free surface to mid plane (i.e. (¢p) ) and the variation of f
is accordingly to Hou’s conclusions. The opening level is larger towards the free surface following the
appearance of the plastic wake. Outside this region, which extends typically to 8-10°, the opening level is
quite constant. In order to establish an estimate of the NASGRO® parameter a for the load condition
and temperature a single value of f, based on the variation along the crack front, is necessary. A single
value of f(¢) is determined by a weighted average and, as described in Section 2, a can then found by
solving the set of nonlinear equations (2.8) —(2.12).
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Figure 3.16: Stabilized opening levels, f, as a function of ¢ for R =0, T = 20 °C and 20 node released.

Table 3.5 below summarizes the results from the different cases, for plots of the closure behavior see
Appendix A. The value of g,,,x/00 and the corresponding value of « is also included. It can be seen that
the value of f does not change considerably for the two different temperatures. Even if the material
properties are changed with increasing temperature, the applied loads have been changed accordingly

in the experimental testing. This results in a fairly constant Gg‘a", thus constant values of f are expected.
0

Values of a varies from 1 to 3 leading to that determining an unequivocal value is not straightforward.
The variation of a is discussed in chapter 3.5.1. Simply, an average of these values is chosen as the best
method.

Table 3.5: f and a different temperatures, R-ratios and degrees at crack front.

Temperature (°C) R f Orman/ 0o a Mesh
20 0 0.29 0.52 1.95 Le 05

20 0.5 0.59 0.56 1* Le 025

20 -1 0.09 0.47 3* Le 025

650 0 0.31 0.45 1.93 Le05

650 0.5 0.59 0.54 1* Le 025

650 -1 0.13 0.42 3* Le 025

*An a could not be found within the range of Newman’s crack opening function and the closest value is
used. See Figure 2.5 for clarification.

3.5 Discussion

Comprehensive numerical calculations for 3D crack closure levels lead to a large demand of computer
capacity. This includes problems of both disc space and wall clock time. With these aspects in mind, the
model and the calculation schemes in use need to reflect what realistically can be done within a project,
but they also have to reflect the real life situation of fatigue crack growth. The model for crack closure
should, most importantly, consist of sufficient small elements at the crack front in order to capture the
high stress gradients and deformations. This means that an adequate number of elements must be
contained within the forward and reversed plastic zones. However, there will always be certain
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shortcomings in the model to avoid too large computational demands. These may or may not affect the
results. One has to validate the model.

The shortages that may exist in the model have been investigated and adequate decisions have been
made to obtain a valid solution whilst keeping down the computational time. The main uncertainties,
regarding the model, was the element size at crack tip area, the aspect ratio of the elements, the
element ratio between the fine and the coarse mesh and the non-matching mesh within the transition
part. Verification of the employed solutions have been performed, although separately and independent
from each other. What would be desirable for further validation of the numerical model is to compare
the predicted closure levels with a refined model without the shortcomings described. Will this make a
notable impact of the results even though they each independently don not?

Other fundamental aspects for producing reliable results are node release schemes; number of load
cycles between node releases, where in the cycle crack tip node release happens, closure definitions,
required crack growth for stabilization of the closure levels etcetera. It was concluded that the numbers
of load cycles between node release makes a difference of about 7 % on the weighted average of f. It is
also evident that the difference of closure and opening levels are large as well as that closure definition
is a key issue. Some parts of the crack front do not reach a steady state response and it is not always
possible to produce such stabilized values. This has, as discussed in section 3.3, had negligible effect on
the results. However, the extrapolation method described in Appendix D is recommended for further
use if lack of time will put limits on longer crack propagation.

The material model will also significantly affect the magnitude of closure. Using an isotropic hardening
material model has shown, in a preliminary study, to give notably larger values. There are other options
not evaluated such as the Ellyin—Xia model, proposed by Ellyin and Ozah [23]. This model predicts a
lower crack opening stress profile compared to a kinematic hardening. The model captures the
unloading and reloading path accurately by employing two hyper-surfaces and two types of loading
regimes. It produces, according to the authors, opening stress values with good agreement to
experimental results.

One can easily conclude that the uncertainties in numerically calculated closure levels are many. With
the lack of experimental testing (and knowledge of how this should best be performed) to verify the
results of closure it is a difficult task to be confident on the accuracy of the results. It has been showed
that numerically calculated opening values in general are higher than experimentally measured [16].
Little is known about the uncertainty of the experimental measurements and numerical analysis leading
to difficulties of drawing general conclusions. However, since recommendations of current research are
followed and proper investigations have been performed of known error sources the results should be
considered reliable.

A further uncertainty is the assumption of the crack shape during growth. The crack propagation process
can be seen as a stochastic process and the shape of the crack will not always remain semi-circular.
There is plenty of experimental evidence that the shape of a 3D crack front in fact changes as the crack
grows during cyclic loading [24, 25]. Although, it is a questionable assumption in that context, the
purpose of this numerical study is to establish the closure level and its 3D variation along the crack front
and for that reason the growth process itself might not be important. The importance lies in the crack
geometry when it has reached the steady state region. The shape of the crack is important in other
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contexts since this, along with crack closure and stress state, may influence further development of the
crack shape when growth occur. Many studies have been devoted to this problem with Newman and
Raju as pioneers [26]. As of the authors’ knowledge, few have performed numerical 3D investigations of
crack growth taking account of closure effects; however, this issue is outside the scope of the thesis but
could be an important future step. In the NASGRO® software a crack closure factor is multiplied with AK
to produce more accurate crack growth predictions, which is applied where the crack front intersects a
free surface [9].

One problem that has occurred at a few simulations is a sudden drop in closure; studying Figure 3.8 one
can draw conclusions of apparent errors. It is most likely of numerical characteristic, regarding a too
large value for the global convergence tolerance. Current nonlinearities, such as large deformation and
contacts during opening/closure, needs to be taken into account when deciding on method and
tolerance for finding a global solution. Further investigation of this parameters effect on the results is
desired.

3.5.1 Plane stress/strain constraint factor, a

The main purpose for this numerical analysis was to produce an unequivocal value of the parameter a.
This parameter is described by Newman [8] as a geometrical parameter regarding the stress state in the
specimen. As can be understood by the previous sections a single value could not be found for different
R-ratios. No investigations are conducted to find out if it is the shortcoming of the theoretical model
used to establish such a value or there are other reasons.

Though the variation of the opening function, f, has been concluded along the crack front there are still
difficulties to obtain how the stress/strain parameter, a, varies. This is due to two reasons:

Omax

1) «ais highly dependent on the value of —=

0o
2) different values of a are obtained depending on the R-ratio.

The problem with the first point is how to define the flow stress, o, which is the instantaneous value of
stress required to continue deforming the material. For convenience it is often set to the average of the
yielding and ultimate strengths, which will result in a loss of accuracy per se. It is still a problem of how
to define the yielding and ultimate strengths for a material experiencing non-linear, plastic behavior.

The second point causes an even larger problem when obtaining a. Since « is a geometrical constant it
should not be dependent on the stress ratio. However, from the values of f obtained from the
numerical analysis it is not possible to get a unequivocal value of «, and it is only for R = 0, where a

solution could be found. For R = 0.5 and R = —1 the value have been chosen as 1 and 3, respectively
since these where the closest values to a solution, seen in Appendix B for the specific choice of % Itis
0

obvious that the expected relationship between f and a based on Newman’s crack opening function
(2.8), has not been captured with the results from the numerical analysis. One of the reasons that a
unique relation was not obtained might be to the fact that the specimen considered does not fully fulfill
the LEFM conditions as discussed in section 3.5.2.

3.5.2 Effect of finite size
Linear Elastic Fracture Mechanics (LEFM) theory is valid if the plastic zone at the crack tip is sufficiently
small compared to other length scales, such that it is embedded in the elastic singularity zone. In order
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for the plastic zone to avoid approaching (or reaching) the outer boundaries of the specimen, the
following inequality must be satisfied [1] (see Figure 3.1):

4 (K\?
a,(W—a),HZ—(—)
T 0'0

For fatigue crack growth the thickness is not considered an important factor on the plasticity limitations,
as it is for fracture toughness applications [1]. Also, for cyclic loading the size of the plastic zone is
slightly reduced compared to the case of static loading [1]. Ideally the NASGRO® equation is supposed to
be used strictly under LEFM conditions. For the specimen considered these conditions are slightly
compromised for certain load cases and temperatures. However, the conditions are considered to be
sufficiently close to apply to the NASGRO® equation, though caution should be taken. If large amounts
of plasticity occur during cyclic loading, crack growth rates rapidly increase and exceed expected values.
Also, when the plastic zone is too large, failure might be caused by plastic collapse rather than by
fatigue.
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4 Experimental data

Crack growth is a stochastic process, often showing considerable scatter even in controlled
environments. The scatter increases for longer fatigue lives. The crack is initiated where there are stress
concentrations due to microstructural inhomogeneities, grain structure influences and/or other
influences at micro- or macro scale From this point of view it is important to analyze the scatter in
fatigue crack growth rates in a statistical manner.

As mentioned before, at VAC the NASGRO equation is used to characterize the crack growth behavior of
a material. The parameters of the NASGRO equation, both for mean behavior and to account for the
scatter, are established from the experimental results through a statistical analysis. This chapter explains
the experimental set-up and the procedure for establishing the four constants in the NASGRO equation
C, n, p and g. Note that the fifth parameter, the crack closure function f, has been established through
the FE analyses discussed in detail in the previous chapter.

4.1 Experimental set-up

VAC has performed crack propagation experimental tests of surface crack specimens of cast Inconel 718
at several different temperatures and R-ratios. The experiments produced measured da/dN-data as a
function of AK, along with threshold values for the different temperatures and R-ratios of interest. See
Figure 4.1 for the general set-up.

e The following steps are carried out for the crack propagation testing at VAC:

— Astarter notch is induced with a radius of size of around 0.075-0.5 mm. The notch is
machined by spark erosion.

— The specimen is instrumented by thin measuring wires over the starter notch and at an
area that is not affected by the strain fields around the crack but experience the same
temperature as the crack during the test (Figure 4.2).

— Apre-crack is formed by fatigue load at room temperature for R=0or R =-1. Data is
recorded for determination of the pre-crack size.

— The test is carried out at desired temperature and R-ratio and data is recorded for
further evaluation. The test is cancelled when the crack is about 2.5 mm due to bending
caused by the crack.

— The specimen is ruptured in a controlled fashion to estimate the fracture toughness (K.).
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Figure 4.2: A current of 10 A is put through the specimen and the PD-signal is usually between 0.3-1.2 mV.

In the numerical analysis conducted in this thesis only two different temperatures, 20 °C and 650 °C,
with corresponding R-ratios have been considered. The experimental tests conducted at VAC were
performed with slightly different maximum loads for each temperature, even for the same R-ratio, while
the numerically obtained values of fare calculated for only one load case for each R-ratio and

temperature.
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Table 4.1 shows inputs for the experimental tests as well as for the numerical analysis. For a complete
curve fit, fis required for all different tests, hence certain simplifications are needed. By use of
Newman'’s crack opening function equation (2.8), f for the other load cases, are found as:

1. Solve for a from the calculated closure level and corresponding load case, considered in the
numerical analysis.

2. Keep a constant for the other load cases, not considered in the numerical analysis, and change
the value of 6,,x/0paccordingly to the desired magnitude of f.

Table 4.1: Inputs for experimental tests at VAC

Experimental testing Numerical analysis
T (°C) |R-ratio| Max stress (MPa) [Nr. of tests| Max stress (MPa) |Nr. of tests
20 0 555, 450 450 3 555 1
20 0.5 605, 510, 510, 510 4 605 1
20 -1 500, 510, 475, 510 4 500 1
650 |0 400, 375, 375, 375 4 400 1
650 |0.5 475, 400, 400, 425 4 475 1
650 |-1 375, 375, 375,375 4 375 1

The threshold value for crack growth is a very important parameter, as described in section 2.2, and it is
determined experimentally at VAC by the following steps:

A pre-crack is induced at room temperature at R=0or R =-1.

The specimen is subjected to a few thousand compressive load cycles at the test
temperature. The compressive load should be at least as large, in relation to the yield
strength, as the maximum tensile stress during the creation of the pre-crack. This is to
eliminate the influence of a plastic zone with compressive stresses in front of the crack

tip.

The specimen is subjected to cyclic loading at a AK slightly smaller than the expected
threshold value. If no crack growth is detected after 1000 000 cycles the A is increased
by 0.2 MPam®® until crack growth is detected within 1000 000 cycles.

When crack growth is detected the test is stopped and the specimen is ruptured under
controlled conditions to enable accurate measurement of the crack size. Data evaluation
is then made using the normal procedures. The threshold value for crack growth is
defined as the AK giving a crack propagation rate of 10™°m/cycle.

This procedure is not performed as described in ASTM. Instead ASTM suggests a AK decreasing method
instead. However, this will result in unconservative estimates of the threshold value due to crack tip

shielding.
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4.2 Least mean square fit to determine C, n, p and q

A curve fit process, based on the experimentally obtained values of da/dN versus AK, is needed to obtain
the parameters C, n, p and g. Values of the parameters AKy, and K, have been obtained by VAC for cast
Inconel 718. The method chosen uses a least-squares minimization of error in the log-log domain. By
taking the logarithm of equation (2.7), a linear relation with respect to the predictors can be established
(for more details see [27]):

g7y =log(C) + nlog ﬁAK + plog 1_E

K,
—ql (1 —max ) 2.14
qlog X, (2.14)

Written on a general form:

Y =B + B1 Xy + B2Xz + P3X3

(2.15)
By identification:
Bo = log(C), Br=mn, B2 =D, Bs =q, (2.16)
and:
Yy =1 (da) X, =1 (1_fAK)
~ %8 \an )’ 1= 081 R M)
X, =1 (1 Kth) Xs=1 (1 Kma") (247
2 = log AK)’ 3 = log K, )’

Applying equation (2.14) for each experimental data point and writing on matrix form gives:

y =X (2.18)

where:

(2.19)
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X =[1Xy; X0 Xs] (2.20)

B = [Bo B1 B2 BsI" (2.21)

andi =1, ...,n where n is the number of data points. The coefficients are estimated by least squares,
thus minimizing the sum of squares of the residuals which is equivalent to solve the equations:

T. — yvT
X'y =X XB (2.22)

If the inverse of (XT X) exists then the coefficients are obtained by:

B=&"X)"'XTy (2.23)

With the above explained procedure the parameters C, n, p and g can be obtained. However, an option

is to move the terms p In ( — %) and —qIn (1 — % ) to the left hand side of equation (2.1) using

fixed, standard values of p and g, and making the least square fit with respect to only Cand n. This is a
more common procedure since experimental data is lacking in the two extreme regions, corresponding
to parameters p and g. Both procedures are applied and compared in the following sections to check
which gives the best prediction of crack propagation rates.

4.3 Results

Figure 4.3 shows the da/dN-data versus (a) AK and (b) AK¢ = EAK for T =20 °C. As can be seen, the
da/dN-data merges quite well if plotted against AK., indicating the validity of Elber’s assumption and
the numerically obtained f.
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Figure 4.3: Experimental data, T = 20 °C (a) da/dN versus AK, (b) da/dN versus AK..
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Figure 4.4 shows the corresponding plots for T = 650 °C. Also here the data merges quite well, however
not as good as for T = 20 °C.
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Figure 4.4: Experimental data, T = 650 °C (a) da/dN versus AK, (b) da/dN versus AK..

Figure 4.5 shows a generated curve fit with AK.¢ ranging from AKy, to K. = K. for (a) when letting p and
g be free and (b) locking them as p = 0.25 and g = 0.75. The two procedures clearly give different
estimation of the crack propagation rates. However, in both cases it is evident that the experimental
data mainly covers the Region Il of the crack propagation rate curve.
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Figure 4.5: Generated curve fit with AK ¢ ranging from AKj, to K., = K, for (a) when letting p and g be free and (b) setting p =
0.25 and g = 0.75.

The obtained values of the fitted parameters for the respective temperature are shown in Table 4.2 for
the two proposed methods as well as for VAC's current method (where all five parameters are obtained
through curve fitting). The parameters C and n have been scaled. Note that, there are other parameters
with differing values between the methods. A clear difference of C and n can be seen for the two
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proposed methods. The acquainted reader of fracture mechanics will, by studying the numbers when
letting p and g be free, observe unusually high values. Recall that p and g control the shape of the
asymptote in the threshold and critical crack growth region, respectively. Thus, the two methods show
very different behavior for the threshold crack growth region as is evident in Figure 4.5.

Table 4.2: The fitted parameters C, n, p and g for the two temperatures considered, and both
proposed methods as well as VAC’s current method. Top: p and q free, middle: p and g locked,
bottom: VAC'’s current method. The parameters C and n have been scaled so that n = 1.

T=20°C T =650°C
C 3,37E-08 6,13E-07
n 1 1
p 2,9042 2,7386
q 1,6647 1,119

T=20°C T =650°C
C 1,07€-11 1,38E-10
n 1 1
p 0,25 0,25
q 0,75 0,75

T=20°C T =650 °C
C 9,17E-14 5,94E-13
n 1 1
p 0,25 0,25
q 0,75 0,75

4.4 Discussion

An important question arises regarding how reasonable it is to obtain p and g from a least square fit,
when there is a severe lack of data in these regions, as illustrated in Figure 4.5. By inspecting Figure 4.5,
one can argue that the curve better follows the experimental data when letting p and g be free.
However, it is hard to determine which fit is the most accurate with simple visual inspection of these
particular plots. Further experimental data is obviously needed in the threshold crack growth region to
determine the accuracy of the fit in that region. When conducting tests for determining threshold levels,
the crack should be allowed to grow longer, i.e. conduct a complete crack propagation test, in order to
obtain more data in the low stress intensity regions. Additional data should also be obtained in the high
stress intensity regions to be able to determine the accuracy of g.
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For T = 650 °C the da/dN data for different R-ratios did not merge as well as for T = 20 °C when plotting
against AK. One reason may be that other closure mechanisms than PICC have increased influence on
the crack closure level at this temperature. However, the reason for the unsatisfying curve fit at this

temperature is uncertain and should be investigated further.
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5 Evaluation of the proposed method

In this section a statistical evaluation of the life predictions are carried out for the two proposed
methods (p and g free and locked respectively) and are compared to the current method used at VAC. A
discussion of what is needed in the future to more accurately describe the crack propagation behavior is
also included.

5.1 Crack propagation analysis

The crack propagation analysis is conducted with the NASGRO® software using the here established
parameters C, n, p and g as well as the estimated values of a and 0y,,4/0,- Further, the fracture
toughness, K., and the threshold stress intensity range, AKy,, is supplied. The threshold level as R
approaches 1, AKj, is assigned in the NASGRO® software and is given by [9]:

AK, = AKy(1 — Ag)(1+Cih)

where AKj is the threshold value at R = 0 and A, is given by equation (2.9). The constant Cy, can be used
to model the threshold value for different degrees of crack closure. In this thesis it will be set to 0
leading to a more conservative prediction.

One way to determine the validity of the model is to compare the predicted life (P) with the actual life
(A) observed in the experimental testing. For each case the actual life over the predicted life (A/P) is
calculated. An A/P-value of around 1 is obviously desirable, a value less than one implies a non-
conservative estimate of life and a value above one implies a conservative estimate of life. Comparing
the predicted life using VAC’s current method will reveal if the more thorough analysis, used in the
proposed method, will increase the accuracy of the life predictions.

5.2 Results

To illustrate the accuracy of the predicted lives, Minitab probability plots are used. They show the
probability distribution of acquired A/P-values. If the method used for life predictions is good, it should
have an A/P of 1 at 50% probability. The distribution should also deviate from A/P =1 as little as
possible, i.e. have a vertical shape. Figure 5.1 shows the Minitab probability plot for the proposed
method (p and g free) versus the current method used at VAC. Figure 5.2 shows the proposed method
(p and g free) versus the proposed method (p and g locked).
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Figure 5.1: Minitab probability plot; the proposed method (p and g free) (black) versus current method used VAC (red).
(Vertical axis: probability, Horizontal axis: A/P-value).
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5.3 Discussion

For T = 20 °C both proposed methods as well as the current method used at VAC show good life
predictions. However for T = 650 °C all three methods show somewhat less accurate predictions.
However, the proposed method (p and g locked) and the current method used have an A/P-value of 1 at
50% probability which it should have. This is not the case for the proposed method (p and g free). The
proposed method shows similar results as the current method used at VAC, but with slightly lower
scatter.

A few reasons for the unsatisfactory results are discussed below. The pre-crack length of the test
specimens varies between 0.5 and 1 mm and is grown to between 2 and 3 mm. It is important to
investigate if the assumed LEFM conditions are valid for these sizes. There are two limitations of a short
crack modeling: 1) microstructurally and mechanically small cracks cannot be described by linear elastic
fracture mechanics (LEFM) and 2) the threshold behavior may be very different for microstructurally
small cracks as compared to long cracks from which material data are obtained [28]. Continuum theory
can generally be applied on cracks with length greater than 10 grain sizes [28] and Inconel 718 has a
grain size of 5—40 um [29], leading to that the required crack size would be 50 — 400 um. Therefore, all
cracks can be considered not being micro structurally small. However, the crack can initially be
considered as mechanically short (100 um to 1 mm) and during its growth the crack can be considered
as mechanically long [2]. Continuum theory can be applied on mechanically short crack, but exhibit
different mechanical behavior than longer cracks. Typically, short cracks grow faster than long cracks at
the same AK-value, especially near the threshold level [2]. This can have a large effect on the errors in
the predicted lives, especially for the cracks starting at approximately 0.5 mm.

The main problem encountered when analyzing the experimental data available, is the fact that the data
almost only covers the linear part (Region Il). This will obstruct the curve fitting procedure and limit the
possibility to acquire good values of p and g in the NASGRO® equation. As discussed in section 4.4, more
data should be obtained near the threshold value as well as for high stress intensity ranges.

It should also be noted that there is an inherent scatter in the testing (secondary bending, crack surface
irregularities etcetera). A remark on the threshold value is worth a mention here; it is a complicated
procedure to obtain the threshold value, as it is dependent on the R-ratio and on how the test is
conducted . During the crack propagation analysis it was observed that the predicted lives where highly
dependent on the choice of the threshold level, AKy,. Varying AK; by £10%, the predicted life changes
between 10% and 20%. The value of p in the NASGRO® equation clearly plays an important role for the
effect of the threshold value. It is thus very important to get a good estimate to be able to reduce the
errors in life predictions.

Even though the proposed method did not improve the life predictions, this thesis provides a better
physical understanding of the crack propagation phenomenon. It is now also possible to expand the
model for different geometries, for example a through crack, which might have different closure levels,
resulting in more accurate life predictions. The thesis also provides a basis for further improvements of
the crack propagation modeling at Volvo Aero.
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6 Summary and Conclusions

This master’s thesis examines whether it is possible to make more accurate life predictions of aircraft
engine components by employing a more physical approach to identifying parameters in crack
propagation models as compared a pure curve fit method. The objective was to statistically evaluate the
predictions of these two methods and compare to experimental data. The physics-based method shows
promise, as the predicted lifetime on average is similar to the pure curve fit method with slightly lower
scatter of predicted versus actual lives. The model can be expanded for different geometries with
different crack closure levels resulting in more accurate life predictions.

Some other conclusions from this thesis are:

With the model and crack propagation scheme used in this thesis, an unequivocal value of a
cannot be directly established. A further understanding of this parameter is desired.

Crack closure and thereby a do not seem to have a direct relation to temperature.
Consideration of the maximum load applied at experimental testing is necessary to avoid a large
effect of the finite size geometry. This is especially important when evaluating crack closure.
The crack opening along the crack front for this specimen starts in the interior and then moves
towards the free surface for R =0, R = 0.5 and R = -1. This variation does not considerably affect
the weighted average of f, since the amplified region only stretches up to an angle of
approximately 10°from the free surface.

For the future:

e Additional experimental crack growth rate data in region | and Ill is needed to get more
accurately fitted constants.

e In addition to the lack of crack growth rate data in region |, there are also uncertainties in the
threshold stress intensity range. Additional and more thorough measurements of the threshold
level should be obtained.

e The numerically established closure levels should be confirmed experimentally to validate that
the obtained values are reasonable.
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Appendix A
- Results: Crack closure levels from FE-analysis

Figures A.1 — A.6 show the numerically established values of the crack opening function, f, for all
temperatures and R-ratios considered in the FE-analysis.

Figures (a) — (d) show f as a function of crack growth increment, Aag, at different degrees along the crack
front and figures (e) show stabilized values of f as a function of ¢.
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Figure A.1: T=20 °C,R=0, L. =0.05 mm.
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Figure A.2: T=20°C, R=0.5, L, = 0.025 mm.
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e) f(¢).

Figure A.3: T=20 °C,R=-1, L. = 0.025 mm.
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Appendix B
-Newman'’s crack opening function

Figure B.1 — B.2 shows Newman'’s crack opening function, f, versus plane stress/strain constraint factor,

a, for the values of 0,.,/00 considered in the FE-analysis.
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Figure B.1: Crack opening function, f, versus plane stress/strain constraint factor, a.
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Appendix C
- Comments on mesh building

Figure C.1: Typical finite element mesh (scaled): (a) Overall view (b) transition from near crack tip
domain to outer domain (c) Close up view at crack front in propagation direction.

In the circumferential direction (¢-direction in Figure C.2) there are desires on the element size to
capture the variation of the opening levels as well as on computational reliability. Hou [15] states that
the stress variation is much milder in this direction compared to the radial direction with about 10 %
variation between plane strain and plane stress; hence a larger ratio can be used. If the crack geometry
is balanced then AK should be close to constant in the circumferential direction. As can be seen in Figure
3.2 (c) a significant large aspect ratio has been used compared to the length in the radial direction (L,).
his has been shown to have negligible effect on the closure levels. Figure C.3 compares two separate

results from analyses with aspect ratios of approximately 20 and 5, respectively. By allowing larger
aspect ratio, the number of elements decreases drastically meaning a huge difference in computational
time.

CHALMERS, Applied Mechanics, Master’s Thesis 2012:32 53



mid-plane

free surface

Figure C.2: Circumferential direction in the crack plane. ¢ varies from 0 to 90 degrees with 0 degrees at the free surface.

It is of great importance to keep the number of elements low as well as having a smooth transition from
the fine mesh at the crack tip to the coarse mesh. A linear hexahedral element type is used at and
around the crack tip according to the cubic element in Figure C.4 (a). This implies that a 9-noded
tetrahedron element should be used for transition with a layer of pyramidal elements between the
hexahedral and tetrahedral elements, as illustrated in Figure C.4 (b). A transitional mesh consisting of 4-
noded linear tetrahedral elements has been used according to the red element in Figure 3.3 (a),
regardless of the violation of the C° continuity as illustrated in Figure C.4 (a). As can be seen the
common surface between the hexahedral and tetrahedral elements has a non-matching mesh. Using 4-
noded linear tetrahedron will significantly reduce the degrees of freedom leading to that this meshing
issue is a trade-off between loss of accuracy and computational effort.
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Figure C.3: Effect of increasing the aspect ratio in the circumferential direction
of the elements along the crack front. Aspect ratio of approximately 20 versus
approximately 5.
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()

Figure C.4: Elements in the transitional mesh, (a) non-matching mesh between hexahedral and tetrahedral elements at the
common surface thus violating c° continuity, (b) consistent transition between hexahedral and pyramidal elements.

Figure C.4 shows the difference in predicted opening levels by using linear (without mid-nodes) and non-
linear quadratic (with mid-nodes) elements in the transitional part. It is clear that using quadratic
elements has a marginal effect on the closure levels. In this work the analyses have been made by linear
tetrahedrons for above discussed reasons but it is recommended that in forth coming analysis,

especially if a stress analysis is to be done, that further evaluation is considered.
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Appendix D
- Extrapolation method of crack growth for stabilization

The blue curves in Figure D.1 (a) and (b) compares the closure level at the free surface (¢ = 0°) and at
the mid plane (¢ = 90°9) respectively. It is obvious that more nodes need to be released to achieve
stabilized values at the free surface, where the stress gradient is larger. It would cause a huge
computational effort if stabilized values were strictly to be found at all the degrees, however, since the
final opening level determined is calculated as a weighted average of all degrees at the crack front, it has
a minor effect of not fully capture the opening level at a few degrees.

An estimate of stabilized closure levels is otherwise desired but are sometimes difficult to obtain, for
example when the initial forward plastic zone is large compared to the element size, i.e. a lot of nodes
need to be released to establish a stabilized closure level. An interesting alternate method to establish
stabilized values, although never used in this thesis, could be an extrapolation model of the form:

Jio C
p _C0+C1*eC2*Aa3
KmaX

(D.1)

This model proposed by Rodriguez [13] contains 4 fitting parameters. Consider Figure D.1 (a); at mid
plane the opening level seems to be stabilized after letting the crack propagate about 18-20 elements
(i.e. 18-20 load cycles applied), but in D.1 (b) crack has not grown far enough to provide steady state
values. Figure D.2 (a) also presents extrapolated values by using one, two, three to twenty crack
increments as a test to find how many nodes are needed in order for the extrapolation model be valid
and give values corresponding to the numerical results. It seems, from this test, that the model
converges after using around 12 values for the curve fitting. In this case, only 12 cycles with
corresponding number of node released would have been enough if used in combination with this

extrapolation model. To get a better estimate of the opening level at zero degrees, where the opening

levels has not yet converged for 20 node released as in D.1 (b), this method provides a value of Kob _

max

0.4. All previous 20 values were used in the curve fitting and then extrapolated for convergence.
Although, a converged result is not established until an unrealistic number of nodes are released
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(around 250), the value itself can be considered to be reliable.
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Figure D.1: R=0, L. = 0.005 mm, T = 20 °C . Closure levels at (a) mid plane (¢p = 90°) and at (b) the free surface (¢p = 0°). (a)
also demonstrates how many increments that is needed for steady state behavior by use of Rodriguez extrapolation
equation, (b) shows the effect of using Rodriguez extrapolation equation for 250 increments at the free surface where
stabilized closure levels are more difficult to establish.
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