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Dimensioning and Control of a Thermally Constrained Double Buffer
Plug-in HEV Powertrain

Nikolce Murgovski, Lars Johannesson, Anders Grauers and Jonas Sjöberg

Abstract— This paper describes modeling steps to enable fast
evaluation of performance and cost effectiveness of a plug-
in hybrid electric vehicle. The paper also shows how convex
optimization can be used to dimension the vehicle powertrain
while simultaneously controlling the energy buffer power. The
method allows for optimal control of powertrain components
that are subject to thermal constraints.

The studied vehicle is a city bus driven along a perfectly
known bus line. The bus is equipped with an engine-generator
unit and an energy buffer consisting of an ultracapacitor and
a battery. The engine generator unit and the energy buffer are
modeled with quadratic power losses and are sized for two
different charging scenarios. In the first scenario the bus can
charge for a couple of seconds while standing still at bus stops,
and in the second scenario the bus can charge for a couple
of minutes before starting the route. In both scenarios, the
ultracapacitor temperature is kept below a certain limit.

I. INTRODUCTION

Hybrid Electric Vehicles (HEVs) utilize one or more

Electric Machines (EMs) and an energy buffer, typically a

battery and/or an ultracapacitor, in addition to the Internal

Combustion Engine (ICE). This gives them an additional

degree of freedom that allows for a more efficient operation,

due to: a possibility to recover braking energy by using the

EMs as generators and storing the energy in the buffer; ability

to shut down the ICE during idling and low load demands;

possibility to run the ICE at more efficient load conditions

while storing the excess energy in the buffer. See e.g. [1] for

a detailed overview on hybrid vehicles.

Plug-in HEVs (PHEVs) have in addition a charging con-

nector which allows them to draw electric energy from the

grid. The PHEV’s that are being considered in public trans-

port are designed to charge conductively from fast-charge

docking stations [2]-[4], or inductively from underground

cables buried along sections of the bus line [5].

In order to be cost effective, the PHEV bus may need to

include a downsized ICE and a carefully selected energy

buffer to be able to drive a significant part of the bus

line on electric power without a serious impact on vehicle

performance. However dimensioning the PHEV powertrain,

e.g. determining power rating and energy capacity of the

energy buffer, is a difficult problem because it depends on

charging infrastructure, drive patterns, topography along the

bus line and on varying fuel and energy buffer prices [6].

Moreover, the energy efficiency of the powertrain depends

on how well adapted the energy management strategy is to
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the bus line [7]. For PHEV city buses the energy management

strategy decides the operating point of the ICE and thereby

when and at which rate the energy buffer is to be discharged.

When optimizing the PHEV public transportation system

based on a dynamic model of the powertrain, a badly

designed energy management may lead to a non-optimal size

of the powertrain components [8]. Hence, to overcome this

problem, both the size of the powertrain components and the

energy management need to be optimized simultaneously.

Furthermore, city buses may also have tight daily sched-

ules with short charging intervals, or the charging infrastruc-

ture might be sparsely distributed. This may require using the

energy buffer under high duty cycles, thus increasing its op-

erating temperature and possible degrading its performance.

To prevent overheating, the energy buffer should be managed

properly, and/or the cooling system should be dimensioned

at the same time when sizing the buffer.

The problem of optimal sizing and control of HEVs

is traditionally solved by Dynamic Programming [9] for

which vast number of scientific articles are available [10]-

[14]. The main advantage with DP is the capability to use

nonlinear, non-convex models of the components consist-

ing of continuous and integer (mixed-integer) optimization

variables. However, a serious limitation of DP is that the

computation time increases exponentially with the number of

state variables [9]. As a consequence, the powertrain model

is typically limited to only one or possibly two continuous

state variables. Moreover, since DP operates by recursively

solving a smaller subproblem for each time step, the second

limitation of DP is that it is not possible to directly include

the component sizing into the optimization. Instead, DP must

be run in several loops to obtain the optimal control over a

grid of component sizes.

In a more recent study [15] convex optimization has

been used to simultaneously size a battery while optimally

controlling a PHEV. The study considered approximated

quadratic losses for the powertrain components and showed

that the error due to the convexifying approximations is small

as long as the battery open circuit voltage is nearly constant

within the operating State of Charge (SOC) interval.

This paper is an extension of [15] and shows convexify-

ing steps to allow for simultaneous dimensioning of three

powertrain components while optimally controlling a PHEV

bus with a series powertrain topology [1]. The components

to be sized are engine-generator unit and energy buffer

consisting of a battery with nearly linear voltage-SOC de-

pendency and a thermally constrained ultracapacitor. The

model dynamics are described with three continuous states,
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Fig. 1. Series PHEV powertrain model.
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Fig. 2. Bus line model described by demanded velocity and road gradient.
The shaded regions illustrate charging opportunities.

two for the battery and ultracapacitor SOC and one for

the ultracapacitor temperature. The powertrain components

are modeled with quadratic losses and the resulting convex

problem is a semidefinite program [16].

The paper also gives an example showing how the opti-

mal sizes of the components are affected for two different

charging scenarios. In the first scenario the bus can charge

for a couple of seconds while standing still at bus stops, and

in the second scenario the bus can charge for a couple of

minutes before starting the route.

The paper is outlined as follows: modeling details and

problem formulation are discussed in Section II, III and IV,

convex remodeling is discussed in Section V, an example of

optimal dimensioning and control of a PHEV bus is given

in Section VI, ending with conclusion in Section VII.

II. BUS LINE AND POWERTRAIN MODEL

The studied PHEV bus includes a powertrain in a series

topology [1] that does not have a direct mechanical link

between the ICE and the wheels, as in Fig. 1. Instead, the

wheels are driven by an EM that receives energy from an

ultracapacitor, a battery and/or an Engine-Generator Unit

(EGU).

The bus is driven on a bus line described by a road gradient

and demanded velocity which are known at each point of

time (Fig. 2). The velocity and force demands from the bus

line can be translated into an angular velocity ω(t) and torque

τv(·) = τb(t) +A1(t)nu +A2(t)nb +A3(t)s (1)

on the shaft between the EM and the differential. The number

of ultracapacitor cells nu, battery cells nb and the EGU size

s are decision variables (marked in bold), and (·) is used as a

compact notation to identify a function of decision variables.

The torque τb(t) of the vehicle without the weight of the

energy buffer and EGU, and the time dependent terms Aj(t)
can be derived directly from the demanded acceleration and

speed on the bus line and the known vehicle parameters,

such as inertia, aerodynamic drag, rolling resistance, wheels

radius, etc.

The EM, which delivers a torque τ (t), is designed to be

able to meet the high torque demands. Moreover, the EM is

also used to recuperate braking energy up to the point when

either its torque limit τmin(ω(t)), or the buffer charging limit

is reached, after which friction brakes are used to handle the

remaining braking torque τbrk(t), i.e.

τ (t) = τv(·)− τbrk(t). (2)

The powertrain electric path is described by a power

balance

τ (t)ω(t) +BEM (·)
= Pu(t) + Pb(t) + Pc(t) + sPgb(t)− Pa

(3)

that relates the EM electric power, left side of the equality,

to the ultracapacitor power Pu(t), battery power Pb(t),
grid charging power Pc(t), EGU power sPgb(t) and power

consumed by auxiliary devices Pa. The losses of the EM are

modeled as a quadratic function on τ (t)

BEM (·) = b0(ω(t))τ
2(t) + b1(ω(t))τ (t) + b2(ω(t)) (4)

with speed dependent coefficients where bj(ω(t)) ≥ 0, j ∈
{0, 2}, ∀t ∈ [t0, tf ].

The generator power, EGU losses and mass are assumed

to scale linearly with the generator power Pgb(t), losses

BEGUb(·) and mass mEGUb of a baseline EGU model with

maximum power of Pgbmax = 150 kW. Then, the fuel power

Pf (·) and mass mEGU of the scaled EGU can be expressed

as

Pf (·) = s (Pgb(t) +BEGUb(·)) (5)

mEGU = smEGUb, s ∈ [0.5, 1.5]. (6)

The losses of the baseline EGU are also modeled as quadratic

BEGUb(·) = a0P
2
gb(t) + a1Pgb(t) + a2e(t) (7)

with aj ≥ 0, j ∈ {0, 2}, where e(t) is a binary variable that

is needed to allow for zero fuel power, i.e. to remove the

idling losses a2 when the engine is off. The efficiencies of

the EM and EGU are illustrated in Fig. 3, while details on

the validity of using quadratic losses for these components

can be found in [15].

The engine on/off control is decided using heuristics that

turn the engine on if the power of the vehicle without the
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Fig. 3. Model of the EGU, left, and the EM, right. The figure illustrates
the efficiency curves of the baseline EGU (s = 1), the smallest allowed
EGU (s = 0.5), and the largest EGU (s = 1.5).

weight of the energy buffer and EGU exceeds a threshold

P ∗
on, i.e.

e(t) =

{
1, τb(t)ω(t) > P ∗

on

0, otherwise.
(8)

The optimal power threshold P ∗
on is found by iteratively

solving a convex optimization problem, described later in

Section IV and V, for several values of Pon within the power

range of the vehicle. The detailed procedure can be found

in [15], where it has been shown that these heuristics give

small error to the global optimum.

The vehicle can charge from the electric grid while stand-

ing still at the terminal or at bus stops. It is assumed, for

simplicity, that the chargers have equal maximum power

Pcmax and constant efficiency η. The charging opportunities,

shaded in Fig. 2, are indicated by a binary variable c(t).
The losses of the power electronics are neglected, for

simplicity, as they are typically much lower than the losses

of the other powertrain components.

III. ENERGY BUFFER MODEL

The energy buffer consists of an ultracapacitor and a

battery pack. Each pack consists of identical cells equally

divided in parallel strings, with the strings consisting of cells

connected in series.

A. Ultracapacitor and battery cell

The model of the buffer cells can be described through

the following equations

ij(·) = 1

2Rj

(
uj(t)−

√
u2
j (t)−

4RjPj(t)

nj

)
(9a)

ij(·) ∈ [ijmin, ijmax] (9b)

Pj(t) ≤
u2
j (t)nj

4Rj
, j ∈ {u, b} (9c)

u̇u(t) = − 1

Cu
iu(·) (10a)

uu(t) ∈ [0, uumax] (10b)

uu(tf ) = uu(t0) (10c)

˙socb(t) = − 1

Qb
ib(·) (11a)

socb(t) ∈ [socbmin, socbmax] (11b)

socb(tf ) = socb(t0) (11c)
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Fig. 4. Model of the battery open circuit voltage. The shaded region
represents the allowed SOC range.

with ij(·) and uj(t) denoting the cell current and open

circuit voltage, of the ultracapacitor (j = u), and battery

(j = b). The cells are characterized by an inner resistance Rj ,

capacitance Cu [F], or Qb [Ah], current limits ijmin, ijmax

and maximum voltage uumax.

Note that (9a) has been derived from

Pj(t) =
(
uj(t)ij(·)−Rji

2
j (·)
)
nj , j ∈ {u, b}

which shows that the power of each cell Pj(t)/nj is

equal and does not depend on the configuration of cells

(series/parallel), but rather on the total number of cells.

Therefore, in the rest of the paper the sizing problem will

focus only on determining the total number of cells in both

the ultracapacitor and battery pack.

In the optimization nj has a real value that indicates the

total pack capacity. It can be expected that rounding this

variable to the nearest integer gives small error if results

point to large number of cells. This will generally be the

case if the cells are chosen small.

The decision variable describing ultracapacitor cell dy-

namics in (10a) is uu(t). The cell dynamics of the battery in

(11a) are described by the SOC, socb(t), while the battery

open circuit cell voltage is a nonlinear function of SOC, as

shown in Fig. 4. The battery SOC range is limited by (11b),

and charge sustain operation is required for both buffer packs

by (10c) and (11c).

B. Thermal state

An objective of this study is to keep the ultracapacitor tem-

perature Tu(t) under a reasonable limit. The ultracapacitor

is operated under natural convection cooling

CTRT Ṫu(t) = RTRui
2
u(·) + Ta − Tu(t) (12)

where it is required not only to keep the temperature below

a certain limit Tumax,

Tu(t) ≤ Tumax, (13)

but also to maintain a feasible temperature even when the

bus line is to be driven many times under high ambient

temperature Ta. This can be achieved by enforcing the

optimization to sustain the initial ultracapacitor temperature

at the end of the bus line,

Tu(t0) = Tu(tf ). (14)



In the thermal model (12) it is assumed that all cells

experience equal temperature and the only heat source is their

own resistive loss. The thermal resistance and capacitance of

the cells are denoted by RT and CT , respectively.

IV. PROBLEM FORMULATION

The studied optimization problem is formulated to min-

imize a sum of operational cost for consumed fuel and

electricity on the bus line and component cost for the EGU

and the energy buffer. The costs are expressed in a single

objective (15a) using coefficients wf , wc in [currency/kWh],

for fuel and electricity, respectively, and wj , j ∈ {u, b, g}
in [currency], for {u, b, g} = {ultracapacitor, battery,EGU},

respectively.
The optimization is subject to constraints invoked by

the powertrain model forming the nonlinear optimization

problem

minimize

∫ tf

t0

(
wfPf (·) + wc

Pc(t)

η

)
dt

+ wunu + wbnb + wgs

(15a)

∀t ∈ [t0, tf ], subject to (9b)-(14) and

τ (t) ≥ max {τmin(ω(t)), τv(·)} (15b)

τ (t)ω(t) +BEM (·)
≤ Pu(t) + Pb(t) + Pc(t) + sPgb(t)− Pa

(15c)

Pgb(t) ∈ [0, Pgbmaxe(t)] (15d)

Pc(t) ∈ [0, ηPcmaxc(t)] (15e)

nu ≥ 0, nb ≥ 0, s ∈ [0.5, 1.5] (15f)

with decision variables Pu(t), Pb(t), Pc(t), Pgb(t), τ (t),
uu(t), socb(t), Tu(t), nu, nb and s.

The constraints (2) and (3) have been relaxed with inequal-

ities in (15b) and (15c), respectively, and the braking torque

has been taken out of the optimization problem. This does

not change the optimal result, since at the optimum (15c)

will hold with equality as otherwise energy will be wasted

unnecessarily. Similarly, (15b) will also hold with equality,

except during braking when the vehicle cannot recuperate all

the braking energy. Then, the remaining energy is dissipated

at the friction brakes and the optimal braking torque can be

obtained directly from (2). See [15] for details.
The EGU price is assumed to follow an affine relation

cEGU = c0 + scg

which together with known buffer cell prices cu, cb, can be

used to obtain the coefficients wj . It is assumed that the

payment is divided in equal amounts over a period of y = 5
years, with p = 5% yearly interest rate. Then, the equivalent

components’ cost related to the driven bus line is obtained by

multiplying the length of the bus line with the components’

price per kilometer, given the average travel distance d =
80 000 km in one year. This yields

wj = cj

(
1 + p

y + 1

2

) ∫ tf
t0

v(t)dt

yd
, j ∈ {u, b, g}

with v(t) denoting the vehicle velocity demanded by the bus

line.

V. CONVEX MODELING

This section gives a brief background on convex optimiza-

tion and shows modeling steps to convexify the problem (15).

A. Convex problem in a general form

A convex problem can be written in the form

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, ...,m

hj(x) = 0, j = 1, ..., p

x ∈ X
where X ⊆ R

n is a convex set, fi(x), i = 0, ...,m are convex

functions and hj(x) are affine functions of the decision

variables x [16]. The problem (15) does not comply with this

definition and it needs to be remodeled. The modeling steps

follow a disciplined methodology [16] where the convexity

of complex functions is verified using operations that pre-

serve convexity of elementary convex functions, e.g. affine

f(x) = qx+ r, quadratic f(x) = px2 + qx+ r with p ≥ 0,

quadratic-over-linear f(x,y) = x2/y with y > 0, negative

geometric mean f(x,y) = −√
xy with x ≥ 0,y ≥ 0, etc.

B. Convex EGU model

The EGU can be modeled as convex by introducing a

variable change Pg(t) = sPgb(t) that eliminates the non-

convex product of two variables. The change affects Pf (·)
making the cost function (15a) convex. The constraint (15d)

is also affected, but its convexity is preserved, yielding

Pf (·) = a0
P 2

g (t)

s
+ (a1 + 1)Pg(t) + sa2e(t)

Pg(t) ∈ [0, sPgbmaxe(t)].

C. Convex ultracapacitor model

The ultracapacitor can be modeled as convex by intro-

ducing a new variable Bu(t) = Rui
2
u(·)nu denoting pack

losses, and performing a variable change

Eu(t) =
Cuu

2
u(t)nu

2
⇒ Ėu(t) = Cunuuu(t)u̇u(t)

that replaces cell voltage with pack energy. The pack losses

then become

Bu(t) ≥ Eu(t)

RuCu
− Pu(t)

− 1

RuCu

√
Eu(t) (Eu(t)− 2RuCuPu(t))

(16)

where relaxation was used with inequality that allows for

higher losses than those corresponding to the used ul-

tracapacitor power. The constraint (16) is convex, since

Eu(t) − 2RuCuPu(t) is non-negative due to (9c), and it

is obvious that at the optimum (16) will hold with equality.

The constraints (9b)-(10c) will change to

Pu(t) ≥ iumin

√
2Eu(t)nu

Cu
−Rui

2
uminnu



Pu(t) ≤ iumax

√
2Eu(t)nu

Cu
−Bu(t)

Pu(t) ≤ Eu(t)

2RuCu

Ėu(t) = −(Pu(t) +Bu(t))

Eu(t) ∈ [0,
Cuu

2
umax

2
nu]

Eu(t0) = Eu(tf ).

Similar convex modeling approach has been taken in [17],

without introducing the new optimization variable Bu(t).
Finally, the thermal constraints can be also modeled as

convex by multiplying (12) with nu and introducing a

variable change T̃u(t) = Tu(t)nu. Then, the constraints

(12)-(14) will change to

CTRT
˙̃Tu(t) = RTBu(t) + Tanu − T̃u(t)

T̃u(t) ≤ nuTumax

T̃u(t0) = T̃u(tf ).

D. Convex battery model

The battery open circuit voltage, illustrated in Fig. 4, can

be approximated with a linear function

ub(socb(t)) = d0socb(t) + d1

that gives good fit within the allowed SOC range. Then, the

battery model can be written as convex by introducing a

variable change

Eb(t) =
Cb(d0socb(t) + d1)

2nb

2

where Cb = 2Qb/Ū relates the battery capacity Qb with

the nominal open circuit voltage Ū (dashed line in Fig. 4)

and is used only to show resemblance with the ultracapacitor

model. The remaining convex modeling steps are identical

as those taken with the ultracapacitor.

VI. EXAMPLE OF POWERTRAIN SIZING

This section gives an example of optimal powertrain sizing

and control of a double buffer PHEV city bus.

A. Problem setup

The bus is equipped with a 220 kW EM and a 150 kW

baseline EGU as in Fig. 3. The battery cells considered

for the energy buffer have capacity of 45Ah, while the

ultracapacitor cells have capacity of 2000F. The remaining

details of both cells are available online1. The operation is

charge and temperature sustaining with free initial SOC and

ambient temperature of 40 ◦C.

The bus line is as in Fig. 2 and two different charging

scenarios are considered. The first scenario consists of seven

chargers, placed on bus stops as in Fig. 2, which allow

1The battery cell is manufactured by Saft (http://www.saftbatteries.com)
in lithium-ion technology and can be found under the name VL 45E. The
ultracapacitor cell is manufactured by Maxwell (http://www.maxwell.com/)
and can be found in the K2 series under the name BCAP2000 P270 (March
2012).
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the PHEV to charge with Pcmax = 200 kW for 10 s while

standing still at the bus stop. The second scenario has only

one charger which allows the PHEV to charge the battery

for 10min before starting the route, i.e. before t = 0. In this

case the vehicle is turned off during the charging period, i.e.

there is no auxiliary load. The efficiency of all chargers is

92%, but the charger power in the second scenario is left

for the optimization to find it.

The convex problem is written in a time discrete form, the

decision variables are scaled and a parser is used, CVX [18],

to translate the problem in a general form of linear matrix

inequalities required by the solver SeDuMi [19]. More details

on the problem post-treatment can be found in [15].

B. Optimization results

The optimal results are obtained by iteratively solving the

convex problem for 30 engine on-off power thresholds with

grid size of 1 kW. In each iteration, the computation time for

solving the convex problem is 4-5min on a standard PC2.

The optimal operating points of the energy buffer are

given in Fig. 5, and the optimal state trajectories along

the bus line are given in Fig. 6. The results show that the

energy buffer is operated mainly with high efficiency and

the ultracapacitor is utilized in rather low duty cycles, thus

keeping its temperature safely below its upper limit of 65 ◦C.

The EGU size in both charging scenarios is kept at the

minimum of 75 kW. In the first scenario the EGU is kept on

for 21% of the time, while in the 10min charging scenario

the bus is driven entirely on electric power. The optimal

number of buffer cells is nu = 403.2 (0.82 kWh), nb = 42.3
(4.08 kWh usable) in the first scenario, and nu = 244
(0.49 kWh), nb = 181.9 (17.54 kWh usable) in the second

scenario. In terms of total cost the second scenario is better

alternative (cost of 2.98e vs. 5.53e in the first scenario), if

the schedule allows for the additional 10min charging before

starting the route. The charger, in this case, will need to have

a power of at least 120 kW.

22.67GHz dual core CPU and 4GB RAM.
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VII. CONCLUSION

This paper described modeling steps for simultaneous

dimensioning and control of a PHEV bus using convex opti-

mization. The method allows for thermal powertrain model

and an example was given where an optimization problem

with three continuous states can be solved in minutes.

Future studies may focus on extending the convex mod-

eling approach to real time control of thermal powertrains

and to simultaneous sizing and control of the cooling sys-

tem for many vehicle components, including the passenger

compartment.

APPENDIX

Denoting by v(t) and α(t) the velocity and slope of the bus

line, the angular velocity ω(t) and torque demanded on the

shaft between the EM and the differential can be computed

as

ω(t) =
γ

r
v(t), m(·) = mvb + numu + nbmb + smEGUb

τv(·) =
(
IEM +

I

γ2
+m(·) r

2

γ2

)
ω̇(t) +

ρAfcdr
3

2γ3
ω2(t)

+
gr

γ
m(·) (cr cosα(t) + sinα(t))

where g is gravitational acceleration, ρ is air density, and the

rest of the parameters are described in Table I. The model

neglects the inertial effects of the EGU. The mass of the

ultracapacitor and battery cell, mu, mb, have been included

an additional 14% mass for packaging and circuitry.

TABLE I

PARAMETER VALUES.

Vehicle frontal area Af = 7.54m2

Aerodynamic drag coefficient cd = 0.7
Rolling resistance coefficient cr = 0.007
Wheel radius r = 0.509m

Final gear γ = 4.7
Vehicle mass without buffer and EGU mvb = 13.7 t

EM inertia IEM = 2.3 kgm2

Inertia of final gear and wheels I = 41.8 kgm2

Sampling time 1 s

Pa = 7 kW, wf = 0.15e/kWh, wc = 0.1e/kWh, cu = 20.3e
cb = 80.4e, cg = 6450e, mEGUb = 800 kg
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