
Improving landfill monitoring programs
with the aid of geoelectrical - imaging techniques
and geographical information systems
Master’s Thesis in the Master Degree Programme, Civil Engineering

KEVIN HINE

Department of Civil and Environmental Engineering
Division of GeoEngineering
Engineering Geology Research Group
CHALMERS UNIVERSITY OF TECHNOLOGY
Göteborg, Sweden 2005
Master’s Thesis 2005:22

Verification of Real-Time Graphics
Systems
Master of Science Thesis in Software Engineering and Technology

Aram Timofeitchik and Robert Nagy

Department of Computer Science and Engineering
Chalmers University of Technology

Gothenburg, Sweden, 15/05/2012

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial pur-
pose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work
does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example
a publisher or a company), acknowledge the third party about this agreement. If the
Author has signed a copyright agreement with a third party regarding the Work, the
Author warrants hereby that he/she has obtained any necessary permission from this
third party to let Chalmers University of Technology and University of Gothenburg store
the Work electronically and make it accessible on the Internet.

Verification of Real-Time Graphics Systems

Aram Timofeitchik
Robert Nagy

c© Aram Timofeitchik, May 2012.
c© Robert Nagy, May 2012.

Supervisor: Gerardo Schneider
Examiner: Rogardt Heldal

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
SE-412 96 Gothenburg
Sweden
Telephone +46 (0)31-772 1000

Department of Computer Science and Engineering
Gothenburg, Sweden, May 2012

Abstract

Today, software quality assurance is an important part of software development,
where increasingly more research is conducted in order to achieve more efficient and
reliable verification processes. However, little progress has been made when it comes to
verification of real-time graphics systems. To this day, most verification of such applica-
tions is performed through repetitive manual labour, where graphical content is ocularly
inspected and subjectively verified. In this thesis, we present the Runtime Graphics
Verification Framework (RUGVEF), where we have combined runtime verification with
image analysis in order to automate the verification of graphical content. We also pro-
vide a proof of concept in the form of a case study, where RUGVEF is evaluated in
an industrial setting by verifying CasparCG, an on-air graphics playout system. The
results of the case study are five previously unknown defects, together with statistics
of previously known defects (which were injected back into the system) that could be
detected by our tool.

Acknowledgements

First, we would like to express our deepest gratitude to Dr. Gerardo Schneider for his
continuous support and guidance throughout our work. We would also like to thank him
for his valuable ideas that helped us to better approach the problem of this thesis.

Next, we would like to thank Peter Karlsson for his valuable feedback and the Swedish
Broadcasting Corporation (SVT) for giving us the opportunity to develop and test our
ideas.

Finally, we would like to thank our families and friends for their continuous support and
encouragement throughout the duration of this project.

Contents

1 Introduction 1

2 Research Method 4

3 Background 6
3.1 Runtime Verification . 6
3.2 Image Quality Assessment . 6

4 RUGVEF 8
4.1 The RUGVEF Conceptual Model . 8
4.2 Solving the Synchronization Problem . 12
4.3 Analyzing Graphical Output . 14

5 Case Study - CasparCG 16
5.1 CasparCG . 16
5.2 Current Verification Practices . 19
5.3 Verifying CasparCG with RUGVEF . 21

5.3.1 Local Verification . 21
5.3.2 Remote Verification . 24
5.3.3 On the implementation of SSIM 26

6 Results 30
6.1 Previously Unknown Defects . 30

6.1.1 Tinted Colors . 31
6.1.2 Arithmetic Overflows During Alpha Blending 31
6.1.3 Invalid Command Execution . 31
6.1.4 Missing Frames During Looping 32
6.1.5 Minor Pixel Errors . 33

6.2 Previously Known Defects . 33
6.3 Performance of the Optimized SSIM . 34

7 Related Work 36

8 Future Work 37

9 Final Discussion 39

Bibliography 42

1
Introduction

S
oftware verification plays an important role in the software development life-
cycle. It provides the means for detection and correction of defects and thereby
improving software quality [1]. One of the main challenges of software verification

lies in ensuring that sufficient code coverage is achieved [1]. However, with increasingly
larger and more advanced software being developed, the sheer number of program states
and possible user interactions makes adequate verification, especially when carried out
manually, both difficult and expensive to achieve [1]. This is one of the main reasons
why automated software verification (such as automatic unit1 and state-of-the-art model-
based testing [2]), which allows faster and more efficient verification, is increasingly seen
as an important part of the software verification life-cycle.

With manual testing, defects are found by checking as many combinations of user
interactions as possible. Usually, during manual testing, a checklist of tasks is used for
making the process more structured and reproducible [1, 3]. However, as tasks must
be carried manually, such testing becomes impractical to perform on large systems as
often as required. Automatic testing can assist testers by replacing some of the tedious
tasks applied by manual testing, thereby reducing costs and improving software quality
[1, 4]. Additionally, automation can also be used to improve the software development
process, e.g. automated regression tests can enable continuous refactoring and integration
[5, 6], and thereby providing the means for iterative development through functional self-
testing.

Research in software verification seems to have been mostly focused towards automat-
ing various white-box testing methodologies (e.g. unit testing). The drawback of these
methodologies is that they focus on the internal parts of the application, requiring both
knowledge and access to the source-code and possible third-party components. This type
of verification also lacks the means for testing the software in integration with its exter-
nal components (e.g. operative system, hardware, and drivers). One such problem was
encountered by Id Software during the initial release of their video-game Rage, where
the game suffered problems with texture artifacts [7]. Even though the software itself
performed correctly [8], the error still occurred when executed on systems with certain
graphic cards and drivers.

1http://www.junit.org/

1

CHAPTER 1. INTRODUCTION

Today, focus seems to have started to shift towards automated grey- and black-box
testing. Areas, such as memory2 and concurrency3 and also graphical user-interfaces
[9, 10], are starting to receive more attention, while others, such as testing of real-time
graphics (e.g. games and dynamic video renderers), still remain mostly unexplored.

Traditional testing techniques are insufficient for obtaining satisfactory code coverage
levels in real-time graphics. The reason for this is that the visual output is difficult to
formally define, as it is both dynamic and abstract, making programmatic verification
difficult to perform [11]. Dependencies such as hardware, operating systems, drivers,
and external run-times (e.g. OpenGL and Direct3D) are also generally outside the scope
of white-box testing. While properties common to real-time graphics, such as non-
determinism and time-based execution, make errors difficult to detect and reproduce.

To this day, a common method for verifying real-time graphics is through ocular
inspections of the software’s visual output. The correctness is manually checked by com-
paring the subjectively expected output with the output produced by the system. There
are several disadvantages with this approach, such as that it requires extensive working
hours, is repetitive, and makes regression testing practically inapplicable [3]. Addition-
ally, the subjective definition of correctness induces the possibility that some artifacts
might be recognized as errors by some testers, but not by others [1]. Furthermore, some
errors might not be perceptible, thereby making ocular inspections even more prone to
human-error.

In this thesis, we present a conceptual model for automated testing of properties in
real-time graphics system. This model has the purpose of increasing the probability of
finding defects, making verification more efficient and reliable throughout the systems
development. The proposed solution is formalized as the Runtime Graphics Verification
Framework (RUGVEF), defining practices and artifacts needed in order to perform
automated verification in coherence with system development. A proof of concept is
provided in the form of a case study, where our framework is implemented and evaluated
in the development setting of CasparCG, a real-time graphics system used by the Swedish
Broadcasting Corporation (SVT) for producing most of their on-air graphics. We also
present an optimized implementation of the image quality assessment technique SSIM,
which enables real-time analysis of Full HD video produced by CasparCG.

The results of the case study are five previously unknown defects that the testing
practices at SVT had not yet detected, and 6 out of 16 known defect that were injected
back into RUGVEF could be found. This shows that RUGVEF can indeed successfully
complement existing verification practices by automating the detection of contextual and
temporal errors in graphical systems. Using the framework allows for earlier detection
of defects and enables more efficient development through automated regression testing.
Furthermore, we also show that our optimizations of the image assessment technique
SSIM improved the performance of the algorithm by approximately a factor of 100,
while maintaining accuracy.

2http://software.intel.com/en-us/articles/intel-inspector-xe/
3http://software.intel.com/en-us/articles/intel-parallel-inspector/

2

CHAPTER 1. INTRODUCTION

In summary our contributions are:

• The conceptual Runtime Graphics Verification Framework (RUGVEF) for au-
tomating the testing of real-time graphics systems.

• A proof of concept demonstrating the feasibility, applicability, and strengths of
this framework in the context of the real-time graphics system CasparCG at the
Swedish Broadcasting Corporation (SVT).

• Experimental results concerning our proof of concept that was used to test Cas-
parCG at SVT, where we found five previously unknown defects and demonstrated
which of the previously known defects could be detected.

• The optimized implementation of SSIM, an image quality assessment technique
which previously was not applicable to the real-time setting of CasparCG.

This thesis is organized as follows: We start by describing the used research method-
ologies in Chapter 2. We then provide the preliminaries required to understand the
essential concepts in Chapter 3, and outline RUGVEF, our developed conceptual frame-
work, in Chapter 4. We present our proof of concept, in the form of a case study of
CasparCG, in Chapter 5, and show the results of the case study and the optimizations
of SSIM in Chapter 6. We discuss related respectively future work in Chapters 7 and 8,
and finally conclude the work of this thesis, with a short summary and final remarks, in
Chapter 9.

3

2
Research Method

T
he goal of this thesis was to design a verification framework that was aimed at
improving and extending existing software verification techniques, making them
applicable to computer graphics, in order to enhance the accuracy and effective-

ness of software quality assurance processes of real-time graphics systems.
Research was conducted using the design-science research method [12] with the pur-

pose of contributing, according to [13], “a purposeful IT artifact created to address an
important organizational problem”, which was evaluated in the context of a holistic case
study that is described in [14].

Data collection was performed using: 1) informal interviews with the main tester and
the two developers of CasparCG, in order to gain knowledge and understanding of the
current testing practices used in the project; 2) observations of the current verification
workflow that is practiced by CasparCG ’s project members; and 3) data mining of
CasparCG’s subversion log for statistical analysis of previously known and corrected
defects, and their correlated time within the project’s software development cycle.

The typical subjects addressed during the interviews were:

• What types of software testing techniques are used?

• How and by whom is the testing performed?

• What types of errors are testers looking for and which defects are more commonly
found?

• What types of errors are harder to detect?

• When in the software development cycle are defects mostly detected?

• What are the common problems experienced during testing?

• What improvements could be made to the current verification process?

A hypothesis was then reached that a combination of run-time verification and objec-
tive image analysis would allow for improved coverage and effectiveness in the verification
of real-time graphics systems. The hypothesis was conceptualized into a framework that
described the key components required for enabling this type of verification.

4

CHAPTER 2. RESEARCH METHOD

Through a holistic experimental case study, where the framework was implemented
and used in an industrial project, the value of the developed framework is shown and
whether it has any value to the software engineering community. The study was con-
ducted in a fixed design setting, as the projects current testing practices did not change
throughout its studied period. During the case study the framework was retrospectively
formalized and extended into a set of required tools and techniques. The results of
the case study are presented as quantitative data of actual previously known and un-
known defects found, together providing a qualitative indication of whether the original
hypothesis was accurate.

5

3
Background

I
n this chapter, we provide the relevant background information regarding concepts
used in the verification framework of this thesis. We start by describing the runtime
verification technique that is used for verifying systems during their execution, in

Section 3.1, followed by describing various image quality assessment techniques that are
based on measuring the similarity between images, in Section 3.2.

3.1 Runtime Verification

Runtime Verification can be used as an alternative or a complement to traditional ver-
ification techniques such as model-based checking and testing [15]. Instead of testing
individual components, runtime verification offers a way for verifying systems as a whole
during their execution [16, 17]. The verification is performed at runtime by monitoring
system execution paths and states, checking whether any predefined formal logic rules
are being violated [16]. Additionally, runtime verification can be used to verify software
in combination with user-based interaction [16], adding more focus toward user specific
test-cases, which more likely could uncover end-user experienced defects. However, care
should be taken as runtime verification adds an overhead potentially reducing system
performance. This overhead could possibly affect the time sensitivity of systems in such
way that a system appears to run correctly while the verification is active, but not after
it has been removed [17] (a common problem when checking for data-races).

3.2 Image Quality Assessment

Image Quality Assessment is used to assess the quality of images or video-streams based
on models simulating the Human Visual System (HVS) [18]. The quality is defined
as the fidelity or similarity between an image and its reference, and is quantitatively
given as the differences between them. Models of the HVS describe how different type
of errors should be weighted based on their perceptibility, e.g. errors in luminance1 are

1brightness measure

6

3.2. IMAGE QUALITY ASSESSMENT CHAPTER 3. BACKGROUND

more perceptible than errors in chrominance2 [19]. However, there is a trade-off between
the accuracy and performance of algorithms that are based on such models.

Binary comparison is a high performance method for calculating image fidelity, but
it does not take human perception into account. This could potentially cause problems
where any binary differences found are identified as errors, even though they might not
be visible, possibly indicating false negatives.

Another relatively fast method is the Mean Squared Error (MSE), which calculates
the cumulative squared difference between images and their references, where higher
values indicate more errors and lower fidelity. An alternative version of MSE is the
Peak Signal to Noise Ratio (PSNR) which instead calculates the peak-error (i.e. noise)
between images and their references. This metric transforms MSE into a logarithmic
decibel scale where higher values indicate fewer errors and stronger fidelity. The MSE
and PSNR algorithms are commonly used to quantitatively measure the performance
and quality of lossy compression algorithms in the domain of video processing [6], where
one of the goals is to keep a constant image quality while minimizing size, a so-called
constant rate factor [20]. This constant rate is achieved, during the encoding process,
by dynamically assessing image quality while optimizing compression rates accordingly.

Structural Similarity Index (SSIM) is an alternative measure that puts more focus
on modeling human perception, but at the cost of heavier computations. The algorithm
provides more interpretable relative percentage measures (0.0-1.0), in contrast to MSE
and PSNR, which present fidelity as abstract values that must be interpreted. SSIM
differs from its predecessors as it calculates distortions in perceived structural variations
instead of perceived errors. This difference is illustrated in Figure 3.1, where (b) has
a uniform contrast distortion over the entire image, resulting in a high perceived error,
but low structural error. Unlike SSIM, MSE considers (b), (c), and (d) to have the same
image fidelity to the reference (a), but this is clearly not the case due to the relatively
large structural distortions in (c) and (d). Conducted tests [18] have shown that SSIM
provides more consistent results compared to MSE and PSNR. Furthermore, SSIM is
also used in some high end applications3 as an alternative to PSNR.

(a)
MSE:0 SSIM:1.000

(b)
MSE:306 SSIM:0.928

(c)
MSE:309 SSIM:0.580

(d)
MSE:309 SSIM:0.576

Figure 3.1: Image Quality Assessment of distorted images using MSE and SSIM [18].

2color information
3http://www.videolan.org/developers/x264.html

7

4
RUGVEF

T
his chapter outlines the Runtime Graphics Verification Framework (RUGVEF),
which we have developed with the purpose of complementing existing verifica-
tion techniques that are programmatically incapable of interpreting the graphical

states in real-time graphics systems.
This chapter is organized as follows: we start by describing how runtime verification

is combined with image quality assessment in order to create a verification process that
is capable of verifying graphics related system properties. We then address the issue of
synchronizing the verification process with the graphical output of monitored systems in
Section 4.2. Finally, we explain how graphical content is analyzed for correctness using
image quality assessment in Section 4.3.

4.1 The RUGVEF Conceptual Model

The Runtime Graphics Verification Framework (RUGVEF) can be used to enable ver-
ification of real-time graphics systems during their execution. Its verification process is
composed of two mechanisms, checking of execution paths and verification of graphical
output, which are used to evaluate temporal and contextual properties of the monitored
systems.

To illustrate an example of such properties, we consider a simple video player that
takes video files as input and displays them on a screen. This application has three
controls through which users can start, stop, or pause video playback. In this case, a
contextual property might be that actual video file content is always displayed during
playback or that otherwise only empty frames are produced, and a temporal property
might be that it is only possible to use the pause control during video playback.

Correctness of properties in real-time graphics is determined through continuous
analysis of graphical output (e.g. content displayed by the video player). Traditionally,
this type of analysis is performed intuitively through ocular inspections, where testers
themselves observe content displayed in order to determine whether system properties
are satisfied. However, since ocular inspections heavily rely on the subjective opinions
of testers, the process is very difficult (or maybe even impossible) to programmatically
replicate. Thus, in order to automate the verification of graphics related properties, we

8

4.1. THE RUGVEF CONCEPTUAL MODEL CHAPTER 4. RUGVEF

propose that correctness is determined through objective comparisons against references
using appropriate image assessment techniques.

Nevertheless, there is a limitation in using comparisons for evaluating graphical out-
put. To illustrate this consider the example in Figure 4.1, where we show a moving
object being frame-independently rendered at three different rendering speeds, showing
that during the same time period, no matter what frame rate is used, the object will
always be in the same location at a specific time.

The problem lies in that rendering speeds usually fluctuate, causing consecutive
identical runs to produce different frame by frame outputs. For instance in Figure 4.2,
we show two runs having the same average frame rate, but with varying frame by frame
results, making it impossible to predetermine the references that should be used. For this
reason, the rendering during testing must always be performed in a time-independent
fashion. That is, a moving object should always have moved exactly the same distance
between two consecutively rendered frames, no matter how much time has passed.

Figure 4.1: The frame-independent rendering technique is used for rendering a moving
object at different frame rates, but where the displaced distance during identical periods is
the same.

Figure 4.2: Frame-independent rendering produces different results depending on the time
elapsed between each rendered frame.

9

4.1. THE RUGVEF CONCEPTUAL MODEL CHAPTER 4. RUGVEF

Figure 4.3: The nondeterministic finite state machine formally describing the system char-
acteristics of the simple video player.

The analysis of graphical output through comparisons requires that references are
provided together with relevant information on when and how they should be used. To
show this, we consider the same video player that was described in a previously mentioned
example. This video player has three system controls (play, pause, and stop) and two
system properties which the video player must satisfy. All these system characteristics
are represented in the nondeterministic finite state machine shown in Figure 4.3. In this
formal definition, transitions are used to describe the consequentiality of valid system
occurrences that potentially could affect the graphical output. For instance describing
that it is only possible to pause an already playing video. Transitions are labelled with
actions (i.e. play, pause, and stop) that, when executed, trigger the transitions. States
(i.e. idle, playing, and paused) collectively represent legal output variations possibly
occurring during runtime execution, that is, what we expect to be displayed by the video
player. For instance defining the reference that must be used while in the idle state in
order to check that only empty frames are produced.

We have so far focused on describing the artifacts needed in order to automate
the verification of temporal and contextual properties in real-time graphics. We have
stated that the correctness of such properties is most easily determined through objective
comparisons with references, and that these references must be provided together with
a formal definition of the system to be tested. To put these artifacts into context, we
consider the example illustrated in Figure 4.4, showing an automated verification process
that can be used for checking properties of the same video player mentioned throughout
this section.

In this example, the verification process has been realized as a monitor application
that runs in parallel with the video player. During this process the video player is
synchronized with the monitor through event-based communication, where events sent
by the video player are used to signify changes to its runtime state. As previously
mentioned, such state transitions should always occur when the output of the video
player changes, requiring in this case that the controls play, pause, and stop are used
as the triggering points for transmitted events.

10

4.1. THE RUGVEF CONCEPTUAL MODEL CHAPTER 4. RUGVEF

Figure 4.4: An implementation of RUGVEF used for automatically monitoring the simple
video player’s temporal and contextual properties.

Legal states and transitions must also be known by the monitor before event-based
communication can be used for monitoring the video player’s activities. In this case, we
provide the same states and transitions as defined by the state machine of the previous
example illustrated in Figure 4.3. Events can thereby be used for representing transitions
between states, making it possible for the monitor to track the video player’s runtime
state and to check its temporal activities. The graphical context during each state
is monitored by intercepting the graphical output and comparing it against provided
references.

Thus, as the video player is launched the monitor application is started and initialized
to the video player’s idle state, specifying during this state that only completely black
frames are expected. Any graphical output produced is throughout the verification
intercepted and compared against specified references, where any mismatches detected
correspond to contextual properties being violated. At some instant, when one of the
video player’s controls is used, an event is triggered, signaling to the monitor that the
video player has transitioned to another state. In this case, there is only one valid
option and that is the event signaling the transition from idle to playing state (any
other events received would correspond to temporal properties being violated). As valid
transitions occur, the monitor is updated by initializing the target state, in this case the
playing state, changing references used according to that state’s specifications.

One important issue emerges when the input of a system is handled asynchronously
from the graphical output: whenever a command is issued, its effect is delayed by an
undefined amount of discrete output intervals before actually being observable. The
problem with this non-deterministic delay is that it could affect the event-based com-
munication between a monitor application and the tested system, causing events to
arrive prematurely from what is output, thereby making the reference data used in the
verification process to become out of sync. For instance in Figure 4.5, we show an is-
sued command triggering an event, which is received three frames before the observable
output, causing the corresponding reference to be used too early.

In the following section, we propose two possible methods for synchronizing the
graphical output with references.

11

4.2. SOLVING THE SYNCHRONIZATION PROBLEM CHAPTER 4. RUGVEF

Figure 4.5: The asynchronous relationship between the input and the output causes ref-
erences and the graphical output to become out of sync.

4.2 Solving the Synchronization Problem

We suggest two approaches for solving the synchronization problem that was described
in the previous section. The first apporach is based on tagging the graphical output with
unique identifiers, and the second on using comparisons with already provided references.

Frame Tagging One possible method for solving the synchronization problem is by
tagging the output produced by the monitored system with unique identifiers. The
synchronization is achieved by pairing events with specific frames, in which the trigger-
ing commands effect can be observed, and by delaying these until frames tagged with
matching identifiers have been received. For instance in Figure 4.6, we show a wrapper
intercepting and delaying an event tagged with the unique identifier C until the frame
carrying the same identifier has been received, indicating that the change to the output
is observable.

The disadvantage of this technique is that it requires the tagging capability of frames
to be implemented. This solution might be too intrusive as it may require fundamental
changes in the software. It may also prove difficult in keeping the associated meta-
data correctly tagged while propagating throughout the complete system’s software and
hardware chain, before finally reaching the verifier.

Reference Based Comparisons As an alternative to frame tagging, the synchro-
nization can be performed by only using reference based comparisons. This process is
illustrated in Figure 4.7, and is as follows: when an event is received the verifier con-
tinues comparing the output against provided references, unchanged in relation to the
received event. As a frame mismatch occurs and the comparison fails, the reference
is updated and a re-comparison is performed. If the re-comparison succeeds then the
synchronization has been successful or otherwise an error has been detected.

12

4.2. SOLVING THE SYNCHRONIZATION PROBLEM CHAPTER 4. RUGVEF

Figure 4.6: Synchronization using a wrapper that delays events until frames with correct
tags are received.

Figure 4.7: Synchronization achieved by delaying the update of references until a mismatch
occurs.

However, an issue emerges when additional events are received while still in the
synchronization process, causing difficulties in deducing which references to update when
a mismatch occurs, requiring that all possible combinations of pending changes are tried
before proceeding with the updates.

Another issue arises whenever changes to the output cannot be observed (i.e. where
changes are outside the scene or totally obscured), causing the re-synchronization to be
prolonged or, in the worst case scenario, to never finish. In such cases, the solution is
to postpone all synchronization until later stages where mismatches have been detected,
but it will also require that all possible combinations of pending changes are tried before
updates to references can be performed.

13

4.3. ANALYZING GRAPHICAL OUTPUT CHAPTER 4. RUGVEF

Thus, the main issue with using reference based synchronization is that the testing
of all combinations requires a much higher computational demand. This could affect
the total outcome of the verification negatively, making some defects to not occur until
the verifier has been removed. In order to avoid such complications, we propose that
the verification is instead scoped so that changes to the output should always be ob-
servable and that no additional commands should be issued, while still in the process of
synchronizing references.

In the following section, we show how reference based image quality assessment tech-
niques are used in order to determine the correctness of graphical output of systems.

4.3 Using Image Quality Assessment for Analyzing Graph-
ical Output

Analysis of graphical output is required in order to determine whether contextual prop-
erties of real-time graphics systems have been satisfied. RUGVEF achieves this by
continuously comparing the graphical output against predefined references. We discuss
two separate image quality assessment techniques for measuring the similarity of images:
one based on absolute correctness, and the other based on perceptual correctness.

Absolute correctness is assessed using binary comparison, where images are evaluated
pixel by pixel in order to check whether they are identical. This technique is effective
for finding differences between images that are otherwise difficult or impossible to visu-
ally detect, which could for instance occur as a result of using mathematically flawed
algorithms or that separate incompatible arithmetic models are used. However, it is not
always the case that non-perceptible dissimilarities are an issue, requiring in such cases
that a small tolerance threshold is introduced in order to ignore acceptable differences.
One example of this issue could occur when the monitored system generates graphical
output using a GPU 1 based runtime platform, conforming to the IEEE 754 floating
point model2, while its reference generator is run on a x86 CPU platform, using an opti-
mized version of the same model3, possibly causing minor differences in what otherwise
should be binarily identical outputs.

Perceptual correctness is estimated through algorithms that are based on models
of the human visual system, and is used for determining whether images are visually
identical. Such correctness makes graphics analysis applicable to the output of physical
video interfaces which compresses images into lossy color spaces [18, 19], with small
effects on perceived quality [19], but with large binary differences.

We have evaluated the three common image assessment techniques, MSE, PSNR, and
SSIM, which are based on models of the HVS. Although MSE and PSNR are the most
computationally efficient and widely accepted in the field of image processing, we have
found SSIM to be the better alternative. The reason for this is that MSE and PSNR are
prone to false positives and present fidelity as abstract values that need to be interpreted.

1Graphical Processing Unit
2http://developer.download.nvidia.com/assets/cuda/files/NVIDIA-CUDA-Floating-Point.pdf
3http://msdn.microsoft.com/en-us/library/e7s85ffb.aspx

14

4.3. ANALYZING GRAPHICAL OUTPUT CHAPTER 4. RUGVEF

As an example, when verifying the output from a physical video interface we found that
an unacceptably high error threshold was required in order for a perceptually correct
video stream to pass its verification. SSIM on the other hand was found to be more
accurate, also presenting results as concrete similarity measure given as a percentage
(0.0-1.0). Additionally, both MSE and PSNR have recently received critique due to
lacking correspondence with human perception [18, 21, 22].

15

5
Case Study - CasparCG

I
n order to evaluate the feasibility of our conceptual model, a case study was
performed in an industrial setting where we created, integrated, and evaluated a
verification solution based on RUGVEF. The industrial setting used was CasparCG,

an open-source video and graphics play-out system funded and developed by the Swedish
Broadcasting Corporation (SVT) for on-air graphics, used in most of its national and
regional live broadcasts. CasparCG is a business critical system, producing content that
is daily seen by millions of viewers, and has therefore high requirements in terms of
reliability and performance.

This chapter is outlined as follows: we start by describing CasparCG in Section 5.1;
we then give a description of the existing testing practices used for verifying CasparCG
at SVT in Section 5.2; and finally, we show how the testing of CasparCG was improved
using RUGVEF in Section 5.3.

5.1 CasparCG

The development of CasparCG started in 2005 as an in-house project for on-air graphics
and was used live for the first time during the 2006 Swedish elections [23] (see Figure 5.1).
Developing this in-house system enabled SVT to greatly reduce costs by replacing ex-
pensive commercial solutions with a cheaper alternative. During 2008 the software was
released under an open-source license, allowing external contributions to the project,
thereby reducing development costs. Since then, a lot of development has been done
and the public major version, CasparCG 2.0, was released in April 2012, after a success-
ful deployment in the new studios of the show Aktuellt [24] (see Figure 5.2).

During broadcasts CasparCG renders on-air graphics such as bumpers, graphs, news
tickers, name signs, and much more. All graphics are rendered in real-time to different
video layers (Figure 5.3) that are composed using alpha blending into a single video-
stream. The framerate of the stream is regulated by the encoding system used by the
broadcasting facility. In Europe the Phase Alternating Line (PAL) encoding system is
used which specifies frame intervals of 20 or 40 milliseconds (i.e. 25 or 50 frames per
second). These frequencies are regulated through a hardware reference clock connected
to the system, usually consisting of a sync pulse generator that provides a highly stable

16

5.1. CASPARCG CHAPTER 5. CASE STUDY

and accurate pulse signal. This signal is used globally in the broadcasting facility in
order to ensure that all devices are synchronized.

CasparCG takes advantage of modern multi-core and heterogeneous computer ar-
chitectures by implementing a pipelined processing design, allowing the system to run
different interdependent processing stages in parallel, and possibly on different process-
ing devices. This design increases the throughput of the system, but at the cost of
increased latency that is proportional to the number of active pipeline stages. Figure 5.4
shows a pipeline consisting of three stages, where tokens are processed synchronously
and travel diagonally between stages, allowing each stage to perform parallel processing
on different tokens, increasing the processing throughput (i.e. three tokens per time slot)
but at the cost of a two slot delay.

Figure 5.1: On-air graphics rendered by CasparCG during the 2006 Swedish elections.

Figure 5.2: On-air graphics rendered by CasparCG during the 2012 news show Aktuellt.

17

5.1. CASPARCG CHAPTER 5. CASE STUDY

Figure 5.3: The output is composed of multiple video layers in CasparCG.

Figure 5.4: Parallel processing stages in a pipeline.

In order to increase the performance reliability of CasparCG, the system uses buffers
for effectively hiding transient performance drops within its rendering pipeline. For
instance, Figure 5.5 shows a buffer with the capacity of three items, but where only two
items are enqueued. The buffer is not full because, at some point, its enqueuing stage
was unable to keep up, and has not yet caught up with its dequeuing stage; however,
this is not externally observable due to the redundancy of items within the buffer. In
extreme cases, when a dequeuing stage is starved, the system avoids stalling the pipeline
by reusing the most recently dequeued item. This buffering technique further increases
the latency between the input and the output of CasparCG, which is proportional to the
combined size of all buffers within the pipeline.

CasparCG offers a broad range of features allowing it to act as a replacement for
several dedicated devices in the broadcasting facility (e.g. video servers, character gen-
erators, encoders, and much more). This versatility makes the system a highly critical
component where a failure could potentially disrupt several stages within broadcasts.

18

5.2. CURRENT VERIFICATION PRACTICES CHAPTER 5. CASE STUDY

Figure 5.5: Buffering between pipeline stages.

The system is expected to handle computationally heavy operations, e.g. high quality
deinterlacing1 and scaling of high definition videos, during real-time execution. A single
program instance can also be used to feed several video-streams to the same or different
broadcasting facilities, further adding focus on performance and reliability of CasparCG.
Quality assurance is, therefore, crucial, requiring rigorous verification processes in order
to achieve a high system reliability (i.e. improving MTBF 2 and MTTR3).

In the following section, we describe how verification of CasparCG is performed at
SVT (without using RUGVEF) in order to achieve required levels of reliability.

5.2 Current Verification Practices of CasparCG at SVT

CasparCG is incrementally developed and is mainly tested through code reviews and
ocular inspections. The code reviews are performed continuously throughout the iter-
ative development, roughly every two weeks and also before any new version releases.
Reviews usually consist of informal walkthroughs where either the full source code or
only recently modified sections are inspected, in order to uncover possible defects.

Ocular inspections are performed during the later stages of the iterative develop-
ment, when CasparCG is nearing a planned release. The inspections consist of testers
enumerating different combinations of system functionalities and visually inspecting that
the output produced looks correct. Parts of this process has been automated using two
different tools: JMeter, an application that automatically triggers commands (possibly
in a random order) according to predefined schedules; and Log Repeater, an application
that repeats previous system runs through runtime logs produced by CasparCG. These
tools allow testers to run the software in the background, checking stability during longer
periods of runs. As defects are found, the Log Repeater is used for reproducing errors,
debugging the system, and verifying possible fixes. In Figure 5.6, we show one verifica-
tion process of CasparCG, where JMeter or Log Repeater automatically produces input
commands while the video output produced is ocularly inspected for correctness.

1A process where an interlaced frame consisting of two interleaved frames (fields) are split into two
full progressive frames.

2Mean-Time Between Failures.
3Mean-Time To Repair.

19

5.2. CURRENT VERIFICATION PRACTICES CHAPTER 5. CASE STUDY

Figure 5.6: JMeter and Log Repeater are used for automating parts of the testing process.

Whenever an iteration is nearing feature completion, an alpha build is released,
allowing users to test the newly added functionality while verifying that all previously
existing features still work as expected. Once an iteration becomes feature complete, a
beta build is released that further allows users to test system stability and functionality.
As defects are reported and fixed, additional beta builds are released until the iteration
is considered stable for its final release. Alpha and beta releases are viewed, by the
development team, as a cost-effective way for achieving relatively large code coverage
levels, where the assumption is that users try more combinations of features, compared
to the in-house testing, and that the most commonly used features are tested the most.

In our assessment of the testing processes, we have observed the following areas with
room for improvement:

• During stability testing, where the system is executed in the background using
the tool JMeter or Log Repeater, the output of the system is only occasionally
inspected, causing errors occurring between inspection to possibly remain unde-
tected.

• The ocular inspection process is highly subjective and also limited to the capabil-
ities of the human visual system.

• Regression testing the graphical output is difficult and is, therefore, seldomly ap-
plied, limiting the possibilities for refactoring and testing possible fixes.

• Apart from code reviews, public releases have been the main source for bug reports,
during the development of CasparCG 2.0, indicating a late discovery of defects.

• Debugging is difficult, as there is often inadequate information in order to repro-
duce the errors that have been reported by users.

In the following section, we describe how RUGVEF was implemented and used for
improving the verification process of CasparCG at SVT.

20

5.3. VERIFYING CASPARCG WITH RUGVEF CHAPTER 5. CASE STUDY

Figure 5.7: RUGVEF is integrated into the existing testing workflow of CasparCG.

5.3 Verifying CasparCG with RUGVEF

The RUGVEF conceptual model was integrated into the testing workflow of CasparCG
with the aim of complementing existing practices (particularly ocular inspections), in
order to improve the probability of detecting errors, while maintaining the existing relia-
bility levels of its testing process. Figure 5.7 illustrates RUGVEF being non-intrusively
added to the testing workflow (intercepting messages and output video transmitted by
CasparCG), where it is used in parallel with ocular inspections (and possibly other
existing practices).

In this section, we present our contribution to the testing of CasparCG, consisting
of two separate verification techniques: local and remote, allowing the system to be
verified alternatively on the same and on a different machine. We also present our
optimized SSIM implementation, used for real-time image assessment, and a theoretical
argumentation on how our approach is indeed an optimization in relation to a reference
implementation [25].

5.3.1 Local Verification

During local verification, the verification process is concurrently executed as a plugin
module inside CasparCG, allowing output to be intercepted without using middleware
or code modifications. Figure 5.8 illustrates that the verifier is running as a regular
output module inside CasparCG, directly intercepting the graphical output (i.e. video)
and the messages produced.

The main difficulty of verifying CasparCG is to check its output that is dynami-
cally composed of multiple layers. Consider the scenario where a video stream, initially
composed by one layer of graphics, is verified using references. In this case, the refer-
ence used is simply the source of the graphics rendered. However, at some point, as
an additional layer is added, the process requires a different reference for checking the
stream that now is composed of two graphical sources. The difficulty, in this case, is

21

5.3. VERIFYING CASPARCG WITH RUGVEF CHAPTER 5. CASE STUDY

Figure 5.8: The verifier is implemented as an input module, running as a part of CasparCG.

to statically provide references for each possible scenario where the additional layer has
been added on top of the other (as this can happen at any time). As a solution, we
instead analyze the graphical output through a reference implementation that mimics
basic system functionalities of CasparCG (e.g. blending of multiple layers). Using the
original source files, the reference implementation generates references at runtime which
are expected to be binarily equal to the graphical output of CasparCG. The reference
implementation only needs to be verified once, unless new functionality is added, as it
is not expected to change during CasparCG’s development.

Another problem of verifying CasparCG lies in defining the logic of the system, where
each additional layer or command considered would require an exponential increase in
the number of predefined states. As an example consider Figure 5.9, showing that a
state-machine representing a system with two layers (a) only requires half the amount of
states compared to the state-machine representing the same system with three layers (b).
In order to avoid such bloated system definitions, we instead define a generic description
of CasparCG where one state machine represents all layers, which are expected to be
functionally equal. This solution allows temporal properties of each layer to be moni-
tored separately while the reference implementation is used for checking the contextual
properties of the complete system.

The runtime state of CasparCG is tracked by connecting to its existing messaging
capability, which is implemented according to the Open Sound Control (OSC) protocol
[26]. Transmitted messages consist of two fields (see Figure 5.10), where the first field
carries the name and the origin of the message (similarly to hyperlink addresses), while
the second carries its arguments. In the context of CasparCG, the first field corresponds
to the system’s capability of handling multiple outputs (i.e. channels), where each out-
put is composed of several graphical streams (i.e. layers), and where the second field
carries any additional information, such as the file currently playing. For instance, the
event of playing the file movie.mp4 on layer two, channel one, would result as the trans-
mitted OSC message shown in Figure 5.10; thus, allowing source files to be determined
dynamically at runtime.

22

5.3. VERIFYING CASPARCG WITH RUGVEF CHAPTER 5. CASE STUDY

(a) (b)

Figure 5.9: Illustrating the problem where the number of states is exponentially increased
with each additional layer defined. Showing a state-machine defining a system of two layers
(a), and a state-machine defining the same system with three layers (b).

Figure 5.10: The OSC message representing that the file“movie.mp4” is playing on channel
1, layer 2.

We formally define the logic of CasparCG through Extensible Markup Language
(XML) scripts (see Listing 5.1). Events are described as regular expressions [27] that
are mapped to OSC messages and paired with predefined properties. Properties are
used for controlling the behavior of the reference implementation, where each property
corresponds to a replicated functionality of CasparCG. For instance in Listing 5.1, the
event pause at Line 13 is paired with the property suspend="true", defining that the
reference implementation should pause/suspend the playback on layers corresponding to
the address defined by the regular expression channel/0/layers/[0-9]+/ of received
OSC messages with the name pause.

As mentioned in Section 5.1, CasparCG implements a buffered rendering pipeline
in order to increase the performance and the reliability of the system. However, this
architectural design introduced a latency between received commands and the visible
output, causing OSC messages to be transmitted prematurely and thereby making the
reference implementation to become out of sync. As a solution to this problem, we
implemented the frame tagging scheme presented in Section 4.2, describing how syn-
chronization is achieved by pairing frames with events, in this case OSC messages, using
unique identifiers.

23

5.3. VERIFYING CASPARCG WITH RUGVEF CHAPTER 5. CASE STUDY

1<?xml version=”1 .0 ” encoding=”utf−8”?>
2<s ta te−machine s t a r t=” i d l e ”>
3<s t a t e s>
4<s t a t e name=” i d l e ”>
5<t r a n s i t i o n event=”channel /0/ l a y e r /[0−9]+/ play ”
6t a r g e t=”p lay ing ”/>
7</ s t a t e>
8<s t a t e name=”play ing ”>
9<t r a n s i t i o n event=”channel /0/ l a y e r /[0−9]+/ stop ”
10t a r g e t=” i d l e ” r e s e t=”true ”/>
11<t r a n s i t i o n event=”channel /0/ l a y e r /[0−9]+/ eo f ”
12t a r g e t=”paused ” r e s e t=”true ”/>
13<t r a n s i t i o n event=”channel /0/ l a y e r /[0−9]+/ pause ”
14t a r g e t=”paused ” suspend=”true ”/>
15</ s t a t e>
16<s t a t e name=”paused ”>
17<t r a n s i t i o n event=”channel /0/ l a y e r /[0−9]+/ stop ”
18t a r g e t=” i d l e ” r e s e t=”true ”/>
19<t r a n s i t i o n event=”channel /0/ l a y e r /[0−9]+/ play ”
20t a r g e t=”p lay ing ” suspend=” f a l s e ”/>
21</ s t a t e>
22</ s t a t e s>
23</ s tate−machine>

Listing 5.1: An XML script defining the generic state machine of CasparCG where events
are paired with properties in order to control the behaviour of the reference implementation.

While evaluating local verification, we found that the process is computationally de-
manding, possibly affecting the system negatively during periods of high load, making
verification inapplicable during stress-testing. Another limitation identified was that all
components of the system are not verifiable; that it is impossible to check the physical
output produced by CasparCG, which could be negatively affected by external factors
(e.g. hardware or drivers). Thus, in order to more accurately monitor CasparCG, with
minimal overhead and including its physical output, we further extended our implemen-
tation of RUGVEF, as described in the following subsection.

5.3.2 Remote Verification

During remote verification, the verifier is executed non-intrusively on a physically dif-
ferent system. Figure 5.11 shows this solution, consisting of two CasparCG instances
running on separate machines, where the first instance receives the commands and pro-
duces the output, and where the second instance captures the output and forwards it to
the RUGVEF verification module.

Remote verification requires that OSC messages are transmitted between the ma-
chines and where we originally attempted to solve this problem by using the TCP
network protocol. However, the latency introduced by the overhead of this protocol
(i.e. buffering, error correction, and packet acknowledgements) caused a synchronization

24

5.3. VERIFYING CASPARCG WITH RUGVEF CHAPTER 5. CASE STUDY

Figure 5.11: The remote verification uses two instances of CasparCG that are running on
two separate machines, where the first instance renders the video content, and where the
second instance captures the rendered content and forwards it to the verification module.

problem that made remote verification impossible (i.e. the opposite of the synchroniza-
tion problem described in Section 4.1). Thus, we instead use the UDP protocol through
which we were able to attain sufficiently low transmission latencies.

Additionally, the already implemented synchronization by frame tagging scheme
is unusable during remote verification. The problem lies in that this synchronization
method requires tags to always be transmitted together with frames, but where tags
received by the second machine are impossible to forward together with frames through
CasparCG’s rendering pipeline (to the verification module), without making significant
architectural changes to CasparCG. Thus, to be able to synchronize the remote verifi-
cation with the output of CasparCG, we also implemented the reference based synchro-
nization scheme that is described in Section 4.2.

The main problem of remote verification is that the video card interface of CasparCG
compresses graphical content, converting it from the internal BGRA color format to the
YUV420 color format [4], before transmitting it between the machines. These compres-
sions cause data loss, making binary comparisons inapplicable, instead requiring that
the output is analyzed through other image assessment techniques that are based on the
human visual system. In this implementation, we chose to use SSIM, which we found to
be the best alternative for determining whether two images are perceptually equal.

Nevertheless, the reference SSIM implementation [25] is only able to process one
frame every few seconds, making real-time analysis of CasparCG’s graphical output
impossible (as it is produced at a minimum rate of 25 frames per second). In the
following subsection, we show the algorithmic and implementation specific optimizations
performed in order to make SSIM applicable to the RUGVEF verification process of
CasparCG.

25

5.3. VERIFYING CASPARCG WITH RUGVEF CHAPTER 5. CASE STUDY

Figure 5.12: The M by M window for the pixel Xi in the N by N image.

5.3.3 On the implementation of SSIM

The main challenge of improving the implementation of SSIM consisted of achieving the
performance that would allow the algorithm to be minimally intrusive, while keeping up
with data rate of CasparCG.

In this subsection, we first describe the basics of SSIM in order to show identified
bottlenecks, followed by showing how these are reduced by mapping the algorithm to
modern processor architectures. We finally present our algorithmic optimization in the
form of a preprocessing step that reduced the amount of data processed by SSIM, while
maintaining sufficient accuracy.

In order to determine fidelity, SSIM decomposes the image similarity measurement
into three independent components that the human visual system is more sensitive to
[18]:

• luminance, the mean pixel intensity between images.

• contrast, the variance of pixel intensity between images.

• structure, the pixel intensity after subtracting the mean intensity and normalizing
the variance between images.

These metrics are estimated for each pixel by sampling neighboring pixels in windows
of predetermined sizes, as shown in Figure 5.12. The pixel values inside the windows are
weighted according to some form of distribution (e.g. linear or Gaussian distribution),
where samples closer to the center are considered more important.

In order to show the bottlenecks, we provide the following specification of SSIM.

26

5.3. VERIFYING CASPARCG WITH RUGVEF CHAPTER 5. CASE STUDY

Specification 1 Let us consider two images represented by two distinct N by N se-
quences of pixels, X = {Xi|1,2,...,N2} and Y = {Yi|1,2,...,N2}, where Xi and Yi
are the values of the ith pixel sample in X and Y . Let xi = {xij |1,2,...,M2} and
yi = {yij |1,2,...,M2} be windows of M by M sequences centered around the ith pixel
in X and Y , where xij and yij are the values of the jth pixel samples in xi and yi,
and where these windows are evaluated using the weighting function w. Then SSIM is
specified as [18]:

SSIM(X,Y) = N−2
N2∑
i=1

luminance(Xi, Yi)×constrast(Xi, Yi)×structure(Xi, Yi) (5.1)

luminance(x, y) = (2µxµy + C1)/(µ
2
x + µ2y + C1) (5.2)

constrast(x, y) = (2σxσy + C2)/(σ
2
x + σ2y + C2) (5.3)

structure(x, y) = (σxy + C3)/(σx + σy + C3) (5.4)

E[x] = µx =
M2∑
j=1

wjxij (5.5)

σx =

√√√√M2∑
j=1

wj(xij − µx)2 (5.6)

σxy =

M2∑
j=1

wj(xij − µx)(yij − µy) (5.7)

We found that the main bottlenecks of implementing this specification are Equa-
tions (5.5) to (5.7)), each having respectively the time complexity of O(N2M2), where
N2 = 1920× 1080 for HDTV resolutions [28] and M is the size of the windows that are
used in the fidelity measurements.

In order to fully utilize modern processor capabilities, we implemented the algorithm
using Single-Instruction-Multiple-Data instructions (SIMD) [29], allowing us to perform
simultaneous operations f on vectors of 128 bit values, in this case four 32 bit floating
point values xj = {x1,x2,x3,x4}, using a single instruction fSIMD as illustrated by
Specification 2. Also, in order to fully utilize SIMD, we chose to replace the recommended
window size of M = 11 in [18] with M=8, allowing calculations to be evenly mapped to
vector sizes of four elements (i.e. two vectors per row).

Specification 2

fSIMD(~x, ~y) = {f(x1,y1), f(x2,y2), f(x3,y3), f(x4,y4)} (5.8)

27

5.3. VERIFYING CASPARCG WITH RUGVEF CHAPTER 5. CASE STUDY

By utilizing SIMD, we are able to reduce the time complexity of Equations (5.5)
to (5.7)) from O(N2M2) to O(N2M2/4).

Additionally, we implemented SSIM using a cache friendly single pass calculation,
allowing Equations (5.5) to (5.7) to be calculated in one pass. This implementation
greatly improved the performance, in comparison with the reference implementation
[25], where entire images had to be processed in multiple passes and thereby requiring
multiple memory loads and stores for each pixel 4.

Furthermore, we parallelized our implementation by splitting images into several dy-
namic partitions, which are executed on a task-based scheduler, enabling load-balanced
cache-friendly execution on multicore processors [30]. This parallelization is illustrated
in Figure 5.13, where an image is split into four partitions, mapping execution on all
available processing units, and where the result for each partition is merged into the
cumulative SSIM measure. Dynamic partitions enables the task-scheduler to more effi-
ciently balance the load between available processing units [30], by allowing idle process-
ing units to split and steal sub-partitions from other busy processing units’ work queues.
Using all processors, we are able to achieve a highly scalable implementation with the
total time complexity of O((N2M2)/(4p)), where p is the number of available processing
units.

Lastly, we further reduced the time complexity of SSIM by discarding chrominance
and calculating results based solely on luminance (i.e. instead of calculating SSIM based
on all three, red, green, and blue, color channels), where this optimization is possible due
to the assumption that the HVS is more sensitive to luminance than chrominance [19].
Using only luminance, time complexity of the SSIM algorithm is O((N2M2)/(4p3) +
10N2), where O(5N2) is the time complexity of the luminance transformation specified
by the BT.709 standard for HDTV [28], which we specify below.

Specification 3 Let ~x = {xi|1,2,3,4} be a pixel sample where each component respec-
tively evaluate the 8 bit components red, green, blue, and alpha of the pixel sample xi.
Then the BT.709 luma transformation Y’ is specified as:

Y ′BT.709(~x) = 0.2125x1 + 0.7154x2 + 0.0721x3 (5.9)

In this transformation, a weight is assigned for each component in a vector x, where
each weight represents the relative sensitivity between colors according to the HSV. For
example, the blue component is considered least visible by the HSV and is, therefore,
weighted by the relatively low value of 0.0721. Equation (5.9) can also be realized using
a four component dot product5 between the pixel sample and a weighting vector. Using
the dedicated dot product SIMD instruction we are able to reduce the time complexity
of Equation (5.9) from O(5N2) to O(N2). Additionally, by parallelizing the equation,

4Processing large amounts of data that does not fit into the cache memory requires the same data
to be transferred between the cache and the main memory multiple times, which is considerably slower
than performing the actual calculations.

5An algebraic operation that by multiplying and summing the corresponding elements in two vector
returns a single value result called the dot/scalar product, a · b =

∑n
i=1 aibi.

28

5.3. VERIFYING CASPARCG WITH RUGVEF CHAPTER 5. CASE STUDY

similarly to the parallelization of SSIM earlier described, we are able to further reduce
the time complexity of the luminance transformation to O(N2/p), where p is the number
of available processing units..

The final time complexity achieved by our optimized SSIM implementation is O((N2

(M2+24))/(12p)), allowing SSIM calculations to be performed in real-time on consumer
level hardware at HDTV resolutions, which we demonstrate in the following chapter.

Figure 5.13: Images are divided into partitions which are processed on different central
processing units. The results of the partitions are then summed in a critical section using a
low contention spinlock.

29

6
Results

I
n the previous chapter, we discussed our implementation of RUGVEF and its
integration into the testing workflow of CasparCG. In this chapter, we begin by pre-
senting the quantitative results of new errors found, while verifying CasparCG using

RUGVEF. We then show improvements to the testing process, by checking whether
previously known defects (that were injected back into CasparCG) could be detected.
Finally, we present the improvements in terms of accuracy and performance of our op-
timized SSIM implementation in relation to the reference implementation.

6.1 Previously Unknown Defects

The results produced by RUGVEF when errors occur are images describing the errors
found. For instance, Figure 6.1 illustrates one example of such images produced when
an error was detected, illustrating the reference expected in (a), the actual output in
(b), and the pixel errors in (c).

Using RUGVEF we were able to find several previously unknown defects which we
present in the order of their severity (as determined by the developers of the system).
We also discuss the difficulties in detecting these defects through the existing practices
at SVT (e.g. ocular inspections).

(a) (b) (c)

Figure 6.1: Three images are produced when errors are detected, where (a) is the reference,
(b) the actual output, and (c) the highlighted pixel error.

30

6.1. PREVIOUSLY UNKNOWN DEFECTS CHAPTER 6. RESULTS

6.1.1 Tinted Colors

Using remote verification, we found a defect where a video transmitted by CasparCG ’s
video interface had slightly tinted colors compared to the original source (i.e. the ref-
erence). This error is visible in Figure 6.2, where the actual output (b) has slightly
different colors than the reference (a). The error was caused by an incorrect YUV to
BGRA transformation that occurred between CasparCG and the video interface. Such
problems are normally difficult to detect as both the reference and the actual output
looks correct when evaluated separately (see Figure 6.2), where differences only are ap-
parent during direct comparisons.

(a) (b)

Figure 6.2: The tinting error where the output (b) has a yellowish tint1in relation to the
reference in (a).

6.1.2 Arithmetic Overflows During Alpha Blending

Using RUGVEF, we found that artifacts sometimes occurred in video streams consisting
of multiple layers, due to a pixel rounding defect. This defect caused arithmetic overflows
during blending operations, producing errors as shown in Figure 6.3 (b) (seen as blue
pigmentations2). Since these errors only occur in certain cases and possibly affecting
very few pixels, detection using ocular inspections is a time-consuming process requiring
rigorous testing during multiple runs.

6.1.3 Invalid Command Execution

Using RUGVEF, we found that the software in certain states accepted invalid commands.
Figure 6.4 illustrates these errors as dashed lines, showing for instance that it was possible
to incorrectly stop idle or non existing layers. Executing commands on non-existing
layers caused unnecessary layers to be initialized, consuming resources in the process.

1In black and white this is seen as slightly brighter background.
2In black and white this is seen as the small grey parts in the white central part of the picture.

31

6.1. PREVIOUSLY UNKNOWN DEFECTS CHAPTER 6. RESULTS

(a) (b) (c)

Figure 6.3: Pixel rounding defect causing artifact to appear in image (b) which are not
visible in the reference (a). Note that the images have been magnified in order to make the
errors more visible.

Figure 6.4: A state machine showing parts of the formal definition used during the verifi-
cation of CasparCG, where the invalid transitions detected are shown using dashed lines.

Without RUGVEF, this defect would only have been detected after long consecutive
system runs, where the total memory consumed would be large enough to be noticed.
Furthermore, the execution of these invalid commands produced system responses that
indicated successful executions to clients (instead of producing error messages), probably
affecting both clients and developers in thinking that this behavior was correct.

6.1.4 Missing Frames During Looping

Using RUGVEF, we detected that frames were occasionally skipped when looping videos.
The cause of this defect is still unknown and has not been previously detected due to
the error being virtually invisible, unless videos are looped numerous times (since only
one frame is skipped during each loop).

32

6.2. PREVIOUSLY KNOWN DEFECTS CHAPTER 6. RESULTS

6.1.5 Minor Pixel Errors

Using local verification, we detected that minor pixel deviations occurred to the out-
put of CasparCG that sometimes caused pixel errors of up to 0.8%. These errors are
perceptually invisible and could only be detected by using the binary image assessment
technique. Figure 6.5 shows an example of such a case, where the output in (b) looks
identical to the reference in (a) but where small differences have been detected (c).

(a) (b) (c)

Figure 6.5: The output (b) is perceptually identical to the reference (a) while still con-
taining minor pixels errors (c).

6.2 Previously Known Defects

In order to evaluate the efficiency of our conceptual model, we injected several known
defects into CasparCG and tested whether these could be found using our RUGVEF
implementation. The injected defects were mined from the subversion log of CasparCG
[31] by inspecting the last 12 months of development, scoping the large amount of infor-
mation while still providing enough relevant defects. In Table 6.1, we present a summary
of the gathered defects, where the first column contains the revision id of the log entry,
the second a short description of the defect, and the third column indicates whether the
defects were possible to detect using our RUGVEF implementation.

Using our RUGVEF implementation, we were able to detect 6 out of 16 defects that
were injected back into CasparCG. The defects that could not be found were due to
limited reference implementation, which only partially replicated existing functionalities
of CasparCG. For instance, our reference implementation did not include the scaling of
frames or the wipe transition functionalities which made the defects, found in revision
1773 and 1252 respectively, impossible to detect as appropriate references could not be
generated.

33

6.3. PERFORMANCE OF THE OPTIMIZED SSIM CHAPTER 6. RESULTS

Rev Description Found

N/A Flickering output due to faulty hardware. yes

2717 Red and blue color channels swapped during certain runs. yes

2497 Incorrect buffering of frames for deferred video input. no

2474 Incorrect calculations in multiple video coordinate transformations. no

2410 Frames from video files duplicated due to slow file I/O. yes

2119 Configured RGBA to alpha conversion sometimes not occurring. yes

1783 Missing alpha channel after deinterlacing. yes

1773 Incorrect scaling of deinterlaced frames. no

1702 Video seek not working. no

1654 Video seek not working in certain video file formats. no

1551 Incorrect alpha calculations during different blending modes. no

1342 Flickering video when rendering on multiple channels. yes

1305 De-interlacing artifacts due to buffer overflows. no

1252 Incorrect wipe transition between videos. no

1204 Incorrect interlacing using separate key video. no

1191 Incorrect mixing to empty video. no

Table 6.1: Previously fixed defects that were injected back into CasparCG in order to test
whether they are detectable using RUGVEF.

6.3 Performance of the Optimized SSIM Implementation

We performed our speed improvement benchmarks of our optimized SSIM implemen-
tation on a laptop computer having 8 logical processing units, each running at 2.0
GHz3(which is considerably slower than the target server level computer). Each bench-
mark consisted of comparing the optimized SSIM implementation against the original
implementation using the three most common video resolutions, standard definition
(SD), high definition (HD), and full high definition (Full HD), by measuring the average
time for calculating SSIM for 25 randomly generated images.

The results of our benchmarks are presented in Table 6.2, showing that our optimized
SSIM implementation is up to 106 times faster than the original implementation. This
increase is larger than the theoretically expected increase of 80 times (calculated using
our final time complexity in Section 5.3.3), since our optimized SSIM implementation
performs all calculations in a single pass, thereby avoiding the memory bottlenecks which
existed in the original SSIM implementation. Using our optimized SSIM implementa-

3Intel Core i7-2630QM

34

6.3. PERFORMANCE OF THE OPTIMIZED SSIM CHAPTER 6. RESULTS

tion, we are able to analyze the graphical output of CasparCG in real-time for Full HD
streams, which was our goal.

Additionally, we also performed an accuracy test by calculating SSIM for different
distortions in images, comparing the results of our optimized SSIM implementation with
the results of the original implementation. In Figure 6.6, we present the values produced
by our optimized SSIM implementation “O” and the values produced by the original
implementation “R” for the following four types of image distortions: undistorted (a),
noisy (b), blurred (c), and distorted levels (d). The result shows that the accuracy of
both SSIM implementations is nearly identical, as the differences between the values are
very small.

(a)
R: 1.000 O: 1.000

(b)
R: 0.719 O: 0.714

(c)
R: 0.875 O: 0.875

(d)
R: 0.699 O: 0.686

Figure 6.6: The results of performing SSIM calculation using our optimized implementa-
tion (O) and the reference implementation (R) for an undistorted image (a), noisy image
(b), blurred image (c), and an image with distorted levels (d).

Implementation 720x576 (SD) 1280x720 (HD) 1920x1080 (Full HD)

Optimized 129 fps 55 fps 25 fps

Reference 1.23 fps 0.55 fps 0.24 fps

Table 6.2: The optimized SSIM implementation compared against a reference implemen-
tation at different video resolutions.

35

7
Related Work

A
lthough previous research seems scarce, we have found the following work
addressing the issues related to the testing of graphics in applications: the tool
Sikuli [9, 32], that uses screenshots as references for automating testing of Graph-

ical User Interfaces (GUI s); the tool PETTool [10], which (semi-) automates the exe-
cution of GUI based test-cases through identified common patterns; and a conceptual
framework for regression testing graphical applications [11].

We found that the framework presented in [11] was most relevant to our subject. The
concept presented is based on verifying graphical applications by combining traditional
aspects of testing (e.g. heap integrity and assertion checks) with analysis of graphical
output. The basic outline of the verification process is to utilize a harness for executing
tests, where tests are registered as function pointers within the harness. The correctness
of graphical output is checked through comparisons with previously captured screen
contents, which has been subjectively qualified by an operator (done the first time a test
is run).

When it comes to verifying graphical output, the framework in [11] uses a similar
approach to our proposal in RUGVEF. However, the concept differs by focusing on
testing system features in isolation, where each test is run separately and targets specific
areas of a system (similarly to unit tests). Furthermore, we also provide a proof of
concept in the form of a case study, testing our framework in an industrial setting, while
there are no indications that something similar has been done in [11].

Additionally, we also looked at LARVA [16, 17, 33], a tool that is based on the
conventional runtime verification technique and used for checking runtime properties
of JAVA applications. Although this tool is not aimed at verifying graphics related
system properties, it was used as an inspiration source for developing the RUGVEF
conceptual model, where we combined runtime verification with image quality assessment
techniques.

36

8
Future Work

W
e have in this thesis focused mostly on adapting our concept for verifying
systems that more or less produce graphical output using already existing
video content (e.g. video files). Hence, it would be interesting to investigate

whether RUGVEF can be adapted to other areas, such the game industry, where output
produced is much more dynamic in nature. One idea is to test the possibility of regression
testing such systems through recorded references, generated using the existing features of
the system, incrementally adding more references as more features are added (similarly
to making a movie, where new scenes are recorded continuously).

Another idea, which is more directly related to the work in this thesis, is to use
an already developed system as the reference generator while making graphics related
optimizations. For instance, reducing the polygon count of objects rendered in games,
increasing the performance while checking that changes are perceptually invisible. A
different industrial related example could be CasparCG, where during our case study of
the system, a decision was taken to develop a CPU based fallback implementation for
much of the GPU based functionality. In this case, the current GPU based implementa-
tion could serve as the reference generator for verifying the CPU based implementation
during its development, as both are expected to produce identical outputs.

During the implementation of our proof of concept, the capability of transmitting
system events already existed in CasparCG, allowing us to avoid making changes to the
system. However, the existence of such capabilities is ordinarily not the case, instead
requiring that the functionality is explicitly added. An interesting idea is to investigate
whether it is possible to make RUGVEF more generic, e.g. by using function attributes
that are automatically translated into code using compiler extensions, thereby reducing
the intrusiveness of the framework.

Also, during our case study of CasparCG, some audio related errors occurred which
are out of scope for the RUGVEF verification process. However, it might be possible
to detect such errors using perceptual based audio analysis techniques, similarly to our
image analysis proposal in RUGVEF.

Lastly, we discuss the possibility for improving the reference implementation of
RUGVEF, created specifically for testing CasparCG. This implementation was scoped
to only mimic the very basic functionalities (i.e. play, pause, stop, and alpha blending)

37

CHAPTER 8. FUTURE WORK

which was enough for proving our concept. As a result of this scoping, not all previously
known defects could be found while evaluating our proof of concept implementation.
Thus, in order to increase the testing coverage, we recommend that the reference imple-
mentation is extended so that it supports other basic features of CasparCG.

38

9
Final Discussion

I
n this thesis, we have investigated the possibility of automating the verification of
real-time graphics systems. As a result, we have developed RUGVEF, a conceptual
framework, combining runtime verification for checking temporal properties, with

image analysis, where reference based image quality assessment techniques are used for
checking contextual properties. The assessment techniques presented were based on two
separate notions of correctness: absolute and perceptual. We also provided a proof of
concept, in the form of a case study, where we implemented and tested RUGVEF in the
industrial setting of CasparCG, an on-air graphics playout system developed and used
by SVT. The implementation included two separate verification techniques, local and re-
mote, used for verifying the system locally on the same machine with maximal accuracy,
or remotely on a different machine, with minimal runtime intrusiveness. Additionally,
remote verification allowed the system to be tested as a whole, making it possible to
detect errors in the runtime environment (e.g. hardware and drivers). We also created
an optimized SSIM implementation that was used for determining the perceptual dif-
ference between images, enabling real-time analysis of Full HD video output produced
by CasparCG.

The results presented show five previously unknown defects detected using our proof
of concept implementation. We also investigated whether previously known defects could
be detected using our tool, showing that 6 out of 16 injected defects could be found.
Lastly, we measured the performance of our optimized SSIM implementation, demon-
strating a performance gain of up 106 times compared to the original implementation
and a negligible loss in accuracy.

The results shows that RUGVEF can indeed successfully complement existing verifi-
cation practices by automating the detection of contextual and temporal errors in graphi-
cal systems. That using the framework allows for earlier detection of defects and enables
more efficient development through automated regression testing. Unlike traditional
testing techniques, RUGVEF can also be used to verify the system post deployment,
similarly to traditional runtime verification, something that previously was impossible.
Additionally, the RUGVEF tool created for verifying CasparCG was presented at SVT,
receiving positive responses from the development team.

39

Bibliography

[1] G. J. Myers and C. Sandler, The Art of Software Testing. John Wiley & Sons,
second ed., 2004.

[2] M. Utting and B. Legeard, Practical Model-Based Testing: A Tools Approach. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2007.

[3] D. Galin, Software Quality Assurance: From Theory to Implementation. Addison-
Wesley, first ed., 2003.

[4] E. Dustin, T. Garrett, and B. Gauf, Implementing Automated Software Testing:
How to Save Time and Lower Costs While Raising Quality. Addison-Wesley Pro-
fessional, first ed., 2009.

[5] P. Krill, “Why the time is now for continuous integration in app development,”
July 2011. http://www.infoworld.com/d/application-development/why-the-

time-now-continuous-integration-in-app-development-941 (5 May 2012).

[6] M. Fowler, “Continuous integration,” May 2006. http://martinfowler.com/

articles/continuousIntegration.html (5 May 2012).

[7] M. Sharke, “Rage PC launch marred by graphics issues,” October 2011. http:

//pc.gamespy.com/pc/id-tech-5-project/1198334p1.html (5 May 2012).

[8] J. Carmack, “Quakecon 2011 - John Carmack keynote Q&A,” August 2011. http:

//www.quakecon.org/2011/08/catch-up-on-quakecon-2011/ (5 May 2012).

[9] T. Yeh, T.-H. Chang, and R. C. Miller, “Sikuli: using GUI screenshots for search
and automation,” in UIST (A. D. Wilson and F. Guimbretière, eds.), pp. 183–192,
ACM, 2009.

[10] M. Cunha, A. C. R. Paiva, H. S. Ferreira, and R. Abreu, “PETTool: A pattern-
based GUI testing tool,” in Software Technology and Engineering ICSTE 2010 2nd
International Conference on, vol. 1, pp. 202–206, 2010.

[11] D. Fell, “Testing graphical applications,” Embedded Systems Design, vol. 14, no. 1,
pp. 86–86, 2001.

40

http://www.infoworld.com/d/application-development/why-the-time-now-continuous-integration-in-app-development-941
http://www.infoworld.com/d/application-development/why-the-time-now-continuous-integration-in-app-development-941
http://martinfowler.com/articles/continuousIntegration.html
http://martinfowler.com/articles/continuousIntegration.html
http://pc.gamespy.com/pc/id-tech-5-project/1198334p1.html
http://pc.gamespy.com/pc/id-tech-5-project/1198334p1.html
http://www.quakecon.org/2011/08/catch-up-on-quakecon-2011/
http://www.quakecon.org/2011/08/catch-up-on-quakecon-2011/

BIBLIOGRAPHY BIBLIOGRAPHY

[12] G. Dodig-Crnkovic, “Scientific methods in computer science,” in Conference for the
Promotion of Research in IT at New Universities and at University Colleges in
Sweden, p. 126–130, April 2002.

[13] A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design science in information
systems research,” MIS Quarterly, vol. 28, no. 1, pp. 75–105, 2004.

[14] P. Runeson and M. Höst, “Guidelines for conducting and reporting case study re-
search in software engineering,” Empirical Softw. Engg., vol. 14, pp. 131–164, April
2009.

[15] M. Leucker and C. Schallhart, “A brief account of runtime verification,” Journal of
Logic and Algebraic Programming, vol. 78, no. 5, pp. 293–303, 2009.

[16] C. Colombo, G. J. Pace, and G. Schneider, “Dynamic event-based runtime monitor-
ing of real-time and contextual properties,” in FMICS (D. D. Cofer and A. Fantechi,
eds.), vol. 5596 of Lecture Notes in Computer Science, pp. 135–149, Springer, 2008.

[17] C. Colombo, G. J. Pace, and G. Schneider, “LARVA — safer monitoring of real-
time java programs (tool paper),” in SEFM (D. V. Hung and P. Krishnan, eds.),
pp. 33–37, IEEE Computer Society, 2009.

[18] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment:
From error visibility to structural similarity,” IEEE TRANSACTIONS ON IMAGE
PROCESSING, vol. 13, no. 4, pp. 600–612, 2004.

[19] A. M. Murching and J. W. Woods,“Adaptive subsampling of color images,” in Image
Processing, 1994. Proceedings. ICIP-94., IEEE International Conference, vol. 3,
pp. 963–966, November 1994.

[20] X. Li, Y. Cui, and Y. Xue, “Towards an automatic parameter-tuning framework for
cost optimization on video encoding cloud,” Int. J. Digital Multimedia Broadcasting,
vol. 2012, 2012. Article ID 935724, 11 pages.

[21] Z. Wang and A. Bovik, “Mean squared error: Love it or leave it? a new look at
signal fidelity measures,” Signal Processing Magazine, IEEE, vol. 26, pp. 98–117,
January 2009.

[22] S. Winkler and P. Mohandas, “The evolution of video quality measurement: From
PSNR to hybrid metrics,” Broadcasting, IEEE Transactions on, vol. 54, pp. 660–
668, September 2008.

[23] S. B. C. (SVT), “Swedish election 2006.” http://www.casparcg.com/case/

swedish-election-2006 (5 May 2012).

[24] S. B. C. (SVT), “National news: Aktuellt & Rapport.” http://www.casparcg.

com/case/national-news-aktuellt-rapport (5 May 2012).

41

http://www.casparcg.com/case/swedish-election-2006
http://www.casparcg.com/case/swedish-election-2006
http://www.casparcg.com/case/national-news-aktuellt-rapport
http://www.casparcg.com/case/national-news-aktuellt-rapport

BIBLIOGRAPHY

[25] T. Distler, “Image quality assessment (IQA) library,” 2011. http://tdistler.com/
projects/iqa (5 May 2012).

[26] M. Wright, “The Open Sound Control 1.0 specification,” March 2002. http://

opensoundcontrol.org/spec-1_0 (5 May 2012).

[27] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles, Tech-
niques, and Tools (2nd Edition). Addison-Wesley, second ed., August 2006.

[28] I. C. U. (ICU), “BT.709 : Parameter values for the HDTV standards for production
and international programme exchange,” April 2002. http://www.itu.int/rec/R-
REC-BT.709/en (5 May 2012).

[29] Microsoft, “Streaming SIMD Extensions (SSE),” 2012. http://msdn.microsoft.

com/en-us/library/t467de55.aspx (5 May 2012).

[30] K. Farnham, “Threading building blocks scheduling and task stealing: Introduc-
tion,” August 2007. http://software.intel.com/en-us/blogs/2007/08/13/

threading-building-blocks-scheduling-and-task-stealing-introduction/

(5 May 2012).

[31] CasparCG, “CasparCG subversion repository,” 2008. https://casparcg.svn.

sourceforge.net/svnroot/casparcg (5 May 2012).

[32] T.-H. Chang, T. Yeh, and R. C. Miller, “GUI testing using computer vision,” in
CHI (E. D. Mynatt, D. Schoner, G. Fitzpatrick, S. E. Hudson, W. K. Edwards, and
T. Rodden, eds.), pp. 1535–1544, ACM, 2010.

[33] C. Colombo, G. J. Pace, and G. Schneider, “Safe runtime verification of real-time
properties,” in FORMATS (J. Ouaknine and F. W. Vaandrager, eds.), vol. 5813 of
Lecture Notes in Computer Science, pp. 103–117, Springer, 2009.

42

http://tdistler.com/projects/iqa
http://tdistler.com/projects/iqa
http://opensoundcontrol.org/spec-1_0
http://opensoundcontrol.org/spec-1_0
http://www.itu.int/rec/R-REC-BT.709/en
http://www.itu.int/rec/R-REC-BT.709/en
http://msdn.microsoft.com/en-us/library/t467de55.aspx
http://msdn.microsoft.com/en-us/library/t467de55.aspx
http://software.intel.com/en-us/blogs/2007/08/13/threading-building-blocks-scheduling-and-task-stealing-introduction/
http://software.intel.com/en-us/blogs/2007/08/13/threading-building-blocks-scheduling-and-task-stealing-introduction/
https://casparcg.svn.sourceforge.net/svnroot/casparcg
https://casparcg.svn.sourceforge.net/svnroot/casparcg

	Introduction
	Research Method
	Background
	Runtime Verification
	Image Quality Assessment

	RUGVEF
	The RUGVEF Conceptual Model
	Solving the Synchronization Problem
	Analyzing Graphical Output

	Case Study - CasparCG
	CasparCG
	Current Verification Practices
	Verifying CasparCG with RUGVEF
	Local Verification
	Remote Verification
	On the implementation of SSIM

	Results
	Previously Unknown Defects
	Tinted Colors
	Arithmetic Overflows During Alpha Blending
	Invalid Command Execution
	Missing Frames During Looping
	Minor Pixel Errors

	Previously Known Defects
	Performance of the Optimized SSIM

	Related Work
	Future Work
	Final Discussion
	Bibliography

