g 3
2 %}};
W NANCES W
2 i
TN g

Calendar-Based Relevance Boosting

Master of Science Thesis

MARCUS CHRISTTIANSSON
PETER WINTZELL

Department of Computer Science

Software Engineering and Technology
CHALMERS UNIVERSITY OF TECHNOLOGY
Goteborg, Sweden 2012

The Author grants to Chalmers University of Technology and University of Gothen-
burg the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work
does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example
a publisher or a company), acknowledge the third party about this agreement. If the
Author has signed a copyright agreement with a third party regarding the Work, the
Author warrants hereby that he/she has obtained any necessary permission from this
third party to let Chalmers University of Technology and University of Gothenburg store
the Work electronically and make it accessible on the Internet.

Calendar-Based Relevance Boosting

MARCUS CHRISTIANSSON
PETER WINTZELL

© MARCUS CHRISTIANSSON, May 2012
© PETER WINTZELL, May 2012

Examiner: ROBERT FELDT
Supervisor: SVEN-ARNE ANDREASSON

Department of Computer Science and Engineering
Chalmers University of Technology

SE-412 96 Goéteborg

Sweden

Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Goteborg, Sweden, 2012

Abstract

Information retrieval systems have become a more central component in modern Soft-
ware Engineering. It is hence important to improve the models that determine relevance,
both concerning what data is used and how to use the data, particularly to support more
personalized systems. Among the multiplicity of models to determine relevance, context-
based search aims to improve the relevance of retrieved information by considering in
what context a search is being carried out. This study evaluates how improved search
relevance can be achieved by considering the context of the calendar. Hence, a model
concept was constructed, implemented in a typical enterprise search environment and
furthermore evaluated using statistical testing. The results showed a statistically sig-
nificant improvement on the search relevance using keyword matching. Nevertheless,
temporal methods of determining context had no significant impact on the search rele-
vance. Future works include evaluation of the concept in an authentic environment to
determine concept applicability.

Keywords: information retrieval, context-based search, calendar context search,
calendar-based relevance, information retrieval evaluation

Contents

1 Introduction

1.1 Problem o
1.2 Method e
1.3 Delimitations
2 Theory
2.1 Context-based search
2.2 Information retrieval
2.2.1 Vectorspacemodel Lo L
2.2.2 TF-IDF s
223 Boosting.
2.3 Calendar. e e e
2.3.1 Calendar data fields
2.4 Software e e e
2.4.1 Apache Solr
2.4.2 Jellyfish o
2.5 Information retrieval evaluation
2.5.1 Mean reciprocal rank oL
2.5.2 Student’s paired t-test L.
3 Methodology
3.1 Literature review e
3.1.1 Context-based search
3.1.2 Information retrieval
3.1.3 Calendar data
3.1.4 Software architecture
3.1.5 Information retrieval evaluation
3.2 Casestudy
3.2.1 Technical environment setup
3.2.2 Model concept

CONTENTS

3.2.3 Implementation Lo 16

3.3 Testing e 16
3.3.1 USeCases v v v i i e e 16

3.3.2 Statistical testing o Lo 16

4 Design 17
4.1 Model concept 17
4.1.1 Structure 17

4.1.2 Calendar data schema 18

4.1.3 Relevance parameters 0L 19

4.2 Extracting calendar data oo oo 19
4.2.1 Words processingo 19

4.2.2 Finding relevant events L. 20

4.2.3 Query boosting L 20

4.2.4 Query limitations L Lo 21

4.2.5 Dateboosting 21

4.3 Combining two queries L L 22
4.3.1 Calendar data quality 22

4.4 Software architecture 23
4.4.1 Separate indexes 23

4.4.2 Two instances of Jellyfish 24

4.4.3 Pipelinesteps 25

4.4.4 Calendar data indexer 26

5 Test results 27
5.1 Use Cases v v v it e e e e e 27
5.2 Tterationresults 28
5.3 Search with vs. without model 30

6 Discussion 32
6.1 Test results reflections oL 32
6.2 Use cases and data source impact 33
6.3 Boosting errors in the model oL oo 34
6.4 Alternative approaches oo 35
6.5 Context based on calendar data 36
6.6 Implications for Software Engineering in general 36

7 Conclusion 37
Bibliography 38
A Use cases 41
B Events 43

ii

CONTENTS

C Code
C.1 Calendar Search Modifier
C.2 Date Boost Query Modifier
C.3 Calendar Result Modifier

D Test results

E Calculations
E.1 Statistical significance tests

iii

Chapter 1

Introduction

“A squirrel dying in front of your house may be more relevant to your interests
right now than people dying in Africa.”

— Mark Zuckerberg, founder and CEO of Facebook

The information retrieval (IR) field has due to the growing amount of digital information
become more central in Software Engineering and thus the subject of much research. A
big issue is the concern of matching the information need of users with the retrieved
results, also referred to as relevance. However, there is a consensus in the field that
the concept of relevance is challenging to define and furthermore more challenging to
model[1]. In spite of considerable advances in the field there is still indeed a demand for
improving relevance in IR systems.

The ambiguity of users expecting different results when entering the same data is
one of the biggest issues, which moreover has contributed to the need of personalized
search. Today, Facebook filters the news feed based on users’ relationships and previous
interactions and even when a user is not logged in Google consider 57 different signals for
a search[2]. The amount of information, as well as the applicability of the information,
is two key elements in the success of any relevance model and furthermore key elements
in a personalized IR system.

The main difficulties of personalized IR, where the information availability naturally
is a prerequisite, concerns determining what user data is relevant to the current user
information need and furthermore how that data can be used to influence the relevance
in a search. Determining relevance of this data is from a user perspective seemingly
intuitive but from a computational perspective complex. This complexity combined
with the variety of search environments gives the area of personalized search countless
implementations.

Commonly seen as a subsection of personalized search is context-based search where
the IR system consider in what context the search is being carried out. This could refer
to user physical location, user search phrase history or user calendar events. The latter
will be explored in this thesis by the rationale that near events may be relevant to a
user’s information need.

1.1. PROBLEM CHAPTER 1. INTRODUCTION

1.1 Problem

Events near in time are likely to be relevant to a user’s information need. When a user
performs a search the hours before or after a calendar meeting it is possible that the
carried out search is related to the near meeting. Hence this thesis assumes the following:

Assumption 1: When a user performs a search it possibly exists relevant
events in the calendar that are likely to be near in time.

This study aims to explore the possibility of using context-based search with calendar
data as basis. To accomplish this, the following research questions will be answered:

RQ 1: What empirical studies have been conducted on context-based search?

RQ 2: How can context be derived from calendar data and improve relevance
in an information retrieval system?

RQ 3: How can personalized information retrieval systems where context is
based on calendar data be evaluated statistically?

1.2 Method

This study was conducted in cooperation with Findwise AB, a consultancy company
specialized in enterprise search. In order to answer the research questions the thesis was
divided into three consecutive phases:

1. Literature review The goal of the literature review was to examine the current
state of research and build a theoretical framework for the case study and its
evaluation. The study reviewed information in the subject of information retrieval,
personalized search and calendar data by searching prestigious digital libraries,
books and web pages. Furthermore, to gain some industrial experience consultants
from Findwise were interviewed.

2. Case study The goal of the case study was to create a model concept that uses
calendar data to improve the relevance of search results. Additionally, the model
was implemented in a typical Findwise technical environment to illustrate the
solution applicability in industry as well as to be able to evaluate the solution
quantitatively.

3. Testing In order to evaluate the model as well as answer the research questions,
the model was tested according to well-recognized procedures at Findwise. The
test results were at the end analyzed to determine whether the model significantly
improved the search results.

Chapter 3 gives a more detailed description of how this thesis was conducted.

1.3. DELIMITATIONS CHAPTER 1. INTRODUCTION

1.3 Delimitations
The study is restricted by the following delimitations:

e This thesis does not investigate assumption 1.
e This thesis does not discuss indexing data source.

e This thesis does only focus on meta data available in Microsoft Outlook and Apple
iCal.

e All implementations are in line with, and furthermore delimited by, the software
architecture of Findwise’s solutions.

Chapter 2

Theory

The conducted literature study used ACM Digital Library as primary database. Where
no relevant result was available IEEFE Xplore Digital Library was used followed by Google
Scholar. Following search terms were derived from chapter 1:

personalized search, personalizing search, personalizing web search,
personalized information retrieval, context-based search, context-based
rank, context-based information retrieval, calendar-based search,
calendar context search, calendar-based relevance, calendar search,
information retrieval, information retrieval evaluation

To expand the theoretical framework, further search terms were derived from the result-
ing papers:

vector space model, precision, recall, f-score, mean reciprocal rank,
statistical significance tests, wilcoxon signed rank text, sign test,
student’s paired t-test

Furthermore, the case study required implementation specific literature, which was ob-
tained from Findwise and by using the following search terms:

apache solr, date boosting

The following chapter presents the current state of research in the field and the
main technologies used in this study. The results presented here serves as a theoretical
framework for remaining chapters.

2.1 Context-based search

Search engines are rather commonly criticized for delivering the same results to all users
for the same queries[3]. This is problematic since the need and goal for different users
may be completely different for the same query[3, 4]. Numerous studies have been
made of personalizing the search and thus differentiating this ambiguity, among others

2.2. INFORMATION RETRIEVAL CHAPTER 2. THEORY

[5,6,7,8,9,10]. These studies evaluate different methods of considering the user context
in searches.

Many attempts use automatic, although often with one or several manual tasks,
categorization of either the user or the search data. In [5], where the latter is applied,
publications are assigned into manually pre-determined contexts. Papers are then scored
with respect to their context. When a search is performed a context is selected during
the query, either by the user or automatically. The automatic context selection uses two
approaches: a text-based similarity measure and context keyword matching. The search
is after the context selection carried out in the selected context using the context score
as an additional parameter in the relevance model.

Reichhold et al.[6] explored categorization of the user by using user roles. This
study was conducted in an enterprise environment where they manually create user
roles representing the user context by considering the user function, job description,
location etc. The role definitions are handled by a role expert who also assigns roles
to each employee. They present Role Term Vectors that are attached to the roles with
weighted terms which are used to determine document relevance for a role. A merged
score is furthermore computed based on the original document rank and the document
relevance for the user role.

Several other studies propose an analysis of pre-query activity such as previous
queries, search engine result page (SERP) clicks[9] and user browser behavior[11]. White
et al.[9] introduces user interest models for current query, pre-query session activity and
a combination of the two as intent. Matthijs and Radlinski[11] generates a user profile
which is represented by a list of terms and weights, visited URLs and their number of
visits and a list of previous queries and SERP-clicks.

Even context-based search for 3D models has been proposed where, besides from
names of the models, object shape and spatial relationships are considered for the rele-
vance model[8]. Similar to most attempts, this study included a manual step by allowing
the user to select a region through a bounding box in the scene to determine context.

Personalized search has indeed numerous implementations. The information available
as well as the structure of the information varies considerably with different domains,
which often leads to the studies being somewhat domain-specific. Overall, most stud-
ies display good results. Dou et al.[3] evaluated five different click- and profile-based
click strategies using click-logs data. On queries with large click entropy all strategies
significantly improved the relevance. However, on queries with small click entropy the
strategies sometimes had a negative impact. Similar results was found in [5] where the
general results where improved, but some inaccuracy was found as well and all three
proposed strategies in [11] displayed significantly better results than the original Google
ranking.

2.2 Information retrieval

Information retrieval concerns the techniques of storing and retrieving data. Earlier
more trivial models are boolean systems based on boolean logic[12]. The boolean model

2.2. INFORMATION RETRIEVAL CHAPTER 2. THEORY

is easy to implement and intuitive but have several disadvantages; the difficulty to rank
output is perhaps the most prominent one. Ranking of the result however is needed and
expected of most users. Most IR systems rank the relevance of documents for a given
query and assign a numeric score to each document. One of the most frequently used
models in IR research is the term vector model.

2.2.1 Vector space model

Vector space model, sometimes referred to as term vector model, was first introduced
in 1975[13]. Here documents and queries are represented as vectors of terms where
terms typically are single keywords and longer phrases[12]. Each term corresponds to an
independent dimension in a high dimensional space. When determining the relevance of
a document for a query in the vector space model the similarity of the document vector
and the query vector is measured. Each term in the document that matches a term in
the query is assigned a non-zero value in the dimension corresponding to the term. The
cosine of the angle between the resulting document vector and the query vector, referred
to as cosine similarity, is calculated as

Sim(D,Q) = 219 _ 21 Dig x @ (2.1)

~osliel \/Zyzl(Di,j)Z x \/Z?ﬂ(Qj)Q

where D; is the vector representing document ¢, @ the query vector, D; ; the jth term in
the document D; and @); the jth term in the query. The cosine similarity can furthermore
consider terms that are more important. In the case of information retrieval, the terms
are often weighted with respect to inter- and intra-document frequency.

2.2.2 TF-IDF

Term Frequency - Inverse Document Frequency, tf-idf, is a numerical statistic which is
used to determine how important a certain word is for a document in a set of docu-
ments. It is often used by search engines to determine the relevance of each document
with respect to the search query[12]. The mathematical formula below shows how it is
calculated:

tf —idfy.qa = tfia X idfy (2.2)

where t f; 4 represents how many times the term ¢ occurs in the document d. The second
term (idf;) represents in how many documents the term occurs. By this definition the
following conclusions can be drawn:

e If a term T occurs frequently in a document D but in few other documents, D is
likely relevant for T

e If a term T occurs frequently in a document D and in many other documents, D
might not be relevant for T since T is a commonly used term

2.3. CALENDAR CHAPTER 2. THEORY

e If a term T occurs infrequently in document D and in few other documents, D
could be relevant for T since T is an unusual term

e If a term T occurs infrequently in document D but in many other documents, D
is likely not relevant for T

2.2.3 Boosting

Similar to how tf-idf regards the frequency of a term in a document and in a whole set,
other aspects must be considered as well. E.g. Gelbukh[14] made the assumption that
sentences near the beginning and end of a document is more important and proposed a
scoring model to consider this assumption. Another possibly more trivial way of achiev-
ing better relevance is to consider the fact that some documents are more important
overall by increasing their score and thus boosting the relevance of these documents.
One of the most common used boosting functions is field boosting with the intuitive,
and also by Findwise empirically proven, rationale that the information in some fields
are more important than other, e.g. the title is more important than a paragraph of a
document. Boosting with respect to document age is presented in the following section.

Date boosting

The importance or relevance of news, business and local documents are often more
related to date than regular web search. Newly edited or added documents are often
of greater interest to the user than outdated news or documents. Hence, it is in these
domains reasonable to consider document age in the relevance model. One of the most
commonly used models to boost documents based on date is called “recency boost”[15]
and is calculated as

boost = a/(m x x +b) (2.3)

where x is the time difference from events’ dates in milliseconds and current date and a,
b and m are configurable constants.

The constant m is defined to be 3.16 x 10~ which is the inverse of the total number
of milliseconds in a year. A result of this is that the term m x 2 will become greater than
1 if the event does not occur within a year and less than 1 if it occurs within a year.

One method of handling old documents is to only consider documents that have been
edited in given time interval, e.g. the last year. This means that documents outside this
time interval will not be considered at all, which might be inappropriate in some cases.
To handle this issue, one could use an alternative method that bottoms out documents
edited outside the interval by setting a minimum value for the date boosting.

2.3 Calendar

A typical calendar is populated by events, which also are referred to as appointments or
meetings, however with some different fields depending on implementation. This thesis

2.4. SOFTWARE CHAPTER 2. THEORY

abstracts all three types to the common definition events. Furthermore, an event may in
most implementations have a number of participants and may belong to one or several
categories. A simplified calendar meta-model constructed with support for formats used
by Microsoft Outlook and Apple iCal[16] can be seen in figure 2.1.

1 *
Calendar Category
1 *
* *
Participant Event

Figure 2.1: Calendar meta model.

As displayed by the meta-model a calendar can have multiple events and categories.
An event must belong to a calendar, may belong to one or several categories and may
furthermore contain several participants.

2.3.1 Calendar data fields

A basic calendar event can be represented with the following fields:

e Title of the event

Description text of the event

Start and end date of the event (including time if necessary)

Name of the location where the event takes place

A list of names of the participants

In the simplest case an event is only represented by title or description and the event
dates.

2.4 Software

In a typical software solution for a customer at Findwise there are four components; an
index service, a search engine (e.g. Apache Solr, Atonomy IDOL and Microsoft FAST),
a transparent service-layer (Jellyfish) and a graphical user interface (GUI). In almost
all cases the GUI is a web application developed in Java. Among the available search
engines, the most common one for Findwise’s customers is Apache Solr.

2.4. SOFTWARE CHAPTER 2. THEORY

2.4.1 Apache Solr

Apache Solr is a stand-alone open-source enterprise search platform written in Java.
It includes features such as powerful full-text and faceted search and supports several
data sources such as databases, XML-files and rich documents (e.g. Word-documents).
Documents are stored in an index that follows a schema which describes the documents’
meta-data. The platform is highly scalable which simplifies implementation of custom
functionality[17].

Query structure

A query in Apache Solr is represented by a string containing words separated with an
operator (AND or OR). Using an AND-operator between two words in a query results in
that only documents containing both words will match the query. In contrast, only one
of the two words needs to exist in the document when the OR-operator is used[17, 18].

query = "dog OR cat"

The example above demonstrates a query where only documents containing the words
“dog” or “cat” will match.

Query boosting

To enrich a query further, each word in the query can be boosted with a value (default
value is 1)[19]. The bigger the value, the more important the word is for that query.
If boost is not given for any of the words all words in the query are valued equally.
To demonstrate the opposite, the example below illustrates when words are not valued
equally.

query = "dog"5 OR cat”1"

In the example above the word “dog” is worth five times more than the word “cat”.
Hence documents containing the word “dog” are more likely to receive a higher score
than documents containing the word “cat”.

Document structure

All indexed documents follow a specific schema that represents the structure of the
documents. The schema describes the meta-data with fields of various types (string,
integers, booleans etc)[17]. To demonstrate this, a simplified schema is shown in table
2.1. Having the data separated in different fields allows the possibility of searching for
documents that contain a specific word in a specific field, e.g. all documents that contain
the word “dog” in the field title.

2.4. SOFTWARE CHAPTER 2. THEORY

Field Type Boosting value

id integer
title string 5
text string 1

Table 2.1: Schema explaining the document structure.

Field boosting

It is also possible to boost fields by the same principle as for the query boosting[17, 19].
Findwise normally boosts the title field five times more than the text field (see table 2.1).
However the values are relative which implies that there are no standard reference values
(e.g. maximum value)[19].

Document score

Each document in the index will receive a score based on the query. The score gives an
indication on how relevant the document is to the query and is normally used to sort
the documents in the search result list. However there might be occasions where sorting
on other fields is more convenient (e.g. date sorting for news).

There are no limits or default values for the score which results in some considerable
consequences. Firstly, it is impossible to calculate the maximum score and therefore
not possible to transform the score to a percentage[20]. Another consequence is that
documents’ relevance can not be determined individually by looking at the score but
needs to be put in relation to other documents.

Document scores are based on a number of different factors. The main factor is the
value of the tf-idf (see section 2.2.2). Although, the field and query boosting will affect
the total score as well[17, 21].

2.4.2 Jellyfish

Jellyfish is a transparent service-layer that operates between the search engine (e.g.
Apache Solr) and the GUI (e.g. a web application) (see figure 2.2). This means that
the GUI does not communicate directly with the search engine which in turn makes
it possible to exchange the search engine without affecting the GUI components [22].
Jellyfish is developed by Findwise and is commonly used in customer projects.

Web application Jellyfish Apache Solr

Figure 2.2: Overview of Jellyfish.

10

2.5. INFORMATION RETRIEVAL EVALUATION CHAPTER 2. THEORY

Pipeline step

As figure 2.3 shows, Jellyfish basically consists of two pipelines [22]. The first pipeline
serves a purpose to process the query while the second pipeline processes the result in-
stead. The pipelines are composed of pipeline steps of either type QueryModifier or
ResultModifier [22]. For example, to remove all special characters in a query, one
can add a pipeline step of type QueryModifier. The number of steps in a pipeline is
unlimited. Both modifiers mentioned above have their own interface. To extend the func-
tionality in a pipeline one has to create a Java class that implements the corresponding
interface and configure Jellyfish to include the new pipeline step.

Query [\
Query Modifier [

Result [
Result Modifier [
S | |

Figure 2.3: Pipelines for query and result processing.

2.5 Information retrieval evaluation

Many measuring techniques of evaluating the performance of a retrieval system require
that every document in the test set is either relevant or non-relevant to the query. Among
the multiplicity of techniques, three standard fundamental indicators are often discussed:
precision, recall and F-score[23]. Precision is defined as

TP
TP+ FP

where T'P stands for true positive, which in this case also can refer to the set of relevant
retrieved documents, and F'P stands for false positive which similarly can refer to the
set of non-relevant retrieved documents. The sum TP + FP can furthermore refer to
the set of retrieved documents. Recall is defined as

n= 1 (2.5)
reca _TP+FN .

where F'N stands for false negative, which here refer to the set of relevant non-retrieved
documents. Thus, precision is the fraction of the result that is relevant to the search and
recall is the fraction of all relevant documents that are retrieved in the results. The two
measures alone are not sufficient to measure the performance. However, there is a well-
known fact that there is a trade-off between the two measures|[24]; hence a combination
of the two, F-score or F-measure, can be used

(2.4)

precision =

recision X recall
Fs=(1+8%) x =1

(2.6)

B2 x precision + recall

11

2.5. INFORMATION RETRIEVAL EVALUATION CHAPTER 2. THEORY

where 5 = 1 implies a balanced F-score (also referred to as F; measure). Other com-
monly used F' measures are F, that weights recall twice as much as precision and Fy 5
that weights precision twice as much as recall.

This measure is only a single-value metric that is not sufficient when retrieving a
ranked list. An elaborated measurement, average precision (AP)[24], can instead be
used

k
AP = Z p(i) x Ar(i) (2.7)

where i is the rank in sequence of the result, p(i) is the precision when using ¢ as cut-off
(the maximum number of results to consider) and Ar(7) is the difference in recall from
i — 1 to i. Mean Average Precision (MAP) could also be applied by computing average
position over a set of queries.

2.5.1 Mean reciprocal rank

The amount of relevant documents in a search is sometimes fairly small[25]. Known-item
search refers to a search where only one document is relevant and is a common use case
in most search systems. This type of search is better tested by measuring techniques
that only regard the relevant document position in the result. A commonly used measure
here is the Mean Reciprocal Rank (MRR)[25, 26, 27]

1
MRR@k:iZ T Ta <K
|Q| =) O7 Tq > k

(2.8)

where ¢ is a query in the set of queries @, rq is the rank at which the relevant document
is found and k is the cut-off. The measure evaluates the quality of a result by the time
it takes to find the document. Assuming that the relevant document can be found at
position n, all positions up to n has to be looked at, leading to an efficiency of % Hence,
the measure values changes in ranking at a higher ranks more than changes in lower
rank positions. This can be illustrated by considering the comparison of two algorithms
in table 2.2.

Query Alglr, Alg2r, Algl RR Alg2RR

cat 1 2 1 :
dog 7 % %
horse 5 4 % %

Table 2.2: Rank and reciprocal rank for two algorithms.

The above data gives M RR(Algl) = % (~ 0,45) and MRR(Alg2) = & (= 0,42)
using cut-off £ > 8. Even though algorithm 2 performed better considering rank alone
(Alg 13 corg =13 and Alg 2 3 o7y = 8) the loss of a top rank impacts the M RR
to the extent that algorithm 1 is considered to perform better.

12

2.5. INFORMATION RETRIEVAL EVALUATION CHAPTER 2. THEORY

2.5.2 Student’s paired t-test

In the information retrieval community three test of statistical significance are commonly
used: the Wilcoxon signed rank test, the sign test and the Student’s paired t-test. How-
ever, according to Smucker et al.[28] both Wilcoxon and sign test display a poor ability
to detect significance. Hence, the use of the Student’s paired t-test is recommended
amongst the three.

Student’s paired t-test assumes that the observed data are drawn from a population
with normal distribution. This assumption is according to [29] reasonable given that the
p-value produced by the t-test is close to the p-value produced by the randomization test,
which it is in practice has been proven to be[28]. The test is well suited for comparing a
group of objects that has been tested twice, e.g. before and after a treatment. The null
hypothesis is typically that the mean difference of the two samples, before and after in
our example, is equal. The t statistic to test the hypothesis can be calculated as follows

L _ Xp—io

sp/v/n
where X p is the mean of the differences, 1 the specific value the mean is equal to under
the null hypothesis, sp the standard deviation of the differences and n the sample size.

Once the t statistic and the degrees of freedom, df = n — 1, is calculated, the p-value
can be found using a t-table.

(2.9)

13

Chapter 3

Methodology

The project was to a large extent using an iterative process. Apart from the initial
literature review each iteration ended up with a meeting with a Findwise supervisor,
where deliverables was presented and evaluated. The feedback from these meetings
served as valuable input in the decision-making process. Additionally, the next iteration
goals were determined during the final part of this meeting.

The iterations concerned the following topics:

1. Environment setup and data source indexing
Calendar data structure analysis, parsing and indexing
Relevance model concept development

Relevance model refinement

AN e

Relevance model evaluation

This chapter describes how this thesis was carried out in three phases: an initial
literature review to be followed by a case study and a final testing phase. The sections
are presented in chronological order.

3.1 Literature review

The literature review can be divided into five different areas, jointly covering all the
given research questions. In each area research papers were reviewed to get a theoret-
ical understanding. In addition, practical examples were studied to achieve a better
understanding which aided the model implementation in the case study.

3.1.1 Context-based search

As a first and possibly most important part of the literature review, other attempts
on using user context as an additional source of information for improving the search
relevance were studied. Studies that included a practical implementation were in addition
studied from an architectural perspective.

14

3.2. CASE STUDY CHAPTER 3. METHODOLOGY

3.1.2 Information retrieval

This area focused on fundamental concepts of information retrieval and how relevance
in terms of text analysis is determined. Models and principles that are used both in
enterprise search as well as in other search areas were covered here.

3.1.3 Calendar data

Some focus in the literature review was on calendar meta-data and calendar meta-model.
As mentioned in section 1.3, only data available in Microsoft Outlook and Apple iCal
was considered.

3.1.4 Software architecture

Since this thesis included a model implementation, some research concerned the software
components the that implementation was based on. The limitations of the software
components were essential information in the construction of the model.

3.1.5 Information retrieval evaluation

This part of the literature review focused on finding an appropriate test method in order
to evaluate the model. Methods of measuring relevance as well as methods of determining
statistical significance of test results were studied.

3.2 Case study

The main goal of this thesis was to construct a model that, by using the context of
the user calendar, can achieve more relevant search results. The development of this
model consisted of three iterations where the model concept firstly was created, secondly
improved and thirdly implemented.

3.2.1 Technical environment setup

Before any model was constructed the technical environment was set up. The selection of
software components was made in cooperation with Findwise in order to support future
implementations in industry.

3.2.2 Model concept

Based on the knowledge from the literature review, an initial concept of the relevance
model was created. The concept was theoretically constructed, however the limitations
of the software components was considered throughout the whole process.

15

3.3. TESTING CHAPTER 3. METHODOLOGY

3.2.3 Implementation

The model concept was implemented by extending the functionality of the existing soft-
ware components. The implementation part also included indexing a data source in
order to evaluate the model in the next phase.

3.3 Testing

The model was tested in order to evaluate the model impact on the search relevance.
The outcome of this last phase determined whether the model fulfilled its purpose stated
in section 1.1.

3.3.1 Use cases

The testing was based on 50 use cases that each contained three elements; a query, a
calendar event related to the query and a document related to the query. The idea of
the use cases was to simulate how the model would perform in real environments, e.g.
when a user with a relevant calendar searches for information.

3.3.2 Statistical testing

All use cases were tested with a framework for relevance testing that Findwise normally
uses. The outcome of the testing is the positions of the related documents in the search
result lists. The positions were evaluated using mean reciprocal rank and furthermore
tested for statistical significance using Student’s paired t-test. Moreover, in order to
optimize the result, the use cases were tested in iterations with different model configu-
rations.

16

Chapter 4
Design

This chapter presents the model (referred to as relevance model) that was constructed
after the literature review. The first three sections describe the model through a theo-
retical perspective and the last section describes the software architecture of the model.

4.1 Model concept

The overall idea of the relevance model is to enrich the search query by including more
words to it. Based on the interviews, the more information a query has the more likely
it is for the search engine to return relevant results for the user. The added words are
extracted from the events in the calendar where only events that seem relevant with
respect to the original query are considered. As an example, when a user searches for
“amazon” and has an event in the calendar including the term “Amazon.com”; the search
query will add “Amazon.com” to the query. This will probably boost documents related
to the online book store and punish documents related to the amazon rainforest.

When a search is performed it is processed in five consecutive phases shown in figure
4.1. The second phase (Query processing) and the fourth phase (Result processing)
conforms to the two types of pipeline steps discussed in section 2.4.2. The idea of the
relevance model is to modify the query in the Query processing phase before it is sent
to the search engine.

3. Query sent
to search
engine

4. Result 5. Result set
processing is presented

1. Users 2. Query
enters query processing

Figure 4.1: Elements of query and result processing [30].

4.1.1 Structure

The relevance model consists of three different data sets; the original query, the calendar
query and the final query. All three data sets consist of words together with their

17

4.1. MODEL CONCEPT CHAPTER 4. DESIGN

corresponding boosting value. Hence the final query, which is a combination of the
original query and the calendar query, will be in the same format as the original query
and therefore the structure of the query remains unchanged.

If a user enters a query S, the query can be defined as

Qom’ginal = {(w,bg) Twe S} (41)

where w is a word in the query and by is the word’s boosting value. Since S is entered
by the user it will be a plain string and therefore all words will have a default boosting
value of 1. The format of the query corresponds to the query format in Apache Solr (see
section 2.4.1).

Similarly, the calendar query is defined with the exception that the words are taken
from a data set C rather than from the user query S. This data set consists of words
from calendar events that seem relevant with respect to S. Section 4.2 describes how C
in more detail is defined.

Qcalendar = {(w,b) Twe C} (4‘2)

The final query (the query that is sent to the search engine) is a merged query of
both the original query and the calendar query. A detailed description of this can be
found in section 4.3.

innal = Qoriginal U Qcalendar (43)

4.1.2 Calendar data schema

The calendar data is indexed in the search engine and follows a given schema. The fields
in the schema is shown in table 4.1 together with their boosting values. These values are
standard values that Findwise normally uses for similar schemas. Note that two of the

Field Type Boosting value
Title string 10

Text string 2
Participant string 1
Location string 1

Start date date
End date date

Table 4.1: Calendar data schema.
fields (start date and end date) do not have any boosting value. This can be explained

by the fact that these fields are not used for keyword extraction, but to determine how
relevant a certain event is (see section 4.2.5).

18

4.2. EXTRACTING CALENDAR DATA CHAPTER 4. DESIGN

4.1.3 Relevance parameters

There are three parameters that are specific to the relevance model and affects the
relevance of the search results. Although, there are more parameters that affects the
search relevance such as field boosting and query boosting. These are however not
specific to the relevance model and therefore not considered to be part of the relevance
model.

e Number of words The number of words from the calendar query that will be
added to the final query. If this parameter is set to 0 the final query will be
the same as the original query which results in no impact on the relevance. The
mathematical definition of this parameter is numW ords and section 4.2.4 describes
how it is used.

e Query boost The boosting value for the words in the original query. This boost-
ing value will replace the default boosting value by for all words and is mathemat-
ically defined as queryBoost. Section 4.3 describes how the boosting values are
exchanged.

e Date boost The boosting value for how much the events’ dates should affect the
relevance when finding the most relevant events. This parameter should be consid-
ered with respect to the field boosting values for the data fields. The mathematical
definition is date Boost and section 4.2.5 describes in detail how this parameter is
used.

To optimize the results the parameters above needs to be configured. There is no
optimal configuration since the result is highly dependent on the data source the search
engine is working with. According to the consultants at Findwise, one has to look from
case to case to set appropriate values for the parameters.

4.2 Extracting calendar data

One of the most important parts of the model is the part that extracts words from the
calendar. Only words relevant to the original query is added to the calendar query. Two
of the parameters mentioned in section 4.1.3, numW ords and dateBoost, are involved
in this.

4.2.1 Words processing

Given the calendar meta-model in section 2.3.1 the events from the calendar can be
described as shown in the following formula:

E={(e;si): e, €1,i<0<n} (4.4)

where F is a set containing n events that are found in the calendar index I. Each event
e; also has a score s; that is determined by the search engine [19]. Formula 4.5 shows

19

4.2. EXTRACTING CALENDAR DATA CHAPTER 4. DESIGN

that each event e; has a set W; that contains all words related to that event.
Ve, : W; = {(wi,jabi,j) Wi € e, 0 <5< mz} (4.5)

where m; is the number of words for the event e; and wj ; is a word with a corresponding
boosting value b; ; found in that particular event. The calculation of this boosting value
is explained in section 4.2.3. Furthermore, all n sets of words can be defined in one
singular set showed in the following formula

W=[W,UWaU..UW,] (4.6)

where W is a set containing all words from all n events. Since W is unsorted, Wyopieq 18
defined to be the sorted set where the sorting is based on the boosting values b; ;.

Wsorted = {(wk,bk) 0< k< T’} (47)

where 7 is the total number of words from all n events. Notice that a word w;, is no
longer related to the event it originally belonged to. As a last step, Worteq is limited to
only contain the first numW ords words. Section 4.2.4 further explains this limitation.

4.2.2 Finding relevant events

The calendar index I contains all events. However, only events that are considered
relevant to the original query should be in the set E (see section 4.2.1). To find these
events two aspects are taken into count:

1. How well the words in the event match the original query.

2. How near in time the events occur.

A combination of these two aspects will determine which events are most relevant.
The query used to retrieve events from the calendar index is basically Qorigina but with
a minor modification. If the relevance only would consider the first aspect (keyword
matching) there would be a risk that no documents are found. To prevent this, there
is an additional term added to the final query: “*”. The term *“*” matches all words
which means that all documents in the index will match that term as well[18], hereafter
referred to as star-search. Furthermore, the relevance needs to be based on something
other than keyword matching, which leads us to the second aspect which is described in
more detail in section 4.2.5.

4.2.3 Query boosting

As already mention in section 4.2.1, each word in the calendar query has a boosting
value. This value represents how important the word is in relation to the other words in
the query. The following formula 4.8 describes how the boosting value is defined:

\V/’wi’j : Hbi,j =5; X ti,j (48)

20

4.2. EXTRACTING CALENDAR DATA CHAPTER 4. DESIGN

where s; is the score of the event the word is extracted from and ¢; ; is the tf-idf value of
the word. Hence, a word is worth more if it is extracted from an event with a high score
or if the word’s tf-idf value is high (or both). In other words, if the event seems relevant
or if the word is unusual.

In contrast, a word is worth less if it is extracted from an event with a low score or
if the word’s t¢f-idf value is low (or both). This seems reasonable since words that are
very common and extracted from irrelevant events should not be considered important.

4.2.4 Query limitations

Since the calendar can contain an infinite number of events, the calendar query could
contain an infinite number of words. A large query sent to the search engine will affect
the performance. A study from Google showed that their traffic decreased with 20 %
when their search became a half second slower (even if the number of results per page
increased from 10 to 30) [31].

As an example, consider a calendar with 200 events where each event contains 50
words. In total, there would be 10 000 words added to the query since all events are
considered relevant with different impact. Therefore, only numW ords words are added
to the calendar query (see formula 4.9).

C = {(wg,br) : wg € Wsorted, 0 < k < numWords} (4.9)

where C' is the final set of words wy (with corresponding boosting value by) that are
added to the calendar query (see section 4.1.1).

4.2.5 Date boosting

There might be cases when the calendar does not contain any relevant events with respect
to the original query. In other words, there are no words among the events that matches
the original query. However, as mentioned in the introduction of this paper, an event
in the near future (or an event that just occured) could still be highly relevant even of
there is no keyword matching. Therefore, there must be something that complements
the keyword matching.

To solve this issue, the dates of the events are also considered to influence the rel-
evance. This implies that all events in the calendar will be considered with different
degree of relevance. For example, events that recently occurred will be boosted and
therefore more relevant than events that occurred a long time ago. This new dimension
of the relevance is referred to as "date boosting” and uses the same principle mentioned
in section 2.2.3. Although, there are few minor adjustments to avoid that old documents
are punished. The boosting value is calculated as

boost = date Boost x , a — (4.10)
m x min(|ms|,limit) + b

where ms is the number of milliseconds between current date and the event’s start date,
dateBoost the relevance parameter that determines the impact of the date boosting and

21

4.3. COMBINING TWO QUERIES CHAPTER 4. DESIGN

limit the maximum value in milliseconds between current date and the event’s start
date. The constants a, m and b remains unchanged.

The first difference compared to formula 2.3 is that the absolute value of ms is used in
order to handle events that already occurred. The second difference is that the minimum
of |ms| and limit is used instead of only |ms|. The rationale for using limit is to avoid
that old documents will receive an insignificant boosting value. In this case, limit is set
to 2.59 x 10? which corresponds to the number of milliseconds in a month.

4.3 Combining two queries

The final query (Q finar), Which replaces the query that is sent to the search engine, is
based on the following;:

e Original query (Qoriginal)

e Data from the calendar (Qcqiendar)

These two queries have to be weighted with respect to each other. One can never
know if an event retrieved from the calendar is relevant by looking at the score[20]. In
this case, where the words’ boosting values in the calendar query are affected by the
scores returned from the search engine, the boosting values for the words in the original
query can not be constant.

Consequently the weighting has to be done by tuning the configurable parameters in
order to achieve the best possible result. In the relevance model all words in the original
query are given a boosting value, queryBoost:

V(w,bo) : w € Qoriginal; bo = queryBoost (4.11)

4.3.1 Calendar data quality

The use cases displayed in table 4.2 and table 4.3 illustrates the problem where it is
impossible to determine how relevant data from the calendar is. In case A the word with
highest boosting value is “polo” (0.8) and in case B the word with highest boosting value
is "human” (0.01). Thus, "polo” is more relevant for the original query than "human”
(80 times more important). Furthermore if one decides that the words in the original

Case Original query Calendar query
A horse polo”0.8 ...
B horse human”0.01 ...

Table 4.2: An example demonstrating relevance differences among queries.

query is always twice as much worth as the maximum boosting value from the calendar
query, it would give the values showed in table 4.3. It may seem reasonable if one looks

22

4.4. SOFTWARE ARCHITECTURE CHAPTER 4. DESIGN

at the cases individually. However, if one compares case C with case D one can see that
“human” is considered to be worth as much as “’polo” in relation to “horse”.

The problem here is, as already stated in section 4.3, that there are no limits to refer
to [19]. The values in the tables 4.2 and 4.3, could as well be 80 (for case A), 1 (for case
B), 160 (for case C), 2 (for case D) and still be as much worth relative to each other.
Therefore, with this approach, it is impossible to determine the boosting values for the
original query without considering in which context it is going to be used.

Case Original query Calendar query
C horse”1.6 polo”0.8 ...
D horse”0.02 human”0.01 ...

Table 4.3: An example demonstrating query relationships.

4.4 Software architecture

Due to the delimitations of this thesis the software solution follows architectural guide-
lines provided by Findwise. The software components of the solution are commonly used
in Findwise’s customer solutions, which allows potential integrations in future. Figure
4.2 shows how the two main components, which are the transparent service-layer Jellyfish
and the search engine Apache Solr, relate to each other.

Enters query (\
Gets result

Jellyfish

Outlook

Search Engine

Apache Solr

Figure 4.2: Main components of the software solution.

4.4.1 Separate indexes

A difference compared with a typical Findwise solution is that there are two indexes in
this solution. That is due to the fact that there are not only one but two data sources
that need to be indexed:

e English articles from Wikipedia.

23

4.4. SOFTWARE ARCHITECTURE CHAPTER 4. DESIGN

e Events from the calendar.

The english articles from Wikipedia are indexed in order to illustrate a data source,
which are needed for the testing phase. This index, named wikipedia index, could in real
customer cases be e.g. documents from an intranet such as PDF-files, word-documents
or contact information for the employees. Furthermore, events from the calendar are
placed in another index in order to separate the two data sources. This second index,
named calendar index, follows the schema described in section 4.1.2. The indexes are
illustrated in figure 4.2 by red boxes.

The fact that the indexes are separated is a consequence of how relevance is de-
termined in Apache Solr. Since the document scores are based on tf-idf among other
factors[21], the data sources need to be indexed separately in order to not affect the
calculated idf values. Otherwise event scores will be based on both data from the events
and the articles. Hence, in order to make the data sources independent they need to be
separated. Furthermore, separated indexes also adds to the scalability of the solution.
In order to integrate this solution in an existing one, an additional index needs to be
added while the original index can remain the same.

4.4.2 Two instances of Jellyfish

Due to the fact that there are two indexes in Apache Solr there are also two instances of
the service-layer Jellyfish (one connected to wikipedia index and one to calendar index).
In figure 4.3 these instances, both containing their own pipelines, are illustrated with

blue color.
Date Boost
Query Modifier

Query for events in calendar

Calendar query

Query Calendar Search
Modifier
RLUIt-:
‘ I |
Jellyfish Apache Solr

Figure 4.3: Two Jellyfish instances, one for each index.

There are three different pipeline steps that represent the main functionality of the so-
lution. These three steps are named CalendarSearchModifier, DateBoostQueryModifier

24

4.4. SOFTWARE ARCHITECTURE CHAPTER 4. DESIGN

and CalendarResultModifier and are described in more detail in section 4.4.3. The
green boxes in figure 4.3 show where these pipeline steps are placed in an architectural
perspective.

4.4.3 Pipeline steps

Two of the pipeline steps, CalendarSearchModifier and DateBoostQueryModifier,
have functionality that to some extent modifies the query and are therefore of type
QueryModifier. However the third step, CalendarResultModifier, is instead of type
ResultModifier though its functionality modifies the result. Furthermore, each pipeline
step represents a specific part of the relevance model, which is described below. To
increase the understanding on details, pseudo code for all three steps is found in ap-
pendix C.

Calendar Search Modifier

This pipeline step can, to a great extent, be mapped with the concept of replacing the
original query explained in section 4.1.1. Thus, the step makes the basis of the relevance
model and in order to disable the model this step could be removed and hence there
would be no impact on the search relevance.

The replaced query, @ finqi, is a combination of the original query (Qoriginar) and the
calendar query (Qcalendar). Furthermore, the data for the original query is available in
the pipeline step while querying the calendar index for events retrieves the data for the
calendar query.

Date Boost Query Modifier

The purpose of this pipeline step is to boost events that occur in the near future (or
events that recently occured). The boosting is performed by one of the standard features
in Apache Solr, which supports boosting documents based on their data[l5, 17], and is
based on the same formula as described in section 4.2.5. All the mathematical operators
required by the boosting formula are supported by Apache Solr[19].

In practice, the boosting is not performed in this pipeline step but in Apache Solr.
Hence, this pipeline step only creates the formula, which in turn is sent to the search
engine as an additional parameter to the query.

Calendar Result Modifier

The default structure of results returned from Apache Solr[17] does not correspond to the
query format described in section 2.4.1. Thus, this pipeline step modifies the result by
putting all words from all documents, with their corresponding boosting value, in a list
and furthermore returns it instead. A word’s boosting value is calculated as described in
section 4.2.3, i.e. the word’s tf-idf value multiplied with the score of the event the word
belongs to.

25

4.4. SOFTWARE ARCHITECTURE CHAPTER 4. DESIGN

4.4.4 Calendar data indexer

The relevance model requires that words from the calendar events can be extracted and
in order to do this, the events must be indexed. The functionality that indexes the
calendar events into Apache Solr is independent from the rest of the solution and is

shown in figure 4.4.
1) ﬁﬂQ

Outlook

L

tlook
Ouiloo JL iCal ParserJ

! enar lnex

Parser

Commits

Search Engine

Apache Solr Calendar Data Indexer

Figure 4.4: Components for indexing calendar data.

The calendar index contains events from both Microsoft Outlook and Apple iCal.
Thus, both of the calendars have their own parser which is illustrated by green boxes in
figure 4.4. In addition to the fact that separated parsers adds to the scalability of the
solution, it also allows indexing the calendars independently.

The architecture is designed to support multiple parsers (not only the parsers men-
tioned previously). In order to index events from a calendar, a parser that implements a
specific interface must be created. The interface guarantees that the format of the data,
which the parsers commit, corresponds to the calendar schema (see section 2.3.1).

26

Chapter 5

Test results

The following chapter presents the use case structure and its rationale, the test results
from three test iterations and a comparison of the test results with and without the
relevance model.

5.1 Use Cases

Use cases in this study consist of a query and a single relevant document, also referred to
as known-item search (see section 2.5.1). Table 5.1 presents a known-item use case ex-
ample which represents a search for the site “http://chalmers.se” using a query consisting
of the terms “university” and “gothenburg”.

Id Query URL
Testl university gothenburg http://chalmers.se

Table 5.1: A known-item search use case.

The fundamental assumption 1 in this thesis states that when a user performs a
search there may be an upcoming or recent event which is related to the search. As
mentioned in section 3.3.1, each use case thus has a corresponding calendar event. The
use case mentioned above is extended in table 5.2 with a corresponding event presented
in table 5.3.

Id Query URL Event id Test type
Testl university gothenburg http://chalmers.se Eventl Positive-match

Table 5.2: A known-item search use case with calendar event.
Worth noting is that the event displayed in table 5.3 is simplified by removing location

and participant data. All use cases and events used in this study can be found in appendix
A and appendix B respectively.

27

5.2. ITERATION RESULTS CHAPTER 5. TEST RESULTS

Event id Title Dates Text
Eventl Chalmers 2012-01-01 08:00-09:00 Visit Chalmers University.

Table 5.3: A simplified calendar event.

In order to get objective test data there are both tests that should have a positive
and a negative influence on the search. A positive use case has a corresponding event
in the calendar which is relevant to the expected document. In contrast, a negative use
case denotes that the corresponding event in the calendar is not relevant to the expected
result. Moreover another aspect of the tests is considered where the positive and negative
use cases are divided in matching and non-matching categories:

e Positive-match A term in the query exists in a relevant event.
e Positive-non-match A relevant event exist but matches no term in the query.
e Negative-match A term in the query exist in non-relevant event.

e Negative-non-match No relevant event exist and no events matches any term in
the query.

There are a total of 50 use cases with the following distribution: 20 positive-match, 10
positive-non-match, 10 negative-match and 10 negative-non-match. The rationale for
having 20 positive-match versus 10 negative-match is to further advance assumption 1
by assuming that events that have a matching keyword are more likely to be relevant to
the search. Thus, the assumption is quantified by having the double amount of positive-
match use cases.

In addition, each use case is tested with different time intervals between the search
date and the start date of the relevant calendar event. The intervals used are one hour,
one day, one week and lastly one month.

5.2 Iteration results

As introduced in section 3.3.2, the testing is carried out in iterations to optimize the
parameters presented in section 4.1.3. Parameters included in the optimization process
are queryBoost and dateBoost. The parameter numW ords is constant at this phase in
the testing. As initial maximum and minimum values for the parameters, queryBoost iy
and date Boost,;, are set to 1 and queryBoost, g, and date Boost,q, are set to 20. The
values are selected with respect to the minimum and maximum boosting of fields in
the calendar. The minimum values of the parameters are equal to the minimum field
boosting value and the parameters’ maximum values are double the maximum field
boosting value in the calendar schema. The maximum limit value here is selected by the
rationale that it is of interest to see the behaviour of boosting values over the maximum
calendar field boosting value.

28

5.2. ITERATION RESULTS CHAPTER 5. TEST RESULTS

Using the limits specified above, and three additional values between the limits for
each parameter, results in twenty-five different configuration combinations. Figure 5.1
and 5.2 presents the results of these configurations by plotting the average mean recip-
rocal rank of the dateWeight and queryBoost respectively.

0,325
0,32

0,315 /\
0,31 \

0,305 A\
03 \N _— ——MRR@50
'y A\

0,295
0,29
0,285 [[[[.
DW:1 DW:5 DW:10 DW:15 DW:20
Figure 5.1: Average M RRQ50 for dateW eight
0,325

0,32 i

0,315 N\
0,31 AN
0,305 \
03 T~ ——MRR@50

T e——

0,295
0,29
0,285

QB:1 QB:5 QB:10 QB:15 QB:20

Figure 5.2: Average M RRQ50 for queryBoost

A simple analysis of the two graphs would lead to the conclusion that the best result
in this test set is achieved by using queryBoost = 1 and dateWeight = 5. Given
this information, further testing should be focused on testing in the area of these two
values. However, the best rank in the first iteration is found at queryBoost = 1 and
dateWeight = 1. Hence the optimization of the two parameters can not be performed
individually since they to a large extent are co-dependent.

The graph 5.3 presents the mean reciprocal rank of the first iteration results in a
three-dimensional graph. By looking at the graph a trend of better results can be seen
where queryBoost and dateW eight both approach 1. Given this trend, one could opti-
mize the parameters further by testing around the current maximum at queryBoost = 1
and dateWeight = 1. Using parameter values queryBoost = {0.5,0.75,1,1.25,1.5} and
dateWeight = {0.5,0.75,1,1.25,1.5} in iteration two similarly gives a trend of better
results where queryBoost and dateW eight both approach 1.5. Therefore the third iter-

29

5.3. SEARCH WITH VS. WITHOUT MODEL CHAPTER 5. TEST RESULTS

0,36

0,35

0,34 ®0,35-0,36
[} -

0,33 0,34-0,35
®0,33-0,34

0,32 ®0,32-0,33
] -

0,31 0,31-0,32
®0,3-0,31

03 ®0,29-0,3
0,29 M 0,28-0,29

Figure 5.3: MRRQ@50 using parameter values queryBoost = {1,5,10,15,20} and
dateWeight = {1,5,10,15,20}.

ation tests the values above the values in the second iteration with the same intervals.
Figure 5.4 displays the results of iteration three.

The configuration with the highest mean reciprocal rank (M RRQ@50 = 0,358) in
all tests presented in this thesis can be found at queryBoost = 2 and dateWeight =
2. Due to the co-dependency of the parameters a more extensive testing process with
significantly smaller intervals may lead to better results using another configuration but
this will not be further evaluated in this thesis.

5.3 Search with vs. without model

Testing the use cases presented above without the model results in a M RRQ50 = 0,230.
A comparison of the results without and with the optimized model is presented in table
5.4. In addition to the total results the table presents a comparison of the M RR of the
different test types individually. A Student’s paired t-test shows that the improvement on
the test with all test types is statistically significant (p-value < 0,001). Furthermore, the
increase in positive-match and negative-non-match as well as the decrease in negative-
match and positive-non-match are all statistically significant (p-values < 0,005).
Moreover, table 5.5 presents a comparison of the different time intervals. The biggest
difference can be found by comparing the interval of one day with the interval of one
week (M RRQ50 = 0.368 and M RR@50 = 0.349). This difference is not, according
to the Student’s t-test, statistically significant; thus the date boosting impact is not
significant. All statistical significance test calculations can be seen in appendix E.

30

5.3. SEARCH WITH VS. WITHOUT MODEL CHAPTER 5. TEST RESULTS

0,355 -
0,355-0,36
| | -
035 | 0,35-0,355
0,345-0,35
0,345
0,34-0,345
0,34
DW:1,75

Figure 5.4: M RRQ@50 using parameter values queryBoost = {1.75,2,2.25,2.5,2.75} and
dateWeight = {1.75,2,2.25,2.52.75}.

Test type Without model Optimized model Difference
All tests 0.230 0.358 0.128
Positive-match 0.079 0.422 0.343
Negative-match 0.495 0.290 -0,205
Positive-non-match 0.086 0.011 -0,075
Negative-non-match 0.409 0.646 0,237

Table 5.4: M RRQ50 for different test types without vs. with relevance model.

Date interval Optimized model
1 hour 0.352
1 day 0.368
1 week 0.349
1 month 0.363

Table 5.5: M RRQ50 for different time intervals with relevance model.

31

Chapter 6

Discussion

This chapter discusses the experiences acquired from the testing phase, critical parts
of the relevance model and finally alternative approaches that could be applied to the
model, as well as their exclusion motivation.

6.1 Test results reflections

Testing relevance for a context-aware information retrieval system is a complex task. As
mentioned in chapter 1, determining relevance computationally is problematical and is
further complicated by considering the seemingly vague concept of context. To model
realistic use cases in a realistic context, which will be further elaborated in section 6.2,
is crucial for obtaining reliable test results.

Testing computationally implies some quantification of the result, which sometimes
makes it tempting to draw overhasty conclusions based on the result. As an illustration
one could consider the discovery described in section 5.2; when the relevance parameters
are individually examined, the highest score is received by using values 1 and 5. However,
when they are examined together the best result is received when both values are set
to 2. Hence there is no clear relation between the relevance parameters, i.e. too many
hidden factors are involved. In order to explain why these values give the best result one
needs to do extensive analyses of all parameters and hidden factors.

As could be expected, the test results demonstrate that there is an improvement for
the positive-match use cases and a negative effect for the negative-match tests. This
indicates that it is possible to improve relevance by using data from a calendar, given
that assumption 1 is accurate.

Opposed to the matching tests, the non-matching use cases surprisingly demonstrate
inverted results. There is a decrease for the positive-non-match tests while there is an
increase for the negative-non-match tests. This can be explained by the fact that the
events are randomly selected (due to the star-search) and hence the test result is too
dependent on the events in the calendar. Furthermore, it is suggested to only consider
events that are relevant using keyword matching or by using a more advanced relevance
matching approach, e.g. the one proposed by Ratprasartporn et al. [5].

32

6.2. USE CASES AND DATA SOURCE IMPACT CHAPTER 6. DISCUSSION

Based on assumption 1 the highest score for the positive use cases should be received
when the events occur in one hour and the lowest score should be received when the
events occur in one month. This was however not demonstrated by the test results
where the highest score was received in the following order: day, month, hour and week.
Hence, the date boosting did not behave as intended and the order previously mentioned
could be a result of the random selection. No difference between the date intervals were
statistically significant, which implies that the date boosting de facto did not have any
impact on the results at all.

6.2 Use cases and data source impact

The test results are highly dependent on the test data, i.e. the use cases, the calendar
events and the data source (Wikipedia). Other use cases and a different data source
would most likely result in other numbers than the ones presented in this thesis. This
does not however imply that the tests display incorrect results but simply that it is
related to the quality of the test data.

A weakness with the use cases is that each use case only considers one single event.
This event is in the positive use cases relevant and not relevant in the negative use cases.
Using the keyword matching alone, only relevant and non-relevant events with matching
keyword are considered. The influence of all events, in terms of user overall context,
is not considered which furthermore implied no impact on the non-matching use cases.
Hence, the star-search was introduced which in contrast results in all use cases matching
all events. In table 6.1 one can see this by taking the sum of TP and FP for each test
type, which equals the total number of events. A consequence of the star-search is that
there is significantly more FP than TP, which in turn results in a low precision. In
contrast, the precision would be high if the star-search had not been introduced but
that would also result in the positive-non-match use cases being uninfluenced (7P would
become TN).

Test type TP TN FP FN
Positive-match 1 0 19 0
Positive-non-match 1 0 19 0
Negative-match 0 0 20 0
Negative-non-match 0 0 20 0

Table 6.1: Number of events received for respective test type.

Most use cases in the test set represent different non-relating domains which conse-
quently implies that most calendar events are not related to other events. This represents
a user context poorly since a user’s calendar events to a larger extent more likely are re-
lated. Implementing the solution in an authentic environment in industry, with authentic
calendars, would probably give a more specific context and thus more relevant events for

33

6.3. BOOSTING ERRORS IN THE MODEL CHAPTER 6. DISCUSSION

each use case. Non-matching use cases would in this environment possibly display better
results since more events in the result would be categorized as T'P. Furthermore, test-
ing the relevance model in an authentic environment, with an improved date boosting
discussed in section 6.3, could also evaluate the date boosting’s applicability.

6.3 Boosting errors in the model

One of the first problems discovered in the analysis of the test results were that the
relevance model uses scores from the search engine in an incorrect way. All scores
are given as relative values without any boundaries (e.g. no maximum value). As
a consequence, a score for a given document can only be related to other scores for
documents that was received under the same conditions, i.e. using the same query. For
example, three documents (A, B and C) are received for a specific query with the scores:
1, 2 and 20 respectively. Based on these scores document A is considered to be the least
relevant document and its score is furthermore 5 % of the maximum result. However,
by removing document C only two documents (A and B) will be retrieved for the same
query. Given unaffected scores, by ignoring factors such as tf-idf, document A score is
now 50 % of the maximum result for the same query. In addition, one could further
consider the change in #f-idf that may occur by removing document C, which would give
a change in the score values as well.

Further complications with using the score can be seen by considering the date boost-
ing. The highly tunable parameters in the date boosting function presented in section
2.2.3 could easily be changed to represent specific requirements. One could as an il-
lustration determine that an event currently occurring is twice as relevant as an event
occurring in eight hours and hence tune the function to match this requirement. The
scores returned by this function would however not match the requirement and further-
more be different for different queries.

To base boosting values for words in a query on scores, though how intuitively com-
pelling it may seem, can thus be inaccurate. However, this is implemented in the rele-
vance model by multiplying a word’s tf-idf value with the score of the event it is extracted
from. To solve this issue, the number of relevance parameters in the model is minimized
and the values of the remaining parameters rely on comprehensive testing. Utilizing this
approach is supported by the common practices at Findwise were each customer solution
is configured individually to optimize the relevance.

The tf-idf value is well-recognized and used among several search engines to deter-
mine relevance. One of the concepts of tf-idf is to punish, in all documents, frequently
occurring words to leave emphasis on less common words. However, as with the score,
the tf-idf value is not used in a correct way in the relevance model. For example, if a
user’s calendar frequently contains the word “music” it is likely that the user is interested
in music which furthermore would be a word describing the context well. Conversely,
the word “music” will have a low influence on the search since the #f-idf value is low.

The last problem that was discovered during the testing is that the model does not
take into account in which fields the extracted words from the calendar come from. To

34

6.4. ALTERNATIVE APPROACHES CHAPTER 6. DISCUSSION

some extent, the search engine will do that when the calendar index is queried by using
the field boosting. However, the score of a document reflects the contents of the whole
document and not the specific fields. If a document receives a high score because it
contains one of the keywords from the query in the title field, all the words from the
document’s other fields (e.g. text field) will benefit from this.

6.4 Alternative approaches

During the design phase of the case study several different approaches were considered.
The alternative solutions solved issues previously discussed but also introduced other
disadvantages.

Most discussions concerned how to combine the original query with the calendar
query. One of the first suggestions, when only the keyword matching cases were con-
sidered, was to only use the latter query. Only events that contained the words in the
original query were to be retrieved which makes this suggestion feasible. The benefit of
this approach is that there will be a relationship between the words in the original query
and the words retrieved from the calendar. This relationship could be used to specify
the importance of the original query versus the words added from the calendar.

However, this solution was not applicable when considering non-matching events since
words from the original query would not exist in the final query. Intuitively, removing
words from the original query should be avoided to ensure that the system returns results
that reflect the supplied query logically. To illustrate this it would be inaccurate if a user
enters the search string “dog food” and only gets results based on the word “food” since no
calendar events contained the word “dog”. All words in the original query therefore need
to exist in the final query as well, which introduces further difficulties when determining
boosting values.

Another topic that was discussed extensively concerned the date boosting. As the
relevance model is constructed in this thesis, events will be boosted based on their date.
This is to satisfy assumption 1 that states that relevant events are more likely to be near
in time. Besides from determining relevance between matching events, the date boosting
is the only factor that impacts the relevance for the non-matching use cases. However,
the test results show that the relevance is not affected at all by the date boosting for
the non-matching use cases, which thus would suggest a model were no non-matching
events should be matched.

An alternative interpretation of the insignificantly small variations of the date boost-
ing could be that the date boosting function should be more aggressive. The parameter
dateW eight were suppose to represent this in the optimization process but this was not
reflected since the increase of the parameter caused many non-relevant events to be more
significantly used in the query. Another approach could be to use a more aggressive date
boosting function or preferably implement the date relevance directly in the model and
thus not use the search engine score.

The testing furthermore tested the same matching use case by different time intervals
which may caused the optimized model to decrease the significance of date since the

35

6.5. CONTEXT BASED ON CALENDAR DATA CHAPTER 6. DISCUSSION

optimization only pursued best total results. Hence the use cases in the optimization
could instead consider assumption 1 to a larger extent by valuing use cases, with relevant
event near in time, more.

6.5 Context based on calendar data

In summary, on basis of the results presented in this thesis, it is suggested to use a
model that only uses events matched by keywords or a more advanced model for keyword
matching. The model should use a more aggressive date boosting function or preferably
implement the date boosting directly in the model and thus not use the search engine
score.

As proven by the literature study, a collection of keywords that are relevant to a con-
text can be used to improve relevance in a search. Given that upcoming or recent events
are relevant to the context, the calendar can successfully be used to determine context
and furthermore improve the performance of the information retrieval system. The big
issue for future works does not regard specific implementation, optimization or testing
but an analysis of the fundamental assumption. This analysis should be performed by
testing the above-suggested implementation in an authentic environment. If shown by
this analysis that usage patterns of the calendar conforms to this assumption and that
the events furthermore contains keywords relevant to the context, the implementation in
this thesis could be used to improve the performance of an information retrieval system.

6.6 Implications for Software Engineering in general

Seen context-based search from a wider perspective one could state that any information,
given that it is has a textual representation, could be used to influence a search. If the
information is considered to be relevant to the information need of the user it can in any
information retrieval system in some manner be added to enrich the query, or to filter the
results. The difficulty lies within determining the relevance of the information for each
given search and user. The implementations of determining relevant information are
countless, especially considering domain-specific solutions. However, the rather simple
method of matching a keyword can be applied on many cases which moreover could
imply that any set of documents containing user relevant data can be used to improve
the relevance of a search. This can, as explored in this thesis, then furthermore be
improved by considering other relevance methods such as date boosting for calendar
events or possibly boosting documents which is currently being edited by the user.

Most information representing a user context can be evaluated using the same sta-
tistical evaluation method suggested in this thesis. It does however require that the
software architecture of the information retrieval system allows add-on functionality. In
this thesis, the created model consists of different independent features that are inte-
grated in a software without introducing any new limitations. Hence it allows software
to be extended to a context-aware system using one or several methods of modelling the
context without limiting or making any significant changes to the software.

36

Chapter 7

Conclusion

Previous research concerning personalizing search have been conducted where context is
determined by categorizing users manually and automatically, analyzing click-logs data
or analyzing pre-query activity such as previous queries. No research however was found
were context is based on information from the calendar. Hence a method of deriving
context from the calendar and using the context in a search was developed. The model
proposed in this study found relevant calendar events by matching keywords in the
search query with keywords in the calendar events. An additional model that boosted
events near in time was used to further determine relevance, but did however in the tests
display poor results. The query was enriched with words extracted from the relevant
events. The relative significance of the words was determined by the relevance of events
and words.

This study evaluated the information retrieval system statistically by setting up
use cases consisting of a query and a single relevant document. The position of each
document was calculated to quantify the results. Evaluating a context-aware system
however requires a computational representation of the context where all context data
is added to each use case which was done by having one single related event for each use
case.

The model used in this thesis did not introduce any new limitations on the software
which thus implies that most information retrieval systems can be extended to be aware
of the context of the calendar and furthermore aware of the context of the user in general.
The big issue, which is not explored in this thesis, concerns if a typical user calendar is
used in a way that is computationally usable and relevant to the user information need,
which should be the subject of future research.

37

Bibliography

1]

B. Hjgrland, The foundation of the concept of relevance, J. Am. Soc. Inf. Sci.
Technol. 61 (2) (2010) 217-237.
URL http://onlinelibrary.wiley.com/doi/10.1002/asi.21261/full

E. Pariser, Beware online "filter bubbles” (May 2011).
URL http://www.ted.com/talks/lang/en/eli_pariser_beware_online_
filter_bubbles.html

Z. Dou, R. Song, J.-R. Wen, A large-scale evaluation and analysis of personalized
search strategies, in: Proceedings of the 16th international conference on World
Wide Web, WWW °07, ACM, New York, NY, USA, 2007, pp. 581-590.

URL http://doi.acm.org/10.1145/1242572.1242651

R. Krovetz, W. B. Croft, Lexical ambiguity and information retrieval, ACM Trans.
Inf. Syst. 10 (2) (1992) 115-141.
URL http://doi.acm.org/10.1145/146802.146810

N. Ratprasartporn, J. Po, A. Cakmak, S. Bani-Ahmad, G. Ozsoyoglu, Context-
based literature digital collection search, The VLDB Journal 18 (1) (2008) 277-301.
URL http://www.springerlink.com/index/10.1007/s00778-008-0099-9

M. Reichhold, J. Kerschbaumer, G. Fliedl, Optimizing enterprise search by auto-
matically relating user context to textual document content, in: Proceedings of the
11th International Conference on Knowledge Management and Knowledge Tech-
nologies, i-KNOW 11, ACM, New York, NY, USA, 2011, pp. 22:1-22:6.

URL http://doi.acm.org/10.1145/2024288.2024316

C.-T. Li, M.-K. Shan, S.-D. Lin, Context-based people search in labeled social
networks, Proceedings of the 20th ACM international conference on Information
and knowledge management - CIKM ’11 (2011) 1607.

URL http://dl.acm.org/citation.cfm?doid=2063576.2063809

38

http://onlinelibrary.wiley.com/doi/10.1002/asi.21261/full
http://www.ted.com/talks/lang/en/eli_pariser_beware_online_filter_bubbles.html
http://www.ted.com/talks/lang/en/eli_pariser_beware_online_filter_bubbles.html
http://doi.acm.org/10.1145/1242572.1242651
http://doi.acm.org/10.1145/146802.146810
http://www.springerlink.com/index/10.1007/s00778-008-0099-9
http://doi.acm.org/10.1145/2024288.2024316
http://dl.acm.org/citation.cfm?doid=2063576.2063809

BIBLIOGRAPHY BIBLIOGRAPHY

8]

[10]

[11]

M. Fisher, P. Hanrahan, Context-based search for 3D models, ACM SIGGRAPH
Asia 2010 papers on - SIGGRAPH ASTA ’10 29 (6) (2010) 1.
URL http://portal.acm.org/citation.cfm?doid=1866158.1866204

R. W. White, P. N. Bennett, S. T. Dumais, Predicting Short-Term Interests Using
Activity-Based Search Context (iii) 1009-1018.

Z. Ma, G. Pant, O. R. L. Sheng, Interest-based personalized search, ACM Transac-
tions on Information Systems 25 (1) (2007) 5—es.
URL http://portal.acm.org/citation.cfm?doid=1198296.1198301

N. Matthijs, F. Radlinski, Personalizing web search using long term browsing his-
tory, in: Proceedings of the fourth ACM international conference on Web search
and data mining, WSDM ’11, ACM, New York, NY, USA, 2011, pp. 25-34.

URL http://doi.acm.org/10.1145/1935826.1935840

A. Singhal, Modern information retrieval: A brief overview, Bulletin of the IEEE
Computer Society Technical Committee on Data Engineering 24 (4) (2001) 35-42.
URL http://singhal.info/ieee2001.pdf

G. Salton, A. Wong, C. S. Yang, AVector Space Model for Automatic Indexing
18 (11).

A. Gelbukh, Computational Linguistics and Intelligent Text Processing: 13th In-
ternational Conference, Cicling 2012, New Delhi, India, March 11-17, 2012, Pro-
ceedings, no. del 2 in Lecture Notes in Computer Science / Theoretical Computer
Science and General Issues, Springer, 2012.

URL http://books.google.se/books?id=xxB1BAfgc4kC

T. Potter, Boosting Documents in Solr by Recency, Popularity, and User Prefer-
ences.

URL http://www.lucidimagination.com/sites/default/files/Potter’,
20Timothy%20-%20Boosting20Documents%20in%20Solr. pdf

F. Dawson, D. Stenerson, Internet calendaring and scheduling core object specifi-
cation (icalendar), Internet RFC 2445 (Nov. 1998).

D. Smiley, E. Pugh, Apache Solr 3 Enterprise Search Server, Packt Publishing, 2011.
R. Kuc, Apache solr 3.1 cookbook, Packt Publishing, 2011, pp. 121-143.

A. S. Foundation, Solr relevancy faq (Apr. 2012).
URL http://wiki.apache.org/solr/SolrRelevancyFAQ

A. S. Foundation, Scores as percentages (Sep. 2009).
URL http://wiki.apache.org/lucene-java/ScoresAsPercentages

39

http://portal.acm.org/citation.cfm?doid=1866158.1866204
http://portal.acm.org/citation.cfm?doid=1198296.1198301
http://doi.acm.org/10.1145/1935826.1935840
http://singhal.info/ieee2001.pdf
http://books.google.se/books?id=xxBlBAfgc4kC
http://www.lucidimagination.com/sites/default/files/Potter%20Timothy%20-%20Boosting%20Documents%20in%20Solr.pdf
http://www.lucidimagination.com/sites/default/files/Potter%20Timothy%20-%20Boosting%20Documents%20in%20Solr.pdf
http://wiki.apache.org/solr/SolrRelevancyFAQ
http://wiki.apache.org/lucene-java/ScoresAsPercentages

BIBLIOGRAPHY BIBLIOGRAPHY

[21]

28]

A. S. Foundation, Similiraty lucene api (2012).
URL http://lucene.apache.org/core/old_versioned_docs/versions/2_9_1/
api/core/org/apache/lucene/search/Similarity.html

Documentation of Jellyfish provided by Findwise AB (classified).

C. Goutte, E. Gaussier, A Probabilistic Interpretation of Precision , Recall and
F-Score , with Implication for Evaluation (2005) 345-359.

M. Zhu, Recall, Precision and Average Precision (2004).
URL http://sas.uwaterloo.ca/stats_navigation/techreports/
04WorkingPapers/2004-09.pdf

I. Soboroff, On evaluating web search with very few relevant documents, in: Pro-
ceedings of the 27th annual international ACM SIGIR conference on Research and
development in information retrieval, SIGIR ’04, ACM, New York, NY, USA, 2004,
pp- 530-531.

URL http://doi.acm.org/10.1145/1008992.1009105

M. A. Najork, Comparing the effectiveness of hits and salsa, in: Proceedings of the
sixteenth ACM conference on Conference on information and knowledge manage-
ment, CIKM 07, ACM, New York, NY, USA, 2007, pp. 157-164.

URL http://doi.acm.org/10.1145/1321440.1321465

N. Craswell, D. Hawking, S. Robertson, Effective site finding using link anchor in-
formation, in: Proceedings of the 24th annual international ACM SIGIR conference
on Research and development in information retrieval, SIGIR ’01, ACM, New York,
NY, USA, 2001, pp. 250-257.

URL http://doi.acm.org/10.1145/383952.383999

M. D. Smucker, J. Allan, B. Carterette, A comparison of statistical significance
tests for information retrieval evaluation, in: Proceedings of the sixteenth ACM
conference on Conference on information and knowledge management, CIKM ’07,
ACM, New York, NY, USA, 2007, pp. 623-632.

URL http://doi.acm.org/10.1145/1321440.1321528

R. Fisher, The design of experiments, Vol. first edition, Oliver and Boyd, 1935.

Search query processing, FAST Search Best Practices.
URL http://download.microsoft.com/download/0/7/3/073431A7-3B32-436A-
8DBF-DF5DD2FFOEB6/Search_Query_Processing.pdf

G. Linden, Marissa mayer at web 2.0 (May 2008).
URL http://glinden.blogspot.com/2006/11/marissa-mayer-at-web-20.html

40

http://lucene.apache.org/core/old_versioned_docs/versions/2_9_1/api/core/org/apache/lucene/search/Similarity.html
http://lucene.apache.org/core/old_versioned_docs/versions/2_9_1/api/core/org/apache/lucene/search/Similarity.html
http://sas.uwaterloo.ca/stats_navigation/techreports/04WorkingPapers/2004-09.pdf
http://sas.uwaterloo.ca/stats_navigation/techreports/04WorkingPapers/2004-09.pdf
http://doi.acm.org/10.1145/1008992.1009105
http://doi.acm.org/10.1145/1321440.1321465
http://doi.acm.org/10.1145/383952.383999
http://doi.acm.org/10.1145/1321440.1321528
http://download.microsoft.com/download/0/7/3/073431A7-3B32-436A-8DBF-DF5DD2FF0EB6/Search_Query_Processing.pdf
http://download.microsoft.com/download/0/7/3/073431A7-3B32-436A-8DBF-DF5DD2FF0EB6/Search_Query_Processing.pdf
http://glinden.blogspot.com/2006/11/marissa-mayer-at-web-20.html

Appendix A

Use cases

Test id Query String Site id Site title Event id Test type

Rankingtestl amazon 1id90451 Amazon.com Eventl Positive-match

Rankingtest2 SEB 1d206351 Skandinaviska Event2 Positive-match
Enskilda Banken

Rankingtest3 jaguar id147676 Jaguar Cars Event3 Positive-match

Rankingtest4 global warming id2260887 Politics of global Event4 Positive-match
warming

Rankingtests ~ triumph 1d929324 Triumph Records Event5 Positive-match

Rankingtest6 the river id429230 The River (Bruce Event6 Positive-match
Springsteen album)

Rankingtest? relevance 1d442684 Relevance Event7 Positive-match
(information retrieval)

Rankingtest8 java id15881 Java (programming Event8 Positive-match
language)

Rankingtest9 princess victoria id24427 Victoria, Crown Event9 Positive-match
Princess of Sweden

Rankingtestl0 SEO 1d187946 Search engine Event10 Positive-match
optimization

Rankingtestll titanic id19285924 RMS Titanic Eventll Positive-match

Rankingtest12 link building id187946 Search engine Event12 Positive-match
optimization

Rankingtest13 CSS id23290197 Cascading Style Event13 Positive-match
Sheets

Rankingtest14 Anders Karlsson id9698368 Anders Karlsson Event14 Positive-match
(politician)

Rankingtestl5 cayenne id6528823 Cayenne Event15 Positive-match
(programming
language)

Rankingtest16 major id10690 Men’s major golf Event16 Positive-match
championships

Rankingtest17 ping id6519883 Ping (golf) Eventl7 Positive-match

Rankingtest18 Telia id30004 TeliaSonera Event18 Positive-match

Rankingtest19 real id26413 Real Madrid C.F. Event19 Positive-match

Continued on next page

41

APPENDIX A. USE CASES

Test id Query String Site id Site title Event id Test type
Rankingtest20 architecture patterns 1d48364 Software architecture = Event20 Positive-match
Rankingtest21 amazon id48139 Amazon rainforest Eventl Negative-match
Rankingtest22 jaguar id16217 Jaguar Event3 Negative-match
Rankingtest23 triumph id1605133 Triumph International Event5 Negative-match
Rankingtest24 river id18842395 River Event6 Negative-match
Rankingtest25 java id16527 Java coffee Event8 Negative-match
Rankingtest26 lake victoria id9585762 Lake Victoria Event9 Negative-match
(Victoria)
Rankingtest27 CSS id4359151 Canadian Space Event13 Negative-match
Society
Rankingtest28 cayenne id90859 Cayenne pepper Event15 Negative-match
Rankingtest29 Major League id38776 Major Leauge Event16 Negative-match
Baseball
Rankingtest30 ping id24265 Ping Event17 Negative-match
Rankingtest31 online bookstore cd id90451 Amazon.com Event1 Pos. non-match
dvd
Rankingtest32 Scandinavian Private id206351 Skandinaviska Event2 Pos. non-match
Bank Enskilda Banken
Rankingtest33 Swallow Sidecar id147676 Jaguar Cars Event3 Pos. non-match
Company
Rankingtest34 rising temperature id042951 Global warming Event4 Pos. non-match
earth
Rankingtest35 label meek barrington i1d8098051 Triumph Records Event5 Pos. non-match
(United Kingdom)
Rankingtest36 iron man id1299122 Iron Man (song) Event6 Pos. non-match
Rankingtest37 relevancy 1d442684 Relevance Event7 Pos. non-match
(information retrieval)
Rankingtest38 palace 1id322922 Stockholm Palace Event9 Pos. non-match
Rankingtest39 improving visibility id187946 Search engine Event10 Pos. non-match
online optimization
Rankingtest40 first division soccer id37981 La Liga Event20 Pos. non-match
spain
Rankingtest41l nora wall 1id24124047 Nora Wall Eventl Neg. non-match
Rankingtest42 Never Ending Dylan id7118144 Never Ending Tour Event2 Neg. non-match
Rankingtest43 frisbee ultimate id31775 Ultimate (sport) Event3 Neg. non-match
Rankingtest44 bangladesh id3454 Bangladesh Event4 Neg. non-match
Rankingtest45 jesus christ superstar ~ 1d7651220 Jesus Christ Event5 Neg. non-match
Superstar (film)
Rankingtest46 wild frontier tour id27776800 Live in Stockholm: Event6 Neg. non-match
Wild Frontier Tour
Rankingtest47 brolin id1610526 Tomas Brolin Event7 Neg. non-match
Rankingtest48 sgt pepper id6540 Sgt. Pepper’s Lonely Event8 Neg. non-match
Hearts Club Band
Rankingtest49 golden ratio id12386 Golden ratio Event9 Neg. non-match
Rankingtestb0 hussein 1d29490 Saddam Hussein Event10 Neg. non-match

42

Appendix B

Events

Event id Title Dates Location Participants Text
Event1 Amazon book 2012-01-01 Home A meeting with my book club
club 08:00-09:00 where we will discuss the book
ivanhoe which can be found on
amazon.com.
Event2 SEB people 2012-01-02 SEB ?Goéran wants to discuss the new
search discussion 08:00-09:00 Stockholm people search. His mail:
VHi,
I’'m not satisfied with the new
people search. Lets discuss how we
can improve it.
Best Regards
Goran Johansson
F467XXXXXXXX
SEB (Skandinaviska Enskilda
Banken)”
Event3 Car buyer visit ~ 2012-01-03 Home A guy is interested in buying my
08:00-09:00 Jaguar E-type.
Event4 Environment 2012-01-04 World Trade Some politics will be discussed
discussions 08:00-09:00 Center, regarding global warming in
Gothenburg general and what we as politicians
can do to put more pressure on
the car industry.
Event5 Record meeting 2012-01-05 Meeting with triumph records.
08:00-09:00
Event6 Rehearsal 2012-01-06 Soder All band ”Band rehearsal. Practice the
08:00-09:00 members following:
Bruce Springsteen - The river
Black Sabbath - Paranoid
Fred akerstrom - Jag ger dig min
morgon”
Event7 Calendar 2012-01-07 Findwise Peter Discussions concerning
relevance 08:00-09:00 office, Wintzell, information science in general,
Stockholm Marcus evaluation of a relevance model
Christians- and the cluster hypothesis.
son, Simon
Stenstrom

Continued on next page

43

APPENDIX B. EVENTS

Event id Title Dates Location Participants Text
Event8 Java course 2012-01-08 Seattle Java programming course.
08:00-09:00
Event9 Royal birth 2012-01-09 Stockholm Crown princess Victoria planned
08:00-09:00 birth date.
Eventl0 SEO 2012-01-10 Anywhere Introduction to search engine
08:00-09:00 optimization.
Eventll Titanic 3D 2012-01-11 SF, Stockholm
08:00-09:00
Eventl2 Link Building 2012-01-12 KTH, SEO seminar regarding link
seminar 08:00-09:00 Stockholm building without using black hat
such as link spamming and link
farms.
Eventl3 CSS seminar 2012-01-13 KTH, Continuing going through CSS in
08:00-09:00 Stockholm the web development course.
Eventl4 FRA discussions 2012-01-14 Anders Make the politician disapprove the
08:00-09:00 Karlsson FRA-law
Eventl5 Customer 2012-01-15 Forex considering using functional
meeting 08:00-09:00 programming for some transaction
solutions and cayenne in
particular.
Eventl6 Watch golf 2012-01-16 Augusta ‘Watch the first major.
08:00-09:00 National Golf
Club
Eventl7 Test clubs 2012-01-17 Haninge Golf Test clubs with Ping and Taylor
08:00-09:00 Club Made representatives.
Event1l8 Contact support 2012-01-18 Referring to the following mail:
08:00-09:00 7Hi!
You’ve received a mail from Telia
custoner support and you can read
by clicking the following link:
http://webbguide.telia.se/i.jsp?
1id=d40087f07c-25e399
Best regards
Teliasonera AB”
Eventl9 O’learys 2012-01-19 O’learys, Real Madrid - FC Barcelona
08:00-09:00 Sveavigen 143
Event20 ADL Course 2012-01-20 Finish the software architecture
deadline 08:00-09:00 course.

44

Appendix C

Code

C.1 Calendar Search Modifier

public void CalendarSearchModifier(args) {
String originalQuery = args.getQuery();

Search calendarSearch = new Search();
calendarSearch.setQuery(originalQuery) ;
Map<String,double> words = calendarSearch.getResults();

while(i++ < numWords) {
calendarQuery += words.getKey() + """ + words.getValue();

}

String finalQuery = originalQuery + calendarQuery;
args.setQuery(finalQuery) ;

C.2 Date Boost Query Modifier

public void DateBoostQueryModifier(args) {
float a = 0.08, b = 0.05, m = 1.64E-9, limit = 6.22E-10;

int dateBoost = 10; // Relevance parameter

// Creates formula (in three steps for visually purpose)
String formulal = "min(abs(ms(START_DATE, NOW)), msLimit)";
String formula2 = div(a, sum(b, product(" + formulal + ", m)));
String formula3 = formula2 + "~" + dateBoost;

args.setBoost (formula3) ;

C.3 Calendar Result Modifier

public void CalendarResultModifier(args) {
Map<String,double) words = new Map();

foreach(Document d : args.getDocuments()) {
foreach(Field f : d.fields()) {
foreach(Word w : f.words()) {
double boost = d.getScore() * w.getTDIDFQ);
words.put (w, boost);

45

C.3. CALENDAR RESULT MODIFIER APPENDIX C. CODE

}
}
}

args.setResult (words) ;

}

46

Appendix D

Test results

The table below presents rank, rq, using the following configuration: numWords = 15, queryBoost = 2 and
dateWeight = 2.

Test id Without model 1 hour 1 day 1 week 1 month
Rankingtest1 4 1 1 1 1
Rankingtest2 31 17 17 17 17
Rankingtest3 5 6 6 5 5
Rankingtest4 6 7 7 7 7
Rankingtestb 14 15 11 10 13
Rankingtest6 >50 1 1 42 2
Rankingtest7 13 2 2 2 2
Rankingtest8 >50 >50 >50 >50 >50
Rankingtest9 6 1 1 1 1
Rankingtest10 >50 1 1 1 1
Rankingtest11 17 1 1 4 1
Rankingtest12 >50 >50 >50 >50 >50
Rankingtest13 >50 >50 >50 >50 >50
Rankingtest14 3 3 3 3 3
Rankingtest15 17 6 6 6 6
Rankingtest16 >50 >50 >50 >50 >50
Rankingtest17 31 1 1 1 1
Rankingtest18 25 10 >50 >50 >50
Rankingtest19 >50 1 1 1 1
Rankingtest20 12 2 2 2 2
Rankingtest21 3 8 7 8 8
Rankingtest22 1 1 1 1 1
Rankingtest23 28 >50 >50 >50 >50
Rankingtest24 1 46 1 2 5
Rankingtest25 4 >50 >50 >50 >50
Rankingtest26 2 >50 >50 >50 >50
Rankingtest27 >50 >50 >50 >50 >50

Continued on next page

47

APPENDIX D. TEST RESULTS

Test id Without model 1 hour 1 day 1 week 1 month
Rankingtest28 2 5 5 5 5
Rankingtest29 3 1 1 1 1
Rankingtest30 1 8 12 6 6
Rankingtest31 9 >50 >50 >50 >50
Rankingtest32 6 >50 >50 >50 >50
Rankingtest33 18 >50 >50 >50 >50
Rankingtest34 >50 >50 >50 >50 >50
Rankingtest35 4 >50 >50 >50 >50
Rankingtest36 5 5 8 14 24
Rankingtest37 >50 >50 >50 >50 >50
Rankingtest38 19 >50 >50 >50 >50
Rankingtest39 37 >50 >50 >50 >50
Rankingtest40 >50 >50 >50 >50 >50
Rankingtest41 1 1 1 1 1
Rankingtest42 17 1 1 1 1
Rankingtest43 4 2 2 1 1
Rankingtest44 1 1 1 1 1
Rankingtest45 4 2 2 1 1
Rankingtest46 2 15 14 11 10
Rankingtest47 3 2 2 2 2
Rankingtest48 >50 >50 >50 >50 >50
Rankingtest49 2 3 3 2 3
Rankingtest50 5 1 1 1 1
M RRQ@50 0,230 0,352 0,368 0,349 0,363

48

Appendix E

Calculations

E.1 Statistical significance tests

.~ XD —Ho
sp/vV/mn

Withouth model vs. all test types (queryBoost = 2, dateWeight = 2)

no =0,
Xp =0.128,
sp = 0.439,
n = 200,
t=4.14

Without model vs. positive-match (queryBoost =2 and dateWeight = 2)

po =0,
X p =0.343,
sp = 0.417,
n = 80,
t=17.36

Without model vs. negative-match (queryBoost = 2 and dateWeight = 2)

mo =0,
X p = 0.206,
sp = 0.415,
n = 40,
t=3.14

49

E.1. STATISTICAL SIGNIFICANCE TESTS APPENDIX E. CALCULATIONS

Without model vs. positive-non-match (queryBoost = 2 and dateWeight = 2)

po =0,
Xp =0.075,
sp = 0.081,
n = 40,
t = 5.87

1 day vs. 1 week (queryBoost = 2 and dateWeight = 2)

Ho =0,
X p = 0.020,
sp = 0,216,
n = 50,
t=0,65

20

	Introduction
	Problem
	Method
	Delimitations

	Theory
	Context-based search
	Information retrieval
	Vector space model
	TF-IDF
	Boosting

	Calendar
	Calendar data fields

	Software
	Apache Solr
	Jellyfish

	Information retrieval evaluation
	Mean reciprocal rank
	Student's paired t-test

	Methodology
	Literature review
	Context-based search
	Information retrieval
	Calendar data
	Software architecture
	Information retrieval evaluation

	Case study
	Technical environment setup
	Model concept
	Implementation

	Testing
	Use cases
	Statistical testing

	Design
	Model concept
	Structure
	Calendar data schema
	Relevance parameters

	Extracting calendar data
	Words processing
	Finding relevant events
	Query boosting
	Query limitations
	Date boosting

	Combining two queries
	Calendar data quality

	Software architecture
	Separate indexes
	Two instances of Jellyfish
	Pipeline steps
	Calendar data indexer

	Test results
	Use Cases
	Iteration results
	Search with vs. without model

	Discussion
	Test results reflections
	Use cases and data source impact
	Boosting errors in the model
	Alternative approaches
	Context based on calendar data
	Implications for Software Engineering in general

	Conclusion
	Bibliography
	Use cases
	Events
	Code
	Calendar Search Modifier
	Date Boost Query Modifier
	Calendar Result Modifier

	Test results
	Calculations
	Statistical significance tests

