

Introducing Product and Process Visualizations to
Support Software Development
Master of Science Thesis in the Programme Software Engineering and
Technology

TOBIAS ALETTE

VIKTOR FRITZON

CHALMERS UNIVERSITY OF TECHNOLOGY

UNIVERSITY OF GOTHENBURG

Department of Computer Science and Engineering
Gothenburg, Sweden, June 2012

i

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet. The Author warrants that he/she is the author
to the Work, and warrants that the Work does not contain text, pictures or other material
that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example
a publisher or a company), acknowledge the third party about this agreement. If the
Author has signed a copyright agreement with a third party regarding the Work, the
Author warrants hereby that he/she has obtained any necessary permission from this
third party to let Chalmers University of Technology and University of Gothenburg
store the Work electronically and make it accessible on the Internet.

Introducing Product and Process Visualizations to Support Software Development

TOBIAS ALETTE,
VIKTOR FRITZON,

c© TOBIAS ALETTE, June 2012.
c© VIKTOR FRITZON, June 2012.

Examiner: MIROSLAW STARON
Supervisor: ROBERT FELDT

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
SE-412 96 Gothenburg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Gothenburg, Sweden June 2012

ii

ACKNOWLEDGEMENTS

We would like to thank RUAG Space AB for giving us the opportunity to do this thesis.
We are especially thankful to all interviewees and members of the studied project who
helped us throughout the study with valuable feedback. We would also like to thank
Associate Professor Robert Feldt, Chalmers University of Technology, who guided us
through this thesis.

Tobias Alette and Viktor Fritzon, Gothenburg June 2012

CONTENTS

1 Introduction 1
1.1 Scope and limitations . 1
1.2 Thesis structure and contributions 1

2 Background 2
2.1 Theoretical framework . 2

2.1.1 Agile concepts . 2
2.1.2 Information and data visualization 3
2.1.3 Information dashboards 3

2.2 Related work . 3
2.2.1 Information needs . 4
2.2.2 Related studies . 4
2.2.3 Positioning . 4

3 Methodology 5
3.1 Context . 5
3.2 Research objective and questions 6
3.3 Design research . 6

3.3.1 Initial awareness of problem & suggestion 6
3.3.2 Development & evaluation 7

4 Result 8
4.1 Charts . 8
4.2 Technology . 9

4.2.1 KnowSE - Architecture 9
4.2.2 Data-Driven Documents 9
4.2.3 Design and architectural choices 9

4.3 Data collection . 11
4.3.1 Initial orientation . 11
4.3.2 Continuous . 13
4.3.3 Evaluation . 14

5 Discussion 16

6 Conclusion 16

References 17

1

Introducing Product and Process Visualizations
to Support Software Development

Tobias Alette and Viktor Fritzon
Chalmers University of Technology
{alette, viktorf}@student.chalmers.se

SE-412 96 Gothenburg
Sweden

F

Abstract

This thesis studied the development and introduction
of a continuous measurement, analysis and visualization
system. The system was developed and deployed for use
in a multi-team system development project at RUAG Space
AB. The focus was on supporting assessment and decision
making in daily stand-up group meetings through the use
of an information radiator. High-level process and product
information was visualized aimed at supporting meetings
with participants from different teams. Challenges and guide-
lines for developing and introducing similar systems are
presented.

1 INTRODUCTION

Delivering software projects according to specification, on
time within budget has proven to be a big challenge for
the software industry. Poor communication and reporting on
project status are commonly stated as contributing factors
to project failures [1]. Agile methods, which have become
mainstream during the last decade [2], has developed several
concepts and practices aimed at solving these problems e.g.
morning stand-up meetings [3], the informative workspace
and metrics as a management tool [4]. One of the tenets of
the agile movement is responding to change over following a
plan [5]. The theory of bounded rationality [6] argues that the
ability to make rational decisions is bounded by the available
information, time to interpret it as well as the cognitive ability
to do so.

Based on the premise of bounded rationality and the com-
mon use of agile practices, such as informative workspaces
and morning meetings, this thesis suggests that software
development can be supported using information visualization
to present project data in the common workspace to increase
decision making ability.

This introduces a couple of challenges:
• How to decide which information is important
• How to gather data without introducing overhead
• How to best communicate it
• How to introduce the new practice to an established

process

Some research have been carried out recently shedding some
light on information needs for decision making in software
development projects. Buse and Zimmerman [7] and Ko et.
al. [8] both state that information needs of stakeholders are
diverse and that no view fits all.

Both Biehl et. al. [9] and Jakobsen et. al. [10] performed in
situ studies where dashboards placed in a common workplace
were used to foster team awareness for developers. Both
studies focus on low-level awareness such as which files are
currently checked out and being edited. Both studies were done
on single team software development projects.

This thesis studies the development and introduction of a
continuous measurement, analysis and presentation system for
a multi-team system development project at RUAG Space AB.
The system is based on the KnowSE framework [11]. The
project under study holds daily morning stand-up meetings
for each team as well as an integration meeting attended
by representatives from each team. Meetings are held in a
common workplace around planning task boards.

1.1 Scope and limitations
The following items outline the scope and limitations of the
thesis:

• Due to the intended use of the presentation as group meet-
ing support observed from across the room, visualizations
that require interactivity have not been studied.

• The study have focused on three main data sources; re-
ported and estimated time, code changes and test results.
Requests for visualizations of additional data sources
are discussed, but integration of additional sources was
considered outside the scope of the thesis work.

• As opposed to Biehl et. al. and Jakobsen et. al. the
system introduced in this thesis work is aimed at a higher-
level awareness suitable to support the project morning
integration stand-ups held at RUAG Space.

1.2 Thesis structure and contributions
Section 2 will further describe concepts such as stand-up
meetings and informative worspaces from an agile perspective
as they apply to the goal of the project and system under study.

2

Basic theory and best-practices from information visualization
and dashboard design that has been applied throughout the
thesis work is also presented in this section. A review of recent
related work and research is presented in order to position the
thesis work.

The following section 3 describes design research methodol-
ogy and how it has been used to gain the knowledge necessary
to contribute to the answers of the posed research questions
which are also listed here. The context is described in terms
of a brief description of RUAG Space and the process used in
the project under study.

Results from the in situ study of the introduced system are
presented in section 4, focusing on how it supports assessment
and decision making in daily meetings as well as factors
affecting its usefulness and effect on the project under study.

Section 5 discuss the results and propose guidelines for the
introduction of similar support systems. Finally, conclusions
and suggestions for further research are given in section 6.

2 BACKGROUND
The following subsections covers the theoretical framework
and related work that is used throughout the thesis work.
Section 2.1.1 briefly describes commonly used concepts from
agile software development related to the thesis, followed
by information and data visualization and finally a short
description of information dashboard design.

Section 2.2 summarizes related work done on the informa-
tion needs of decision makers in software development project
and how to create tools to support them.

2.1 Theoretical framework
2.1.1 Agile concepts
The informative workspace is a concept described as a com-
mon team area where a team member or customer should
be able to get a broad view of project status in less than
a minute after entering the space [12]. Using a wallboard
showing work items and their status is a common practice to
create an informative workspace. Many agile methods, e.g. XP
(extreme programming), Scrum and Kanban, use it to support
daily meetings [4] [13] [3].

Daily team meetings are typically limited in time to at
most 15 minutes. Team members give short status updates on
their current work and how they plan to move forward. Any
obstacles that are brought up or detected during the meeting
where no immediate resolution is found are handled outside
the meeting [3].

In his first book describing XP [4], Kent Beck states that
the basic XP management tool is the metric. He argues that
showing the progress of three to four key issues on a big,
visible chart can be used as an effective way for managers to
non coercively communicate the need for change in projects.

What to measure and which metrics that are interesting
to monitor is not always obvious. Hartmann and Dymond
have created a few heuristics for selecting metrics for agile
teams. As Beck, Hartmann and Dymond also believe that
a few well considered metrics should be used, if too many
are displayed it can cause important trends to be missed

[14]. Similar findings have been found for large software
development companies where a limited number of measures
was found to be sufficient to monitor important trends [15].
Furthermore Hartmann and Dymond believe that metrics that
provide information to discussions are important to improve
processes for the team. They also argue that the data used for
the metrics should be aggregated to team or iteration level.

One common chart to show on big visible charts in agile
methodologies is burn down charts. It visualizes the teams
progress by plotting remaining work and how it is reduced
over time. This gives the observer a quick view of the team’s
velocity, how much work is getting done and how fast, in
comparison to planned deadlines. This can help to determine
if features can be added to the current iteration [13].

Another central concept in XP management from Kent
Beck’s book [4] is tracking. Beck argues that tracking accuracy
of estimates by measuring outcomes is essential for learning
and improving. Beck further describes the role of tracker in
XP teams as responsible for selection and gathering of data
for metrics to be used.

According to Beck you should be wary of introducing over-
head and excessive disturbance of developers when collecting
data, though he also points out that one benefit of bothering
developers for data is that it raises awareness of that the data
is being measured and its importance to the success of the
project [4].

Alistair Cockburn extends the idea of the informative
workspace with the metaphor of a project status display as
an information radiator.

“Just as a heating duct blows air into a hallway or a
heater radiates heat into a room, these posters radiate
information into the hallway, onto people walking
by.” [16]

The agile manifesto’s last of its twelve principles, “At
regular intervals, the team reflects on how to become more
effective, then tunes and adjusts its behavior accordingly.” [5]
describes a practice well served by the big, visible chart and
the informative workspace which encourages reflection and
analysis of the current status of the project, especially if related
to estimates and goals.

Information in agile projects is what keeps the components
of a project in sync and keeps the team members in touch. It
is by having the right information available at the right time
that keeps the teams creative and helps them to solve problems,
and this is one of the challenges for managers in agile projects
[17].

It has been argued that one of the obstacles to making
decisions in software development is lack of information [18],
[7], [17]. This leaves managers to depend on their experience
and intuition for making decisions, which might sometimes
turn out well, but often does not [19].

Also, if the necessary information that the team need to get
their work done is not available, the team’s ability to self-
organize is reduced [17]. Guzzo and Dickson describe self-
organizing teams as a group of members that has authority
and responsibility for many tasks in their daily work, e.g.
”planning, scheduling, assigning tasks to members and making
decisions with economic consequences” [20]. By bringing

3

the authority to make decisions to the level of operational
problems, self-managing teams can directly affect team effec-
tiveness by solving problems quicker [21].

2.1.2 Information and data visualization
With the concept of informative workspaces there is a need to
create an environment where the project status can be seen
within a short period of time. Some visualizations already
exists, such as previously described burn down charts, but for
new metrics also new visualizations are needed. This creates
an opportunity to use information visualization which has the
power to convey a lot of information in a glance.

Edward Tufte stated that ”Graphical excellence is that which
gives to the viewer the greatest number of ideas in the shortest
time with the least ink in the smallest space“ [22].

In his theory he discusses principles for creating visualiza-
tions and the following have been considered when creating
visualizations for this research. Chartjunk which means ele-
ments that adds no value to the visualization , data-ink ratio
which is a measure of how much of the ink in the visualization
that is used to display data. Small multiples which refers to
showing a series of many small graphics of the same type in
one visualization (see figure 1). Concluding, a recurring theme
in his theory is to ”Above all else show the data“ [22].

The types of visualizations focused on in this study will be
described in the following paragraphs.

Sparklines are word-sized line charts. By scaling the chart
down significantly you obtain a high information density and
data-ink ratio. Even though some details may be lost due to its
small size and less than ideal display resolutions, sparklines
can provide context to otherwise disconnected numbers or
charts. Sparklines are especially effective when used as small
multiples to enable comparison of values over time [23].

Bullet graphs (most often) show a single quantitative mea-
surement on a linear scale. The chart can have additional
features such as multiple ranges, encoded by background color
in the chart for e.g. low, mid or high performance. Markers for
estimated or target values are also used. Due to the basic nature
of the chart it can display all its information even if scaled
down, which makes it a good candidate for use in displays
of small multiples [24] (see figure 1 for an example of bullet
graphs created by Stephen Few [25]).

Fig. 1. Bullet graph in small multiples taken from call-
center dashboard [25]

A Heat map is shown as a two-dimensional matrix where
the value of each cell is represented as shades of colors. This
visualization is quite compact and many series of values can
be shown in the same map without overlap.

Classical data visualization techniques such as line charts
and histograms are also used.

2.1.3 Information dashboards
One area where data visualizations have been used for quite
some time is in information dashboards. There is no clear
definition of dashboards but Stephen Few describes them as
follows.

”A dashboard is a visual display of the most im-
portant information needed to achieve one or more
objectives; consolidated and arranged on a single
screen so the information can be monitored at a
glance.“ [24]

An issue often found in information dashboards today is that
they show little information and the information they do show
is often displayed poorly. A reason for this is the use of flashy
gadgets instead of using simple visualizations. The focus of a
dashboard should always be to communicate information, to
help the user to acquire the information they need [24].

Brath and Peters describes dashboard as ”Dashboards and
visualizations [...] help people visually identify trends, patterns
and anomalies, reason about what they see and help guide them
toward effective decisions.“ [26]

The challenge in creating dashboards is to combine all the
interesting information onto a single screen in a manner that
keeps it simple to understand and interpret. There is also often
requirements on that the dashboard should be used to quickly
gather information. By using visualizations instead of text this
becomes possible, reading text is a rather slow process whereas
visualizations can be interpreted at a glance [24].

One area where dashboards are used for software develop-
ment is to raise awareness on different aspects for the project
[27], [9], [10]. Treude and Storey conducted an empirical
study of several large development teams to examine how
dashboards and feeds could be used. In their study they
found that developers mainly use dashboards for getting high-
level overview for project status, gain awareness for other
developers and teams, and to identify bottle-necks. Where
managers instead used dashboards to compare teams and make
differences between them visible. Furthermore they found
that both developers and mangers used the dashboards for
task prioritization before deadlines, where they depend on the
dashboard to show critical work items that need to be finished
before delivery [27].

2.2 Related work
There are many available tools for supporting and managing
software development processes. Suites of products such as
IBM Rational and its Jazz platform [28] or Thoughtwork’s
adaptive ALM [29] can be used to support application lifecycle
management (ALM). Chapelle [30] describes ALM as having
three aspects: government, development and operations which
together cover the lifecycle of an application from idea to end-
of-life.

4

Even though many of the features provided by this type of
tools fall outside the scope of this thesis there are common
features such as tracking and reporting that support the same
tasks as KnowSE at RUAG, which is the framework this
thesis contributes to. Often, and also in the case of the
previously mentioned examples from IBM and Thoughtworks,
dashboards are used to present tracking and reporting. These
dashboards are customizable to meet the varying information
needs of users. The next section will present recent research
on some of these needs.

2.2.1 Information needs
Buse and Zimmerman designed a survey that was sent to 110
developers and managers working at Microsoft, with the goal
of identifying the information needs for decision-makers in
software development projects. In their study they found that
managers rated data and metrics as the factor that influenced
their decisions the most, where the developers rated their
experience instead. Both groups also found it more important
to comprehend past events than attempt to predict the future.
One reason for this could be that predictive models are hard
to understand and making decisions without understanding the
underlying data often distrusted [7].

Furthermore they investigated which metrics the developers
and managers use or would use if available. When comparing
all metrics, the top rated category was failure information.
However an interesting thing to note was that all metrics would
be used by at least half of all engineers and managers if
available. Concluding they discuss that due to the nature of
a software project there are many stakeholders that all have
different information needs [7].

Biehl et al. [9] investigated what information that developers
use to gain awareness of group members status and how this
information was gained. They found that the most common
way to get a view over the team’s current activities was
through which tasks were assigned to each team member, bug
reports and status of shared code base. The main sources for
information was through whiteboards, databases, documents
and source code repositories.

To support the information needs in software development
Buse and Zimmerman argues that changes needs to be done,
stating that data gathering so far have been too focused on data
and not on the need of users. They argue that data gathering
should start with the users’ needs and from that try to find the
data necessary to provide a solution [7].

2.2.2 Related studies
This section summarizes results found in four related studies,
starting with two that introduced dashboards on large screens
in projects to raise teams awareness. This is followed by a
study focused on raising awareness using dashboards and feeds
on desktop computers and finally a study which reccomend
general guidelines and analysis types for creating tools to
support decision makers in software development projects.

In the two studies that tried to increase team awareness
by introducing dashboards on large screens in the projects
workspace. The first was conducted by Biehl et al. and called
FASTDash [9], they reached the conclusion that introducing

the visualizations was generally well received and that they no-
ticed increased discussion within the studied group. However
they also noticed areas for improvement in the visualizations
used, both by aggregating data to more effectively use the
screen area and adding more information from work items to
give a more complete view of the project [9].

The second was conducted by Jakobsen et al. and was called
WIPDash [10]. They introduced the dashboard to two teams
hereafter called A and B. In team A people used the dashboard
more than team B and Biehl et al. argue that one of the reasons
could be that it was a part of their daily meeting, where team
members could use the dashboard as a summary of what tasks
they completed the previous day. Team B did not have daily
meetings, which could have lead to that they did not get as
familiar with the dashboard. Another reason could be that
team B’s dashboard contained more information, which led
to it being cluttered. This was also was identified as one of
the areas which could be improved to the next version of the
system, to create a dashboard that is easier to interpret and get
the information with a glance [10].

The third study also focused on how awareness could be
achieved in software projects using dashboards, furthermore
they also looked at how feeds could be used. Instead of
displaying the dashboard on large screens in the project
workspace they looked at a company using configurable
dashboards and feeds for the developers personal computers
from IBM’s Jazz platform. In their study they found that the
dashboards were mainly used to get a view of the overall
project status and to get an idea about the status for other
teams within the project. They were also used for prioritization
before deadlines, where the team depended on the dashboard
to show critical work items [27].

Finally, the last study looked into the information needs
for decision-makers in software projects, described in the
previous section, and from the results of their study Buse
and Zimmerman established guidelines for creating software
analytics tools aimed to be used by managers. In short, the
guidelines for a tool is that it should be easy and fast to
use, be able to show the data with varying amount of details.
It is also more important to show past data than having
predictive models. Finally it can be useful to compare metrics
to milestones in the project [7].

In addition to the guidelines they also list analysis types that
can be used to help stakeholders gain insights from the data.
Some of these types are trends, by looking at how an indicator
is changing, decisions can be made when negative trends are
found. Alerts, by automating collection and analysis of data a
tool can warn when unexpected events occur. Summarization,
by aggregating data, for example change records, a tool can
help the users to gain high-level insights. Finally goals, which
can help users to analyze how different aspects of the project
is progressing with regards to its goals [7].

2.2.3 Positioning
In agreement with Buse and Zimmerman’s conclusion that
information needs vary between stakeholders Maletic et al.
[31] propose a task oriented view of software visualization
systems which they position in terms of five dimensions:

5

System Task Audience Target Representation Medium
KnowSE at RUAG Process and team manage-

ment
Developers, testing
personnel, process
and team managers

Source code, test suite
data, process informa-
tion

Low-interactivity, dy-
namic, offline, graph-
ics

High-def TV screen

WIP/FastDash Development activities
and team management

Developers, testing
personnel

Source code, process
information

Low-interactivity, dy-
namic, online, tables,
graphics

High-def projected
display, High-def TV
screen

IBM Jazz Platform,
(Treude and Storey)

Development activities,
process and team
management

Developers, testing
personnel, process
and team managers

Configurable Interactive, dynamic,
online, configurable
dashboards

Personal Computer

TABLE 1
Comparison of software visualization systems

Tasks Why is the visualization needed?
Audience Who will use the visualization?
Target What is the data source to represent?
Representation How to represent it?
Medium Where to represent the visualization?

Table 1 positions KnowSE at RUAG in relation to three of the
presented studies using the dimensions proposed by Maletic
et al. [31].

As can be seen in the second row of the table, the studies by
Biehl et al. [9] and Jakobsen et al. [10] have been merged into
the same row titled WIP/FastDash. Both studies are focused
on low-level awareness such as which files were being edited
or checked out, primarily displaying data from source code
repositories. Furthermore both studies used large screens in
the studied projects workspace and targets the same tasks and
audience.

This thesis, as can be seen in the first row, also used a
large screen in the common workspace. A difference between
the representations of the data is that this thesis is more
focused on high-level awareness between teams in the project.
Visualizations represents how the data changed over time to
a larger extent compared to WIP/FastDash that focused on
current activities of developers. In this study current tasks
were already shown using planning boards. Visualizations are
instead used to complement the low-level data presented on
the planning boards.

The study by Treude and Storey did not present their
data using a large screen in the common workspace, but
instead studied how dashboards were used on computers. The
studied platform, IMB’s Jazz, supported the dashboards to be
configured by the users and therefore the target data can not
be specified. Because of the configurability, the system can
support both low- and high-level awareness.

3 METHODOLOGY
This section starts out by describing the industrial and aca-
demic context of the thesis. RUAG Space is described in short
and the project under study (PUS) and its development process
are also described. Research questions and methodology are
presented in sections 3.2 and 3.3. This section starts out by
describing the industrial and academic context of the thesis.
RUAG Space is described in short and the project under
study (PUS) and its development process are also described.
Research questions and methodology are presented in sections
3.2 and 3.3.

3.1 Context
The thesis work was done in collaboration with RUAG Space
AB. RUAG Space’s core business in Sweden is to design
and manufacture on-board satellite equipment. 314 out of the
total 378 employees are working out of their headquarter in
Gothenburg. This is also where this thesis work has been
conducted. The focus of the Gothenburg office is to design and
manufacture digital and microwave electronics and antennas as
well as develop the systems for the equipment. Their other
office in Sweden is in Linköping where they design and
manufacture launcher adapters, satellite separation systems,
satellite structures and sounding rocket guidance systems.

Previous projects done in collaboration by Chalmers, Uni-
versity of Gothenburg (GU) and RUAG Space have studied
how project data can be measured and analyzed to create
a more effective development process. The measurements
have so far been done on projects after completion, i.e. on
historical data. These studies have highlighted areas for im-
provement [32]. RUAG predicts that by continuously measure
the progress in ongoing projects to be able to react early
to avoid possible problem areas [32]. To this end Chalmers,
GU and RUAG started a joint effort to develop a support
system to provide an automated chain of extraction, analysis
and presentation of data from ongoing software projects. From
this project another goal is also to be able to extract a more
general framework, KnowSE [11], which this thesis is part of
and contributes to.

The KnowSE framework comprises three functional mod-
ules. Data extraction, analysis and presentation. At the start
of this thesis the framework was in its starting phase, but
an architectural design was set and base classes had been
designed. Instances of data extraction and analysis of meta-
data from repositories and test-logs for the PUS had also been
implemented. This thesis contributes to KnowSE primarily by
providing a set of configurable visualization components for
the presentation module.

The introduction of the visualization system was done
mid-project, just before the start of a intensive development
phase. The presentation was placed in a common workplace
to function as an information radiator and as support for daily
meetings. Feedback and evaluation of the live system was done
over three weeks.

The PUS is composed of a set of work units called objects.
The objects that are focused on, and most relevant to this
thesis are Software, Verification and System. All work carried

6

out in the PUS is categorized into work packages (WPs) which
each belong to an object. Both the software and verification
objects has what is called an object manager (OM). The OM is
responsible for that its team delivers the work that is assigned
to its object. In contrast, the System object, which by definition
has a broader scope, is contributed to by roles that have a more
individual responsibility for their work.

Daily, short stand-up meetings are held for each object.
After the object meetings there is an integration meeting led
by the integration responsible (IR). The integration responsible
makes sure that dependencies between objects are accounted
and planned for to make sure that objects can perform their
work. Daily meetings are described further in section 4.3.1.

Outside the PUS there are additional managers e.g. de-
partment and line managers who also have their respective
responsibilities and interests in the status of the project.

3.2 Research objective and questions

This thesis focuses on how visualizations of project status can
be used to support software development projects through the
introduction of an information radiator aimed at promoting
awareness and to support daily group meetings in a multi-
team project.

The research questions that this thesis aims to answer
are listed below with accompanying sub-questions to further
specify the goals.

RQ1: How can we refine the use of information visual-
izations to support assessment and decision making in
daily group meetings?
SQ1.1: Which visualizations are better suited for facil-

itating discussions in daily group meetings?
SQ1.2: Which principles for visualizations applies to the

group meeting context?
RQ2: What effects on group meetings can be seen from
introducing visualizations of project status to support
assessment and decision making?
SQ2.1: How does it affect the decision cycle?
SQ2.2: Did the introduction of visualizations in group

meetings improve discussion?

3.3 Design research

Design research methodology [33] has been used in this thesis
work to. As can be seen in figure 2 design research consists
of five phases. Where each phase increases the awareness of
problem under study, shown by the knowledge flow arrows.

Knowledge Flows Process Steps
Awareness of
problem

Conclusion

Development

Evaluation

Suggestion

Fig. 2. Design research work- and information flow

The remainder of this section describes the methods used
in phases leading up to the results presented in section 4 and
discussion and conclusion in sections 5 and 6.

3.3.1 Initial awareness of problem & suggestion
To gain information about the problem under study three steps
were taken; review of existing theory and research articles,
observation of the setting where the support system would be
deployed and interviews with initial metrics and visualizations.
Using the information gained during these steps the first
suggestion was proposed.

The following concepts from theory and research areas were
identified and considered applicable and therefore studied.

• Informative workspace and information radiators
• Daily stand up meetings
• Metric tracking as a management tool
• Data graphics design
• Dashboard design
• Previous research done at RUAG

See section 2 for a more detailed description of the studied
research areas.

To better understand the setting in which the system would
be used both software and integration meetings were observed
without any interference. If any questions arose they were
asked after the meeting had finished.

Based on the theoretical framework presented in section
2.1 a set of different visualizations as well as metrics for
the available time data were selected and produced. To verify
which of the visualizations that were most interesting to the
PUS, interview sessions were held for evaluation.

Key stakeholders were selected as interviewees and their
roles can be seen in table 2. The interviews were 30-40 minutes
and started with a short introduction of KnowSE and what
the purpose of the thesis was. The introduction was followed
by a review of all metrics and visualizations. Two or three
alternative visualizations were shown for each metric. The
interviewee was asked to select the visualization they thought
was best with regard to its value and usefulness.

7

Role
Software Line Manager
Verification System engineer
Software Object Manager
Financial controller
Line manager

TABLE 2
Metric & visualization interviewees

From these interviews the first presentation draft was created
and presented at a stakeholder meeting where representatives
for all project objects as well as project managers and higher
management were present. At the meeting, metrics as well
as their visualizations were discussed. Concluding with a
discussion about the introduction of the system.

3.3.2 Development & evaluation

The system was introduced on a big screen in the PUS com-
mon workspace and was followed by a two week period were
the system was continuously being revised and functionality
being added based on feedback from users. At the end of the
two week period the functionality was considered frozen and
one more week followed without any changes.

During this three week period both the system itself as well
as the effects of its introduction were evaluated. Feedback
was gathered through discussions either with the entire team
directly after a group meeting or with individual members to
discuss details about how to present the data for their specific
field.

Semi-structured follow-up interviews with key stakeholders
were held after the three week period for a final evaluation of
the system.

Role(s) Group
Manager Digital Products Manager
Software Line Manager Manager
Software Object Manager (Shared)
Integration responsible Manager
Verification System engineer Engineer
Software Requirement Responsible Engineer
Software Design Responsible
Software Object Manager (Shared)
Test Equipment Object Manager Engineer

TABLE 3
Interviewees

Order Topic
A Information about anonymity
B Purpose of interview
C Structure of interview
Q1 Role in organization

- Title
- Work tasks
- Responsibility in organization

Q2 Information needs
- Information sources
- Decision types

Q3 Metrics, visualizations and goals of this thesis
- Early warning system
- Indicator of test maturity
- Increase cost awareness

Q4 Usefulness as Meeting support and influencing factors
- Initial attitude to system
- Usefulness as meeting support
- Placement of information radiator in common workspace

TABLE 4
Interview structure

The interviewees, see table 3, were selected to give a broad
view over how the system had been used and its reception.
The interviewees range from key stakeholders that had been
involved from the beginning to stakeholders that first got to see
the system when it was introduced in the workspace. Since the
produced visualizations were focused on software and testing
it was decided to select project members that mainly worked
with those areas.

In interviews a separation between the interviewees due
to their different information needs and roles within the
organization was noted. It was therefore decided to divide
them into two groups of engineers and managers. There is
not always a clear distinction between the groups, in table
3 it can be seen that one role is even shared between two
of the interviewees. The main difference between the groups
can be explained as that the engineers provide information to
the integration meeting as opposed to the managers that need
information from the integration meeting. The members of the
manager group can of course also provide information to the
integration meeting, but in general it is the engineers. The
roles of the interviewees and their groups can be seen in table
3.

The interviews followed the structure defined in table 4. For
each topic in the table a few questions were prepared to ensure
that the same topics where discussed in all interviews. Each
topic was followed up with questions depending on what was
discussed. All interviews were held by both authors, where one
had the role of interviewer and the other transcriber. Interviews
and ranged from 35 to 60 minutes.

Figure 3 illustrates the work flow of the study. Columns
correlate to the phases described in this section. Rectangles
represent development and study activities, ovals represent
produced artifacts and hexagons represent feedback and eval-
uation activities. All activities contribute to the problem un-
derstanding which feeds back into following activities and
ultimately to the conclusion which is base for answering
research questions.

8

Presentation
prototype

Morning meeting
observations

Initial problem awareness Proposal

Pre-study

Technical proof
of concept

Effort data
visualizations

Interviews

Presentation
proposal

Stakeholder
meeting

Development and Evaluation

Refined live
presentation

Refinement of
presentation

Project
evaluation
 interviews

Conclusion

Cont. feedback

Iteration

Fig. 3. Workflow

4 RESULT

In the following subsections the artifacts developed during this
study is described as well as the feedback gathered during the
different phases of our study.

First subsection describes the charts developed and used in
this study and the rationale and decisions to why they were
chosen.

Second subsection in short describes the architecture of
KnowSE and Data-Driven Documents which is the visualiza-
tion framework used in this study. Finally a description this
study’s contribution to the KnowSE project.

The final subsection summarizes the feedback gathered
during this the thesis work. It is divided into three phases,
initial orientation, continuous follow-up and evaluation.

4.1 Charts
This section offers description and rationale for the choice
of charts that were produced during the study. As well as a
description of how they were composed in the presentation
system.

The charts used to visualize the data were:
• Heat map
• Combined sparkline with bullet graph
• Combined line chart and histogram
The presentation system consisted of a number of views, a

dashboard with an overview of the three different data sets
that were analyzed, code meta-data, test logs and reported
compared to estimated time. For each data set a number
detailed view were also created, to give the user the ability
to further investigate the data.

Dashboard
In figure 4 a screenshot of the top part of the dashboard is

shown. As can be seen it is divided into three columns, Flight

code changes, Test executions and Reported & estimated hours
for full project/monthly.

Heat maps are used to visualize code change and test results.
The reasoning behind using them was that heat maps had
previously been used successfully in post-mortem analysis and
that many series of values can be shown in the same map
without overlap.

Flight code changes
The heat maps for flight code changes that can be seen

in the left column in figure 4 shows number of changed
lines per code module. There is one heat map per directory
in the flight code repository. Rows and columns in the heat
map corresponds to code modules and weeks respectively.
The color of the rectangles is determined by a quantization
function. The input domain of the function is real values from
zero to max, where max is the maximum number of changed
lines in a week for any file in that directory. The range of the
function is the nine value color range that can be seen in the
top left below the title in figure 4.

Test executions
A larger heatmap, shown in the middle column of figure

4, was used to show an overview of status of functional
test runs. For this heat map a different range of color is
used. Instead of using red, which could potentially cause a
misleading suggestion of negative interpretation. The range
shown below the title of the middle column in figure 4 is used
instead. Purple, which does not have the same connotation as
red, is used to show tests that had more failing than successful
runs in a week.

Reported & estimated hours, full project
A combination of bullet graphs and sparklines was used to

visualize time data for the full project. The bullet graphs are
used in small multiples together with the sparklines, see top of
left column in figure 4. Sparklines give the context over time
while bullet graphs give an overview compared to estimate for
the whole project. The sparklines share time scale along the
x-axis for comparison of trends.

Reported & estimated hours, monthly
For monthly comparison between reported and estimated

hours a combination of line chart and histograms was used.
Both values are shown in the same graph to enable compari-
son, see bottom part of left column in figure 4.

Detailed views
As can be seen in the black navigation bar in the top of

figure 4 there are a number of links. Except for the leftmost
link all lead to a detailed view for a metric. The available
views are, flight code grouped by directory, flight code grouped
by integration step, test code grouped by directory, daily
test executions and finally reported hours. All detailed views
contain the same type of visualizations as in the dashboard
but with more data and details. Except for the view for daily
test executions which has a different color range for the heat
map.

For the daily test executions heat map, each rectangle
corresponds to all of the day’s test runs. In this heat map

9

Fig. 4. Dashboard with code, test and time visualizations

only days with no failures are colored green, if any test failed
the rectangle is colored red, see figure 5.

Fig. 5. Heatmap showing daily status of functional tests

4.2 Technology
In this section the technology and technical choices made
during the thesis work is described. Starting with a description
of the KnowSE architecture followed by a short description
of the visualization technology used and finally a section
describing the contribution to the visualization module of the
KnowSE framework developed during this study.

4.2.1 KnowSE - Architecture
When this study was started the KnowSE framework was still
in an early phase, however the fundamental ideas and structure
were defined. A brief description of the key components in the
framework can be divided into data extraction, analysis and
presentation.

The data extraction is used to gather base measurements
from data sources. An instrument listens to certain events and
collects data when triggered. The data is saved as documents in
a standardized format, e.g. JSON, to be stored in the KnowSE
database to, at a later point, be able to be analyzed. The
database to be used in KnowSE is CouchDB [34], which is a
NoSQL database that is designed to store documents.

Before the collected data can be presented, it is analyzed
and computed to a derived measure. This could be simple ag-
gregates or more complex metrics using several data sources.

The presenter uses the derived measures from the analyzer
and presents them using visualizations to the users. The

visualizations are created using the JavaScript library D3.js
(Data-Driven Documents) [35].

4.2.2 Data-Driven Documents
D3 (Data-Driven Documents) is a lightweight JavaScript li-
brary that can be used to create graphics by using standard web
elements such as HTML, SVG and CSS [35]. SVG (Scalable
Vector Graphics) is a markup language that can describe two-
dimensional graphics that can be rendered natively by most
modern browsers [36]. By using D3 the graphics can be
created when the page loads instead of have to generate static
images in advance. Which gives more opportunities to modify
the web page based on the available data. Thus, the document
is driven by the data.

D3 is a very expressive language and it is easy to modify the
web pages with quite few lines of code. It uses a declarative
programming style meaning that it is possible to work on sets
of elements. Thus, it is possible to select individual or entire
groups of elements and describe how all elements in the set
should be modified, no need to explicitly telling the program
how to do it, e.g. writing loops changing each element.

Furthermore D3 makes it possible to dynamically update the
visualizations on updates in the data. By defining enter, update
and exit statements D3 will know how to handle any changes
done to the data set bound to that element. D3 also supports
dynamic properties by defining functions to properties instead
of static values.

Finally D3 also supports animations and transitions on the
visualizations, which can be used to add interactivity to let the
user interact with the data.

Due to the diverse requirements from different projects
and stakeholders that KnowSE might have to support, the
flexibility of D3 is very useful. Since D3 only uses standard
web components and it is written in JavaScript it can be
extended and combined with other libraries.

4.2.3 Design and architectural choices
In this section this thesis’ contribution to the KnowSE frame-
work is described. Following the architecture of KnowSE the
data extraction is described first, followed by analysis and

10

finally presentation where the main contribution have been
made.

Data extraction

As mentioned earlier extraction and analysis of meta-data
from repositories and test-logs for the RUAG project under
study had already been implemented. A part of the study
was to complement the already existing data with informa-
tion about project time estimation and actual outcome. An
instrument was developed to gather data from two of RUAG’s
systems and store the data as JSON documents. Since this
data was not updated frequently, data gathering was scheduled
nightly.

Analysis

It was decided to keep the analysis simple, so the visualiza-
tions presented the source data and instead let the users make
the analysis and interpretations.

For that reason the analysis only consisted of grouping data
and aggregating values. With D3’s declarative programming
style and powerful features for working with datasets it was
decided to do the analysis with D3.

For example, with the data defined in figure 6, an array
of objects, and it should be grouped by name, year and
summarize the values.

var arr = [
{name:"A", year:2011, value:1},
{name:"A", year:2011, value:2},
{name:"B", year:2012, value:3},
{name:"B", year:2012, value:4},
{name:"A", year:2012, value:5}

];

Fig. 6. Example data

The D3 code in figure 7 could be used to achieve this.
On line 2 it is described what to group on, i.e. the name of
the object.
On line 3 it is described to also group on year.
On line 4 it is described what to do with the data in each
group. This function will be called three times, two times for
A since it has data for both 2011 and 2012 and only once for
B since it only has data for 2012. The input for the function
will be an array of objects containing of the values for that
name and year.
On line 5 another D3 function is used to summarize the data
in the array, the second argument to d3.sum() is an accessor
that tells what data to get from each object in the array, i.e.
the value.
On the last line 8 arr is given as input to d3.nest() and tells
it to map the result to an object which will be assigned to the
variable on line 1.

1 var groupedData = d3.nest()
2 .key(function(d) { return d.name; })
3 .key(function(d) { return d.year; })
4 .rollup(function(data) {
5 return d3.sum(data, function(d) {
6 return d.value; });
7 })
8 .map(arr);

Fig. 7. Example of analysis

The variable groupedData in figure 7 would be assigned
the object found in figure 8. As can be seen, the name of
the objects from the array arr is used as properties, which
was what was stated in in figure 7 on line 2. Each name is
assigned an object with the years as properties and the values
have been summarized for each year.

{
A: { 2011:3, 2012:5},
B: { 2012:7}

}

Fig. 8. Result from analysis

This is of course a simple example but proves the point,
only a single D3 statement was needed to group the data into
the desired format.

Presenter

The main contribution of this thesis to KnowSE is with
a framework of configurable visualization components called
knowse.js. The visualization have been selected considering
the data to be visualized as well as theory from data visual-
ization and in collaboration with RUAG and the researchers
working on KnowSE.

The following base graphics have been added to the frame-
work:

• Sparkline
• Bullet graph
• Line chart / Histogram
• Heat map

Compositions of the base graphics was also created to
provide more complex visualizations which can be created
with a single function call.

• Sparkline with bullet graph
• Multiple heat maps

Each visualization is configurable through an options object
with a set of properties. Some properties are the same for all
objects, e.g. divId, but most are specific for the visualization.
An example of a options object for a Line chart / Histogram
can be seen in figure 9.

11

var options = {
width: 450,
height: 150,
divId: "#line",
startDate: new Date(2011,0,1),
endDate: new Date(2012,0,1),
series: seriesData

}

Fig. 9. Example of options object

Most properties should be self-explanatory, but this object
would create a chart with the width 450px and height 150px
on the div with the id “line”. The chart would display the data
between 2011-01-01 to 2012-01-01 and would use the data
defined in the object seriesData. This object contains values
mapped to dates to be used as data for the visualization.

However it is not always this straightforward how the data
for the visualization needs to be formatted. In the heat map
the data that should be visualized might have different formats
and the metric to be used might be complex. To solve this the
dynamic features of JavaScript and D3 was used by passing
functions within the options object. They can either be used
as accessors and only point to what data that the visualization
should use or make more complex calculations. In figure 11
is an example of a function used to calculate the value and
tooltip for each cell in a heat map.

function (dataArray) {
var cellInfo = {};
cellInfo.value = d3.sum(dataArray,

function(d) { return d.value; });

cellInfo.tooltip = "Example tooltip, "
+ "items: " + dataArray.length
+ ", value: " + cellInfo.value;

return cellInfo;
}

Fig. 10. Example of function for dynamic configuration

This function would be called for each cell in the heat map
that has values assigned to it. The function gets an array of
all data bound to that cell and uses it to calculate a value and
a tooltip to be shown when hovering with the mouse.

In figure 11 a complete example of how to create a visual-
ization using knowse.js can be seen.
On line 1 a file from the data instrument is loaded using
d3.json().
On line 4-12 the data from the file gets analyzed and grouped
into the desired format.
On line 14 the options object is defined.
On line 15-20 properties for the visualization is set.
On line 22-34 functions for rows, date and cells are defined.
And finally on line 37 the heat map is created using the
knowse.js framework.

1 d3.json("./path/to/file.json",
2 function (dataFromJson) {
3

4 var groupedData = d3.nest()
5 .key(function(d){ return d.name; })
6 .rollup(function(data) {
7 return d3.sum(data,
8 function(d) {
9 return d.value;

10 });
11 })
12 .map(dataFromJson);
13

14 var options = {
15 data: groupedData,
16 cellSize: 17,
17 startDate: new Date(2012,0,1),
18 endDate: new Date(),
19 divId: "#example",
20 colorScheme: "OrRd",
21

22 rowFun: function(d) {
23 return d.name;
24 },
25 dateFun: function(d) {
26 return d.date;
27 },
28 heatValueFun: function (d) {
29 var cellInfo = {};
30 cellInfo.value = d.length;
31 cellInfo.tooltip =
32 "Example tooltip, value: "
33 + d.length;
34 return cellInfo; }
35 };
36

37 knowse.chart.heatmap(options);
38 }
39);

Fig. 11. Complete example

4.3 Data collection
Data collection was done in three stages: initial orientation,
continuous follow up, and final evaluation. The methods used
in each step are described in section 3.3.

4.3.1 Initial orientation
In this section the information gathered in the initial stage
that lead up to the first presentation suggestion is presented.
A listing of the studied research areas are given followed
by observations from daily meetings. Next, feedback gath-
ered during review of the initial visualizations and metrics
is summarized. Finally, the presentation suggestion and the
feedback gathered from the final stakeholder meeting before
introduction of the system is presented.

12

Studied research areas
Existing literature and research articles was studied as well

as previous research done at RUAG to get insight in RUAG’s
development methodologies. Some of the research areas that
were identified as applicable and studied were agile concepts
such as informative workspace, information radiators and daily
meetings. From data and information visualization, principles
for creating effective visualizations was studied as well as
theory for creating dashboards to present the visualizations.
More details about the studied research areas are described in
section 2.

Observation of daily meetings
Every morning short meetings for each object within the

project as well as integration meetings are held. Both software
and integration meetings were observed to better understand
the setting in which the system would be used.

All daily meetings take place in the common workspace
for the project under study (PUS) where participants gather
around task boards. The task board for each object shows a
table with one column for each day in the upcoming two weeks
and one row for each object member. The task board used for
the integration meeting has rows for each object instead of
object members. For all boards, colored post-it notes are used
to display what is being worked on and when it is expected
to be finished. The color of the note indicates if it is a normal
work item, a dead-line for a feature being worked on or a
problem that they has been found. Some of the task boards
also have printed papers showing status, e.g. list of project
modules, list of tickets and time allocation. The focus of the
boards is to show current tasks and upcoming deadlines.

The integration meetings roughly follow the pattern of
daily stand up meetings seen in e.g. Scrum. The meeting is
facilitated by an integration leader and meeting participants
take turn answering ”the three questions”: what they have
been working on, what they plan to do today and if they
see any impediments for moving forward. When impediments
are brought up they are discussed in short and if needed the
task board is updated. If discussions that only involve some
of the meeting participants start to drag on, the discussion is
continued by involved parties outside of the meeting. There
is always a clock set at the bottom of the integration task
board to keep track of time. Meetings always start on time
and laggards will have to join midway.

Software object meetings are similar to the integration
meeting in most ways. The software leader use the software
task board for planning in-between meetings and the object
members continuously update their status. The software object
only comprise three developers. Due to the object’s small size
the software meetings are even shorter than the integration
meetings.

Key observations:
• There is a clear focus on keeping meetings short and

efficient.
• There is a high level of interaction with the boards.
• Boards are used for planning and orientation in-between

meetings.

Evaluation of time visualizations and metrics
Interview sessions were held to evaluate visualizations of

time allocation metrics. Two or three alternative visualizations
were shown for each metric. More details and selected inter-
viewees can be seen in section 3.3.1.

The first set of visualizations that was displayed were bullet
graphs showing accumulated time for software work packages
compared to their estimates. The bullet graphs were well
received in general. Participants found it easy to compare
estimated to actual reported time. When having to choose
between visualizations with individual and common scale for
packages. participants preferred the common, saying that it
was easier to decode.

The interviewees were also shown the same bullet graphs,
but with the addition of a sparkline next to it displaying the
time allocation for each work package over time. Two persons
were positive to the addition. One of them saying that this is
interesting information that is presently not being looked at.
The other saying that it could be useful to relate your current
perception of patterns of time allocation. He also hypothesized
that there could be some value in detecting common patterns
e.g. spikes for work packages. Others were more skeptical to
its value but said that it couldn’t hurt since it does not take up
more space and does contribute with more data. The number
showing the last weeks reported time was appreciated by all
since it gave a sense of the current trend. See figure 12 for an
example of a bullet graph combined with a sparkline.

Fig. 12. Bullet graph, common scale, absolute values with
sparkline

There was a general consensus that this type of visualization
could be valuable but that some modifications or config-
urability was needed. One manager, with a broad interest
in the project, wished for a more zoomed out view where
time allocation was shown for each object instead of work
package. Another, software manager, thought that the work
package level was too crude. She stated that she produced
more detailed reports for her own use. A verification manager
was understandably not as interested in the software packages
as he would have been in the testing.

Several of the interviewees brought up the concept of earned
value, highlighting that the interpretation of the relation of
the reported time to the estimated did not necessarily, at
all, represent how much of the work had been finished. One
commented that the printed ticket status sheet on the software
board would be a good complement to the visualizations in
this regard.

13

Which time period to show was brought up in several of
the sessions. One participant raised the issue of one category
dominating the common scale making the other more difficult
to see. Two participants suggested that the time period should
be three months since they do quarterly revisions of the time
estimates.

The next set of visualizations shown in the interviews was
one line chart and one set of bullet graphs showing reported
compared to estimated time for all software work packages
combined for each month. All interviewees preferred the line
chart. One participant commented that you would be able to
see how you relate to the estimate earlier compared to current
practice where he only looks at it at the quarterly review and
that you might be able to act earlier if it was looked at more
often.

The next set shown was one line chart and one heat map.
Both graphs showed reported time per work package over
the span of the whole project. The general consensus was
that it might be better suited for post project analysis. One
interviewee commented that the heat map was very focused
on showing high level of activity and that periods of no activity
could be just as important. See figure 13 for an example of a
heat map.

Fig. 13. Heat map showing reported time

When shown different ways of visualizing last week’s re-
ported hours all agreed that it was best to use red highlighting
in the bullet graph and the printed number of hours next to
it. A majority thought that one week might be too short time
period, they preferred a month instead.

Two more complex visualizations, one sunburst chart and
one treemap, were shown at the end in each interview. These
graphs were attempts at visualizing as many of the previous
metrics as possible in one graphic. While entertained by the
creativity, none of the interviewees thought that these were a
better alternative than a compilation of the previously shown
visualizations since these were much harder to interpret.

Based on feedback from the interview sessions, the visu-
alizations that got the best response were collated into a first
presentation suggestion. It was decided to use the bullet graphs
combined with a sparkline to display accumulated time for
work packages compared to their estimate as well as adding
the accumulated hours for the last 30 days. All interviewees
preferred the line chart over the bullet graphs to compare
monthly estimated and actual reported hours and was therefore
also picked. Some modifications were made to the line chart
to make a clearer distinction between the actual and estimated
values by displaying the estimations using a histogram instead.

Presentation of initial suggestion at stakeholder meeting
A stakeholder meeting, with representatives for all project

objects as well as project managers and higher management
attending, was held. The presentation suggestion was presented
and chosen metrics, as well as their visualizations were
discussed.

In addition to the time visualizations described in the
previous subsection, visualizations of code and test metrics
were shown. The code metric was visualized using a heat
map and was grouped by integration step with markers for
milestone dates. The test metric was also visualized with an
heat map and displayed failed test runs with a red color scale.

The meeting participants quickly related the visualizations
to their own perception and recognized anomalies, e.g. code
changes after milestones, with events in the project. The
noted anomalies prompted questions about how and why those
events occurred. An indicator to that the chosen visualizations
were interesting and created discussions.

It was argued that it is important that the visualizations for
test data encourages the test members to run even more tests.
To promote a desire to show that the tests are working instead
of that the visualization is only used to point out all the faulty
tests that is remaining. Because of this a new color scale was
requested for the test visualization.

Based on the feedback from the stakeholder meeting a
second version was developed and for the first time deployed
in the PUS common workspace.

4.3.2 Continuous
In this section a brief description of the introduction of the
system is given. Feedback for each visualization type as well
as the changes implemented are summarized.

The information radiator was presented after one of the
morning integration meetings. It was placed in their common
workspace and the visualizations were displayed on a big
screen seen in figure 14. The system consisted of a dashboard
with code, test and time visualizations as well as detailed
views for each metric. All metrics and their visualizations were
presented and discussed with the group.

During a two week period the system was continuously
revised and functionality was added based on feedback from
users. Both the system itself as well as the effects of its
introduction were evaluated. At the end of the two week eval-
uation a final update based on breakdown of the accumulated
feedback was done. The functionality after this point declared
to be frozen and one week without any changes followed.

Feedback was gathered through discussions either with the
entire team directly after a group meeting or with individual
members to discuss details about how to present the data for
their specific field. The following paragraphs summarizes the
feedback received and implemented during these two weeks.

General feedback
In the introduction meeting one of the first points that was

raised was that detailed descriptions about how to interpret
the visualizations and what data it uses must be easily found.
This was quickly added with a section for each visualization
describing its metric, data source, and latest extraction date.

14

Fig. 14. Presentation placement in project workspace

Feedback on code visualizations
The heat maps initially displayed one row per file, this

was too much details and could be grouped to modules (each
module contains a few files). Also the metric initially used for
the heat maps was number of commits per file, this was instead
changed to number of lines changed per file. Since developers
have different styles when committing to the repository, some
make many small commits and others prefer to commit fewer
times with larger changes.

There were also discussions about how to group the data,
the first attempt was to group by integration steps. But it was
discovered early that the data source used to map modules to
integration steps was not designed for this purpose. Modules
could be used for several integration steps and could therefore
be moved between integration steps depending on what was
being implemented right now. It was decided to instead
map modules to repository directories, which still somewhat
grouped the modules to different stages of the development
and in a structure that the developers are used to.

Feedback on test visualizations
One of the first requested features was to add information

about how many times each test case had been executed. This
was added to the visualizations by adding a row on the right
side of the heat map were statistics for each row can be shown.
For the overview visualization, the number of tests executed
was added and for the detailed view the number of successful
days and test executions since last failure was displayed.

The metric used for the test visualization was subject to
discussion a number of times since it could be interpreted in
different ways. The cells in the heat map was colored on a
scale of nine different colors ranging from purple to green
depending on if the test had more failed or passed test runs.
E.g. if a cell is colored green it means that that the test have

had more passed runs than failed, but it does not necessarily
mean that the test is stable since it could still have failed test
runs. A more detailed view was therefore requested where test
runs were grouped by test case and day and if a single test
had failed the cell would be colored red otherwise green.

Another discussion about the metric for the test visualization
was which data to use, all test runs or only nightly runs. If all
test runs are used the visualization gives an indicator over what
is being worked on and the general status for each test case. If
only the nightly runs are used, no debug runs are included and
the visualization instead displays stability for test cases that
are included in the nightly runs. Work at RUAG was started to
divide the nightly test runs logs into a separate directory but
was not finished in time to be introduced during this thesis’
evaluation period.

Feedback on time visualizations
The time visualization showing monthly outcome compared

to estimated time initially showed all objects summarized for
the entire project. The group found this hard to interpret and
wanted to divide it into smaller separate graphs for each object.
They also wanted to see only adjacent months instead of
the entire project, which was a couple of years from start
to end. When these changes were introduced they asked for
the possibility to on demand see even more information about
the time allocation. They wanted to be able see the estimation
forecast for each object with the timespan of the entire project
again. The detailed view was then extended with graphs for
the entire project for each object and also which work package
within each object that time was reported on with outcome
compared to estimate for the entire project.

4.3.3 Evaluation
In this section the feedback gathered during the final evaluation
of the system is described. The section is divided into the

15

topics asked in interviews: information needs, feedback on
metrics, visualizations related to the goals of this thesis was
reached and finally about the systems usefulness as meeting
support and other influencing factors.

The evaluation was conducted with semi-structured follow-
up interviews and were held after the three week period the
system had been operational. The interviewees were selected
to give a broad view over how the system had been used and its
reception in the project. Interviewees were divided into groups
of managers and engineers based on information needs. See
table 3 for more details. The structure of the interviews can
be seen in table 4. More details describing the interviews can
be found in section 3.3.2.

In the following paragraphs the key observations from
answers to each topic is summarized. The answers to questions
in Q1 were used to understand the point of view for the
interviewed and is not presented as a separate topic.

Information needs
The engineers relied mostly on information from their

own objects’ daily meetings and communication within the
project group. They also use information from databases
such as requirements. The integration meetings are used to
get notified about any problems and upcoming deadlines. A
general consensus among the managers was that they need
information regarding if the project is going according to plan.
This information is gathered from the integration meetings or
discussions between managers. Two of the managers stated
that they also relied on information from economic databases.

Metrics, visualizations and goals of this thesis work
Regarding the goal of using visualizations of code changes

as an early warning system almost all interviewees answered
that it is hard to tell. One pointed out that to be able to act on
the information it probably requires quite a lot of experience
of the system to be able to see the warning signs.

Using visualizations showing allocation and estimates of
time to raise the awareness of costs within a project was well
received. A majority of the interviewed found them interesting
and thought that they added information to the project that
had not been available before. One stated that the comparison
between estimation and actual outcome might be surprising,
sometimes team members are working on several projects and
you do not know how much time they spend in each project.
Another noted that placing the time visualizations on top of
each other invited comparison and was worried that it might
lead to competition. A general consensus among the managers
was that the visualization are missing a connection to earned
value, which makes them more difficult to interpret.

Finally, regarding the goal of using visualization to show
test maturity, all interviewees agreed that it was a interesting
metric and visualization, although their opinions differed on
which presentation that they found most interesting and what
thought they could use the visualization for. The engineers
found the detailed view more interesting where they could see
status for each day. The object manager for test equipment
found it more useful for communicating information about
their status than as an information source for himself.

The managers instead preferred the visualization giving an
overview. One of the managers stated that the detailed view
might become more interesting at the end of the project when
there is a focus on seeing the stability for each test. Another
manager said that it was possible to, through the visualization,
get a confirmation about actions taken to certain test cases.

Usefulness as meeting support and influencing factors

There was a general consensus among both engineers and
managers that the information shown in visualizations must
be relevant for all participants in the meeting for them to be
viable as discussion support in meetings. This, combined with
the time pressure in meetings was stated as contributing to
them not using the visualizations in meetings, although two
of the managers mentions that the test visualization potentially
could be used in the integration meeting since test is relevant
for all included. A majority of the engineers thought that there
was a risk of people starting to analyze the data which would
take up valuable time of their meetings and that meetings are
supposed to be quick and effective.

Using a big screen as an information radiator in their
common workspace was well received by both groups. One
of the engineers stated that he liked that it was automated and
did not have to hassle with print outs. Another liked that it
was easy to access and could look at it before the meeting
started. Most of the interviewed thought that the placement of
the screen in their common workspace was good. One of the
managers on the other hand thought that it was placed “off
in a corner” where people during most meetings would have
their backs to it.

If the system would be made available for use on desktop
computers most interviewees were positive and said that they
would use it. One of the managers thought that this kind
of system would be better suited for desktop use to help
managers get an objective point of view for making decisions
for projects. An engineer commented that some of the visu-
alizations were better suited for analyzing on a computer and
could help planning for new projects.

Two of the interviewees mentioned that it takes time for new
systems to settle in. One of the engineers also emphasizes
that the use of such systems should emerge and not be
forced. Whereas one of the managers mentions that it could
be necessary to give a little nudge to encourage the use of the
system.

A general consensus among both groups was that they
are positive to the use of information radiators. Two of the
engineers changed their opinion from skeptical to positive
during this project. One of the managers emphasizes that this
is an area that has to be explored over time, reflecting on
that the visualization that had seemed the least valuable to her
before the project was one of the visualizations that she had
ended up looking at the most.

16

5 DISCUSSION
The following paragraphs discuss the thesis’ results in light of
the research questions posed in this study.

How can we refine the use of information visualization
to support assessment and decision making in daily group
meetings?

Based on the interviews and feedback gathered during our
evaluation period, we found that most team members were
positive to using visualization on an information radiator in
the common workspace, which was also found by Biehl et al.
[9]. By making the information radiator easily accessible, the
team members can scan the visualizations before the meeting
start and if any issues are found they can be brought up in the
meeting. The meetings are supposed to be short and effective,
there is no time for analyzing data during the meeting.

Only issues concerning all meeting members should be ad-
dressed during the meetings, visualizations must consequently
show data that all members can relate to. Our study focused
on the integration meeting which involves multiple disciplines,
e.g. software, hardware, test, which narrows the number of
relevant visualizations.

For a visualization to facilitate discussions, we have found
some indications that visualizations that compare measures to
goals raise more questions, e.g. the time visualizations with
outcome compared to estimates. There might be reasons to
why a measure can surpass a goal but still be correct, e.g. the
estimation was wrong; however, this still creates discussion
that might bring up useful information and awareness.

For the visualizations to be applicable to the meeting context
we believe that they should be easy and fast to interpret
for an accustomed viewer. Additionally, in one of our early
meetings, it was discussed on how different visualizations
might be interpreted. Colors can be used effectively to support
decoding of visualizations. However, there is a danger in using
colors with connotation when the interpretation is complex or
ambiguous. This was the case where we used a red color to
show the number of failed test runs. The red color encourages a
negative interpretation which is not necessarily correct during
early phases when a lot of debugging is done. We found that
in these cases it is better to use colors that do not suggest any
interpretation at all, even if it means that the user needs to
spend some more time to understand the visualization.

What effects on group meetings can be seen from introduc-
ing visualizations of project status to support assessment and
decision making?

Due to the short time period this system was operational, a
total of three weeks with only a single week without changes
to the visualizations, we have not been able to see any
effects. During our follow-up interviews this was discussed
and the general consensus was that for the visualizations to
be applicable to the meeting they must be relevant for all
involved. It was stated that the system probably needs more
time to be incorporated in their daily work.

The information radiator provided information about allo-
cated time and estimations to project members that had not
been readily available before. During our interviews a majority
said that it was interesting to see the status for all objects. This

might have raised their overall awareness for the project status,
which echoes the findings of Treude and Storey [27].

Presentation Guidelines

The insights gained from the thesis work is summarized
in the following guidelines based on lessons learned from
producing the visualization and the feedback gathered during
the evaluation of the system.

• Relate to goals. Visualize current status in relation to
goals to show progress and facilitate discussions.

• Provide clear descriptions. It is important to, in detail,
describe what the visualizations are showing and what
data it is using.

• Collaborate with users. Make sure to validate your as-
sumptions on data and process throughout development
and after deployment. The use of tools and reporting does
not always match documentation or field names.

• Support different information needs. Different informa-
tion will be considered useful depending on phase in the
project and current issues.

• Provide for analysis outside meetings. There might not be
time to do any analysis of visualizations during meetings.
Even though placing the display in sight during meeting
would be considered optimal, placing the information
radiator in close proximity of the meeting area encourages
participants arriving early to spend the time scanning the
visualizations. Any issues noticed can then be brought up
in the meeting.

• Be considerate. People are reluctant to changing their
routines, especially if it means more work. Try to au-
tomate system to avoid extra workload for the users as
this could affect their attitude towards the introduction of
the system.

6 CONCLUSION

Efficient communication is key in stand-up meetings, discus-
sion or analysis of issues only relevant to some participants is
a waste of time for the rest. This puts strict requirements on
visualizations that are to be used in that context. Due to this,
only some of the visualizations produced in this study were
considered viable as possible support in the daily integration
meeting, e.g. the daily results of functional tests which was
of interest to all objects and very easy to decode. As a result
the presentation was used more like an information radiator
throughout the workday, which stakeholders saw as a good fit
stating that analysis could take place outside the meetings and
issues could be brought up later at the meetings.

Fully automating the system, avoiding extra work for the
developers and managers using it is an important factor in
how well the introduction of the system is received. There
is however some risk of a catch-22 situation when more
valuable visualizations require data that is not possible to
extract automatically or requires a change in routines and data
management. One possible approach to solve this situation is
to ”cook stone soup” by starting small with what you’ve got
and hope that users will see the value and want to contribute.

17

Even though this study was rather short, there were a couple
of occasions where stakeholders changed their mind about
which metrics to show and how they wanted them visualized.
Also, functional test results are considered more interesting
towards the end of the project when they are expected to
pass. This requires the presentation system and underlying
framework to be easily to configure and extend as requirements
are likely to change during project execution, and even more
so from project to project.

Future work suggestions:
• Further investigation based on our insights and guidelines

into how visualizations can be used as meeting support,
finding more visualizations suitable for the integration
meeting. As the presentation system was not used to any
substantial degree during this study the question of how
it affects daily meetings remain unanswered.

• Further investigation into how visualizations can be used
as meeting support could be done by focusing on an
object meeting instead of the integration meeting. This
would make it easier to create the visualizations for
a specific area and thereby keeping the visualizations
relevant for all participants.

• Another possible area for further research could be to
look into how to use data visualization on the project
members computers as complement to the information
radiator. A majority of the interviewed in our evaluation
of the system said that they were interested of the
possibility to use the system on their own computers.

• Managers expressed the wish of being able to analyze
and compare the status of all current projects.

These conclusions and suggestions are phrased in the con-
text of this study, but should be applicable to any project
with scrum- and scrum-of-scrum-like meetings or with several
simultaneously running projects.

REFERENCES

[1] R. Charette, “Why software fails,” Spectrum, IEEE, vol. 42, no. 9, pp.
42 – 49, sept. 2005.

[2] West and Grant, “Agile development: Mainstream adoption has changed
agility,” Forrester, Tech. Rep., Jan. 2010.

[3] M. Fowler. (2001) It’s not just standing up: Patterns for daily
standup meetings. ”last accessed on June 2, 2012. [Online]. Available:
http://martinfowler.com/articles/itsNotJustStandingUp.html

[4] K. Beck, Extreme programming explained: embrace change. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1999.

[5] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham,
M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, J. Kern,
B. Marick, R. C. Martin, S. Mellor, K. Schwaber, J. Sutherland, and
D. Thomas. (2001) Manifesto for agile software development. ”last
accessed on June 2, 2012. [Online]. Available: http://agilemanifesto.org/

[6] H. Simon, “Theories of bounded rationality,” in Decision and Organi-
zation. Univ of Minnesota Pr, 1972, ch. 8.

[7] R. P. Buse and T. Zimmermann, “Information needs for software devel-
opment analytics,” in Proceedings of the 34th International Conference
on Software Engineering, June 2012.

[8] A. J. Ko, R. DeLine, and G. Venolia, “Information needs in collocated
software development teams,” in Proceedings of the 29th international
conference on Software Engineering, ser. ICSE ’07. Washington, DC,
USA: IEEE Computer Society, 2007, pp. 344–353.

[9] J. Biehl, M. Czerwinski, G. Smith, and G. Robertson, “Fastdash: a visual
dashboard for fostering awareness in software teams,” in Proceedings of
the SIGCHI conference on Human factors in computing systems. ACM,
2007, pp. 1313–1322.

[10] M. R. Jakobsen, R. Fernandez, M. Czerwinski, K. Inkpen, O. Kulyk,
and G. G. Robertson, “Wipdash: Work item and people dashboard for
software development teams,” in Proceedings of the 12th IFIP TC 13
International Conference on Human-Computer Interaction: Part II, ser.
INTERACT ’09. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 791–
804.

[11] R. Feldt and M. Staron, “Architecture and conceptual overview knowse,”
2011, Chalmers University of Technology and University of Gothen-
burg, Internal Report.

[12] K. Beck and C. Andres, Extreme Programming Explained: Embrace
Change (2nd Edition). Addison-Wesley Professional, 2004.

[13] K. Schwaber, Agile Project Management with Scrum (Microsoft Profes-
sional). Microsoft Press, 2004.

[14] D. Hartmann and R. Dymond, “Appropriate agile measurement: using
metrics and diagnostics to deliver business value,” in Agile Conference,
2006, july 2006, pp. 6 pp. –134.

[15] M. Staron, “Critical role of measures in decision processes: Managerial
and technical measures in the context of large software development
organizations,” Information and Software Technology, vol. 54, no. 8, pp.
887 – 899, 2012.

[16] A. Cockburn, Agile Software Development: The Cooperative Game,
2nd ed. Addison-Wesley Professional, 2006.

[17] S. Augustine, Managing Agile Projects. Upper Saddle River, NJ, USA:
Prentice Hall PTR, 2005.

[18] M. Drury, K. Conboy, and K. Power, “Obstacles to decision making in
agile software development teams,” Journal of Systems and Software,
vol. 85, no. 6, pp. 1239 – 1254, 2012.

[19] T. Davenport, J. Harris, and R. Morison, Analytics at Work: Smarter
Decisions, Better Results, ser. Harvard Business School Press. Harvard
Business Press, 2010.

[20] R. A. Guzzo and M. W. Dickson, “Teams in organizations: Recent re-
search on performance and effectiveness,” Annual Review of Psychology,
vol. 47, pp. 307–307, 1996.

[21] J. Tata and S. Prasad, “Team self-management, organizational structure,
and judgments of team effectiveness,” Journal of Managerial Issues,
vol. 16, no. 2, pp. 248–265, 2004.

[22] E. R. Tufte, The Visual Display of Quantitative Information, 2nd ed.
Graphics Pr, May 2001.

[23] ——, Beautiful Evidence, 1st ed. Graphics Pr, 2006.
[24] S. Few, Information Dashboard Design: The Effective Visual Commu-

nication of Data, 1st ed. Sebastopol: O’Reilly, 2006.
[25] ——. Business objects’ bullet graphs: A good idea, implemented

poorly. Last accessed on June 4, 2012. [Online]. Available:
http://www.perceptualedge.com/blog/?p=160

[26] R. Brath and M. Peters. (2004, Oct.) Dashboard de-
sign: Why design is important. ”last accessed on
May 11, 2012. [Online]. Available: http://www.information-
management.com/infodirect/20041015/1011285-1.html

[27] C. Treude and M.-A. Storey, “Awareness 2.0: staying aware of projects,
developers and tasks using dashboards and feeds,” in Proceedings of
the 32nd ACM/IEEE International Conference on Software Engineering
- Volume 1, ser. ICSE ’10. New York, NY, USA: ACM, 2010, pp.
365–374.

[28] Jazz: Building better software. Last accessed on June 4, 2012. [Online].
Available: https://jazz.net/

[29] Thoughtworks studios: Agile application lifecycle management. Last ac-
cessed on June 4, 2012. [Online]. Available: http://www.thoughtworks-
studios.com/solutions/application-lifecycle-management

[30] D. Chapell. What is application lifecycle management?
Last accessed on June 4, 2012. [Online]. Available:
http://www.davidchappell.com/WhatIsALM–Chappell.pdf

[31] J. Maletic, A. Marcus, and M. Collard, “A task oriented view of software
visualization,” in Visualizing Software for Understanding and Analysis,
2002. Proceedings. First International Workshop on, 2002, pp. 32–40.

[32] L.-G. Green, “Effektiv framtagning av rymprogramvara baserat på
kontinuerliga mätningar,” 2011, RUAG Space AB, Internal Report, D-
M-PRO-01102-RSE.

[33] V. Vaishnavi and W. Kuechler. (2004) Design science research in
information systems. Last accessed on May 31, 2012. [Online].
Available: http://desrist.org/desrist

[34] (2012) Apache couchdb. ”last accessed on May 20, 2012. [Online].
Available: http://couchdb.apache.org

[35] M. Bostock. (2012) Data-driven documents. ”last accessed on May 20,
2012. [Online]. Available: http://www.d3js.org

[36] (2010) W3c scalable vector graphics. ”last accessed on May 20, 2012.
[Online]. Available: http://www.w3.org/Graphics/SVG/

