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Abstract: This paper describes modeling steps for presenting energy buffers as convex models
in power control applications. Except obtaining the optimal control, the paper also shows
how convex optimization can be used to simultaneously size the energy buffer while optimally
controlling a trajectory following system. The energy buffers are capacitors and batteries with
quadratic power losses, while the resulting convex problem is a semidefinite program. The convex
modeling steps are described through a problem of optimal buffer sizing and control of a hybrid
electric vehicle. The studied vehicle is a city bus driven along a perfectly known bus line. The
paper also shows modeling steps for alternative convex models where power losses and power
limits of the energy buffer are approximated. The approximated models show significant decrease
in computation time without visible impact on the optimal result.
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1. INTRODUCTION

The environmental pollution legislations, the need for low-
ering dependency on petroleum and the improved driveline
efficiency, are main reasons that hybrid electric vehicles
(HEVs) are being increasingly developed by vehicle com-
panies. HEV drivelines utilize an energy buffer, typically a
battery and/or an ultracapacitor, and one or more electric
machines (EMs) to supplement the output of the internal
combustion engine (ICE). This additional degree of free-
dom in HEVs allows for a more efficient operation, due
to: a possibility to recover braking energy by using the
EMs as generators and storing the energy in the buffer;
ability to shut down the ICE during idling and low load
demands; possibility to run the ICE at more efficient load
conditions while storing the excess energy in the buffer. See
e.g. Guzzella and Sciarretta (2007) for a detailed overview
of hybrid vehicles.

Perhaps the highest potential of HEV technology has
been found in public transportation. The usage of electric
city buses dates back to 1895, but HEV city buses are
being most seriously considered in public transportation
in the last decade (Anderson and Anderson, 2010). This is
because buses spend significant time in idling or low load
demands where the ICE has poor efficiency. Therefore, an
HEV city bus equipped with a carefully sized electric buffer
may improve the powertrain efficiency at most of the low
load demands along the bus line. The cost effectiveness of
the vehicle, in this case, will be directly affected by the
type and size of the energy buffer, i.e. its power rating and
energy capacity.

However, obtaining the optimal buffer size is not trivial.
This is because the optimal buffer size depends on the

drive patterns and topography along the bus line, varying
factors such as fuel and buffer prices, and how well
adapted the energy management strategy is to the bus line
(Johannesson et al., 2009). For HEV city buses the energy
management strategy decides the operating points of the
ICE and thereby when and at which rate the energy buffer
is to be discharged. A badly tuned energy management
may lead to a non-optimal size of the energy buffer (Moore,
1997). Hence, to overcome this problem, both the size of
the energy buffer and the energy management need to be
optimized simultaneously.

The problem of optimal sizing and control of HEVs is
traditionally solved by Dynamic Programming (Bellman,
1957), for which vast number of scientific articles are avail-
able (Zoelch and Schroeder, 1998; Kim and Peng, 2007;
Sundström et al., 2010; Moura et al., 2010; Murgovski
et al., 2011). The main advantage with DP is the capability
to use nonlinear, non-convex models of the components
consisting of continuous and integer (mixed-integer) op-
timization variables. However, a serious limitation of DP
is that the computation time increases exponentially with
the number of state variables (Bellman, 1957). As a conse-
quence, the powertrain model is typically limited to only
one or possibly two continuous state variables. Moreover,
since DP operates by recursively solving a smaller sub-
problem for each time step, the second limitation of DP
is that it is not possible to directly include the compo-
nent sizing into the optimization. Instead, DP must be
run in several loops to obtain the optimal control over a
grid of component sizes, increasing computation time even
further.

In a more recent study by Murgovski et al. (2012), con-
vex optimization has been used to simultaneously size a
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Fig. 1. Series PHEV powertrain model.

battery while optimally controlling HEV powertrains in
series and parallel topology. The study considered approx-
imated quadratic losses for the powertrain components and
showed that the error due to the convexifying approxima-
tions is small as long as the battery open circuit voltage
is nearly constant within the operating state of charge
(SOC) interval. Due to this limitation the optimization
strategy is suitable only for certain battery types and not
for ultracapacitors.

This paper is an extension of the work of Murgovski et al.
(2012) and shows modeling steps to allow for simultaneous
sizing of ultracapacitors while optimally controlling HEVs
via convex optimization techniques. Moreover, the pro-
posed method also allows for sizing of batteries with nearly
linear voltage-SOC dependency. Both the ultracapacitor
and the battery are modeled with quadratic losses and the
resulting convex problem is a semidefinite program (Boyd
and Vandenberghe, 2004). The paper also shows modeling
steps for alternative convex models where power losses
and power limits of the energy buffer are approximated.
By this, the computation time is decreased up to 50%,
i.e. the computation time of the battery sizing problem
is decreased from about 15 s to about 7.5 s in average,
without an optimization error.

The paper is outlined as follows: problem formulation and
modeling details are described in Section 2; the convex
modeling steps are discussed in Section 3; examples of
capacitor and battery sizing are given in Section 4; and
the paper is ended with conclusion in Section 5.

2. PROBLEM FORMULATION

This section gives a background on the bus line and the
HEV powertrain model and formulates the energy buffer
sizing problem.

2.1 Bus line and powertrain model

The studied HEV bus includes a powertrain in a series
topology (Guzzella and Sciarretta, 2007), where there is
no direct mechanical link between its combustion engine
and the wheels (Fig. 1). Instead, the wheels are driven by
an EM that receives energy from the electric buffer and/or
an engine-generator unit (EGU).

The bus is driven on a bus line described by a road gradient
and demanded velocity which are known at each point of
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Fig. 2. Model of the EGU, left, and the EM, right. The
thin lines represent efficiency and the thick lines are
torque bounds of the EM.

time. The velocity and force demands from the bus line
can be translated into an angular velocity ω(t) and torque
Tnb(t) + nTb(t) on the shaft between the EM and the
differential. The two terms, Tnb(t) and nTb(t), represent
the torque demanded from the powertrain without an
energy buffer, and the torque from the increase in mass
due to the n cells in the energy buffer, respectively.
Both terms can be derived directly from the demanded
acceleration and speed on the bus line and the known
vehicle parameters, such as inertia, aerodynamic drag,
rolling resistance, wheels radius, etc. See Guzzella and
Sciarretta (2007) for details.

The EM, which delivers a torque T (t), is designed to
be able to meet the high torque demands. Moreover, the
EM is also used to recuperate braking energy up to the
point when either its torque limit Tmin(ω(t)), or the buffer
charging limit is reached, after which friction brakes are
used to handle the remaining braking torque Tbrk(t), i.e.

T (t) = Tnb(t) + nTb(t)− Tbrk(t). (1)

The optimization variables, e.g. T (t),n,Tbrk(t), are marked
in bold in order to improve readability.

The powertrain electric path is described by a power
balance

T (t)ω(t) + PEMloss(·) = Pb(t) + Pg(t)− Pa (2)

that relates the EM electric power, left side of the equality,
to the energy buffer power Pb(t), the EGU power Pg(t)
and the power consumed by auxiliary devices Pa. The
losses of the EM, which also include the losses of the power
electronics, are modeled as a quadratic function on T (t),

PEMloss(·) = b0(ω(t))T
2(t) + b1(ω(t))T (t) + b2(ω(t)) (3)

with speed dependent coefficients where bj(ω(t)) ≥ 0, j ∈
{0, 2}, ∀t ∈ [t0, tf ]. The initial and final time are denoted
by t0 and tf , respectively, and the symbol · is used as a
compact notation to indicate a function of optimization
variables.

The EGU is also modeled with quadratic losses

Pf (Pg(t), t) = a0P
2
g (t) + a1Pg(t) + a2e(t) (4)

with coefficients aj ≥ 0, j ∈ {0, 2}, where e(t) is a
binary variable that is needed to allow for zero fuel power
Pf (Pg(t), t), i.e. to remove the idling losses a2 when
the engine is off. The EGU and the EM efficiencies are
illustrated in Fig. 2.

The engine on/off control is decided prior to the optimiza-
tion using heuristics that turn the engine on if the power
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Fig. 3. Model of the energy buffer cell and pack. Cells are
either ultracapacitors or batteries.

of the vehicle without an energy buffer exceeds a threshold
P ∗
on, i.e.

e(t) =

{
1, Tnb(t)ω(t) > P ∗

on

0, otherwise.
(5)

The optimal power threshold P ∗
on is found by iteratively

solving the optimization problem for several values of
Pon within the power range of the vehicle. The detailed
procedure can be found in Murgovski et al. (2012), where
it has been shown that these heuristics give small error to
the global optimum. In this work e(t) is considered pre-
decided, aiming the focus on the convex modeling of the
energy buffer.

2.2 Energy buffer

The energy buffer consists of n identical cells which could
either be ultracapacitors or batteries. The cells are equally
divided in parallel strings, with the strings consisting of
cells connected in series, as in Fig. 3.

Ultracapacitor cell The model of the ultracapacitor cell
can be described by the following equations

i(·) = 1

2R

(
u(t)−

√
u2(t)− 4RPb(t)

n

)
(6a)

i(·) ∈ [imin, imax] (6b)

Pb(t) ≤ u2(t)n

4R
(6c)

u̇(t) = − 1

C
i(·) (6d)

u(t) ∈ [smin, 1]umax (6e)

u(tf ) = u(t0) = umaxs0 (6f)

with i(·) and u(t) denoting the current and open circuit
voltage of one cell. The cells are characterized by an
inner resistance R, capacitance C, current limits imin, imax

and maximum voltage umax. The capacitor SOC, s(t) =
u(t)/umax, is not allowed to drop below a limit smin

(typically greater than 30%, or about 10% of the total
energy content), as this energy is to be used for starting
the engine, unplanned acceleration, or need for auxiliary
power. The operation is charge sustaining by (6f) with an
initial SOC s0.

Note that (6a) has been derived from

Pb(t) =
(
u(t)i(·)−Ri2(·))n (7)

which shows that the power of each cell Pb(t)/n is equal
and does not depend on the configuration of cells (se-
ries/parallel), but rather on the total number of cells.
Therefore, in the rest of the paper the sizing problem will
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Fig. 4. Model of the battery cell open circuit voltage. The
shaded region represents the allowed SOC range.

focus only on determining the total number of cells in the
pack.

In the optimization n has a real value that indicates the
total pack capacity. It can be expected that rounding this
variable to the nearest integer gives small error if results
point to large number of cells. This will generally be the
case if the cells are chosen small.

Battery cell The model of the battery SOC is described
and constrained by

ṡ(t) = − 1

Q
i(·) (8a)

s(t) ∈ [smin, smax] (8b)

s(tf ) = s(t0) = s0 (8c)

where Q is the cell capacity. The cell current and pack
power are expressed exactly as in (6a)-(6c).

Instead of the cell voltage, the optimization variable de-
scribing cell dynamics is s(t), while the open circuit cell
voltage is a nonlinear function of s(t), as in Fig. 4. The
usable SOC range is limited in order to extend the battery
cycle and calendar life (Burke, 2007).

This work assumes constant cell resistance and capaci-
tance for both the battery and the ultracapacitor. If this
is not the case, the convex modeling steps presented in the
rest of the paper cannot be applied directly.

2.3 The non-convex optimization problem

The studied optimization problem is formulated to mini-
mize a sum of operational cost for consumed fuel on the
bus line and cost for the energy buffer (9a), weighted
by two coefficients wf [currency/kWh] and wb [currency]
which transform the fuel power and the buffer size into
a single unit. The optimization is subject to constraints
invoked by the powertrain model, forming the nonlinear
optimization problem

minimize

wf

∫ tf

t0

Pf (Pg(t), t)dt+ wbn (9a)

∀t ∈ [t0, tf ], subject to{
(6b)-(6f), for the ultracapacitor, or

(6b), (6c) and (8), for the battery, and

T (t) ≥ max {Tmin(ω(t)), Tnb(t) + nTb(t)} (9b)

T (t)ω(t) + PEMloss(T (t), t) ≤ Pb(t) + Pg(t)− Pa (9c)

Pg(t) ∈ [0, Pgmaxe(t)] (9d)

n ≥ 0 (9e)
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with optimization variables n, Pg(t), Pb(t), T (t) ∀t ∈
[t0, tf ] common for the two HEVs with different energy
buffers. Additionally, the HEV with the ultracapacitor
has u(t), while the HEV with the battery has s(t) as
an optimization variable. The maximum EGU power is
denoted by Pgmax.

The constraints (1) and (2) have been relaxed with in-
equalities in (9b) and (9c), respectively, and the braking
torque has been taken out of the optimization problem.
This does not change the optimal result, since at the opti-
mum (9c) will hold with equality as otherwise energy will
be wasted unnecessarily. Similarly, (9b) will also hold with
equality, except during braking when the vehicle cannot
recuperate all the braking energy. Then, the remaining
energy is dissipated at the friction brakes and the optimal
braking torque can be obtained directly from (1). See
Murgovski et al. (2012) for details.

3. CONVEX MODELING

This section gives a brief background on convex opti-
mization and remodels the energy buffer to give a convex
optimization problem. The convex modeling steps follow
a disciplined methodology, where the convexity of com-
plex functions is verified using operations that preserve
convexity of elementary convex functions (Boyd and Van-
denberghe, 2004).

3.1 Convex problem in a general form

A convex problem can be written in the form

minimize f0(x)

subject to fj(x) ≤ 0, j = 1, ...,m

hl(x) = 0, l = 1, ..., p

x ∈ X
where X ⊆ R

n is a convex set, fj(x), j = 0, ...,m are
convex functions and hl(x) are affine functions in the
optimization variables x (Boyd and Vandenberghe, 2004).
The problem (9) is not convex due to the non-convex
function i(·) and the state constraint (6d), or (8a), that
ties a nonlinear function with equality.

3.2 Convex ultracapacitor model

Modeling the ultracapacitor in a convex form is straight
forward and requires only two steps, a variable change from
cell voltage to pack energy, and relaxation with inequality.

Convexification steps By replacing the cell voltage with
the pack energy

E(t) =
Cu2(t)n

2
⇒ Ė(t) = Cnu(t)u̇(t) (10)

and by relaxing with inequality, (6d) can be replaced by

Ė(t) ≤ − 1

RC

(
E(t)−

√
E(t) (E(t)− 2RCPb(t))

)
. (11)

The right side of the inequality in (11) is concave, because
it consists of a sum of an affine function −E(t)/(RC) with
a geometric mean of non-negative affine functions, which
is concave in both E(t) and E(t) − 2RCPb(t) (the non-
negativeness of the latter function comes from (6c)).
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Fig. 5. Bounds on the ultracapacitor cell power (this
cell is used later in Section 4). The ultracapacitor is
mainly operated within the shaded region, where the
efficiency is above 85%.

The integral of (11),

E(t) ≤ E(t0)+

1

RC

∫ t

t0

(√
E(τ) (E(τ)− 2RCPb(τ))−E(τ)

)
dτ

(12)

of concave functions is concave, giving a constraint that
preserves the problem convexity. The relaxation (12)
changes the problem, because for a given time interval al-
lows less energy in the buffer than the actual amount corre-
sponding to the cumulative input/output power. However,
at the optimum (12) will hold with equality, as otherwise
the buffer would throw away energy and the result would
not have been optimal.

Accordingly, the constraints (6e), (6f) will change to

E(t) ∈ [s2min, 1]
Cu2

max

2
n (13a)

E(tf ) = E(t0) = s20
Cu2

max

2
n. (13b)

Bounds on the cell current The bounds on the cell
current (6b) can be expressed as bounds on the pack power
by applying the current limits imin, imax in (7),

Pb(t) ≥
√

2E(t)n

C
imin −Ri2minn (14)

Pb(t) ≤
{√

2E(t)n
C imax −Ri2maxn,

E(t)
2R2Cn > i2max

E(t)/(2RC), otherwise
(15)

where in (15) the constraint (6c) has also been included.
The power bounds are illustrated in Fig. 5, where it can be
seen that the upper power bound is associated with imax

down to the point when E(t) = 2R2Cni2max (power losses
become equal to the usable power). With lower energy
levels, the maximum power is not associated with imax,
but rather to a lower current at which ∂Pb(t)/∂i(·) = 0
holds (i.e. constraint (6c)).

The constraint (14) is convex since imin is negative and

the geometric mean
√

E(t)n is concave, giving a convex
function on the right side of the inequality. The upper
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later in Section 4).

bound (15) is concave, but this is not easy to see from
the mathematical model. For this reason (15) is expressed
with two inequalities

Pb(t) ≤ E(t)

2RC
(16a)

E(t)−
√

E2(t)− 2RCE(t)Pb(t) ≤ imaxR
√
2CE(t)n

(16b)

where (16b) is obtained by multiplying (6b) with

R
√
2CE(t)n. It is now clear that the left side of the

inequality in (16b) is convex and the right side is concave,
thus preserving the problem convexity. However, both (14)
and (16b) are computationally expensive because they are
nonlinear (second order cone) constraints (Glineur, 2001).
To reduce complexity linear bounds can be used

Pb(t) ≥ c0E(t) + c1n (17a)

Pb(t) ≤ min

{
E(t)

2RC
, c2E(t) + c3n

}
(17b)

where the pointwise minimum of affine functions in (17b)
is concave. The coefficients cj , j = 0, ..., 3 in (17) can be
found by least squares, or by solving a simple curve fitting
convex problem (Boyd and Vandenberghe, 2004), to give
good fit within the allowed SOC range. In either case,
the approximation error will typically not have significant
impact on the optimal result. In HEV applications ultra-
capacitors are sized by the energy storage requirements
because of the relatively low energy density and the high
power density (Burke, 2000, 2007). Hence, it is not com-
mon that the capacitor will be operated close to the peak
power, e.g. close to E(t)/(2RC), since at that power the
efficiency is very low, i.e. close to 50%. A more appropriate
power is

Pb(t) =

{
η(1− η) 2E(t)

RC , Pb(t) ≥ 0

− 1−η
η2

2E(t)
RC , otherwise

at which the efficiency is η. In Fig. 5 two regions with
η ≥ 85% and η ≥ 95% are illustrated.

3.3 Convex battery model

The battery open circuit voltage, illustrated in Fig. 4, can
be approximated with a linear function

u(s(t)) = d0s(t) + d1 (18)

that gives good fit within the allowed SOC range. Similarly
as with the ultracapacitor, a variable change is proposed

E(t) =
C(d0s(t) + d1)

2n

2
(19)

where C = 2Q/Ū relates the battery capacity Q [Ah] with
the nominal open circuit voltage Ū (dashed line in Fig. 4)
and is used only to show resemblance with the capacitor
model. By replacing (19) in (8), and relaxing the obtained
constraint (20a) with inequality, the battery constraints
can be written in a convex form

Ė(t) ≤ − d0
RQ

(
E(t)−

√
E2(t)− 2RCPb(t)E(t)

)
(20a)

E(t) ∈ C

2

[
u2(smin), u

2(smax)
]
n (20b)

E(tf ) = E(t0) =
C

2
u2(s0)n (20c)

similar to the ultracapacitor corresponding equations (11),
(13).

The bounds on the cell current can be expressed exactly as
in (14), (16). However, similarly as with the ultracapacitor,
they can be approximated with linear functions as in (17).
The only difference is that the power bound E(t)/(2RC)
cannot be activated due to the battery SOC limit that
prevents operation at low charge, see Fig. 6. In this case,
the coefficients cj in (17) can be easily computed, if the
linear bounds are chosen to pass through the points where
the power bounds (14), (15), intersect with the SOC limits
smin,smax.

When using batteries the goodness of the fit is more
relevant, because compared to the ultracapacitors, the
batteries have lower power density and are likely to be
operated close to the power bounds.

3.4 Approximation of the power losses

This section shows an alternative method for convexifying
the energy buffer by approximating the pack power losses.
The approximation is applied to the ultracapacitor model,
but the same method can be also used for the battery.

The power losses of the ultracapacitor

Pbloss(·) = Ri2(·)n =
n

4R

(
u(t)−

√
u2(t)− 4RPb(t)

n

)2

can be approximated with the first three terms of the
Taylor series around Pb(t) = 0,

Pbloss(·) ≈ Pbloss(·)
∣∣∣
0
+

∂Pbloss(·)
∂Pb(t)

∣∣∣
0
Pb(t)

+
1

2

∂2Pbloss(·)
∂P 2

b (t)

∣∣∣
0
P 2

b (t) =
RP 2

b (t)

u2(t)n
.

(21)

Using (21) in (7) to express the cell current,

i(·) = Pb(t) + Pbloss(·)
u(t)n

(22)

will give the following state equation

u̇(t) = − 1

C

(
Pb(t)

u(t)n
+

RP 2
b (t)

u3(t)n2

)
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Table 1. Optimization results.

Energy buffer Capacitor Battery

Baseline model
(nonlinear power
bounds, linear
voltage-SOC
battery model)

ts 15.3 15.1 s

cost 3.69 4.08 e

n 359.1 139.1

fc 20.1 21.7 l/100km

pbrk 100 99.8 %

Linear power
bounds

ts 9.8 7.4 s

n 359.1 139.1

δ 0.00 0.00 %

Constant voltage

ts 8.4 8.3 s

n 349.3 139.4

δ -0.61 0.04 %

Approximated
power losses

ts 10.6 9.1 s

n 360.8 150.2

δ 0.07 1.17 %

ts is computation time, cost is total optimal cost,
fc is fuel consumption, pbrk is percent of recuperated braking energy.

which after the variable change (10) and the relaxation
with inequality, becomes

Ė(t) ≤ −
(
Pb(t) +

RC

2

P 2
b (t)

E(t)

)
. (23)

The upper bound on the cell current can be written either
as in (16), or the approximation (22) could be used to
replace (16b) with

Pb(t) +
RC

2

P 2
b (t)

E(t)
≤ imax

√
2E(t)n

C
. (24)

The rest of the constraints are as in (13), (14). To avoid
division by zero, E(t) must be strictly positive, which is
a sufficient condition for convexity of the quadratic-over-
linear function P 2

b (t)/E(t).

4. EXAMPLE OF OPTIMAL BUFFER SIZING

This section gives an example of buffer sizing and optimal
control of an HEV city bus. The energy buffer can be
built either from battery cells, or ultracapacitor cells. The
losses of the power electronics are assumed, for simplicity,
identical for the two energy buffers.

4.1 Problem setup

The bus is equipped with a 220 kW EM and a 180 kW
EGU as in Fig. 2. The battery cells considered for the
energy buffer have capacity of 45Ah, current limits of
±250A and cost 500e/kWh, while the ultracapacitor cells
have capacity of 2000F, current limits of ±1600A and
cost 10 000e/kWh. The remaining details of both cells
are available online 1 . The operation is charge sustaining,
where it is required to start and end at half of the total
energy content (about 50% SOC for the battery and 71%
SOC for the ultracapacitor). The bus line is a standard
emission test cycle 2 .
1 The battery cell is manufactured by Saft (http://www.
saftbatteries.com) in lithium-ion technology and can be found un-
der the name VL 45E. The ultracapacitor cell is manufactured by
Maxwell (http://www.maxwell.com/) and can be found in the K2
series under the name BCAP2000 P270 (March 2012).
2 The test cycle, City Suburban Cycle, can be found on
http://www.dieselnet.com/standards/cycles (March 2012).

The convex problem is written in time discrete form, which
for the HEV with an ultracapacitor and no approxima-
tions, can be summarized as

minimize

wfh

N−1∑
0

Pf (Pg(k)) + wbn

∀k ∈ [0, N − 1], subject to

Pb(k) ≥
√

2E(k)n

C
imin −Ri2minn

Pb(k) ≤ E(k)

2RC

E(k)−
√
E2(k)− 2RCE(k)Pb(k) ≤ imaxR

√
2CE(k)n

E(k + 1) ≤ E(k)(1− h

RC
) +

h
√
E2(k)− 2RCPb(k)E(k)

RC

E(k) ∈ [s2min, 1]
Cu2

max

2
n

E(N) = E(0) = s20
Cu2

max

2
n

T (k) ≥ max {Tmin(ω(k)), Tnb(k) + nTb(k)}
T (k)ω(t) + PEMloss(T (k), k) ≤ Pb(k) + Pg(k)− Pa

Pg(k) ∈ [0, Pgmaxe(k)]

n ≥ 0.

The derivative (11) has been replaced with a first order
forward Euler discretization with a sampling time of h =
1 s, giving N = 1700 time samples for the chosen bus line.

The optimization variables are scaled and a parser is used,
CVX (Grant and Boyd, 2010), to translate the problem
in the form required by the solver SeDuMi (Labit et al.,
2002).

4.2 Optimization results

The optimal results of battery and ultracapacitor sizing
are given in Table 1. The ultracapacitor model without
approximations and the battery model with linear voltage-
SOC relationship are being denoted as baseline models.
Then, the optimal cost of the baseline models is used to
validate the approximation error

δ =
cost approximated− cost baseline

cost baseline
× 100

for three different approximated battery and ultracapac-
itor models. The first approximated models use linear
power bounds, as explained in Section 3.2 and 3.3. The
second approximated models use constant open circuit
voltage, where the battery voltage is the nominal voltage
and the ultracapacitor voltage is chosen umax/

√
2 to give

the same energy content as the original model. Details on
the convex modeling of a constant voltage buffer have been
described by Murgovski et al. (2012). The third approxi-
mated models use linear power bounds and approximated
power losses as explained in Section 3.4.

The optimal operating points of the energy buffer are given
in Fig. 7, and the optimal SOC trajectories along the
bus line are given in Fig. 8. The results show that the
ultracapacitor is sized by the energy requirements, since it
is operated close to the SOC limits, but far from the power
limits. On the contrary, the battery is sized by the power
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Fig. 7. Optimal operating points of the baseline energy buffer models, one point for each time instant k. The shaded
regions show efficiency greater than 95% for the ultracapacitor and 85% for the battery. The thin contour lines
show relative error in power losses when the losses are approximated with (21).

requirements as the SOC is far from the limits, but the
power is close to the charging limit. This indicates that
both buffers are sized to recuperate most of the free of
charge braking energy, that is, the ultracapacitor recovers
all the braking energy, while the battery recovers 99.8%.

The capacitor is operated with very high efficiency, mainly
above 95%, at any point along the bus line. During
discharge, the battery is also operated with high efficiency,
above 88%, but the efficiency may drop below 83%
during brake regeneration. This is the reason that the
optimization error

error =
losses approximated− losses baseline

losses baseline
× 100

from approximation of the power losses is lower for the
ultracapacitor, as it is directly related to the buffer effi-
ciency. Moreover, Fig. 7 shows that many operating points
of the battery will have high approximation error, although
the cumulative error given in Table 1 is small, but not
negligible (1.17%). This is because the approximation
underestimates the power losses during discharging, but
it overestimates them during charging. As a result, the
approximation resulted in 8% more cells than the baseline,
although there is no visible change in the optimal SOC
trajectory, as can be seen in the bottom plot of Fig. 8.

The approximation with linear power bounds gave zero
optimization error and managed to speed up the compu-
tation time 3 by up to 50%.

The results in Table 1 also show that the model with
approximated constant voltage gave small error, and not
only for the battery, but also for the ultracapacitor.
The optimal number of ultracapacitor cells, in this case,
decreased by 2.7% and there is small deviation in the
optimal SOC trajectory (Fig. 8).

3 All optimizations are carried on a standard PC with 2.67GHz dual
core CPU and 4GB RAM.
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Fig. 8. The top plot shows optimal SOC trajectories for the
baseline energy buffer models. The two plots below
show, in addition, the optimal SOC trajectories for
the models with approximated power losses and the
models with approximated constant voltage.

5. CONCLUSION

This paper described modeling steps that enable convex
optimization for applications with optimal control and
simultaneous dimensioning of capacitors and batteries.
The paper also showed that by approximating the buffer
power bounds with linear functions, the computation time
may decrease by up to 50%, with zero optimization
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Table A.1. Parameter values.

Vehicle frontal area A = 7.54m2

Aerodynamic drag coefficient cd = 0.7

Rolling resistance coefficient cr = 0.007

Wheel radius r = 0.509m

Final gear γ = 4.7

Vehicle mass without the battery m = 14.5 t

EM inertia IEM = 2.3 kgm2

Inertia of final gear and wheels I = 41.8 kgm2

Power used by auxiliaries Pa = 7kW

Fuel price wf = 0.15e/kWh

Average travel distance in one year d = 80 000 km

error. Moreover, modeling steps have been shown for an
alternative convex model with approximated power losses
of the energy buffer. A result of this study is that even a
constant voltage approximation may be a viable approach
for the ultracapacitor sizing problem in an HEV city bus.

Besides simultaneous dimensioning and control of HEV
energy buffers, the convex models may also allow time
efficient optimization of series or parallel powertrain mod-
els with several state variables, e.g. thermal states of the
components. Extending the convex modeling method on
thermal buffer models, and applying the use of convex
buffer models in other control applications will be con-
sidered in future studies.

Appendix A. OPTIMIZATION DATA

Denoting by v(t) and α(t) the velocity and slope of the bus
line, the angular velocity ω(t) and torque demanded on the
shaft between the EM and the differential, Tnb(t)+nTb(t),
can be computed as

ω(t) =
γ

r
v(t)

Tnb(t) =

(
IEM +

I

γ2
+m

r2

γ2

)
ω̇(t) +

ρAcdr
3

2γ3
ω2(t)

+
gr

γ
m (cr cosα(t) + sinα(t))

Tb(t) =
mbcr

γ

(
r

γ
ω̇(t) + gcr cosα(t) + g sinα(t)

)
where g is gravitational acceleration, ρ is air density, and
the rest of the parameters are described in Table A.1. The
model neglects the inertial effects of the EGU.

The battery cell has mass of 1.22 kg and inner resistance of
2.9mΩ. The ultracapacitor cell has mass of 0.36 kg, inner
resistance of 0.35mΩ and maximum voltage of 2.7V. The
additional mass for packaging and circuitry is assumed to
be 14% of the buffer mass.

The payment for the energy buffer is equally divided in
y = 5 years with p = 5% yearly interest rate. By denoting
with cb the buffer price in curency/kWh, the equivalent
cell cost related to the driven bus line is obtained by
multiplying the length of the bus line with the cell price
per kilometer, given the average travel distance in one year
d. This yields

wb = cbEsmbc

(
1 + p

y + 1

2

) ∫ tf
t0

v(t)dt

yd

where Es [kWh/kg] is specific energy of the entire energy
content of the cell.
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