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of Crack Propagation Rates 
Master’s Thesis in Applied Mechanics 
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Department of Applied Mechanics 
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Chalmers University of Technology 

 

 

ABSTRACT 

In order for the engineer to correctly predict the operational life of a component it is important to 

understand the physical background to fatigue, i.e. the growth of fatigue cracks. In the industry, the 

dominating models used for crack propagation analyses use are based on either a pure curve fit 

procedure or models that intend to capture the physical phenomenon related to the crack growth. The 

present thesis project attempts to make more accurate life predictions of aircraft engine components by 

employing a more physical approach to crack propagation modeling. In particular, the thesis deals with 

the derivation of five parameters in the NASGRO® equation for crack growth. Four of these parameters 

were derived by curve fitting to experimental data and one parameter, the crack closure, was derived by 

finite element analysis. This differs from the empirical method, currently in industrial use, determining 

life where all five parameters are obtained from curve fitting. Both methods were evaluated and 

compared to experimental data for cast Inconel 718 using statistical tools. The crack closure, here 

assumed to be induced by plasticity, was determined by numerical simulations of fatigue crack growth 

of a semi-circular surface crack in a 3D domain. The objective was to obtain an unequivocal value of 

Newman’s plane stress/strain constraint factor, α, which is directly related to the closure level. In this 

study experimental data of cast Inconel 718 test specimens at different temperatures, and for three R-

ratios, was utilized. The numerical analysis used a kinematic multi-linear hardening constitutive model 

and crack propagation was modeled by releasing all nodes at the crack front after unloading in a one-

node-per-one-cycle debonding scheme. Different values of the plane stress/strain constraint factor were 

found for each of the three R-ratios, i.e. an unequivocal value was not obtained and instead an average 

was used. The predicted lives were calculated by use of the established parameters in the NASGRO® 

equation and were compared to the actual lives observed in the experimental testing. The proposed 

method gave similar results as to the empirical pure curve fit method, although the models credibility is 

increased due to the better understanding of the crack closure phenomenon. Hence, the model can be 

expanded for different geometries with different crack closure levels resulting in more accurate life 

predictions. Consequently, the thesis provides a basis for further improvements of the crack 

propagation modeling. 

 

Key words:  Fatigue crack propagation, Crack closure, NASGRO®, Finite Element Analysis 
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Notations 

Notation Unit  Description 
 
R  [-]  Stress ratio 
T  [oC]  Temperature 

K  [MPa   ] Stress intensity factor, predicting the stress intensity at the crack tip 

Kmax  [MPa   ] Maximum stress intensity factor 

Kmin  [MPa   ] Minimum stress intensity factor (may also be negative) 

ΔK  [MPa   ] Stress intensity range 

ΔKeff  [MPa   ] Effective stress intensity range 

ΔKth   [MPa   ] Threshold stress intensity range 

Kc  [MPa   ] Material fracture toughness 

Kop  [MPa   ] Stress intensity factor at crack opening 

Kcl  [MPa   ] Stress intensity factor at crack closure 
f  [-]  Crack opening function 
α  [-]  Plane stress/strain constraint factor 
σmax  [MPa]  Maximum stress 
σy  [MPa]  Material yield strength  
σu  [MPa]  Material ultimate strength  
σ0  [MPa]  Material flow stress 
εp  [-]  Plastic strain 
rp  [mm]  Plastic zone size 
Le  [mm]  Element length ahead of crack tip in the in propagating direction 
φ  [-]  Angle in the circumferential direction in the crack plane 
t   [mm]  Specimen thickness  
W   [mm]  Specimen width  
H   [mm]  Specimen height 
a  [mm]  Crack width  
c  [mm]  Crack length 
Δa  [mm]  Crack propagation increment 
da/dN  [mm/cycle] Crack growth per cycle 
C  [-]  Constant in NASGRO® equation 
n  [-]  Constant in NASGRO® equation 
p  [-]  Constant in NASGRO® equation 
q  [-]  Constant in NASGRO® equation 
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1 Introduction 
This master’s thesis deals with crack propagation modeling, in particular the derivation of five 
parameters in the NASGRO® equation. The crack closure level, which is one of these parameters, is 
determined by means of numerical simulations of fatigue crack growth and the other four parameters 
are determined by a least square fit to experimental data. Further, the thesis aims to compare this 
model to Volvo Aero Corporations (VAC) current method for determining fatigue life. In their method 
the closure level is not numerically calculated nor found experimentally, instead it is derived by curve 
fitting. Hence, this thesis provides a deeper physical understanding of the crack propagation behavior. 
This chapter gives a further introduction to the thesis with focus on presenting relevant background and 
methods to solve the problem. 

1.1 Background 
It is important to understand the fatigue phenomenon in order for the engineer to correctly predict the 
operational life for any construction and material. Fatigue crack growth is often described by semi-
empirical equations, many of which contain a large amount of material, geometry and load related 
parameters. Some equations describe only specific parts of the crack growth life, such as the Paris law 
[1] which is limited to the crack growth in the linear part of the logarithmic relationship between crack 
propagation rate and stress intensity range. At VAC the NASGRO® equation is used to describe the entire 
crack growth life. In this model the R-ratio correction is modeled by assuming that a crack closure 
function is applicable. The crack closure is based on plasticity induced crack closure (PICC), which is 
possible to calculate with finite element models (FE-models), and is important to determine since it 
influences the crack propagation rate. 
 
It is often difficult and expensive to identify all necessary information about the actual material to 
determine all parameters in a complex model such as the ones describing the crack propagation rate. 
For this reason the uncertainties in predicted fatigue lives may become very large. The scatter in fatigue 
lives can also be seen as due to the fact that fatigue is a local phenomenon. The crack is initiated (or pre-
existing) where there are stress concentrations due to microstructural inhomogeneities, grain structure 
influences and/or other influences at micro- or macro scale. This happens even under very controlled 
loading conditions and in a very controlled environment with specimens cut from the same sheet.  

The dominating material models used for crack propagation analyses are based on either a pure curve fit 
procedure or models that intend to capture some physical phenomenon related to them. In the first 
case a series of experiments are carried out and models, such as the Walker model, is used and all 
parameters are obtained through curve fit. The other type of models has some physical explanation to 
limited known phenomenon. Both of the “modeling classes” are likely to give similar accuracy, at least 
for average crack propagation rates. The applicability of the models used will be evident when the 
material scatter is to be estimated which is useful for probabilistic analyses (i.e in determining safety 
factors or when risk of failure is to be calculated). A “poor” model may give an unrealistic material 
scatter. In the case of NASGRO® equation the closure level is currently determined at VAC by using a 
least square fit procedure. The curve fitting process results in different closure levels for different 
temperatures for the same R-ratio, which is unexplained. An alternate way to compute the closure level 
is through FE analysis. This approach belongs to the second type of material model discussed above. 
However, FE-modeling of the closure level compared to the simplified closure models available in 
NASGRO® needs to be evaluated before adopting it as a regular process.  
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It is known that crack propagation rates may differ for different crack geometries (surface flaws vs. 
through cracks). One reason for such discrepancy may be different closure levels. A firm understanding 
of the available model may allow for expanding the model to different geometries and therefore result 
in more accurate predictions. Finally, assuming an erroneous constraint parameter in the simplified 
closure model (NASGRO® model) may give unrealistic closure response should load interaction effects 
be taken into account.  

1.2 Objective 
This study uses experimental data of cast Inconel 718 test specimens with a semi-circular surface crack 
at different temperatures and for three different R-ratios. The first part of the thesis handles numerical 
calculations of crack closure levels for the R-ratios and temperatures for which the crack propagation 
test results are derived from. The finite element (FE) calculated closure levels are used to remove the R-
ratio dependence from the experimental tests and thus provide means to evaluate an effective (R-ratio 
independent) stress intensity factor. 

The goal is to obtain an unequivocal value of the plane stress/strain constraint factor, α, which is directly 
related to the closure level. Previous studies have shown that the free surface of the crack resembles 
plane stress behavior, and the mid-plane resembles plane strain [2] (see Figure C.2 in Appendix C for 
illustration). This also affects the level of closure, and it has been seen that the crack closes earlier at the 
surface than at the mid-plane. A 3D analysis is obviously necessary to capture the variation of the crack 
closure level at the crack front. 

The second part of the thesis deals with statistical modeling of propagation rates. With the closure level 
established from FEA the four remaining unknown parameters C, n, p, q in the NASGRO® equation will 
be determined by a least square fit to experimental data. 

The outcome of the thesis is:  

1) FE-model to predict closure levels for surface cracks leading to an unequivocal value of the 
parameter, α.  
2) Established values of the parameters C, n, p and q based on a least square fit to experimental data. 
3) An evaluation of the proposed analysis to the method currently used at VAC for predicting lives.  

1.3 Method 
To describe crack propagation in the test specimens, already established and accepted fatigue theories 
are used. In particular the NASGRO® equation, which is an empirical model describing the entire crack 
growth curve from low to high ΔK, is adopted. For the numerical calculations for establishing the closure 
levels, the commercial software ANSYS, which is commonly used at VAC, is employed. Further, MATLAB 
and Excel are used for pre- and post-processing of the data. The crack propagation analysis is done in 
the NASGRO® software for its simplicity. Further, it is the tool currently used at VAC. Evaluation of the 
methods are performed by comparing the actual and predicted lives for a number of cases tested in the 
material lab at VAC. 
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1.4 Limitations 
Several simplifications are obviously needed in the numerical analysis, which is covered in section 3. 
General limitations of work presented in the thesis include: 

 Crack closure mechanisms other than plasticity-induced crack closure are not considered.  

 The numerical analysis is only used to establish crack closure levels and not to simulate the 
actual fatigue crack propagation rate. 
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2 Theory 
This chapter describes the fundamentals of fatigue crack growth and the equations related to this 
theory. The phenomenon of crack closure is especially important and is carefully described. One 
particular equation of interest is the NASGRO® equation which is explained in detail below including 
some remarks on the use of the NASGRO® software.  

2.1 Physical description 
Experiments of crack propagation during cyclic loading reveals striation on the fracture surface of ductile 
materials. The striations represent the increment of growth occurring in one load cycle, which reflect 
the operation of slip planes at a crack tip causing plastic blunting and sharpening. During reverse loading 
compressive stresses at the crack tip reverse slipping, but the newly created surface cannot be removed 
by reconnection of the atomic bonds. At cyclic loading, as the crack propagates, a plastic wake is formed 
behind the crack tip and will induce crack closure. 

If the plastic zone at the crack tip is sufficiently small compared to other length scales, such that it is 
embedded in the elastic singularity zone, the condition at the crack tip is uniquely defined by the current 
stress intensity [3]. The typical fatigue crack growth behavior in metals is illustrated Figure 2.1, showing 
the logarithmic relationship between crack propagation rate and stress intensity range. The curve 

Figure 2.1: Typical fatigue crack propagation behavior in metals, showing the 
logarithmic relationship between crack propagation rate (da/dN) and stress 

intensity range (ΔK). 
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consists of three distinct regions. Below a threshold ΔKth, da/dN approaches zero and the crack will not 
grow. In the intermediate part a linear trend is evident. At high ΔK-values the crack growth rate 
escalates rapidly as the stress intensity factor increases towards a critical value Kc, the fracture 
toughness of the material. The crack growth can, under small scale yielding condition (SSY), be defined 
in a general form as: 

   

  
         (2.1)  

 

where:  

               
 

(2.2)  

 
  

    

    
 

 
(2.3)  

   

  
                        

 
(2.4)  

A number of equations have been developed similar to this form, most of which are empirical, 
describing both short and long cracks. Paris and Erdogan [4] were the first to establish an equation of 
such a form. This equation, called Paris law, only describes the linear part of the logarithmic relationship 
between crack propagation rate, da/dN, and stress intensity range, ΔK. Once the crack growth law is 
determined the equation can be integrated to compute the operational life of a component, given a 
critical crack size and a fracture criterion. The parameters that influence the crack growth rate are the 
loading conditions, component geometry, material and its microstructure, temperature and 
environment.   

2.1.1 Crack closure1 
Several mechanisms can cause crack closure such as plasticity induced crack closure (PICC), roughness 
induced closure which is influenced by microstructure and oxide induced crack closure which is 
associated with an aggressive environment, among others [5]. The roughness induced crack closure is 
related to the crack path deflection, and is especially pronounced at relatively low crack growth rates 
[6]. PICC is dominant over a broad range of stress intensity or at relatively high crack growth rates [7]. 
Only PICC will be studied in this thesis.  
 
The PICC level is a complex relation between plastic strains occurring in the vicinity of the crack tip and 
the growth of the crack through this plastically deformed material. As the crack propagates it leaves 
behind a plastic wake, see Figure 2.2. The residual stretch in the plastic wake brings forth the crack 
surface to close at the tip at a certain fraction of the maximum load. Elber was the first to discover crack 
closure at tensile loading [3] and suggested that the crack tip deformation and crack propagation rate 
are controlled by an effective stress intensity range,      , defined by:   

                                                           
1
 Usually most authors do not distinguish between crack closure and crack opening, which may cause some 

confusion. In this report the mix of the terms is strived to be avoided, however depending on the context one or 
the other term is more suitable to use. See also chapter 3.2.4 for further discussion. 
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(2.5)  

Here Kop is the stress intensity factor corresponding to the case when the crack surface is completely 
opened. Following Elber [7], ΔK can be replaced by ΔKeff in equation (2.1) and the crack growth rate can 
now be expressed as:  

   

  
         

  

 
(2.6)  

 

Where C and n are material parameters and are derived empirically.  

Figure 2.2: The forward plastic zone (plastic zone at maximum loading) at a crack tip and the plastic wake formed after some 
growth. 

It is especially important to understand how to model the plastic zone in a physically sound, although 
simplified, manner. The remote surrounding that encloses the plastic zone can still be modeled as linear-
elastic and linear elastic fracture mechanics (LEFM) is applicable in describing the crack loading if the 
plastic zone is sufficiently small compared to other length scales. Such conditions are known as small-
scale yielding (SSY) and are presumed in this thesis; these conditions are illustrated in Figure 2.3. The 

Figure 2.3: Small scale yielding (SSY) conditions. 
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stress state in the plastic zone is dependent on the size of the plastic zone, if it is small compared to the 
thickness, plane strain conditions exists. If the plastic zone is of the same magnitude as the thickness the 
state of stress is mainly plane stress. When examining the crack closure during unloading it can be 
observed that the crack closes faster on the free surface as compared to the mid-plane. At the surface 
the stress condition can be described by plane stress, because the plastic deformations are less 
constrained on the free surface. However towards the center of the component the stress condition is 
best described by plane deformation since the plastic deformations are constrained. In between, there 
is a transition zone which can neither be described by plane stress nor plane strain. A 3D analysis is 
obviously necessary to capture the variation of the crack closure level at the crack front, and crack 
closure is therefore indeed a 3D phenomenon.  

2.2 Threshold stress intensity range, ΔKth 
The threshold stress intensity range, ΔKth, is the point below which a macroscopic crack does not grow. 
The threshold is generally believed to consist of two components [2]: an intrinsic threshold that is a 
material property, and extrinsic threshold which is a function of different loading variables, e.g. the R-
ratio. In general, the R-ratio has a strong effect on the behavior at low crack growth rates, and thereby 
also the threshold level [1]. It is generally believed that the R-ratio effect on the threshold level is 
related to crack closure, however scientists have diverging theories on this matter.  The threshold level 
may also be very dependent on the environment, e.g.  different values can be found for air and vacuum, 
even though air is not considered to be a very corrosive environment [2]. In summary, the threshold 
stress intensity range is a very complex parameter, which is not yet fully understood. There are also 
difficulties when experimentally determining it, which makes crack growth rate predictions especially 
hard in this region. 

2.3 NASGRO® equation 
The NASGRO® equation (2.7) is an extension of equation (2.6) and describes the entire crack growth life, 

taking account of both the threshold stress intensity range, ΔKth , and the material fracture toughness, 
Kc [2]. The crack propagation rate is evaluated from the stress intensity factor range, ΔK, the R-ratio, 

threshold levels and fracture toughness. The equation is given by: 
 

  

  
    

   

   
    

    
    
  

 
 

   
    
  

 
  

 

(2.7)  

where C, n, p and q are empirically derived parameters. 

The crack opening function is defined as   
   

    
. In this thesis it will, as mentioned earlier, be 

determined numerically by using finite element analysis. 

Newman [8] suggested that crack closure is a function of the stress ratio, as well as the stress-state and 
the maximum stress level,     . He defined the crack opening function, f, as: 

 
  

   

    
   

                
     

      
             

  

 
(2.8)  
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where the polynomial coefficients are given by: 

 
                            

 

 

     

  
     

 
 

 (2.9)  

 (where        and    
    

  
    

 

                 
    

  
 

 

(2.10)  

               
 

(2.11)  

              
 

(2.12)  

The parameter, α, is the plane stress/strain constraint factor and 
    

  
 is the ratio between maximum 

stress and the material flow stress. The material flow stress is usually defined as the average between 
the material yielding and ultimate strength [9], and the same definition is used in this thesis: 

 
   

     

 
 

 
(2.13)  

The plane stress/strain constraint factor,    is considered as a constant with a value ranging from 1 
(plane stress) to 3 (plane strain). Figure 2.4 below shows the crack opening function, f, versus stress 

ratio, R, by applying equation (2.8) for different values of (a) α and (b) 
    

  
.  

 

Figure 2.4: Crack opening function,  , versus stress ratio,  , for different values of (a)    
    

  
      and (b) 

    

  
        . 

It is obvious that both the plane stress/strain constraint factor and the maximum stress level have a 
significant effect on the crack opening function. In the NASGRO® software the opening function, f, is not 

given explicitly. The user instead has to specify α and 
    

  
. Figure 2.5 below shows the plane 
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stress/strain constraint factor, α, versus crack opening function, f, for R = 0 and for two different values 

of 
    

  
.  

 

Figure 2.5: Plane stress/strain constraint factor,  , versus crack opening function,  , for (a) 
    

  
      and (b) 

    

  
    . 

An important observation is that f has a much wider range of values for the low load (σmax/σ0 = 0.3), i.e. 
an increase in applied load has a constraining effect on f.  The numerically established f, the loading 
condition giving σmax and material property σ0 is used to solve for α by means of Newman’s crack 
opening function. 
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3 Finite element analysis to determine crack closure levels 
Crack closure is the contact of crack surfaces during a portion of the load cycle. It is often hard to 
determine the crack closure level and one approach is to find it numerically. Experimental techniques 
provide only average values for crack closure [10], but with a numerical approach, such as a finite 
element (FE) analyses, the 3D effects are easy to find. A 3D analysis will provide an understanding of 
how the closure level varies along the crack front of a Kb-specimen and the potential to describe crack 
closure, and thereby α, with only one value for such a geometry. In this work the crack closure, of a 
surface crack, induced by plasticity, along a 3D crack front has been simulated for different R-ratios and 
temperatures. A careful design of the FE-model and the numerical crack propagation scheme is essential 
for accurate crack closure results and an investigation of current research has been performed. 

A fundamental aspect in the FE analyses is to capture the cyclic elastic-plastic behavior of the material, 
this is especially important when unloading occurs. Material test results, produced by VAC, for the cyclic 
behavior is used to model hardening. The accuracy for crack propagation analysis of the FE-model is 
deeply associated with the mesh; it depends primarily on the type and size of the elements near the 
crack tip. An intense mesh refinement is performed around the crack front in order to accurately 
compute the strong gradient of the stress field. A coarse mesh far from the crack is necessary to save 
computational time. Roychowdhury and Dodds [11, 12] and other researchers suggest a modeling 
condition concerning the number of elements in front of the crack tip. A certain number of elements 
should be contained within the initial forward and reversed plastic zones. However, larger element size 
can be allowed depending on the order of element [10]. The element size at and around the crack tip 
also determines the total number of elements needed in the model and smallest crack increment during 
growth.  

The crack is propagated by releasing all nodes along the crack front by increments of one element (Δa) 
per load cycle. The nodes are released by removing the symmetry boundary conditions imposed on 
them. The set of nodes is released after unloading and opening and closure levels are calculated for 
every load cycle when the first node behind the crack tip loses/comes into contact. The crack is 
extended until the steady state is reached where stabilized values of the closure levels are obtained. 
Attaining steady state condition determines total number of load cycles simulated. Aspects of 
importance for the crack propagation scheme can be summarized: 

 Crack tip node release scheme – at what point in the cycle growth occurs (section 3.2.1.) 

 Number of load cycles per node release (section 3.2.2). 

 Minimum number of crack growth increments for stabilized crack closure values – the crack 
needs to propagate a certain distance in the numerical model to obtain steady state behavior 
(section 3.2.3). Steady state behavior means, in this case, that the calculated crack closure level 
has stabilized when propagating the crack further (see Figure 3.10). 

 The definition of closure. Different definitions have been used by recent researchers and it is 
clear that they will give different values [13] (section 3.2.4). 

This numerical analysis aims to find closure levels using the same geometry and inputs as in the 
experiments already conducted by VAC at their test lab in Trollhättan. The 3D-geometry is shown in 
Figure 3.1 and the actual material modeled is cast Inconel 718.  
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3.1 Model 
The model of the Kb-specimen considered in this thesis is depicted in Figure 3.1 (a). It consists of a semi-
circular surface crack with an initial size,         mm with thickness,          mm, width, 
          mm and height,           mm. The model is subjected to mode I loading, which makes it 
possible to utilize two-fold symmetry allowing modeling of only one-quarter of the specimen, as shown 
in Figure 3.1 (b). One symmetry plane is along the crack surface and the other is the center plane 
parallel to loading direction extending in the direction of the thickness.  

 

Figure 3.1: (a) Model of the Kb-specimen and (b) model of the Kb-specimen utilizing two-fold symmetry. 

The crack is assumed to be semi-circular, i.e.    , at all times, and thus only one single parameter will 
be used to describe the current crack length. This assumption originates from the experimental results 
which indeed shows that the crack often grow in a semi-circular manner (see Figure 3.7). 

3.1.1 Mesh 
The model is built up by 8-node structural solid elements (SOLID185 in ANSYS [14]) with each node 
having three degrees of freedom; translations in the nodal x, y and z directions. A typical mesh is shown 
in Figure 3.2. Ahead of the crack tip a fine mesh with rectangular elements of equal size in radial 
direction is used, shown in Figure 3.2 (c). This allows simultaneous and equidistant propagation of the 
crack along the crack front. A typical mesh consists of 55 000 nodes and 70 000 elements. 
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In the circumferential direction (φ-direction in Figure C.2) a somewhat large element aspect ratio of 
approximately 20 has been used, this is applicable since ∆K is close to constant in the circumferential 
direction due to a balanced geometry (see Appendix C for a comment on this reasoning).  

It is important to keep down the number of elements as well as having a smooth transition from the fine 
mesh at the crack tip to the coarse mesh. A linear hexahedral element type is used at and around the 
crack tip according to the black element in Figure 3.3 (a). A transitional mesh consisting of 4-noded 
linear tetrahedral elements has been used according to the red element in Figure 3.3 (a), regardless of 
the violation of the C0 continuity. Using 4-noded linear tetrahedron will significantly reduce the degrees 
of freedom leading to that this meshing issue is a trade-off between loss of accuracy and computational 
effort. A test of which method is the most accurate has been performed and it is clear that using 
quadratic elements has a very marginal effect of the closure levels (see Appendix C). 

 

Figure 3.3: Elements in the transitional mesh, (a) non-matching mesh between hexahedral and tetrahedral elements at the 
common surface thus violating C

0
 continuity, (b) consistent transition between hexahedral and pyramidal elements that is 

recommended by ANSYS for this kind of transitional mesh. 

Figure 3.2: Typical finite element mesh (scaled):  (a) Overall view  (b) transition from near crack tip 
domain to outer domain (c) close up view at crack front in propagation direction. 
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3.1.2 Boundary Conditions 
The model is subjected to mode I loading. Symmetry conditions are imposed at the symmetry 
boundaries according to Figure 3.1 (b). Frictionless contact conditions at the bottom symmetry plane, 
are imposed with a rigid target area. Loading of the model occurs through an applied pressure load at 
the top boundary. To accurately confine crack growth and contact leading to closure and opening 
behavior, the load steps for every cycle need careful designs. It should be refined in areas where the 
closure and opening levels are expected to be found since the finite sized load step will resolve the 
opening level to the same magnitude as the load increment. See Figure 3.4 (a), (b) and (c) for further 
explanation. The figures below illustrate variably sized increments of one load cycle for different R-
ratios. Preliminary studies pointed out a requirement of 40 increments for R  = 0 and R  = 0.5 and 65 
increments for R  = -1.  Additional substeps are implemented near zero load where contact 
nonlinearities require smaller increments.   

 

Figure 3.4: Details of load cycles of (a) R =  0, (b) R = 0.5 and (c) R =  -1.  Variable sized increments will provide better 
resolution. 

 

3.1.3 Material 
Cyclic plastic deformation of the material near the crack tip is difficult to model, since effects such as 
strain ratcheting, stress relaxation and cyclic hardening or softening are often apparent. Most common 
engineering materials exhibit a linear stress-strain relationship up to a stress level known as the 
proportional limit. Beyond this limit, the stress-strain relationship becomes nonlinear. This analysis uses 
a multi-linear kinematic hardening constitutive model that can incorporate the Bauschinger effect to 
describe the cyclic elastic-plastic response of the material. The particular method of choice is the 
Besseling model [14], also called the sublayer or overlay model, which has different yield stresses for 
each subvolume that is specified by the same Young’s modulus. The backstress uses a stepwise linear 
relation to plastic strain as in Figure 3.5. The material data used in this work is produced by VAC for cast 
Inconel 718.  
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3.1.4 Mesh requirements for convergence  
At the crack tip the stress magnitude is highly intensified and therefore small elements must be placed 
both near the crack tip and along the direction of crack propagation. The size of the forward- and the 
reversed plastic zones are main parameters to consider and there are many papers on mesh criteria for 
2D FE-analysis of fatigue crack growth. However, many researchers have neglected this issue for their 3D 
models, which might be due to the computational effort needed. Especially the effect and requirement 
of using finite size geometry are lacking investigation. Skinner and Daniewicz [16] did investigate closure 
in a finite rectangular plate with a semielliptical surface flaw subjected to remote tension loading. They 
concluded that five elements in the forward plastic zone at the deepest point of penetration are 
sufficient for mesh independent closure loads. However, they used a simple constitutive material model 
that omits the Bauschinger effects which results in that their conclusions are difficult to interpret to the 
current analysis. Roychowdhury and Dodds [12] found in their small scale yielding analysis that 10 
elements in the forward plastic zone in fact could give an adequate solution. The mesh also needs to 
have sufficiently small elements to capture reversed yielding at the crack tip upon unloading [17]. 
Roychowdhury and Dodds [12] suggest that 2-3 elements should be fully contained within the reversed 
plastic zone at the end of the first cycle. They made a detailed study on mesh convergence and suggest 
that the mesh needs to satisfy three conditions: (a) the plastic zone on the crack plane at peak load 
encloses more than 10 eight-noded brick elements, (b) the reverse plastic zone at zero load encloses at 
least two elements, and (c) the half-thickness has at least five elements layers. 

For the analysis a multi-linear material model is used and the forward plastic zone size is defined as the 
number of elements in the crack plane experiencing equivalent plastic strain magnitudes above 0.002 at 
the first peak load. The definition for the reversed plastic zone is the number of elements experiencing a 
change of 0.002 equivalent plastic strain between the first peak and minimum load. It is sufficient to 
investigate this at the first cycles since these values will remain almost unchanged at later cycles [18]. 
The mesh seems satisfactory when 2 or more elements are contained in the reversed plastic zone and 5-

Figure 3.5: Loading and unloading behavior for a multi-linear kinematic material model in ANSYS. 
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10 elements in the forward plastic zone. In this case, this means that for R = 0 the element length (Le) 
needs to be 0.005 mm and for R = 0.5 and R=-1 Le must be equal to 0.0025 mm or smaller. The increased 
mesh refinement needed for R = 0.5 is a result of a smaller crack tip reversed plastic zone as discussed in 
ref.  [19]. The reason for the tougher mesh requirement for R = -1 is due a lower maximum applied load  
yielding a smaller plastic zone.  
 
In addition to the requirements on the element size in the radial direction, it is also imperative to have 
sufficient number of elements in the circumferential direction. This is especially important near the free 
surface, where the results have shown to have a higher variation of the opening levels, which can be 
anticipated by inspecting Figure 3.6. The figure shows the plastic zone at the free surface at peak load 
and the greatest variation of the size can be seen near the free surface. 

 

Figure 3.6: Forward plastic zone  (a) along the crack front indicating larger forward plastic zone near the free surface and (b) 
at the free surface. 

3.1.5 Computational code 
The global solution is obtained by a built in Newton-Raphson algorithm in ANSYS. On an average 4-6 
iterations are needed to reach equilibrium for residual forces and to satisfy contact condition at each 
load increment. Each load cycles requires between 40 – 65 load increments, depending on the R-ratio , 
with additional substeps close to zero load and unloading for R = -1. The crack extends one element in 
each of 20-40 load cycles in order to grow the crack into a steady state condition. A typical analysis takes 
about 1 minute per iteration leading to a wall-clock time varying between 3-7 days on a Dell Precision 
T7500 machine with 2 Intel® Xeon® X5660 processors.  

3.2 Crack propagation scheme 

3.2.1 Crack tip node release 
The crack propagation in the numerical analysis should ideally reflect the experimental results. It is 
observed in the experiments that the crack grows in a semi-circular manner (Figure 3.7). Thus, in the FE-
simulations it is assumed that the crack propagates keeping its semi-circular shape during propagation. 
Due to the complexity of modeling the shape evolution, the shape effect is neglected and the crack tip 
growth is modeled by advancing the crack through the thickness of the geometry. The crack propagates 
uniformly over the crack front by an increment of one element (Δa) in each cycle after releasing all the 
nodes at the crack front after the last unloading step. This method does not truly represent a real 



  
   
 CHALMERS, Applied Mechanics, Master’s Thesis 2012:32 
  
  
 

16 

fatigue process since a crack is not expected to propagate in a compressive stress field and the crack 
front is not expected to propagate in all directions simultaneously. This procedure is implemented to 
overcome convergence issues that often appear by propagating the crack at maximum load. Several 
studies have shown that releasing nodes at different stages during the load cycles has an insignificant 
effect on the results [3, 20] and this test is therefore omitted in the analysis.  
 

 

Figure 3.7: Example of the fracture surface of a Kb-specimen. 

3.2.2 Load cycles per node release 
The analysis uses a 1-node-per-1-cycle debonding scheme, resulting in a growth of 2.5, µm/cycle (da = 
Le), which is significantly higher than actual da/dN. According to VAC’s experiments of cast Inconel 718 a 
typical crack growth for R = 0 is of a magnitude of 0.04 µm/cycle, for R = 0.5 it is 0.02 µm/cycle and for R 
= -1 it is 0.1 µm/cycle for measured ΔK. To mimic the experiments one would either need to increase the 
number of load cycles per node release or to reduce the mesh size. Both approaches would lead to 
impractically long computational times.  

Rodriguez and Antunes [13] discuss the importance of using several load cycles per node release in 
order to stabilize the cyclic plastic deformation to achieve reliable results. Apparently 2-cycles-per-node 
release should be enough depending on material model used in the analysis. Matos and Nowell [21] 
conclude that up to 8 cycles between node releases could be necessary in a 3D analysis. Such a large 
number of cycles per node release will drastically increase the computational effort and rule out an 
analysis such as this one. Borrego, Antunes, Costa and Ferreira [10] claim that the number of cycles 
between node release depend on when the nodes are released in the cycles. If the nodes are released at 
peak load, the deformation near the crack tip causes a too large closure stress. If that scheme is applied, 
two or more cycles are needed before measuring the closure level. This effect has faded out during 
unloading and therefore by using a node release scheme at the last unloading step only 1 cycle is 
necessary.  

From Figure 3.8 (a) and (b) it is evident that using 2-cycles-per-node release will indeed give different 
results compared to 1-cycle-per-node release for R  = 0. Along the crack front the closure level is shifted 
between 3 – 9% vertically but the shape throughout the crack front is identical. This difference is 
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considered to be of acceptable level. In addition, adding one cycle would more than double the analysis 
time, which is not feasible. No test of 3 or more cycles-per-node release has been made. Future analysis 
should consider a 1-node-per-2 cycle scheme in order to capture closure level accurately.  

 

Figure 3.8: Comparison of closure level for different number of load cycles per node release. (a) at       and (b) along the 
crack front after 14 node released. The dotted line in (a) signifies onset of an unexpected numerical error in the analysis. 

These analyses correspond to: R = 0, Le = 0.005 mm, T = 20 
o
C. 

An unexpected feature is noticeable in the same figure; after 14 released nodes are a sudden drop in 
closure level for the 1-node-per-2-cycle scheme. This numerical error is most likely due to that a too 
loose convergence criterion was used in the global Newton-Raphson algorithm. Rodriguez [13] point out 
that this can happen when large deformations exists in the analysis together with other nonlinearities 
such as contact conditions. Due to the time constraint of this thesis further investigations of this error 
were not conducted.  

3.2.3 Crack growth for stabilization 
It is desired to have a suitable criterion for minimum crack extension required in order to obtain steady 
state values for crack closure and opening. Earlier studies suggest the initial forward plastic zone as a 
measure and indicate that to achieve convergence the crack should propagate all through the initially 
deformed material [10,12-13, 16, 22]. The reasoning is that a material point right behind the crack tip 
needs to accumulate all plastic strain from a complete deformation history, see Figure 3.9 for clarity. A 
point located inside the initial forward plastic zone does not accumulate enough plastic strain by the 
time the crack has propagated through it. Many authors show different results regarding how far the 
crack should propagate in relation to the initial plastic zone. It has been recommended that a 
convergence study for every specific analysis should always be performed. The ratio of crack 
propagation over the size of the forward plastic zone (Δa/rp) is used as a measure in this analysis. 
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Figure 3.9: Plastic zone of (a) before cyclic loading and (b) after a propagating the crack a complete loading history. Note the 
location of one material point. 

The curve in Figure 3.10 demonstrate the development of   
   

    
 obtained for R = 0 at mid plane 

(     )  by propagating the crack from the initial crack size by increments of one element (Δa). The 
normalized opening value,  ,  first increases and then stabilizes as the effect of the initial plastic wake is 
disappearing. Since the crack is only allowed to grow a relatively short distance (compared to other 
characteristic dimensions), the longer crack at the end of the growth does not significantly influence the 
stress intensity factor. After about 10 increments (10 Δa) the crack closure has stabilized and a steady 
state value can be found. Consider the larger plastic zone at the free surface, where the stress gradient 
is higher, it is seems obvious that more nodes need to be released to achieve stabilized values there. 

Figure 3.10: Closure level as a function of increments, R = 0, Le = 0.005 mm, T = 20 
o
C.  
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This is also apparent when examining plots similar to Figure 3.10 for those degrees. It would, although, 
cause a huge computational effort if stabilized values were strictly to be found around the entire 
circumference, however, since the final opening level determined is calculated as a weighted average of 
all the opening levels at all degrees at the crack front, it has a minor effect of not fully capturing the 
opening level at only a few degrees. Rodriguez [13] proposed an interesting extrapolation method for 
this issue which is described in Appendix D. 

A convergence study for this numerical analysis was established defining yielding where         . 

With this definition of yielding, the forward plastic zone is calculated at peak load and it seems to be 
sufficient to let the crack propagate 1-2 times this distance for R = 0, see Table 3.1 for more details. The 
great variation of Δa/rp implies that careful consideration should be taken if this measure is to be used 
as a criterion. It can be concluded that the ratio is related to the R-ratio. It can also be concluded that 
closure levels converge slower at R = 0 and R = -1, where the reversed plastic zone is considerably 
smaller.   

Table 3.1: Δa/rp for different temperatures, R-ratios and degrees at crack front.  

 

3.2.4  Closure definition 
There are many definitions that could be considered when defining crack closure. It is a key issue in a 
numerical aspect, because of the large variation of closure results. Most 3D and 2D studies determines 
opening levels by monitoring the displacement or the reaction force of each node on the crack surface, 
or the stress of each element adjacent to the crack surface behind the crack tip [23]. The present 
analysis defines the opening level,    ,  according to [22], i.e. defining opening when the first node 

behind the present crack tip loses contact to the symmetry plane. When this occurs the crack will be 

fully opened and no point at the crack surface will remain in contact. Likewise, the closure level,    , is 
defined when the first node behind the present crack tip first come into contact with the symmetry 
plane during unloading. Rodrigues and Antunes [13] conclude that closure levels will increase if nodes 
closer to the crack tip are chosen to define closure. In other words, using for example the second node 
behind the crack tip will decrease the closure level as is evident by studying Figure 3.11. It also means 
that using smaller elements at the crack tip would increase the closer level. They explain this effect by 
the occurrence of plastic deformation at the crack tip at the same time that the nodes closest to the 
crack tip open. Wu and Ellyin [24] conclude in their 2D study that the above described method is not 
accurate enough. They propose that the nodal reaction force at the crack tip should be monitored and 

R = 0 T = 20 °C T = 650 °C

φ = 0° >1.8 >1.2

φ = 45° 1.2 1.6

φ = 90° 2.0 2.5

R = 0.5

φ = 0° >0.5 >0.45

φ = 45° 0.1 0.2

φ = 90° 0.3 0.3

R = -1

φ = 0° >1.1 >1.6

φ = 45° 2.5 3.1

φ = 90° 3.1 5.0
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when it becomes tensile the crack has a potential to propagate, and thus the crack is open. Likewise for 
closure, when the reaction force becomes compressive at the crack tip, the crack no longer has a 
potential to propagate and hence, the crack is considered as closed. Most researchers, as well as the 
current analysis, defines closure based on the first node behind the crack tip [10, 18], however for 
further analysis careful consideration should be taken when choosing. The results from a numerically 
analysis should ideally be compared to some measured crack closure data as a foundation for finding 
best matching definition.  

 
Figure 3.11: R = 0, Le = 0.005 mm, T = 20 

o
C. Difference of opening defined by first node behind the crack tip and second node 

behind the crack tip. The different definition give a discrepancy of more than 40 % comparing the weighted average of f. 

 
Crack closure and opening levels are normally regarded to differ slightly; closure level is consistently 
lower than the opening level. This difference is often neglected since it is usually considered small. This 
difference increases when the maximum stresses increases [17]. Opening is commonly regarded to be 
more important in a physical sense to the crack propagation mechanism, hence more often used in the 
analytical calculations. This FE-simulation shows that for the case studied closure levels are significantly 
lower than opening (see Figure 3.12). The reason for this large difference is thought to be that relatively 
high maximum stresses over flow stress are applied. It could also be due to effects of the finite size 
geometry or that the mesh at the crack front is unable of resolving enough of the reversed plastic zone. 

 

Figure 3.12: R = 0, Le = 0.005 mm, T = 20 
o
C. Comparison of opening and closure levels, (a)       and (b) along the crack 

front. The numerical analysis resolves closure by magnitude of one load increment. 
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3.3 Convergence study 
Two criteria to check when analyzing crack closure results are: 1. has the crack propagated into a steady 
state region? 2. Does the employed mesh sufficiently fine? In general, the first question has to be 
checked upon for every run, however question two is sufficient to investigate only once.  Figure 3.13 
compares      curves when releasing 40 and 20 nodes (during 40 and 20 load cycles), respectively, for 
R = 0 and T = 20 oC. At the free surface the opening levels are amplified and in this region the largest 
difference is approximately 0.035. As was illustrated in Figure 3.15 (a) and (b) the opening level is not 
fully stabilized at 20 nodes released for small  , which indicates that more crack growth is necessary to 
obtain steady state values. Nonetheless, the difference is negligible and it is concluded that a sufficient 
number of nodes are released. In addition the weighted average of f along the crack front will reduce 
this discrepancy even more. The contribution from the closure levels at the free surface appears 
marginal on the weighted average of f.  

Figure 3.13: Comparison of 40 node released and 20 node released of stabilized opening levels as a function of   for R = 0 
and T = 20 

o
C. 

 

The verification of the mesh has previously been discussed in context of the forward and the reversed 
plastic zone. The number of elements in the forward and reversed plastic zone can be found in Table 
3.2. 

Table 3.2: Elements in forward and reversed plastic zone (T = 20 
o
C,           mm). 

T = 20 °C Frw. Pz Rev. Pz Frw. Pz Rev. Pz Frw. Pz. Rev. Pz.

R = 0 40 17 21 5 13 4

R = 0.5 >49 4 36 1 18 1

R = -1 29 24 13 10 9 8

T = 650 °C

R = 0 29 13 13 3 9 3

R = 0.5 >49 4 31 1 16 1

R = -1 25 20 10 8 7 6

φ = 0o φ = 45o φ = 90o
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To show that a mesh of          mm produces converged results, the opening levels are compared 
with a mesh of           mm for       at T = 20 oC. The case       is chosen since this ratio has 
tougher requirements on the size of forward and reversed plastic zones. The two different meshes have 
the same general set-up, although with different element sizes near the crack tip area. Note that 40 
nodes are released for the mesh using           mm, thus the cracks are grown equally far. From 
Figure 3.14 it can be concluded that the mesh indeed satisfy convergence criteria.  

3.4 Results 
This numerical analysis establishes opening levels for a set of load conditions that corresponds to the 
experimental tests performed at VAC. The main objective is to obtain the opening levels, f  for a variety 
of temperatures and R-ratios. Finally, to make use of NASGRO® (see NASGRO manual [9]) the opening 
values have to be connected to determine an unequivocal value of the parameter α.  

The opening levels have been obtained for two different temperatures, T = 20 oC and 650 oC, and for 
three different R-ratios,         and - . Table 3.3 shows applied loads for respective temperature and 
R-ratio. 

Table 3.3: Applied loads used in the numerical analysis for respective temperature and R-ratio. Only mode I membrane 
loading is applied throughout the analysis. 

 

Two different meshes have been used in order to contain sufficient number of elements both in the 
forward and reversed plastic zone; one with element size,          mm and one with           
mm. The definition of the forward plastic zone size is the number of elements in the crack plane 
experiencing equivalent plastic strain above 0.002 at the first peak load. The definition for the reversed 

R - ratio Max stress [Mpa] Min stress [Mpa] Max stress [Mpa] Min stress [Mpa]

0 555 0 400 0

0.5 605 302.5 475 237.5

-1 500 -500 375 -375

T = 20 °C T = 650 °C

Figure 3.14: Stabilized opening levels as a function of   for           mm 
(red) and          mm (blue). 
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plastic zone is the number of elements experience a change of 0.002 equivalent plastic strain between 
the first peak and minimum load. The number of elements in the forward and reversed plastic zone can 
be found in Table 3.4 for T = 20oC,          mm, all R-ratios and at three locations at the crack front. 
These results are helpful when determining the accuracy of the model and to get an idea of how far the 
crack should propagate to achieve steady state behavior. Table 3.1 shows a summary of the ratio Δa/rp 
(distance of crack propagation over size of forward plastic zone).  

The combination R = 0 and T = 20 oC has been used as a template to obtain reliable results. It is assumed 
that the mesh with          mm is sufficiently fine to capture the opening behavior for this case, 
since it satisfies recommendations from several researchers [12-13, 17] and provides reliable results.  

Table 3.4: Number of elements contained in forward and reversed plastic zone for T = 20 
o
C,          mm. 

  

Figure 3.15 (a), (b) , (c) and (d) shows the opening levels for    , T = 20 oC at      (free surface), 
    ,     and     (mid-plane), respectively, with 20 nodes released. The chosen number of released 
nodes is based on the elements in the forward plastic zones. For        and       the crack has 
propagated into the steady state region and stabilized values are found at around 10 increments, which 
corresponds to the number of elements in the forward plastic zone. This agrees well with theory of crack 
growth for stabilization described in section 3.2.3. At     , the steady state region has not yet been 
reached and a strict stabilized value cannot be confirmed, as expected by examining the size of the 
forward plastic zone. In this region the plastic zone is significantly larger and the crack has not grown far 
enough for stabilization to occur. 

T = 20 ?

Le = 0.005

Frw. Pz Rev. Pz Frw. Pz Rev. Pz Frw. Pz. Rev. Pz.

R = 0 22 9 10 2 7 2

R = 0.5 31 2 18 1 11 0

R = -1 16 14 6 3 4 3

Θ = 0o Θ = 45o Θ = 90o
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Figure 3.15: Opening level for R = 0, T = 20 
o
C  and 20 node released at (a)     (free surface), (b)       , (c)    

   and (d)      (mid-plane). 

Hou [15] concludes that the plastic wake for a semi-circular crack can be separated in two categories: (1) 
wake near the surface, and (2) wake in the interior region. For visualization, study Figure 3.6 which 
shows the forward plastic zone as a function of  . The near-surface wake is caused by the surface plane 
stress and is larger than towards the interior region. This indicates opening occurs later since the shape 
of the contact region of the crack surface is similar to the shape of plastic wake. Figure 3.16 depicts 
opening level across the crack front from the free surface to mid plane (i.e.     ) and the variation of   
is accordingly to Hou’s conclusions. The opening level is larger towards the free surface following the 
appearance of the plastic wake. Outside this region, which extends typically to 8-10o, the opening level is 
quite constant. In order to establish an estimate of the NASGRO® parameter α for the load condition 
and temperature a single value of  , based on the variation along the crack front, is necessary. A single 
value of      is determined by a weighted average and, as described in Section 2, α can then found by 
solving the set of nonlinear equations (2.8) – (2.12). 
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Figure 3.16: Stabilized opening levels, f, as a function of   for R = 0, T = 20 
o
C and 20 node released. 

Table 3.5 below summarizes the results from the different cases, for plots of the closure behavior see 
Appendix A.  The value of         and the corresponding value of   is also included. It can be seen that 
the value of   does not change considerably for the two different temperatures. Even if the material 
properties are changed with increasing temperature, the applied loads have been changed accordingly 

in the experimental testing. This results in a fairly constant 
    

  
, thus constant values of   are expected. 

Values of α varies from 1 to 3 leading to that determining an unequivocal value is not straightforward. 
The variation of α is discussed in chapter 3.5.1. Simply, an average of these values is chosen as the best 
method.  

Table 3.5: f and α different temperatures, R-ratios and degrees at crack front. 

  

*An   could not be found within the range of Newman’s crack opening function and the closest value is 
used. See Figure 2.5 for clarification.  

3.5 Discussion 
Comprehensive numerical calculations for 3D crack closure levels lead to a large demand of computer 
capacity. This includes problems of both disc space and wall clock time. With these aspects in mind, the 
model and the calculation schemes in use need to reflect what realistically can be done within a project, 
but they also have to reflect the real life situation of fatigue crack growth. The model for crack closure 
should, most importantly, consist of sufficient small elements at the crack front in order to capture the 
high stress gradients and deformations. This means that an adequate number of elements must be 
contained within the forward and reversed plastic zones. However, there will always be certain 

Temperature (°C) R f σmax/σ0 α Mesh

20 0 0.29 0.52 1.95 Le 05

20 0.5 0.59 0.56 1* Le 025

20 -1 0.09 0.47 3* Le 025

650 0 0.31 0.45 1.93 Le 05

650 0.5 0.59 0.54 1* Le 025

650 -1 0.13 0.42 3* Le 025
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shortcomings in the model to avoid too large computational demands. These may or may not affect the 
results. One has to validate the model.  

The shortages that may exist in the model have been investigated and adequate decisions have been 
made to obtain a valid solution whilst keeping down the computational time. The main uncertainties, 
regarding the model, was the element size at crack tip area, the aspect ratio of the elements, the 
element ratio between the fine and the coarse mesh and the non-matching mesh within the transition 
part. Verification of the employed solutions have been performed, although separately and independent 
from each other. What would be desirable for further validation of the numerical model is to compare 
the predicted closure levels with a refined model without the shortcomings described. Will this make a 
notable impact of the results even though they each independently don not?  

Other fundamental aspects for producing reliable results are node release schemes; number of load 
cycles between node releases, where in the cycle crack tip node release happens, closure definitions, 
required  crack growth for stabilization of the closure levels etcetera. It was concluded that the numbers 
of load cycles between node release makes a difference of about 7 % on the weighted average of  . It is 
also evident that the difference of closure and opening levels are large as well as that closure definition 
is a key issue. Some parts of the crack front do not reach a steady state response and it is not always 
possible to produce such stabilized values. This has, as discussed in section 3.3, had negligible effect on 
the results. However, the extrapolation method described in Appendix D is recommended for further 
use if lack of time will put limits on longer crack propagation.  

The material model will also significantly affect the magnitude of closure. Using an isotropic hardening 
material model has shown, in a preliminary study, to give notably larger values. There are other options 
not evaluated such as the Ellyin–Xia model, proposed by Ellyin and Ozah [23]. This model predicts a 
lower crack opening stress profile compared to a kinematic hardening. The model captures the 
unloading and reloading path accurately by employing two hyper-surfaces and two types of loading 
regimes. It produces, according to the authors, opening stress values with good agreement to 
experimental results.  

One can easily conclude that the uncertainties in numerically calculated closure levels are many. With 
the lack of experimental testing (and knowledge of how this should best be performed) to verify the 
results of closure it is a difficult task to be confident on the accuracy of the results. It has been showed 
that numerically calculated opening values in general are higher than experimentally measured [16]. 
Little is known about the uncertainty of the experimental measurements and numerical analysis leading 
to difficulties of drawing general conclusions. However, since recommendations of current research are 
followed and proper investigations have been performed of known error sources the results should be 
considered reliable.   

A further uncertainty is the assumption of the crack shape during growth. The crack propagation process 
can be seen as a stochastic process and the shape of the crack will not always remain semi-circular. 
There is plenty of experimental evidence that the shape of a 3D crack front in fact changes as the crack 
grows during cyclic loading [24, 25]. Although, it is a questionable assumption in that context, the 
purpose of this numerical study is to establish the closure level and its 3D variation along the crack front 
and for that reason the growth process itself might not be important. The importance lies in the crack 
geometry when it has reached the steady state region. The shape of the crack is important in other 
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contexts since this, along with crack closure and stress state, may influence further development of the 
crack shape when growth occur. Many studies have been devoted to this problem with Newman and 
Raju as pioneers [26]. As of the authors’ knowledge, few have performed numerical 3D investigations of 
crack growth taking account of closure effects; however, this issue is outside the scope of the thesis but 
could be an important future step. In the NASGRO® software a crack closure factor is multiplied with    
to produce more accurate crack growth predictions, which is applied where the crack front intersects a 
free surface [9].    

One problem that has occurred at a few simulations is a sudden drop in closure; studying Figure 3.8 one 
can draw conclusions of apparent errors. It is most likely of numerical characteristic, regarding a too 
large value for the global convergence tolerance. Current nonlinearities, such as large deformation and 
contacts during opening/closure, needs to be taken into account when deciding on method and 
tolerance for finding a global solution. Further investigation of this parameters effect on the results is 
desired. 

3.5.1 Plane stress/strain constraint factor, α 
The main purpose for this numerical analysis was to produce an unequivocal value of the parameter α. 
This parameter is described by Newman [8] as a geometrical parameter regarding the stress state in the 
specimen. As can be understood by the previous sections a single value could not be found for different 
R-ratios. No investigations are conducted to find out if it is the shortcoming of the theoretical model 
used to establish such a value or there are other reasons. 

Though the variation of the opening function,  , has been concluded along the crack front there are still 
difficulties to obtain how the stress/strain parameter,  , varies. This is due to two reasons: 

1)   is highly dependent on the value of 
    

  
 

2) different values of   are obtained depending on the  -ratio. 

The problem with the first point is how to define the flow stress,   , which is the instantaneous value of 
stress required to continue deforming the material. For convenience it is often set to the average of the 
yielding and ultimate strengths, which will result in a loss of accuracy per se. It is still a problem of how 
to define the yielding and ultimate strengths for a material experiencing non-linear, plastic behavior. 

The second point causes an even larger problem when obtaining  . Since   is a geometrical constant it 
should not be dependent on the stress ratio. However, from the values of   obtained from the 
numerical analysis it is not possible to get a unequivocal value of  , and it is only for    , where a 
solution could be found. For       and      the value have been chosen as   and  , respectively 

since these where the closest values to a solution, seen in Appendix B for the specific choice of 
    

  
. It is 

obvious that the expected relationship between   and   based on Newman’s crack opening function 
(2.8), has not been captured with the results from the numerical analysis. One of the reasons that a 
unique relation was not obtained might be to the fact that the specimen considered does not fully fulfill 
the LEFM conditions as discussed in section 3.5.2. 

3.5.2 Effect of finite size 
Linear Elastic Fracture Mechanics (LEFM) theory is valid if the plastic zone at the crack tip is sufficiently 
small compared to other length scales, such that it is embedded in the elastic singularity zone. In order 
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for the plastic zone to avoid approaching (or reaching) the outer boundaries of the specimen, the 
following inequality must be satisfied [1] (see Figure 3.1): 

          
 

 
 
 

  
 
 

 

For fatigue crack growth the thickness is not considered an important factor on the plasticity limitations, 
as it is for fracture toughness applications [1]. Also, for cyclic loading the size of the plastic zone is 
slightly reduced compared to the case of static loading [1]. Ideally the NASGRO® equation is supposed to 
be used strictly under LEFM conditions. For the specimen considered these conditions are slightly 
compromised for certain load cases and temperatures. However, the conditions are considered to be 
sufficiently close to apply to the NASGRO® equation, though caution should be taken. If large amounts 
of plasticity occur during cyclic loading, crack growth rates rapidly increase and exceed expected values. 
Also, when the plastic zone is too large, failure might be caused by plastic collapse rather than by 
fatigue. 
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4 Experimental data 
Crack growth is a stochastic process, often showing considerable scatter even in controlled 
environments. The scatter increases for longer fatigue lives. The crack is initiated where there are stress 
concentrations due to microstructural inhomogeneities, grain structure influences and/or other 
influences at micro- or macro scale From this point of view it is important to analyze the scatter in 
fatigue crack growth rates in a statistical manner.  

As mentioned before, at VAC the NASGRO equation is used to characterize the crack growth behavior of 
a material. The parameters of the NASGRO equation, both for mean behavior and to account for the 
scatter, are established from the experimental results through a statistical analysis. This chapter explains 
the experimental set-up and the procedure for establishing the four constants in the NASGRO equation 
C, n, p and q. Note that the fifth parameter, the crack closure function f, has been established through 
the FE analyses discussed in detail in the previous chapter. 

4.1 Experimental set-up 
VAC has performed crack propagation experimental tests of surface crack specimens of cast Inconel 718 
at several different temperatures and R-ratios. The experiments produced measured da/dN-data as a 
function of ΔK, along with threshold values for the different temperatures and R-ratios of interest. See 
Figure 4.1 for the general set-up. 

 The following steps are carried out for the crack propagation testing at VAC: 

– A starter notch is induced with a radius of size of around 0.075-0.5 mm. The notch is 
machined by spark erosion. 

– The specimen is instrumented by thin measuring wires over the starter notch and at an 
area that is not affected by the strain fields around the crack but experience the same 
temperature as the crack during the test (Figure 4.2). 

– A pre-crack is formed by fatigue load at room temperature for R = 0 or R = -1. Data is 
recorded for determination of the pre-crack size. 

– The test is carried out at desired temperature and R-ratio and data is recorded for 
further evaluation. The test is cancelled when the crack is about 2.5 mm due to bending 
caused by the crack. 

– The specimen is ruptured in a controlled fashion to estimate the fracture toughness (Kc).  
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Figure 4.1: Crack propagation set-up at VAC. Crack size detection is made by DC-potential drop. 

 

 

Figure 4.2: A current of 10 A is put through the specimen and the PD-signal is usually between 0.3-1.2 mV. 

In the numerical analysis conducted in this thesis only two different temperatures, 20 oC and 650 oC, 

with corresponding R-ratios have been considered. The experimental tests conducted at VAC were 

performed with slightly different maximum loads for each temperature, even for the same R-ratio, while 

the numerically obtained values of  f are calculated for only one load case for each R-ratio and 

temperature.  



 
CHALMERS, Applied Mechanics, Master’s Thesis 2012:32 

 
 

31 

Table 4.1 shows inputs for the experimental tests as well as for the numerical analysis. For a complete 
curve fit, f is required for all different tests, hence certain simplifications are needed. By use of 
Newman’s crack opening function equation (2.8), f for the other load cases, are found as:  

1. Solve for α from the calculated closure level and corresponding load case, considered in the 
numerical analysis.  

2. Keep α constant for the other load cases, not considered in the numerical analysis, and change 
the value of σmax/σ0 accordingly to the desired magnitude of f. 

 

Table 4.1: Inputs for experimental tests at VAC 

 

 

The threshold value for crack growth is a very important parameter, as described in section 2.2, and it is 
determined experimentally at VAC by the following steps: 

– A pre-crack is induced at room temperature at R = 0 or R = -1. 

– The specimen is subjected to a few thousand compressive load cycles at the test 
temperature. The compressive load should be at least as large, in relation to the yield 
strength, as the maximum tensile stress during the creation of the pre-crack. This is to 
eliminate the influence of a plastic zone with compressive stresses in front of the crack 
tip.  

– The specimen is subjected to cyclic loading at a ΔK slightly smaller than the expected 
threshold value. If no crack growth is detected after 1000 000 cycles the Δ is increased 
by 0.2 MPam0.5 until crack growth is detected within 1000 000 cycles. 

– When crack growth is detected the test is stopped and the specimen is ruptured under 
controlled conditions to enable accurate measurement of the crack size. Data evaluation 
is then made using the normal procedures. The threshold value for crack growth is 
defined as the ΔK giving a crack propagation rate of   10-10 m/cycle. 

This procedure is not performed as described in ASTM. Instead ASTM suggests a ΔK decreasing method 
instead. However, this will result in unconservative estimates of the threshold value due to crack tip 
shielding.  

T (°C) R-ratio Max stress (MPa) Nr. of tests Max stress (MPa) Nr. of tests

20 0 555, 450 450 3 555 1

20 0.5 605, 510 , 510, 510 4 605 1

20 -1 500, 510, 475, 510 4 500 1

650 0 400, 375, 375, 375 4 400 1

650 0.5 475, 400, 400, 425 4 475 1

650 -1 375, 375, 375,375 4 375 1

Experimental testing Numerical analysis
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4.2 Least mean square fit to determine C, n, p and q 
A curve fit process, based on the experimentally obtained values of da/dN versus ΔK, is needed to obtain 
the parameters C, n, p and q. Values of the parameters  Kth and Kc have been obtained by VAC for cast 
Inconel 718. The method chosen uses a least-squares minimization of error in the log-log domain. By 
taking the logarithm of equation (2.7), a linear relation with respect to the predictors can be established 
(for more details see [27]): 
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Written on a general form: 
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By identification: 
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 Applying equation (2.14) for each experimental data point and writing on matrix form gives: 

      
 

(2.18)  

 

where: 

        
 

(2.19)  
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                      (2.20)  

 

                
  

 
(2.21)  

 

and         where   is the number of data points. The coefficients are estimated by least squares, 
thus minimizing the sum of squares of the residuals which is equivalent to solve the equations: 

          
 

(2.22)  

 

If the inverse of       exists then the coefficients are obtained by: 

 
             

 
(2.23)  

With the above explained procedure the parameters C, n, p and q can be obtained. However, an option 

is to move the terms       
   

  
  and        

    

  
    to the left hand side of equation (2.1) using 

fixed, standard values of p and q, and making the least square fit with respect to only C and n. This is a 
more common procedure since experimental data is lacking in the two extreme regions, corresponding 
to parameters p and q. Both procedures are applied and compared in the following sections to check 
which gives the best prediction of crack propagation rates. 

4.3 Results 

Figure 4.3 shows the da/dN-data versus (a) ΔK and (b)       
   

   
   for T = 20 oC. As can be seen, the 

da/dN-data merges quite well if plotted against ΔKeff, indicating the validity of Elber’s assumption and 
the numerically obtained f.

 

Figure 4.3: Experimental data, T = 20 
o
C (a) da/dN versus ΔK, (b) da/dN versus ΔKeff.  
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Figure 4.4 shows the corresponding plots for T = 650 oC. Also here the data merges quite well, however 
not as good as for T = 20 oC. 

 

Figure 4.4: Experimental data, T = 650 
o
C (a) da/dN  versus ΔK, (b) da/dN versus ΔKeff.  

Figure 4.5 shows a generated curve fit with ΔKeff ranging from ΔKth to Kmax = Kc for (a) when letting p and 
q be free and (b) locking them as p = 0.25 and q = 0.75. The two procedures clearly give different 
estimation of the crack propagation rates. However, in both cases it is evident that the experimental 
data mainly covers the Region II of the crack propagation rate curve.

 

Figure 4.5: Generated curve fit with ΔKeff ranging from ΔKth to Kmax = Kc for (a) when letting p and q be free and (b) setting p = 
0.25 and q = 0.75. 

The obtained values of the fitted parameters for the respective temperature are shown in Table 4.2 for 
the two proposed methods as well as for VAC’s current method (where all five parameters are obtained 
through curve fitting). The parameters C and n have been scaled. Note that, there are other parameters 
with differing values between the methods. A clear difference of C and n can be seen for the two 
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proposed methods. The acquainted reader of fracture mechanics will, by studying the numbers when 
letting p and q be free, observe unusually high values. Recall that p and q control the shape of the 
asymptote in the threshold and critical crack growth region, respectively. Thus, the two methods show 
very different behavior for the threshold crack growth region as is evident in Figure 4.5. 

 

  

 

4.4 Discussion 
An important question arises regarding how reasonable it is to obtain p and q from a least square fit, 
when there is a severe lack of data in these regions, as illustrated in Figure 4.5. By inspecting Figure 4.5, 
one can argue that the curve better follows the experimental data when letting p and q be free. 
However, it is hard to determine which fit is the most accurate with simple visual inspection of these 
particular plots. Further experimental data is obviously needed in the threshold crack growth region to 
determine the accuracy of the fit in that region. When conducting tests for determining threshold levels, 
the crack should be allowed to grow longer, i.e. conduct a complete crack propagation test, in order to 
obtain more data in the low stress intensity regions. Additional data should also be obtained in the high 
stress intensity regions to be able to determine the accuracy of q. 

T = 20 °C T = 650 °C

C 3,37E-08 6,13E-07

n 1 1

p 2,9042 2,7386

q 1,6647 1,119

T = 20 °C T = 650 °C

C 1,07E-11 1,38E-10

n 1 1

p 0,25 0,25

q 0,75 0,75

T = 20 °C T = 650 °C

C 9,17E-14 5,94E-13

n 1 1

p 0,25 0,25

q 0,75 0,75

Proposed method (p and q free)

Proposed method (p and q locked)

VAC's current method

Table 4.2: The fitted parameters C, n, p and q for the two temperatures considered, and both 

proposed methods as well as VAC’s current method. Top: p and q free, middle: p and q locked, 

bottom: VAC’s current method. The parameters C and n have been scaled so that n = 1. 
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For T = 650 oC the da/dN data for different R-ratios did not merge as well as for T = 20 oC when plotting 
against ΔKeff. One reason may be that other closure mechanisms than PICC have increased influence on 
the crack closure level at this temperature. However, the reason for the unsatisfying curve fit at this 
temperature is uncertain and should be investigated further.  
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5 Evaluation of the proposed method 
In this section a statistical evaluation of the life predictions are carried out for the two proposed 
methods (p and q free and locked respectively) and are compared to the current method used at VAC. A 
discussion of what is needed in the future to more accurately describe the crack propagation behavior is 
also included. 

5.1 Crack propagation analysis 
The crack propagation analysis is conducted with the NASGRO® software using the here established 
parameters C, n, p and q as well as the estimated values of α and        . Further, the fracture 
toughness, Kc, and the threshold stress intensity range, ΔKth, is supplied. The threshold level as R 
approaches 1 ,  ΔK1,  is assigned in the NASGRO® software and is given by [9]: 

             
      

 
  

where ΔK0 is the threshold value at R = 0 and A0 is given by equation (2.9). The constant Cth can be used 
to model the threshold value for different degrees of crack closure. In this thesis it will be set to 0 
leading to a more conservative prediction. 

One way to determine the validity of the model is to compare the predicted life (P) with the actual life 
(A) observed in the experimental testing. For each case the actual life over the predicted life (A/P) is 
calculated. An A/P-value of around 1 is obviously desirable, a value less than one implies a non-
conservative estimate of life and a value above one implies a conservative estimate of life. Comparing 
the predicted life using VAC’s current method will reveal if the more thorough analysis, used in the 
proposed method, will increase the accuracy of the life predictions. 

5.2 Results 
To illustrate the accuracy of the predicted lives, Minitab probability plots are used. They show the 
probability distribution of acquired A/P-values. If the method used for life predictions is good, it should 
have an A/P of 1 at 50% probability. The distribution should also deviate from A/P = 1 as little as 
possible, i.e. have a vertical shape. Figure 5.1 shows the Minitab probability plot for the proposed 
method (p and q free) versus the current method used at VAC. Figure 5.2 shows the proposed method 
(p and q free) versus the proposed method (p and q locked).  
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Figure 5.1: Minitab probability plot; the proposed method (p and q free) (black) versus current method used VAC (red). 
(Vertical axis: probability, Horizontal axis: A/P-value). 
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Figure 5.2: Minitab probability plot; the proposed method (p and q locked) (black) versus current method used VAC (red). 
(Vertical axis: probability, Horizontal axis: A/P-value). 
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5.3 Discussion 
For T = 20 oC both proposed methods as well as the current method used at VAC show good life 
predictions. However for T = 650 oC all three methods show somewhat less accurate predictions. 
However, the proposed method (p and q locked) and the current method used have an A/P-value of 1 at 
50% probability which it should have. This is not the case for the proposed method (p and q free). The 
proposed method shows similar results as the current method used at VAC, but with slightly lower 
scatter.  

A few reasons for the unsatisfactory results are discussed below. The pre-crack length of the test 
specimens varies between 0.5 and 1 mm and is grown to between 2 and 3 mm. It is important to 
investigate if the assumed LEFM conditions are valid for these sizes. There are two limitations of a short 
crack modeling: 1) microstructurally and mechanically small cracks cannot be described by linear elastic 
fracture mechanics (LEFM) and 2) the threshold behavior may be very different for microstructurally 
small cracks as compared to long cracks from which material data are obtained [28].  Continuum theory 
can generally be applied on cracks with length greater than 10 grain sizes [28] and Inconel 718 has a 
grain size of 5 – 40 μm [29], leading to that the required crack size would be 50 – 400 μm. Therefore, all 
cracks can be considered not being micro structurally small. However, the crack can initially be 
considered as mechanically short (100 μm to 1 mm) and during its growth the crack can be considered 
as mechanically long [2]. Continuum theory can be applied on mechanically short crack, but exhibit 
different mechanical behavior than longer cracks. Typically, short cracks grow faster than long cracks at 
the same ΔK-value, especially near the threshold level [2]. This can have a large effect on the errors in 
the predicted lives, especially for the cracks starting at approximately 0.5 mm. 

The main problem encountered when analyzing the experimental data available, is the fact that the data 
almost only covers the linear part (Region II). This will obstruct the curve fitting procedure and limit the 
possibility to acquire good values of p and q in the NASGRO® equation. As discussed in section 4.4, more 
data should be obtained near the threshold value as well as for high stress intensity ranges.  

It should also be noted that there is an inherent scatter in the testing (secondary bending, crack surface 
irregularities etcetera). A remark on the threshold value is worth a mention here; it is a complicated 
procedure to obtain the threshold value, as it is dependent on the R-ratio and on how the test is 
conducted . During the crack propagation analysis it was observed that the predicted lives where highly 
dependent on the choice of the threshold level,  Kth. Varying ΔK1 by ±10%, the predicted life changes 
between 10% and 20%. The value of p in the NASGRO® equation clearly plays an important role for the 
effect of the threshold value. It is thus very important to get a good estimate to be able to reduce the 
errors in life predictions. 

Even though the proposed method did not improve the life predictions, this thesis provides a better 
physical understanding of the crack propagation phenomenon. It is now also possible to expand the 
model for different geometries, for example a through crack, which might have different closure levels, 
resulting in more accurate life predictions. The thesis also provides a basis for further improvements of 
the crack propagation modeling at Volvo Aero.  
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6 Summary and Conclusions 
This master’s thesis examines whether it is possible to make more accurate life predictions of aircraft 
engine components by employing a more physical approach to identifying parameters in crack 
propagation models as compared a pure curve fit method. The objective was to statistically evaluate the 
predictions of these two methods and compare to experimental data. The physics-based method shows 
promise, as the predicted lifetime on average is similar to the pure curve fit method with slightly lower 
scatter of predicted versus actual lives. The model can be expanded for different geometries with 
different crack closure levels resulting in more accurate life predictions.  

Some other conclusions from this thesis are: 

 With the model and crack propagation scheme used in this thesis, an unequivocal value of α 
cannot be directly established.  A further understanding of this parameter is desired. 

 Crack closure and thereby α do not seem to have a direct relation to temperature.  

 Consideration of the maximum load applied at experimental testing is necessary to avoid a large 
effect of the finite size geometry. This is especially important when evaluating crack closure.   

 The crack opening along the crack front for this specimen starts in the interior and then moves 
towards the free surface for R = 0, R = 0.5 and R = -1. This variation does not considerably affect 
the weighted average of f, since the amplified region only stretches up to an angle of 
approximately 10o from the free surface.  

For the future: 

 Additional experimental crack growth rate data in region I and III is needed to get more 
accurately fitted constants.  

 In addition to the lack of crack growth rate data in region I, there are also uncertainties in the 
threshold stress intensity range. Additional and more thorough measurements of the threshold 
level should be obtained.  

 The numerically established closure levels should be confirmed experimentally to validate that 
the obtained values are reasonable. 
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Appendix A 
- Results: Crack closure levels from FE-analysis 
 
Figures A.1 – A.6 show the numerically established values of the crack opening function, f, for all 
temperatures and R-ratios considered in the FE-analysis. 

Figures (a) – (d) show f as a function of crack growth increment, Δa, at different degrees along the crack 
front and figures (e) show stabilized values of f as a function of φ. 
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a)     .     b)       . 

 

c)      .     d)      .

 

e)     . 

Figure A.1: T = 20 
o
C, R = 0, Le = 0.05 mm. 
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a)     .      b)         

  

c)             d)      . 

 

e)       

Figure A.2: T = 20 
o
C, R = 0.5, Le = 0.025 mm. 
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a)            b)       . 

  

  

c)             d)        

 

e)       

Figure A.3: T = 20 
o
C, R = -1, Le = 0.025 mm. 
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a)           b)        

  
  

c)      .        d)        

 

e)       

Figure A.4: T = 650 
o
C, R = 0, Le = 0.05 mm. 
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a)            b)         

  

c)             d)      . 

 

e)       

Figure A.5: T = 650 
o
C, R = 0.5, Le = 0.025 mm. 
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a)            b)         

  

c)             d)      
  

 

e)       

Figure A.6: T = 650 
o
C, R = -1, Le = 0.025 mm. 
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Appendix B 
-Newman’s crack opening function 
 
Figure B.1 – B.2 shows Newman’s crack opening function, f, versus plane stress/strain constraint factor, 
α, for the values of σmax/σ0 considered in the FE-analysis. 

Figure B.1: Crack opening function, f, versus plane stress/strain constraint factor, α.  

 

 

  

c) R = -1, σmax/σ0 = 0.47. 

 

b) R = 0.5, σmax/σ0 = 0.56. 

 

a) R = 0, σmax/σ0 = 0.52. 
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Figure B.2: Crack opening function, f, versus plane stress/strain constraint factor, α. 

  

c) R = -1, σmax/σ0 = 0.42. 

b) R = 0.5, σmax/σ0 = 0.54. a) R = 0, σmax/σ0 = 0.45. 
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Appendix C  
- Comments on mesh building 

 
In the circumferential direction (φ-direction in Figure C.2) there are desires on the element size to 
capture the variation of the opening levels as well as on computational reliability. Hou [15] states that 
the stress variation is much milder in this direction compared to the radial direction with about 10 % 
variation between plane strain and plane stress; hence a larger ratio can be used. If the crack geometry 
is balanced then ∆K should be close to constant in the circumferential direction. As can be seen in Figure 
3.2 (c) a significant large aspect ratio has been used compared to the length in the radial direction (  ). 
his has been shown to have negligible effect on the closure levels. Figure C.3 compares two separate  

results from analyses with aspect ratios of approximately 20 and 5, respectively. By allowing larger 
aspect ratio, the number of elements decreases drastically meaning a huge difference in computational 
time.  

Figure C.1:  Typical finite element mesh (scaled):  (a) Overall view  (b) transition from near crack tip 
domain to outer domain (c) Close up view at crack front in propagation direction. 
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Figure C.2: Circumferential direction in the crack plane. φ varies from 0 to 90 degrees with 0 degrees at the free surface. 

 

It is of great importance to keep the number of elements low as well as having a smooth transition from 
the fine mesh at the crack tip to the coarse mesh. A linear hexahedral element type is used at and 
around the crack tip according to the cubic element in Figure C.4 (a). This implies that a 9-noded 
tetrahedron element should be used for transition with a layer of pyramidal elements between the 
hexahedral and tetrahedral elements, as illustrated in Figure C.4 (b). A transitional mesh consisting of 4-
noded linear tetrahedral elements has been used according to the red element in Figure 3.3 (a), 
regardless of the violation of the C0 continuity as illustrated in Figure C.4 (a). As can be seen the 
common surface between the hexahedral and tetrahedral elements has a non-matching mesh. Using 4-
noded linear tetrahedron will significantly reduce the degrees of freedom leading to that this meshing 
issue is a trade-off between loss of accuracy and computational effort. 

Figure C.3: Effect of increasing the aspect ratio in the circumferential direction 
of the elements along the crack front. Aspect ratio of approximately 20 versus 
approximately 5.  
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Figure C.4: Elements in the transitional mesh, (a) non-matching mesh between hexahedral and tetrahedral elements at the 
common surface thus violating C

0
 continuity, (b) consistent transition between hexahedral and pyramidal elements. 

Figure C.4 shows the difference in predicted opening levels by using linear (without mid-nodes) and non-
linear quadratic (with mid-nodes) elements in the transitional part. It is clear that using quadratic 
elements has a marginal effect on the closure levels. In this work the analyses have been made by linear 
tetrahedrons for above discussed reasons but it is recommended that in forth coming analysis, 
especially if a stress analysis is to be done, that further evaluation is considered.  

 

 

Figure C.5: Comparison of the closure levels along the crack front using linear tetrahedral elements and quadratic tetrahedral 
elements in the transition zone. 
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Appendix D  
– Extrapolation method of crack growth for stabilization 
 

The blue curves in Figure D.1 (a) and (b) compares the closure level at the free surface (    ) and at 
the mid plane (     ) respectively. It is obvious that more nodes need to be released to achieve 
stabilized values at the free surface, where the stress gradient is larger. It would cause a huge 
computational effort if stabilized values were strictly to be found at all the degrees, however, since the 
final opening level determined is calculated as a weighted average of all degrees at the crack front, it has 
a minor effect of not fully capture the opening level at a few degrees.  

An estimate of stabilized closure levels is otherwise desired but are sometimes difficult to obtain, for 
example when the initial forward plastic zone is large compared to the element size, i.e. a lot of nodes 
need to be released to establish a stabilized closure level. An interesting alternate method to establish 
stabilized values, although never used in this thesis, could be an extrapolation model of the form: 

    

    
        

     
      

 
(D.1) 

This model proposed by Rodriguez [13] contains 4 fitting parameters. Consider Figure D.1 (a); at mid 
plane the opening level seems to be stabilized after letting the crack propagate about 18-20 elements 
(i.e. 18-20 load cycles applied), but in D.1 (b) crack has not grown far enough to provide steady state 
values. Figure D.2 (a) also presents extrapolated values by using one, two, three to twenty crack 
increments as a test to find how many nodes are needed in order for the extrapolation model be valid 
and give values corresponding to the numerical results. It seems, from this test, that the model 
converges after using around 12 values for the curve fitting. In this case, only 12 cycles with 
corresponding number of node released would have been enough if used in combination with this 
extrapolation model. To get a better estimate of the opening level at zero degrees, where the opening 

levels has not yet converged for 20 node released as in D.1 (b), this method provides a value of 
   

    
 

 0.4. All previous 20 values were used in the curve fitting and then extrapolated for convergence. 
Although, a converged result is not established until an unrealistic number of nodes are released 
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(around 250), the value itself can be considered to be reliable. 

 

Figure D.1: R = 0, Le = 0.005 mm, T = 20 
o
C . Closure levels at (a) mid plane (     ) and at (b) the free surface (    ). (a) 

also demonstrates how many increments that is needed for steady state behavior by use of Rodriguez extrapolation 
equation, (b) shows the effect of using Rodriguez extrapolation equation for 250 increments at the free surface where 

stabilized closure levels are more difficult to establish. 


