Implementation of extended motion
capture support in Android smartphones

Master of Science Thesis in the Master Degree Programme
Software Engineering € Technology

WILLIAM LOF
ALEXANDER WIDAR

Department of Computer Science & Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2012

Master’s Thesis 2012

The Author grants to Chalmers University of Technology and University of Gothen-
burg the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work
does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example
a publisher or a company), acknowledge the third party about this agreement. If the
Author has signed a copyright agreement with a third party regarding the Work, the
Author warrants hereby that he/she has obtained any necessary permission from this
third party to let Chalmers University of Technology and University of Gothenburg store
the Work electronically and make it accessible on the Internet.

Implementation of extended motion capture support in Android smart-
phones

WILLIAM LOF
ALEXANDER WIDAR

© WILLIAM LOF, JUNI 2012.
© ALEXANDER WIDAR, JUNT 2012.

Examiner: SVEN-ARNE ANDREASSON

CHALMERS UNIVERSITY OF TECHNOLOGY
University of Gothenburg

Department of Computer Science and Engineering
SE-412 96 Goteborg

Sweden

Telephone + 46 (0)31-772 1000

Cover:
The Android robot juggling motion capture markers

Department of Computer Science and Engineering
Goteborg, Sweden May 2012

Abstract

This thesis is a study in smartphone applications on the Android platform that commu-
nicates with a motion capture system in real-time. The thesis covers the work in porting
a C library to Android Java with NDK in order to utilize already written motion capture
system communication code. Three different Android applications were developed based
on this port; a remote control application, a viewfinder application and a virtual camera
application. For illustration, the OpenGL library is used and hence it is also covered.
Comparisons between the iOS application ditos are made and interviews were conducted
in order to determine how and when the applications are useful. Throughout the project
an agile like inhouse development process was utilized at the Swedish motion capture
company Qualisys. At the end of this paper, some issues and suggestions on future work
are brought to the surface.

Keywords: smartphone, android, motion capture, realtime communication

Sammanfattning

Denna rapport &r resultatet av en studie om smartphoneapplikationer som kommunicerar
med ett motion capture-system i realtid. Rapporten técker arbetet med att porta ett
C-bibliotek till Android Java med hjilp av NDK for att ta vara pa redan skriven kom-
munikationskod. Tre olika Androidapplikationer blev utveckladade baserat pa denna
port, en fjarrkontrollsapplikation, en stkarapplikation samt en virtuell kameraapplika-
tion. For illustration anvindes OpenGL-biblioteket och ddrmed técks detta &ven av
rapporten. Jamforelser med i0S applikationsditos gors samt intervjuer genomfors for
att ta reda pa ndr och hur applikationerna ar anvindbara. Genom hela projektet an-
véndes en agil-liknande inhouse utveckliningsprocess hos det svenska motion capture
foretaget Qualisys. I slutet av rapporten lyfts nagra problem till ytan samt forslag pa
framtida utveckling.

Contents

1 Introduction

1.1 Previouswork L
1.1.1 Viewfinder
1.1.2 QTM Remote e

1.2 Purpose

1.3 Goals e

1.4 Scope

2 Background

2.1 Motion Capture
2.1.1 Purpose of motion capture
2.1.2 Motion capture basics Lo o

2.2 Qualisys e

2.3 Android
2.3.1 History e
2.3.2 Android development

2.4 OpenGL e
2.4.1 Why OpenGL?
2.4.2 OpenGL on Android

3 Method & Development Process

3.1 Literature Study

3.2 Development
3.2.1 Basic agile approach L.
3.2.2 Android SDKo
3.23 Eclipse. e

3.3 Interviews e e

CONTENTS

4 Implementation & Result

4.1 Deliverables
4.1.1 Internals.
4.1.2 QTM Remote control
4.1.3 QTM Viewfinder . . .
414 QVC..........

4.2 Interviews

5 Discussion

5.1 Android adaptations of iOS applications

5.2 Usefulness of the applications
5.2.1 QTM Remote Control

5.2.2 QTM Viewfinder . . .
523 QVC..........
5.3 Javaand NDK
5.4 Known issues and limitations
5.5 Futurework

6 Conclusion
References

A Appendix: Interview Questions

ii

15
15
15
17
19
22
26

27
27
28
28
28
28
29
29
30

32

34

35

Abbreviations

6DOF
ADB
API
IDE
JINI
MIT
NDK
QTM
RT
UDP
TCP
IP
VM
WLAN
XML

6 Degrees Of Freedom, defines a rigid body
Android Debug Bridge

Application Programming Interface
Integrated Development Environment
Java Native Interface

Massachusetts Institute of Technology
Native Development Kit

Qualisys Track Manager

Real-Time

User Datagram Protoco

Transmission Control Protocol
Internet Protocol

Virtual Machine

Wireless Local Area Network

Extensible Markup Language

1 Introduction

his is a master thesis written in the Software Engineering and Technology

master program at Chalmers University of Technology. It is performed in con-

junction with the company Qualisys AB, which provides products and services

related to optical motion capture. This thesis focuses on the implementation
and evaluation of a set of tools, implemented for the Android platform, for the company’s
system. Some of the tools have been previously developed for the iOS platform and are
more or less directly translated into the Android platform, whereas one of the tools does
not already exist and is designed from scratch.

1.1 Previous work

In 2010 a master thesis named “Implementation of motion capture support in smart-
phones” was carried out at Qualisys. The goal of that thesis was to implement an API
for the company’s Real-Time Protocol and use that to implement iOS applications for
a viewfinder for seeing what the cameras of a motion capture system see and a virtual
goniometer. Another goal was to investigate cross-platform development of applications
for i0S and Android (Martinsson & Trost 2010).

1.1.1 Viewfinder

As the name suggest, the viewfinder application is meant to show what the cameras in
the company’s motion capture environment see. By streaming the information from a
server, the application shows in real-time what is in the cameras’ field of view. This
is helpful when the cameras are to be mounted in a place that is hard to reach and
the camera picture can be viewed in a handheld device. There are three modes of
the motion capture system that the Viewfinder can show. The user can also use the
viewfinder application to change some system settings (Martinsson & Trost 2010).

1.2. PURPOSE CHAPTER 1. INTRODUCTION

Figure 1.1 The iOS Viewfinder

1.1.2 QTM Remote

QTM remote is an application that was developed at Qualisys by the same people who
did the previously mentioned master thesis. The remote application was, however, not
a part of the thesis and is therefore a separate related work. The application makes it
possible for users of the Qualisys motion capture system, to trigger motion recording
remotely by their handheld device and marking events on the recorded time-line. It also
lets the user save the recordings to files on the computer and is also compatible with the
so called batch capture, where saving happens automatically (Qualisys 2012).

Figure 1.2 The iOS QTM Remote

1.2 Purpose

The purpose of this thesis is:

e To extend functionality already found in the i0S platform to the Android platform

1.3. GOALS CHAPTER 1. INTRODUCTION

e To explore 3D functionality of the Qualisys system by implementing a virtual
camera

e To work in a realistic way with Qualisys as a customer
e To fulfill the goals specified in 1.3
The purpose also includes answering the following research questions:

e How will the portability of a handheld android device help in configuring, maneu-
vering and maintaining a Qualisys motion capture system?

e Will the extension to 3D handheld functionality provide any advantages to the 2D
functionality?

e Are there limitations of a handheld android device when implemented in the Qual-
isys motion capture environment?

1.3 Goals

The goals of this thesis are divided in two different phases. The first phase consists
of using the existing C library to develop the two previously iOS applications for the
Android platform. The second phase will be an extension with a 3D implementation
in the form of a so called virtual camera. Assessing the usefulness of the different
applications is also a part of the goals.

1.4 Scope

The implementation will be the the most time-consuming part of the thesis and will
include the development of the two existing iOS applications in Android as well as the
3D implementation. An evaluation will be conducted after the implementation and will
be limited to the opinions of the employees at Qualisys since there will not be enough
time to take the opinions of end users.

2 Background

hapter two of this thesis covers background information on the different tech-

nologies and concepts that was used during the project. This is information

that is important to know beforehand in order to understand the results of

the thesis. The basics of motion capture is covered as well as the company
Qualisys, where the thesis was housed, the Android platform and the graphics library
OpenGL.

2.1 Motion Capture

Motion capture is the procedure of recording live motion into a digital 3D represen-
tation. This is usually done by tracking a number of landmarks on a recorded object
and combining them into a viable digital presentation. The object of interest can be
anything with a motion that is desirable to record. The landmarks should be the points
that best represent the object’s movement and links between rigid sections. When cap-
turing, e.g. human motion, some obvious landmarks are the joints between body parts
(Menache 2010).

2.1.1 Purpose of motion capture

Motion capture has a number of applications, analytic like in biomechanics where track-
ing of motion is used e.g. as an aid in gait analysis to help in rehabilitation of injured
people (Cloete & Scheffer 2008) and industrial purposes where it can be used for e.g.
measuring and evaluating the efficiency of industrial robots (Qualisys 2011b). There are
also real-time applications, such as tracking a head-mounted display in order to show
the proper information on the screen or as a tool in computer-aided surgery, where it
can allow for more precise placement of hip prosthetics or tracking of probes in breast
biopsies (Welch 2002).

2.1.2 Motion capture basics

The tracking of the previously mentioned landmarks are done by placing markers or
sensors on them and collecting the information given by them. Whether it is sensor
or markers that are used depends on what type of system it is and motion capture is
usually categorized into the following types: outside-in, inside-out and inside-in.

2.2. QUALISYS CHAPTER 2. BACKGROUND

e In outside-in systems the sensors are external and placed around the measured
space, collecting data from markers placed on the measured objects. One example
of this is camera-based systems in which cameras receive information from reflective
or light-emitting markers placed on an object.

e In contrast, inside-out systems have sensors placed on the object of interest and
receive data from external sources. An example of this is electromagnetic systems,
where a electromagnetic field is generated over the area and sensors placed on the
object.

e Inside-in systems are systems in which both sources and sensors are placed on
the object. For example, in a system based on inertial sensing used in human
motion capture, accelerometers and/or gyroscopes are placed on the subject as
sensors and the sources of data are the joints and movement of the subject itself
(Menache 2010).

2.1.2.1 Optical System

Optical motion capture systems are usually outside-in system in which you mount cam-
eras around the measured space and put markers on the subject. The markers can either
reflect light hitting them, called passive markers, or actually emit light on their own,
called active markers (Welch 2002). At Qualisys they mostly use passive markers. The
cameras measuring are emitting infrared light from an array of diodes around the lens.
The emitted light is then reflected by the markers and thus recognized by the system.

2.2 Qualisys

Qualisys is a company focusing on motion capture services and products, which over the
years has become globally leading providers of these. Based in the port city Gothen-
burg, Sweden, the company has been developing their products since 1989. Fields of
applications where Qualisys is active are: sport science, psychology, gait analysis & re-
habilitation, neurology, mri scanner rooms, marine applications, animation and virtual
reality (Qualisys 2011a).

QUALISYS

Motion Capture Systems

Figure 2.1 The Qualisys logotype

The main software of the Qualisys motion capture system is called QTM - Qualisys
Track Manager. Through this software, the user is able to control, calibrate and edit

2.2. QUALISYS CHAPTER 2. BACKGROUND

measurements. The software gives the user visual feedback about what is going on in the
system in real-time. (Qualisys, 2011b) The different kinds of data that can be accessed
from the cameras with QTM are:

e Marker mode - shows white dots representing markers.
e Intensity mode - see what is interpreted as markers.

e Video mode - grayscale video.

Every mode is a 2D-representation of what each camera sees. With this 2D informa-
tion, QTM calculates a 3D representation of the volume. From this, it can also recognize
previously defined rigid bodys which are called 6DOF. 6DOF bodies are a set of markers
that are attached to the same object and therefore retain their relative position as the
body moves. Besides data regarding markers, QTM can also record analog input from
equipment such as pressure plates', sound or video recordings that can be matched with
the measurements. (Qualisys 2008)

Figure 2.2 Qualisys Track Manager

The RT Protocol (Real-Time Protocol) is a part of QTM. The protocol allows for network
based communication with the Qualisys motion capture system over TCP/IP or UDP /IP.
Through various commands, different system settings can be set and streaming of data
in real-time can be achieved. Examples of different kinds of information that can be
streamed in real-time are 2d-markers, 3D-markers, video, marker intensity and 6DOF
(rigid bodies). (Nilsson 2012)

LA pressure plate records pressure, or weight.

2.3. ANDROID CHAPTER 2. BACKGROUND

There exists an API intended for communication with QTM through the RT Protocol
and it is called QTMAPI - Qualiys Track Manager Application Programming Interface.
The API was developed, in the programming lanuage C, 2010 as a part of the iPhone
application development (see 1.1). QTMAPI offers almost full functionality of version
1.9 of the RT Protocol. (Martinsson & Trost 2010)

2.3 Android

Android is a platform primarily developed for use on mobile devices. It is maintained
by the Open Handset Alliance which consists of a number of hardware and electronics
manufacturers, software companies and network operators, and is led by Google. The
platform is open source under the GNU General Public License and Apache 2.0 license,
which makes it available to anyone to download and make changes, but official custom
releases must be approved by Google. The major releases of the platform are each
designated a name of a dessert and the latest version as of this moment is Ice Cream
Sandwich with the version number 4.0 (Helal, Bose & Li 2012).

Android has experienced a rapid growth during the last few years and gains more and
more of the market share (see figure below). January through October 2011, Android
accounted for 53% of all smartphones sold in the U.S. (NDP 2011). Since Android
gets more and more widespread, developed applications for this platform reaches more
customers. For a company that only provides their applications for the iOS platform,
this is a strong motivation to develop them for Android as well.

Operating System Share of Smartphone Sales

100%
80%
60%
o
2
w
= 40%
]
20%
0% T T
2006 007 2008 2009 2010 Jan - Oct 2011
B Android o% 0% 2% 9% 2% 53%
oios 0% 11% 19% % 21% 9%
o RIM 7% 5% 40% 44% 25% 10%
B Windows Mobile I 42% 7% 15% T 3%
B Windows Phone 7 % [+ 0% (14 1% 1%
O Symbdan 05 g% 3% 1% I% % 1%
B Palm { webOs 17% b] 10% 5% I 1%

Source: The NPD Group, Consumer Tracking Service. Mobife Phome Trock

Figure 2.3 Smartphone sales in the U.S. (BGR 2011)

2.3. ANDROID CHAPTER 2. BACKGROUND

2.3.1 History

In 1999 the company Android, Inc. was founded to develop a new mobile platform. In
2005 it was acquired by Google. The development of the platform progressed and a
number of other companies joined in a partnership, which in 2007 resulted in the Open
Handset Alliance. The first phone running Android 1.0 came in 2008 and the platform
had a very rapid growth rate much due to the quick updates and the fact that a number
of partners launched their own devices, running Android, which gained popularity among
users. The platform is also attractive to developers as most of it is open source and this
makes it modifiable for use in a large variety of devices ranging from mobile phones to
tablets and even entertainment systems in cars. The estimations of today say that there
are over 250 million devices in the world that run Android and it is still growing (Helal
et al. 2012).

2.3.2 Android development

Android applications are developed using the programming language Java and the ap-
plication framework of the Android Software Development Kit. However, Android does
not completely support standard Java. This is mostly due to key differences in some
standard libraries, among them user interface libraries in particular. The applications
are executed in Dalvik Virtual Machine which is optimized for use on mobile devices
and a minimal memory footprint. All applications are run in a separate VM and kernel
process, which Dalvik has been written to handle well (Android 2012).

2.3.2.1 Native Development Kit

The Android Native Development Kit is a toolset created to allow developers to use
native code in Android applications. When an application is written in Java, the code is
compiled into bytecode which needs to be interpreted by a VM whereas native code runs
directly on the processor without any need of interpretation. When native code is used,
the compilation takes place in the development environment and not on the Android
platform, as opposed to Java, where the Dalvik Just-In-Time compiler translates the
bytecode into native code on the device. Even though it might sound as a performance
boost to use only native code, in reality switching from Java to native takes time. Also,
the Dalvik compiler produces effective native code, which in many cases makes it at
least as good as developer written code. In short, the NDK provides a way to develop
applications partly or fully in C/C++, which can be very useful if there is e.g. a pre-
existing library in C/C++ that a developer needs to use in an Android application
(Guihot 2012).

2.3.2.2 The need for a versatile application

Devices that run Android come in a lot of different shapes and sizes and with or without
certain hardware. The openness of the platform has made it possible for a lot of different
manufacturers to produce their own Android device. Android is not only used in phones

2.4. OPENGL CHAPTER 2. BACKGROUND

but also in tablets and even in certain TVs etc. Although this diversity is good for the
platform as well as device manufacturers, it might pose a slight challenge for developers.
An application should be usable by as many devices as possible in order to reach a
greater audience, but that also means that the developer must design it that way. In
order to support devices with different screen sizes and resolutions, a developer can
provide different layouts and graphical elements with different resolutions. Android will
decide at runtime which of the resources that are appropriate.

In addition to devices with different screen properties, some devices might not have
the required hardware for certain applications and then a developer should make sure
that such devices should not be able to install the application. To provide an example;
what good is a barcode scanner application that utilizes the camera on a device with no
camera? The software designer should declare what features and hardware his or her
application uses and in that way, the application will not be shown in the Google Play
Store? to people who have devices with insufficient resources (Android 2012).

2.4 OpenGL

OpenGL (originally Open Graphics Library) is a library for developing 2D and 3D graph-
ics. It was introduced in 1992 and has since then gained a lot of popularity and been
adapted to many operating systems. The standard is used in many different contexts,
where advanced graphics is used, like in the gaming industry. Since 2006 OpenGL
has been managed by a consortium named Khronos Group which was founded in 2000
and consists of companies like NVIDIA, ATI Technologies and the original creator of
OpenGL, Silicon Graphics, Inc. (Hashimi, Komatineni & MacLean 2010).

2.4.1 Why OpenGL?

Android offers a set of graphic libraries that can be used to render your graphics on the
screen. They have advantages and disadvantages and are used in different situations:
Graphics through canvases and drawables is the standard way of Android graphics. This
is how all standard user interface components are drawn and is also mostly used when
creating a custom component. This can also be used to draw directly onto a canvas
which is mostly the case in 2D games where all drawing and updating of graphics is
done “by hand”.

Canvas and drawables with hardware acceleration provides the same 2D graphics
libraries as above but as of Android 3.0 hardware acceleration is available for most
components, raising its performance.

OpenGL can be used to render more advanced graphics using features such as 3D. In
Android it is accessed either through the regular framework API or the NDK, developing
native OpenGL code. Using the framework causes some drop in performance compared
to native, but is still perfectly usable, although when developing applications with heavy
graphics demand, the use of the native framework should be considered. The biggest

2Online portal for buying and downloading Android applications.

2.4. OPENGL CHAPTER 2. BACKGROUND

advantage is that OpenGL is well documented and accepted as a standard in many
different contexts (Android 2012).

Renderscript is a form of native code for android that provides high performance
3D graphics rendering similar to NDK OpenGL, but also offers a powerful computation
API. Renderscript code is compiled and cached at runtime on the device, which makes
it possible to use on a variety of Android devices and thus highly portable. However,
the main disadvantage of Renderscript is that it introduces completely new APIs which
are not as documented as OpenGL (Android 2012).

One of the end goals of this project is to render graphics in a 3D environment,
consistent with reality. For this purpose, the use of canvases and drawables is not well
suited. For 3D rendering both OpenGL and Renderscript qualify, but since OpenGL is
more of a standard and is more documented than Renderscript, it is the library of choice
in this project.

2.4.2 OpenGL on Android

OpenGL ES is a version of OpenGL meant for embedded systems and is suitable for
mobile devices. It is a lightweight version of regular OpenGL with a lot of convenience
functions taken away. Android supports OpenGL ES 1.0 since Android version 1.0 and
OpenGL ES 2.0 since Android version 2.2. OpenGL ES is closely related to standard
OpenGL and also has a large supply of documentation (Android 2012).

10

3 Method & Development Process

ere the work methods that are used in the thesis in order to reach the goals are

described. How the information was gathered in the initial phases is described

and how the actual work was carried out. This covers literature study and

how the applications was developed as well as with which tools. Finally, it
also depicts how the information basis for the evaluation was collected.

3.1 Literature Study

In order to gather knowledge about the motion capture domain and to give a better
understanding of the reasons and background of the thesis a literature study was per-
formed. It is a summary of a variety of published documents in the area relating to this
subject (Taylor 2008).

The gathering of information about the theory of motion capture and especially
optical motion capture, was conducted by studying scientific papers and articles. Like in
normal literature study, the material studied was organized around the research questions
of the thesis and in line with the thesis’ purpose (Writing 2010). As for the specific
knowledge of the Qualisys system, in-house documents and specifications were studied
and the staff were asked questions.

Documentation and guides on how to use the Android NDK were studied quite
extensively to gain knowledge on how to use the existing C library for the real-time
protocol. First party material, such as Android development guides, as well as third
party documents, as e.g. developer blogs, to widen the comprehension for the subject.

As an aid in the graphical part of the development, many sources for documentation
on OpenGL was used. Official, unofficial, first party and third party as well as asking
experienced co-workers, all possible sources of information were used to get a better
picture of the problem at hand.

3.2 Development

The actual development of the Android application is described in this section. Both
development process and tools are discussed.

11

3.2. DEVELOPMENT CHAPTER 3. METHOD & DEVELOPMENT PROCESS

3.2.1 Basic agile approach

When developing the applications a simple agile approach was used with some of the basic
values of agile processes. Two of the points in the agile manifesto were highlighted more
than the other two during the project, namely “customer collaboration over contract
negotiation” and “responding to change over following a plan”. These two points mixed
with the idea of a high degree of communication both in the team and with the customer
was a suitable combination since the project was carried out in house and the customer,
which in this case was the supervisor at the company, was available at almost all times.
This emphasis on communication and flexibility was realized through regular meetings
with the supervisor, where the team reported the progress and the supervisor had his
say in the development of the project (Cohen, Lindvall & Costa 2004).

A basic version of the agile notion of iterations was used throughout the thesis. Small
packages of functionality ordered in logical steps were developed one at a time and slowly
led to the finished products.This also adds to the ability to respond to changes and sense
of flexibility in the project (Cohen et al. 2004).

3.2.1.1 Requirements elicitation

The requirements for the applications that already were present for the iOS platform
were taken from the actual applications. Their design and behaviour were examined
and the functionality was divided in logical parts and continuously implemented for the
Android applications.

However, the third application, the virtual camera, did not already exist and the
requirements had to be taken from elsewhere. Meetings were held with the supervisor
at the company and the basic requirements were established and informally stored.

3.2.1.2 Pair Programming

During the thesis, pair programming was heavily used. Nearly all programming were
carried out as a pair and that helped in increasing the understanding of the project as
a whole. The team members were taking turns in being the programming part. It is
argued that since pair programming is a kind of instant peer review, fewer defects are
produced. It is also argued that pair programming decreases the need of competence and
experience of the individuals since it provides a sort of mentoring between the parties
involved (Cohen et al. 2004).

3.2.2 Android SDK

The Android SDK is a compilation of the all the classes and components that are used
by the Android framework. The SDK is a necessity for developers to write Android ap-
plications, since all the necessary tools are included. Not only components for the actual
developing is included, but also other vital tools like the Android Debug Bridge which
essentially handles communications between the development machine and Android de-
vice (Android 2012). Another handy tool that is included in the SDK is the Android

12

3.3. INTERVIEWS CHAPTER 3. METHOD & DEVELOPMENT PROCESS

Emulator. The Emulator is a virtual Android device that runs on the developers com-
puter. It is put to good use when testing an application during or after development,
when testing without using a physical device is desired. However, the Emulator has
some limitations that makes it less than ideal for testing in several cases, e.g it does not
support hardware sensors (Android 2012).

3.2.3 Eclipse

Eclipse is an open-source IDE, that was created in 2001 by IBM. Nowadays it is main-
tained by the Eclipse Foundation, a non-profit organisation founded in 2004. The IDE
is focused on providing tools for developing, debugging, testing and providing all other
sorts of tools for maintaining software throughout its life-cycle (Eclipse 2012).

Eclipse was used as the development environment through the whole thesis, due to
its versatility and the fact that there exists a plugin that facilitates Android development
(see 3.2.3.1).

3.2.3.1 ADT

Android Development Tools is a plugin for Eclipse that presents the user with a set
of tools for easier Android development. These tools enables the developer, among
other things, to edit XML-files both as text and as graphical form and to edit the
user interface graphically by dragging components to the right place. They also allow
developers to create Android projects in an easy way and run them directly from Eclipse
on an Emulator or Android device. Tools for debugging and testing in Eclipse are also
provided (Android 2012).

3.2.3.2 C/C++ Development tools

During the development in the thesis, a portion of the work was done in C in order to
wrap the QTMAPI functions with the help of Android NDK to be used in Java. For
the purpose of developing in C, the Eclpise plugin C/C++ Development Tools was used.
C/C++ Development Tools offers functionality of a C/C++ IDE in the development
platform. It offers features such as syntax highlighting, code refactoring and generation,
autocompletion and other useful tools when writing C code (Eclipse 2010).

3.3 Interviews

After the implementation was done, some interviews were conducted in order to assess
the usefulness of the applications and thereby helping to fulfill the purpose of the thesis.
The questions in the interviews were designed to obtain an objective view on how the
applications contribute to the system in terms of installation and maintenance. The
questions were also meant to provide a view on how the 2D and 3D implementations
differ. The interviewees were some people at Qualisys and, if possible, a customer of
theirs. The question about the QTM Remote and the Viewfinder can be answered based

13

3.3. INTERVIEWS CHAPTER 3. METHOD & DEVELOPMENT PROCESS

upon previous experience with the iOS versions, since they are almost identical. The
derived questions are found in Appendix A.

14

4 Implementation & Result

his chapter presents the results derived from the work in the thesis. First the
results from the actual development are presented which covers each applica-
tion of the three. How the applications work is explained as well as how they
are engineered. The general internals of the applications and behaviour of the
wrapped c-library QTMAPI is also explained. Finally, the results from the interviews
conducted to assess the possible benefits of the Android applications are presented

4.1 Deliverables

In this section the resulting products are presented and the corresponding development.
The three applications produced in the development are demonstrated and their inner
workings explained.

4.1.1 Internals

As stated before, NDK was needed in order to make use of the QTMAPI. NDK allowed
for communication between Java and C through void function calls, function calls with
return value and also threaded callbacks.

As an example, when initiating communication and asking QTM for version, this
is done through calling a native integer method in Java. This method is then mapped
to a corresponding C function. The C function makes some internal calculations and
communication with QTM and returns the version number as an integer which is received
in Java.

Another example is when streaming data. There, a frame handler thread is started
in C which is constantly calling a specified java method (callback) with arrays containing
data received, until it is told to stop.

In some cases QTMAPI was used without modification, however in most cases little
to extensive rewriting had to be done. There was need for an extra layer of functions
in C which was used to call the original function. This was done since data had to be
altered or converted before it was sent to Java.

15

4.1. DELIVERABLES CHAPTER 4. IMPLEMENTATION & RESULT

Java code

l h
NDE
lava-wrapper

Callbacks from

QTMAPI
c Function calls and returns
2 |
‘ci' NDK
]
a
2 v |
m
2 QTMARI
E C-wrapper
5 —>
E h QTM
v
— QTMAPI Network »| RT Protocol-
3 communication module

X

libxml

Figure 4.1 Diagram depicting the interaction between Android Java, QTMAPI and
QTM

As seen in the previous figure, another library had to be included; libxml, since it
is a dependency of QTMAPI. Libxml is an open source library, released under the MIT
license!, which have XML parsing and toolkit capabilities (xmlsoft 2009). This is used
since most of the communication with QTM is XML based. Inside the Android.mk-file?
it had to be specified which parts of the libxml that were to be included and how it was
to be accessed. This created a hierarchy where libxml is included into the QTMAPI
library which in turn had to be included as a library in our wrapper layer in C.

LA permissive free software license
*The JNI build file for NDK

16

4.1. DELIVERABLES CHAPTER 4. IMPLEMENTATION & RESULT

4.1.2 QTM Remote control

The remote application provides one basic feature and that is remote controlling the
captures in QTM. This is done from the main screen of the application, where the user
is presented with a start button. During the capture, a progress bar shows how much
time that has elapsed. The user can also add events to the timeline with the “Add event”
button. Events are visualized on the progress bar as green lines and they are used to
mark points of interest in time. In between captures, the user can adjust the length of
captures with a seek bar.

However, if there is not an ongoing measurement in QTM when the application
connects to the server, the user can start a new one by pressing the “New” button.

When a capture is complete, the user will get the opportunity to save or discard the
recording. A dialog enables the user to choose a name for the capture and then desired
action.

By pressing the settings button on the main screen, the application will show a
settings screen where the user can search for available hosts and choose which host to
connect to. From this screen, there is also an about screen available where the user can
get basic help on getting started with the application.

The last feature of the remote application is called batch capture. This allows for the
user to save captures automatically without having to specify a filename. This makes
for fast recording with minimal downtime which comes in handy when making multiple
recordings - only two buttons have to be clicked when jumping between captures. Batch
capture has to be enabled in QTM.

KQ.. B fooo— B ra.. \

Closed connection
DURATION E

® <+ 4 @11:47

® = 4 @147

Filename:

My capture

NEW STOP

Cancel Discard Save
ADD EVENT ADD EVENT

_

Figure 4.2 QTM Remote on the Android platform

17

4.1. DELIVERABLES CHAPTER 4. IMPLEMENTATION & RESULT

4.1.2.1 Implementation

All communication with QTM in the application is done through the RT protocol by
using the QTMAPI with NDK. Important commands that are used in the application
when interacting with QTM are connect, version, take control, new (measurement), start,
trig and save. The version command is used to specify what version of the RT protocol
should be used. The take control command must be used to enable the application to
change settings via the protocol. Prior to the start command, the applications sends
the setting “start on trigger” to QTM, which specifies that after the start command is
sent QTM should enter a waiting mode and start a capture when the trig command is
received.

The discover command is also an important part of the functionality. It allows the
application to discover QTM hosts in the immediate network. It works by sending a
UDP packet to a pre-specified port and if an RT server is running, it will respond to this
handshake and send a packet back to verify its existence. The discover command sends
these packets to a range of IP addresses in the same network as itself and then returns
a list of all host that answered within a certain timeout.

Application start
(initialization)

Connection
attempt <

Connection closed,

—— Connection Closed — waiting for 'new’ :|

Waiting for trigger,
|—— waiting for trigger —] waiting for 'start’ <

Client is Running
Master? No |—Running measurementy| Measurement,
waiting for 'start’

Yes

Running capture,
Get QTM status waiting for 'stop’
Ladd eventj

User presses
back atch mode on?
(at any time)

Mo
Applicztion ves_yp| Filename input
ends

Mo

(
Figure 4.3 Flowchart illustrating the different states of the remote application

The application is event based and the different states of the application are depen-
dent upon what events are received from QTM. Right after the connection procedure is
complete, the application sends a “get last event” command to QTM and upon receiving
that, QTM resends the last event that was generated. This lets the application enter

18

4.1. DELIVERABLES CHAPTER 4. IMPLEMENTATION & RESULT

the right state right after connecting and when further events are received, change state
as appropriate.

Almost all graphical elements in the Remote application are defined using XML in
contrast to using pictures. When developing the Android code, the graphical elements
were defined in separate XML files and then used in the layout XML when setting
background etc. to Ul components just like actual pictures would be used. This is a
simple way to create uncomplicated graphics using simple shapes and gradients. The
settings button on the main screen, the refresh button on the settings screen and the
event marker are the only components with non-standard styles that use pictures as
resources instead of XML, since they are too complex for simple shapes.

4.1.3 QTM Viewfinder

The core features of the viewfinder application is to let the user see what the cameras
see. It is to show in real-time on the Android device exactly what is in the camera’s field
of view. This is helpful when mounting the cameras or adjusting their focus and frees the
user from the constraint of having to check on the computer whether the adjustments
are right.

The connection procedure is, in contrast to the remote app, the first screen to face
the user when starting the application. The user can search for hosts on the network,
choose one and connect to that host by pressing a connect button.

Like the Remote application, the Viewfinder will present the user with an option to
start a new measurement if there is not an active session.

When the application has successfully connected to the host, it goes into one of
three modes. The modes are marker, marker intensity and video. In marker mode, the
application shows everything that the camera interprets as markers and shows them as
ovals on a black background. The information about the ovals exact shapes also comes
from the camera.

The marker intensity mode is a kind of video streaming, where the picture is shown
as a heat map. Reflective surfaces are shown as hot red and non-reflective as cold blue.
This mode helps the user to know what in the picture is interpreted as markers by the
cameras, since hot red or orange surfaces will be markers and everything else will not.

Video mode shows, like it sounds, video from the camera without any alterations. In
this mode it is easiest to see what the camera sees and what focus it has.

The application is easy to navigate and offers a set of simple touch gestures. The
user can change which camera to view by swiping horizontally or by dragging a seekbar
in a panel that is shown by pressing the camera button. In any mode the user can zoom
in by double tapping the screen and zoom out by tapping with two fingers. Tapping
with three fingers completely resets the zoom. Zooming in and out can also be done by
a pinch gesture. The modes are changed by pressing a button in the upper left corner.
The modes are changed in a one way cycle and the button is changed accordingly. By
pressing the camera settings button, a panel is shown that contains seekbars for adjusting
the camera settings exposure time, flash time and marker threshold.

19

4.1. DELIVERABLES CHAPTER 4. IMPLEMENTATION & RESULT

In order to be able to change the camera settings and mode the application must,
just like the remote, take remote control of the QTM host. If the command succeeds
the application gains master status of the RT interface and is free to do changes, but
if does not the application goes into slave mode. Since slave mode allows no camera
mode or settings changes, the settings panel is inactivated and the user can only use
marker mode. However if the current master of the RT interface or a QTM user on the
host changes camera mode, the slave application will also make the change. Another
restricted mode is the file mode. When QTM streams data from a file over the RT
interface, the viewfinder enters file mode. Since the streamed data is not obtained from
the cameras in real-time, there is no possibility to change the camera settings or mode.

The application features a demo mode, which is accessible from the menu in the
connection screen. The demo mode is like the regular application, except that the
marker information is stored within the application and is not streamed from a server.
In the demo, only the marker mode is available since no image information is stored.
Camera settings are for obvious reasons also not available.

A settings screen is available from the menu on the main screen. The user can
change settings such as what port to use when connecting to the server, size and colors
of markers and properties of the data streaming.

On the main screen a menu is accessible by pressing the menu button on devices
running Android 2.3 and older. On devices that run 3.0 or higher, the menu is accessed
by pressing the overflow button on the action bar.

EXPOSURE & FLASH TIME

5
MARKER THRESHOLD

50

Figure 4.4 QTM Viewfinder on the Android platform

20

4.1. DELIVERABLES CHAPTER 4. IMPLEMENTATION & RESULT

4.1.3.1 Implementation

The discovery and connection procedure of the viewfinder is almost identical to the one
in the remote application. This includes the version and take control commands. If the
take control command fails, it means that some other RT client is master or that the
password is wrong and results in the application goes into slave mode.

Like the remote application, the viewfinder states are based on events sent from QTM.
One of the events that can be sent is the event that indicates that QTM is streaming
data from a file and it is that event that triggers the file mode in application.

When application is ready to start the streaming it sends a “stream frames” com-
mand to the server with arguments that specifies what kind of data to be streamed, the
frequency, whether or not to use UDP and also to what host. After that QTM starts to
stream the chosen data, in this case 2D markers and video images. QTMAPI delivers the
marker data in C in the form of an architecture of structs, containing information about
the markers the cameras see with their position and size. This information concerning
the camera the user is currently looking at is put in arrays and sent to Java where it
is parsed and made into marker objects that are put in a global marker set. As for the
video modes, it consists of a stream of images sent from QTM. They arrive in C as byte
arrays, which are directly sent to Java, where they are decoded to bitmaps and delivered
to be drawn.

The drawing is made on an OpenGL surface which is placed in the camera screen
of the application. The coordinates for the markers’ oval shapes are calculated when
they are parsed from C by a simple loop using discrete steps of degrees and the sine and
cosine functions. The drawing thread takes the marker information from the global set
of markers asynchronously from the one that creates them. The drawing of the video
modes is done by taking the bitmap received by the parser and making it into a texture
and drawing in across the screen. The delivering of bitmaps is also done asynchronously
from the drawing and when a new bitmap has arrived, it is marked as new and the
drawing thread loads the new bitmap as the texture.

The demo mode is very similar to the streaming mode of the application, except that
the streaming of markers is generated from a file stored in the application. The file was
created by saving actual marker data, streamed from a QTM host, in a data structure
and then saving that structure to a binary file. When the demo mode is launched, the
structure is loaded from the file and a thread simulates a repeated marker streaming
until the user quits the demo.

When the user touches the screen of the device in the camera view, a listener monitors
what kind of gesture is performed. A swipe is detected by comparing the points where
the gesture begins and where it ends. If they are somewhat on the same line horizontally
and the gesture is performed quick enough, it is interpreted as a swipe either to the right
or to the left. A double tap is easily recognizable as two touch events with short delay in
between. A tap with two or three fingers is recognized by measuring the time between
the first, second and third finger, making sure it is short enough. The time between
the first finger touching and the last finger leaving the screen must also be sufficiently
short. Pinching is done by detecting when two fingers are touching the screen and then

21

4.1. DELIVERABLES CHAPTER 4. IMPLEMENTATION & RESULT

constantly measuring the distance between them and comparing that to the first value
measured. Consider this example; if the user puts two fingers on the screen with 25
pixels between them and then moves them further away from each other. The next
measured value will be somewhat bigger than 25, say 30 pixels for simplicity. The ratio
between them is 30/25 = 1.2, which is the scale used when zoom, i.e a zooming in action
is performed. If the user continues to move the fingers apart, the zoom factor will be
even greater.

The menu is implemented both as a traditional Android menu or as an action bar,
depending on what version of Android the application runs on. From Android 3.0 and
onward, Google decided to phase out the menu button and encourages developers to use
the action bar instead (Android 2012). When targeting a device with Android version
greater or equal to 3.0, Android shows a traditional menu will be automatically shown
as an overflow button in the action bar. When the application starts, it will at runtime
examine what version of Android is used and if it is 2.3 or less the action bar will not
be shown since it is unwanted in these earlier versions. In practice this means that on
a device with Android up until 2.3, the menu is accessed with the menu button and on
higher versions the action bar will be used to access the menu.

4.1.4 QVC

The QVC, or Qualisys Virtual Camera, was the last part of software for this thesis. This
application takes the project into the 3D-world. Now, 3D markers are streamed to and
interpreted by the software to in order to display a full depth, real-time picture. Rather
than using the existing cameras from the environment as viewing angle the smartphone
itself is used as a virtual camera. What you would expect to see in front of the device is
intuitively displayed at the screen. For instance, if a user were to point the device at a
body with markers, the markers will be displayed on the screen in real-time.

Rather than displaying markers with a chosen color in the device, the color is collected
from QTM to enable QTM specified color on individual markers. Moreover, the user has
the option to turn on and off label viewing. This means that when the user is viewing
a marker, the application will display, if there is a label assigned to the marker, the
according label alongside the marker itself.

Besides displaying markers and labels, the application will also draw the floor as a
green grid in the plane where the x- and y-axes of origo are intersecting. The x-, y-,
and z-axes of origo are displayed in the 3D-environment as well which helps the user to
orient the system.

In almost exactly way manner as with the Viewfinder (4.1.3), the user is allowed to
search for hosts or input the address of a host at the start screen. In the same manner
there is an about screen where the user can read more about how to use the application.
This screen is almost necessary since the preparations the user have to do before getting
started.

QVC also features pinch-functionality as with the Viewfinder. However, the only
action the user can perfotm is pinch-to-zoom with two fingers. Panning and moving the

22

4.1. DELIVERABLES CHAPTER 4. IMPLEMENTATION & RESULT

camera around is simply done by physically moving the device. The zoom feature is
usable when you want a closer look of an object without having to move closer to it.

Y ¥ Toggle labels ¥ Toggle labels

—

Figure 4.5 Screenshots of QVC in action

4.1.4.1 Implementation

The streaming of the markers works somewhat as in the viewfinder. The QTMAPI and
it’s Java layer counterpart had to be rewritten just a bit. This was mainly to cover the
new aspects such as 3D-markers, colors and labels but we also had to create new functions
for the rigid body (6DOF) streaming since support for this was not fully implemented
in the QMAPIL

The largest difference in the data is that now each marker is streamed only once per
frame, not once per frame and camera. Each frame that is streamed to the device contains
information on each marker and its position in the system. Moreover, information about
which markers have labels and if they have been assigned a special color has to be
fetched alongside the framestream. In the same manner the 6DOF information has to
be streamed separately.

The reason for streaming the information separately is because how the RT protocol
is defined and how QTM act to commands. Although, this implementation doesn’t wait
for all information from a specific frame to arrive before drawing it, it simply draws what
is at hand at the moment. This may cause a latency issue when objects being drawn
from different frames are intervened in one picture. However, this issue is not noticeable

23

4.1. DELIVERABLES CHAPTER 4. IMPLEMENTATION & RESULT

by the user since it should only be visible for a fraction of a second. If there are severe
latency issues on the network the application will not work well anyhow.

Using the information streamed from QTM, the application draws a complete 3D-
environment using OpenGL. Every item of the 3D-environment is measuring the same
length as in real life. The ground which is drawn as a green square net is actually drawn
as 0.5m™*0.5m squares, correlating to the real world. The x-, y- and z- axes are drawn
with a length of 1m. However, when the floor is only consisting of lines, the axes are
drawn with calculated coordinates which polygons are placed upon. This makes the axes
stand out more and to make them distinguishable they are drawn in separate colors. By
each axis the according letter (x, y or z) is also drawn for the users convenience.

Figure 4.6 Close-up of the x-axis

At the start of QVC, the coordinates of a sphere is calculated with the help of
trigonometric functions. With these coordinates, polygons and according normals are
calculated and stored for later use. This sphere is then what is used each time a marker
is drawn. The normals are used in combination with a light source in order to create
shading on the body of the sphere, giving the sphere 3D-look. With this, the specified
color from QTM is added.

Figure 4.7 Close-up of a marker

For each marker label, a custom texture is drawn and stored with the label name.
Using this for rendering later, allows us to just place the texture with the text on a

24

4.1. DELIVERABLES CHAPTER 4. IMPLEMENTATION & RESULT

flat object and position it alongside the according marker. In order for the label to be
visible from cameras position, a technique called billboarding is used. This means that
the flat side of the object containing the text always have to face towards the camera.
Knowing the position of the camera, each label and which way the camera is facing, this
is calculated accordingly and individually for each label.

Figure 4.8 Three markers with purple color and assigned labels

In order for the application to know where the smartphone that is to be used as
virtual camera is, the smartphone has to be defined as a rigid body in QTM. This is
done by fixating markers on the device itself. From a quick recording, the markers fixated
to the device can be selected and named - in this case ‘QVC’. Doing this will make the
system identify the position and the angles of device. The device gets a center and x-, y-
and z-axes. This rigid body is the last thing that has to be streamed to the application,
and is called a 6DOF body. The information contained in a 6DOF body when streamed
is the 3d-position of the body and a rotation matrix. The rotation matrix is used to turn
the camera accordingly with the device. Here, the z-axis of the 6DOF is identified as the
angle the camera is looking, the y-axis points right from the perspective of the camera
and the x-axis indicates up. When this is applied the last thing to do is to position the
camera according to the 6DOF information.

Regarding the recommended placement of the markers on the rigid body (see Figure
4.9), it is important to place the markers with some distance from the device. This is so
that the hand holding the device will not block the markers for the cameras that easily.
Further, the markers should not be placed symmetrically and absolutely not in just one
plane. This is because placing markers symmetrically will allow for QTM to interpret
the axes of the body in several ways. For instance, imagine that the markers are placed
in the same plane consisting of four markers forming a square. This could place the x-
and y-axes at four different combinations with the z-axis able to point in two directions
orthogonal to the xy-plane. This makes for eight different possible interpretations of the
body’s coordinate system.

The reason for having four markers on the rigid body is that even if one marker is
completely covered, the remaining three markers will still be enough for the cameras and
QTM to recognize the position and angle of it. More markers placed on the body makes

25

4.2. INTERVIEWS CHAPTER 4. IMPLEMENTATION & RESULT

for a more stable recognition. However, for this purpose four markers are deemed to be
enough.

el
v

Figure 4.9 A recommended configuration of a QVC rigid body with illustrated axes.

4.2 Interviews

The interviews showed that the remote application, like a normal external trigger is
used to get closer to the measured subject. In some cases it is used to add events to the
capture timeline. The application highly resembles a normal external trigger (though
wireless) in many aspects except one; response time. Since the regular external trigger
uses an analog signal via a connected cord, its response time is more or less constant.
In the case of the application, several factors like network lag and processing time may
cause a variable response time.

According to the interviews, the Viewfinder is mostly helpful when mounting cam-
eras. It is presented to customers as a side feature and showed when the systems are
installed. Customers who use portable systems have greater use for the application than
other clients.

As for the QVC, the interviewees were more uncertain and speculated about it being
used when checking if markers are placed correctly. It may be presented to customers
as a cool feature that shows the real-time capabilities of the system. A more specific
purpose may be found in the future and then the application may be used. Comparing
the QVC to the Viewfinder is hard since they are complementing each other. The
Viewfinder is used while setting up a system and the QVC is used in an installed and
calibrated system. However there was one speculation about the QVC being helpful in
the event that real-time calculations of optimal camera placement is implemented. Then
you might be able to use it to see in real-time where to move the cameras.

26

5 Discussion

n the discussion some different subjects regarding the helpfulness of the handheld

applications are assessed. Comparisons between the Android applications and their

iOS ditos are discussed and also some the known issues and limitations. Some

development discussions are made with respect to NDK and finally the thoughts
on future work are presented.

5.1 Android adaptations of iOS applications

The Android platform and the iOS platform have some fundamental differences and
therefore the applications are bound to differ somewhat. In many cases, Android devices
have (mostly in earlier version) a menu button, which is used to show a menu that can
contain additional alternatives and functionality than what is shown on the screen. In
Android version 4.0 and forward this functionality is replaced by the action bar which
offers similar functionality (Android 2012). In the Android apps, through either the
menu or the action bar the menu alternatives are available, in contrast to the iOS apps
where the components often are placed directly on the screen. In general, the different
operating systems have a certain feel about them and that is usually transferred to
their corresponding applications. In the development of the Android applications, the
user interfaces were created to be more suitable for the Android environment than the
interfaces in the iOS applications are. The menu adaptation is the most notable example
of this.

In the viewfinder application the Android version features oval markers whereas the
iOS one have only circles (even though the RT interface provides information about the
diameter of the markers in both the x-axis and the y-axis). The Android application
takes both diameters into consideration and produces ovals but the iOS application uses
only one. In actuality this leads to a slight degradation of performance in the Android
application, since the coordinates for the oval shape has to be recalculated for every
marker in every frame, instead of scaling them in OpenGL. This performance issue is
not noticeable on the tested devices, but whether it would affect the performance in
older devices is not known. The advantage of using both diameters is that the markers
in the application look like the markers in the 2D mode of QTM. This gives a higher
sense of conformity to the products.

The user interface of the remote iOS application does not consist of anything that

27

5.2. USEFULNESS OF THE APPLICATIONS CHAPTER 5. DISCUSSION

does not fit in the Android environment. Therefore the interface for the Android version
was engineered to look more or less exactly like the i0OS one. However since there is a big
variety of different Android devices, the interface was constructed to fit many different
screens.

In conclusion, the Android applications are made to be like the i10S applications and
even if there obviously is some differences in implementation, they use the same API
and offer the same functionality.

5.2 Usefulness of the applications

5.2.1 QTM Remote Control

The remote application contributes a lot in maneuvering a Qualisys system, when a
user wants to be able to move around while controlling the capture and adding events
to the timeline. The application provides even more freedom than a regular external
trigger and do not restrict the user to the computer running QTM or by a crude cable
lying around. Like the interviews suggest, the application can be inadequate if a certain
response time is required, but otherwise it is less restricting. Another feature not present
in the regular trigger is the ability to name and save the captured data as files on the
computer.

5.2.2 QTM Viewfinder

The Viewfinder’s contribution consists of the help it provides when configuring a system.
This is the purpose for its creation and is also presented to the user as such. The user
of the application is not bound to the computer to see where a camera points or how
it is focused but can instead look at a device in their hand. When installing a system
for a client, Qualisys employees utilize the Viewfinder to mount the cameras correctly
and configure their focus. By doing this, another feature of the system is shown to the
customer and one can claim that this contributes to the sense of overall quality. For
customers that use portable systems which they move around a lot, the application can
prove to be a smart feature that simplifies their work with installing the system. The
Viewfinder is not a crucial part of the motion capture system, but it is a rather useful
one.

5.2.3 QVC

The usefulness of the QVC is much more uncertain than the two other applications.
This is mainly due to the fact that the Viewfinder and remote applications have been
around longer. Their advantages are already documented and they are already used in
real life situations. The QVC was developed as a kind of exploration project where the
3D functionality of the real-time interface of QTM was to be used. Although the future
for the QVC is unclear, the result of the interviews imply that it may be used when
placing markers on a subject and making sure that they are in the right place. Another

28

5.3. JAVA AND NDK CHAPTER 5. DISCUSSION

speculation about the application’s future uses, involved configuration of the system by
seeing in real-time where the cameras should be moved. To summarize, even though the
future of the QVC is unknown it has potential for being used while maneuvering the
system and there is also a slim chance that it can be used to configure the system.

When comparing the 2D functionality of the Viewfinder to the 3D functionality of the
QVC, the first observation that comes to mind is that the applications does not really
overlap so the comparison itself is hard to make. The 2D functionality shows what
markers the different cameras see and however useful that may be when configuring the
system, it does not really reveal any information about where the markers are placed
in the 3D space. In turn, the 3D functionality does not say anything about what the
different cameras see. The extension to 3D presents a whole different set of features than
what is available in 2D. Even though one can claim that they are more exciting, one
cannot say that they present any advantages.

5.3 Java and NDK

As mentioned before, an existing API in C was used during this thesis for all com-
munication with QTM. The features and functions in the API, that are used by the
applications, were wrapped in Java using the NDK. The applications have some differ-
ences when using the API and because of that, some differences in the wrapping exists.
The main advantage with using the QTMAPI was that all the functionality of the RT
protocol was already present and usable. No work that focused on communication or
low level parsing of messages had to be done and focus was instead on the functionality
of the applications. The main disadvantage was the time it took to learn how to use the
NDK in this environment and with the libraries needed.

To make a complete version of the API in Java would have been preferable, but that
was not a part of this thesis. A complete and universal wrapping of the C library would
have been very time consuming and moderately complicated. Compared to wrapping the
whole C library, developing a pure Java API would have been more efficient but then the
message parsing and network communication would have been necessary. In summary,
even though the NDK approach consumed a lot of time in the beginning of the thesis it
may have been more efficient than developing a pure Java API, since focus only lay on
the necessary features. Also, there is a high uncertainty regarding what problems might
have arisen during development of the communication in a pure Java API.

5.4 Known issues and limitations

There are some issues that affect the performance of the applications and serve as lim-
itations in the environment. In the Viewfinder and the QVC the data is streamed in
real-time from the server and this creates a problem that is out of the developers’ control,
namely faulty network connection. If the applications are used on an unstable network,
they may produce a very deficient performance. This can be highly frustrating for the
user and render the applications more or less unusable, however it is still up to the user

29

5.5. FUTURE WORK CHAPTER 5. DISCUSSION

to prevent it. Tests have concluded that a connection to a normal WLAN is usually
sufficient when running the applications, but sometimes high amounts of network traffic
and insufficient range affects the performance. For the applications to perform at an
absolute maximum level, an ad-hoc WLAN is recommended.

Another limitation of the applications is that handheld devices tend to be small,
especially phones. In order to make the applications bearable to use, all features must
be easily accessible and have a good user interface. The challenge is to get all wanted
functionality into the applications and still maintaining their usability. In the Qualisys
motion capture environment, there are a big variety of different features and functions
that could be implemented for handheld devices so this limitation could easily be a
problem, but in the case of this thesis all wanted functionality was implemented without
any difficulty.

An issue that might even be called a defect in the Viewfinder occurs when changing
camera modes. When the application was implemented, its behaviour was modeled after
the i0S version. Because of this, when entering marker intensity or video mode all the
cameras’ modes are changed. This was initially considered the correct behaviour since
the i0S Viewfinder behaved the same way, but has since been deemed unwanted. When
working in with a system with many cameras, only one should change mode at a time.
Since cameras only send marker information to QTM when in marker mode, changing
from marker mode on all cameras would lead to no marker information whatsoever. In
a system with many cameras, losing marker information from one is not a terrible loss
but losing that information from all cameras is a problem. However this is usually only
a problem when multiple users of the system wants to do several things simultaneously
and one uses the application.This problem cannot cause any serious harm since the
application is not able to change camera mode during capture. Although, it can cause
a certain annoyance among the users.

5.5 Future work

As far as the remote control goes it is a remote application with all features that one could
imagine for that kind of adaptation. We do not think that there is so much development
that can be done in order to improve it; in its simplicity it fulfills its purpose.

As with the remote, there is not many useful features left to expand the Viewfinder
with. What was noticed during the course of this thesis was the issue with the afore-
mentioned behaviour when changing camera mode. When the mode was to be changed,
all cameras was told to change mode when in reality only the camera that is active on
the application is needed to be changed. Improving this feature would however imply
updating the iOS dito in order to maintain coherence.

The QVC has most potential in future work. Here there is a feature which was
explored during the thesis but never fully completed, namely a augmented reality feature.
This means using a real-time video stream from the camera on the device itself and
mapping it against the 3D representation of the space. This make markers appear with
labels on actual bodies. Extending this feature further could be adding a 3D model on

30

5.5. FUTURE WORK CHAPTER 5. DISCUSSION

the image, mapped on the body with markers, making the model move in real-time. This
could be used for when recording movements in order to use them in games or movies,
so that the user instantly gets feedback on what to expect from the recordings.

As mentioned before, the possibility of completely wrapping the QTMAPI into Java
exists. This would be preferred if there is another Java adaptation to develop in the
future. Making the wrapper more general would allow for including the exact same
library in several applications, and to use it straight away. Today, features that was
not used in the thesis are not represented in the Java QTMAPI counterpart and some
features have to be modified in order to work in other environments.

31

6 Conclusion

n this thesis, three Android applications for Qualisys motion capture systems were
developed using QTMAPI, a pre-existing C library. Two of the applications,
Viewfinder and QTM Remote, already existed for the iOS platform. However,
the third application, QVC, was completely new.

The viewfinder application and possibly the virtual camera can be used for configur-
ing a system with the use of their real-time marker streaming capabilities, whereas the
remote application is mainly used to maneuver the system by wirelessly controlling cap-
tures. The virtual camera was developed as means to explore the 3D functionality of the
Qualisys real-time protocol and to evaluate possible advantages to the 2D functionality
of the Viewfinder. The QVC and the Viewfinder turned out to be very different appli-
cations used in different contexts and therefore no advantages were identified. However
the virtual camera introduces a new experience in the system and adds a new way to
demonstrate its real-time capabilities. During the work with thesis, some limitations of
the development were identified. The applications rely on the network performance to
give an adequate experience and the full functionality of QTM would be to much too
implement in an Android environment.

The future seems bright for the virtual camera, since it has big potential for further
development in the form of augmented reality extensions. Perhaps even with real-time
rendering of 3D models mapped to markers.

32

References

Android (2012), Android developers.
URL: http://developer.android.com/ (2012-05-02)

BGR (2011), Apple and Google dominate smartphone space while others scramble.
URL: hitp://www.bgr.com/2011/12/183/apple-and-google-dominate-smartphone
-space-while-other-vendors-scramble/ (2012-05-24)

Cloete, T. & Scheffer, C. (2008), ‘Benchmarking of a full-body inertial motion capture
system for clinical gait analysis’, Engineering in Medicine and Biology Society, 2008.
EMBS 2008. 30th Annual International Conference of the IEEE; 20-25 Aug. 2008,
Vancouver pp. 4579-4582.

Cohen, D., Lindvall, M. & Costa, P. (2004), ‘An introduction to agile methods’, In
Advances in Computers pp. 1-66. ed, Marvin Zelkowitz, Maryland Heights, MO:
Elsevier, Academic Press.

Eclipse, C. (2010), C/C++ development tools.
URL: http://market.eclipsesource.com/yoxos/node/org.eclipse.cdt. feature. group
(2012-05-1})

Eclipse, F. (2012), About the eclipse foundation.
URL: http://www.eclipse.org/org/ (2012-05-14)

Guihot, H. (2012), Pro Android apps performance optimization, [Electronic] Berkeley,
CA: Apress.

Hashimi, S., Komatineni, S. & MacLean, D. (2010), Pro Android 2, [Electronic] New
York: Springer-Verlag.

Helal, S., Bose, R. & Li, W. (2012), Mobile Platforms and Development Environments,
[Electronic] Morgan and Claypool (Synthesis Lectures on Mobile and Pervasive
Computing: 9).

33

REFERENCES

Martinsson, J. & Trost, R. (2010), Implementation of motion capture support in smart-
phones, Master’s thesis, Chalmers University of Technology (Department of Com-
puter Science and Engineering), Gothenburg.

Menache, A. (2010), Understanding Motion Capture for Computer Animation, Burling-
ton, MA: Elsevier.

NDP, G. (2011), The NPD Group: For once-strong smartphone makers, 2011 was the
year of new beginnings.
URL: hittps://www.npd.com/wps/portal/npd/us/news/pressreleases/pr_111213
(2012-05-21)

Nilsson, L. (2012), QTM Real-time Server Protocol Documentation - v 1.10, Gothenburg:
Qualisys AB.

Qualisys (2008), Qualisys Track Manager — QTM. Data acquisition software for motion
capture of any kind.

Qualisys (2011a), The art of motion capture.
URL: hitp://www.qualisys.com/wp-content /uploads/2011/05/Qualisys_company-_
presentation.pdf (2012-05-07)

Qualisys (2011b), Control systems.
URL: http://www.qualisys.com/ (2012-04-11)

Qualisys (2012), Qtm remote.
URL: hittp://itunes.apple.com/us/app/qtm-remote/id4 00683966 (2012-05-10)

Taylor, D. B. (2008), ‘A brief guide to writing a literature review’, Writing in the Health
Sciences: a comprehensive guide 1(1).

Welch, G. (2002), ‘Motion tracking: no silver bullet, but a respectable arsenal’;, Computer
Graphics and Applications, IEEE, 22(6), 24-38.

Writing, C. (2010), Literature reviews.
URL: http://writingcenter.unc.edu/resources /handouts-demos/specific-writing-
assignments/literature-reviews (2012-05-24)

xmlsoft (2009), The XML C parser and toolkit of gnome.
URL: http://cmlisoft.org/ (2012-05-14)

34

A Appendix: Interview Questions

These are the questions asked during interviews with the Qualisys employees.

A.1 QTM Remote

e What is an external trigger normally used for?
e Is there any difference between the application and a normal external trigger?

e Is the remote an adequate replacement for a normal external trigger?

A.2 Viewfinder

e What does the viewfinder contribute to the motion capture system?
e How do you present the viewfinder to customers?

e How do customers usually use the application?

A3 QVC

e In what ways can this application be useful to the system?
e Do you think that the application will be used in anyway in the future and how?

e What are your views on how the QVC differs from the Viewfinder and what pos-
sibilities QVC may add compared to the Viewfinder?

35

