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ABSTRACT 

 

This master’s thesis describes the design and implementation of a software implemented 

fault injection tool, which can be used to perform robustness testing on application software 

components in embedded systems based on the AUTOSAR standard architecture. The 

thesis analyses the AUTOSAR standard in order to identify mechanisms, which can be used 

at run-time in order to inject faults. Three techniques are identified: the use of wrappers, the 

use of trace hooks and modification of the run-time environment. The wrapper technique 

was found to be most suitable and therefore implemented in a prototype fault injection tool. 

The fault injection tool is evaluated on two applications. The first application is a calculator 

application residing on a single electronic control unit, and the second application is a 

brake-by-wire system distributed over several electronic control units. The validation shows 

that the tool is successful in injecting faults into the interfaces of application software 

components, and that it can emulate hardware faults by causing the same reactions in the 

brake-by-wire system as an open circuit fault. Furthermore, it shows that it is possible to 

automate the wrapper generation by processing AUTOSAR XML configuration files and 

that an AUTOSAR complex device driver component can be efficiently utilised as an 

embedded fault injection controller in order to achieve performance, low intrusion and 

portability.  
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1. INTRODUCTION 

A trend in automotive systems is the increasing use of electrical and electronic (E/E) 

systems with increased integration and interaction. In 1980, electronics made up for less 

than 1% of the total cost of a vehicle. In 2010, electronics accounted for roughly 20%, and 

the cost is expected to rise up to 40% by 2015 [1]. 

Quality and Safety are two important values in the automotive industry [2], which are also 

applicable for automotive electronics including embedded software. The use of increasing 

amounts of electronics and software can have a negative effect on safety and quality, by 

producing higher overall failure rates, if the increased complexity is not handled properly. 

One of the reasons for the increasing amounts of electronics is to replace features and 

components that traditionally have been implemented by mechanics or hydraulics with 

electronics. This is made in order to reduce component cost, improve fuel consumption and 

increase controllability.  

As a response to the increasing complexity of automotive E/E systems, the major Original 

Equipment Manufacturers (OEMs) and suppliers within Europe have developed the 

AUTomotive Open System Architecture (AUTOSAR) standard [3], which includes a 

methodology for making application software independent of hardware for automotive 

applications [4]. 

The increasing amount of electronics has also increased the need for standardising 

requirements for functional safety. Functional safety is defined as “absence of unreasonable 

risk due to hazards caused by malfunctioning behaviour of E/E systems” [5], and is 

standardised for road vehicles in the ISO 26262 standard. The first version of ISO 26262 is 

explicitly limited to vehicles of a gross weight of up to 3.5 tonnes. It is anticipated that the 

exclusion of heavy vehicles will be removed in the second revision to be initiated around 

2015, with publication expected in 2018. 

ISO 26262 recommends using fault injection for testing and verification [5]. Fault injection 

is a testing technique used to validate the dependability of systems [6], [7], [8], [9]. During 

fault injections, faults are deliberately introduced in a controlled manner into a system in 

order to observe how the system responds when the error resulting from the fault 

propagates through the system [7]. The two common uses of fault injection are either to test 

and evaluate fault handling mechanisms, or to get a measure of the system’s dependability. 

Dependability is specifically important for computer systems where a failure in the system 

can cause people to die, cause severe injuries or result in a loss of large sums of money.  

 

No tools are available on the commercial market for doing fault injections into AUTOSAR 

systems. Lanigan and Fuhrman [10] discuss a technique that they used to inject faults into 

an AUTOSAR system running in a CANoe simulation environment. No other articles were 

found that look into ways to inject faults into AUTOSAR based systems. Furthermore, as 

the automotive industry is taking on the AUTOSAR standard and ISO 26262 recommends 

using fault injections, the need for fault injection tools with support for AUTOSAR based 

systems is increasing. 
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1.1. Research question 

The objective of this master’s thesis is to identify interception points in the AUTOSAR 

architecture, which could be suitable for injecting faults by using software implemented 

fault injection (SWIFI). The purpose is to create a tool capable of testing robustness of 

software components by the use of SWIFI. Software components are building blocks for 

applications in the AUTOSAR architecture and robustness is defined by IEEE as “the 

degree to which a system or component can function correctly in the presence of invalid 

inputs or stressful environmental conditions” [11].  

The objective has been broken down into the following research questions: 

 Can existing fault injection techniques be used or modified for injecting faults into 

AUTOSAR application components and/or basic software? 

 What are the suitable interfaces and mechanisms in the AUTOSAR architecture that 

can be used for fault triggering, fault injection and observation of a target system?  

In the automotive industry, software components are often delivered by suppliers and the 

source code may not be available. Hence, in this work we assume that software components 

are delivered as object code and therefore regarded as black boxes. The focus of the 

analysis is on the software layers surrounding the run-time environment in the AUTOSAR 

architecture, in order to find suitable fault injection locations. 

The result is validated by a proof-of-concept implementation of a prototype fault injection 

tool.  

1.2. Stakeholders 

This thesis is aligned with two major research projects performed at Advanced Technology 

and Research at Volvo Group Trucks Technology, which act as stakeholders for the thesis 

outcome. The primary stakeholder is the DEDICATE project, which focuses on techniques 

for improving fault management. Both in-vehicle solutions and external services are 

considered, to find new techniques in order to increase the commercial vehicles’ reliability. 

In the DEDICATE project the thesis outcome is intended to be used to test a hierarchal 

error management concept for the E/E-system of heavy duty trucks. The second stakeholder 

is the BeSafe project, which is investigating benchmarking of functional safety. The 

prototype tool should be extendable to be able to perform dependability benchmark 

measures on AUTOSAR basic software components in the future.  

1.3. Structure of this document 

This report is structured as follows: 

 Chapter 1 gives an introduction to the thesis, the research question and the thesis 

project stakeholders. 

 Chapter 2 describes how the master’s thesis has been carried out. 

 Chapter 3 gives a short introduction to the dependability terminology that the thesis 

uses.  

 Chapter 4 gives an overview of the AUTOSAR standardised architecture and the 

error model used by AUTOSAR.  

 Chapter 5 contains the result from the literature review and gives a background on 

different fault injection techniques.  
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 Chapter 6 contains the results from the analysis on which fault injection techniques 

are suitable to use in order to inject faults into AUTOSAR based systems. 

 Chapter 7 contains a description of the implemented SWIFI tool prototype. 

 Chapter 8 contains the evaluation of the implemented SWIFI tool prototype. 

 Chapter 9 summarises the current limitations of the SWIFI tool prototype  and 

discuss possible extensions and future work. 

 Chapter 10 contains the conclusions drawn from the thesis. 



Software implemented fault injection for AUTOSAR based systems  4 
 

2. RESEARCH METHOD 

The research method for this master’s thesis was derived from design science research 

papers. March & Smith [12] describe the main activities in design science to be to ‘build’ 

and ‘evaluate’, and compare the need of justification in natural science to primarily be the 

explanation to why an artefact works within its environment. The research method, as 

illustrated in Figure 1, was tailored from Peffers et al. [13] into five phases: problem 

analysis, literature review, architecture & design, implementation and evaluation. 

 

Litterature 

Review

Method 

selection

Architecture 

& Design

Implement 

prototype
Evaluation

Iterations

Problem 

analysis

 

Figure 1: The different phases and main decision point of the research method 

 

First, the problem was defined and analysed in collaboration with stakeholders and 

supervisors. A literature review was carried out in the form of a background study of fault 

injection, by studying books and research articles about the subject. The main emphasis was 

on identification of different techniques already used to perform software implemented 

fault injections. After that, relevant specifications on the AUTOSAR application layer and 

interfaces used by application layer software components were reviewed with the goal of 

finding suitable interception points for fault injection. In the literature review, searching for 

relevant literature was carried out in Chalmers Library Summon, IEEE Xplore, ACM 

Digital Library and Google Scholar as well as using references in articles already read 

(generally known as the snowball technique). 

Having identified interfaces which can be used for Software Implemented Fault Injection 

(SWIFI), we created a list of fault injection techniques that could be implemented in the 

AUTOSAR context. A prototype was designed and implemented that uses one of the 

identified fault injection techniques. Finally, the prototype was evaluated for meeting its 

purpose. The architecture & design, implementation and evaluation phases were iterated in 

order to elaborate the concept and the prototype.  

According to Cleven, Bubler & Hüner [14] the evaluation process has a number of 

variables for a design science research artefact evaluation. In this thesis, the main artefacts 

are tools for generation of fault injection mechanisms and for running injection 

experiments. The choices made when designing the evaluation study are shown (blue 

markings) in Table 1 below. 

 

 

 

 

 

 



Software implemented fault injection for AUTOSAR based systems  5 
 

 Table 1: Method configuration in accordance with [14] 

Variable 

Approach 

Artefact focus 

Artefact type 

Epistemology 

Function 

Method 

Object 

Ontology 

Perspective 

Position 

Reference point 

Time 
 

Value 

Qualitative Quantitative 

Technical Organisational Strategic 

Construct Model Method Instantiation Theory 

Positivism Interpretivism 

Knowledge Control Development Legitimisation 

Action 

research 
Case study 

Field 

experiment 
Formal proofs 

Controlled 

experiment 
Prototype Survey 

Artefact Artefact construction 

Realism Nominalism 

Economic Deployment Engineering Epistemological 

Externally Internally 

Artefact against 

research gap 

Artefact against real 

world 

Research gap against 

real world 

Ex ante Ex post 
 

 

The purpose of Table 1 is mainly to make this thesis comparable with other design science 

research projects. Some of the choices may be obvious, such as having a technical approach 

and an engineering perspective, since this is a thesis for a master’s degree in software 

engineering. The reasoning behind other choices may need some further description. 

We chose to do a qualitative study, as most of the evaluation criteria will not be numerical. 

Parts of the evaluation have numerical results though, such as the measurement of the time 

overhead of the chosen fault injection technique.  However, the main part of the evaluation 

was based on the authors’ understanding of the suitability of the evaluated fault injection 

technique, based on a number of defined criteria. We chose the knowledge function since it 

has been a part of our course and the primary objective is learning. 

As part of our collaboration with the company where the thesis was conducted, a prototype 

tool was requested, and the choices of artefact, instantiation, prototype, and artefact against 

the real world, were taken together with the supervisor at the company. 

It was classified as internal, as we did both the design and evaluation ourselves and ex post, 

since we designed the prototype first and then evaluated the implementation. 
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3. DEPENDABILITY TERMINOLOGY  

This chapter gives an introduction to the dependability terminology used in this thesis. We 

use definitions and terminology for dependability and its attributes given by Avižienis et al. 

[15]. The use of the term system may need some explanation before diving deeper into 

dependability. The word system is used quite extensively in this text in a broad sense, and 

can mean anything from a single software component to a vehicle containing several 

networks of computers with software. This is important in the pathology of failure 

described later on in this chapter, where the failure of one component in a system becomes 

the fault at the input of another component. 

A definition for dependability given by Avižienis et al. is the “ability of a system to avoid 

service failures that are more frequent and more severe than is acceptable” [15]. This means 

that a dependable system is a system where the user (either human or machine) can trust the 

services provided by the system. The dependability of a system is characterised by a set of 

attributes, and the most common attributes are:  

 Availability; readiness for service 

 Reliability; continuity of correct service 

 Safety; absence of catastrophic consequences on the user(s) and the environment 

 Integrity; absence of improper system alterations 

 Maintainability; ability to undergo modifications and repairs 

 Confidentiality; absence of unauthorised disclosure of information 

During the life-cycle of a system (see [16] for information of life-cycle models), from 

concept generation to decommissioning, events may occur that introduce faults into the 

system.  

An error is defined by Avižienis et al. as “a deviation of one or more states from its correct 

value(s)” [15]. A fault is “the cause, either adjudged or hypothesized, behind an error” [15]. 

If errors propagate so that an external state of the system deviates from its correct service 

state, it leads to a system service failure. A failure, also called a service failure, is defined as 

“an event that occurs when the delivered service deviates from correct service” [15]. The 

relationship between faults, errors and failures is called the “pathology of failure” and its 

causality chain can be described as being Figure 2, where the failure of one component is 

the fault of another part in the system. 

In the operation phase of the life-cycle, faults may prevent the system from delivering its 

intended service, if not dealt with properly. However, faults do not necessarily lead to 

system failure, first the faults need to be activated and result in an error in the software 

system. Faults in the system that are not (yet) activated are said to be dormant. An error is 

what happens when, for example, the system executes a software instruction containing a 

bug. Errors are usually what can be detected during testing and can be seen as symptoms of 

faults. An error in one part of the program can lead to errors in other parts of the program. 

This process is called error propagation (Figure 2). 

If an error propagates to the system boundary and becomes visible to the environment of 

the system, this is then called a failure of the system. If the system goes into a degraded 

mode as a reaction to a fault, it is not necessarily considered a failure, if that is the specified 

behaviour in that situation. 
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This leads to a pathology of failure, where a chain of threats with causality relationship acts 

recursively in a way that errors propagate through the system, which means that several 

faults must usually be present in order for the system to end up in a service failure.  

 

System/component

Failure Fault Error Failure Fault... ...

PropagationActivation

 

Figure 2: Fault-Error-Failure causality chain [15] 

 

There are methods to achieve and analyse the dependability of a system which are referred 

to as the “means of dependability”. The means are used at different stages in the life-cycle 

and are usually: Fault Prevention, Fault Tolerance, Fault Removal, and Fault Forecasting. 

Fault prevention activities are carried out in the development life-cycle with the aim of 

preventing the occurrence or introduction of faults. Fault tolerance is a capability built into 

the product or system to avoid service failures in the presence of faults. Fault removal 

reduces the number and severity of faults, e.g. by testing and correcting bugs.  Fault 

forecasting involves activities to estimate the present number, the future incidence, and the 

likely consequences of faults. 

 

According to Avižienis et al. the different means of dependability have slightly different 

aims. Fault prevention and fault tolerance have “the aim to provide the ability to deliver a 

service that can be trusted” [15], while fault removal and fault forecasting aim to “reach 

confidence in that ability by justifying that the functional and the dependability and security 

specifications are adequate and that the system is likely to meet them” [15]. 
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4. OVERVIEW OF AUTOSAR 

AUTOSAR (AUTomotive Open System ARchitecture) is an open industry standard for 

automotive Electrical/Electronic architectures [3]. 

4.1. The Virtual Function Bus  

One of the key concepts of AUTOSAR is the introduction of a Virtual Functional Bus 

(VFB). The VFB separates the application software from lower layers. The purpose of the 

VFB is to make software components (SW-C) independent of the underlying hardware and 

therefore make it possible to relocate software components to other electronic control units 

(ECUs) when configuring the system. This implies that a software component does not 

know, and does not need to know, whether the component it is trying to communicate with 

resides on the same ECU, or on another ECU on the network. 

 

Figure 3 provides an overview of the concept of the Virtual Function Bus. Software 

components are building blocks for applications. An application is built up by one or 

several interconnected software components. Software components are referred to as 

atomic, since a single software component cannot be distributed over several ECUs. Hence, 

an application can be distributed by having several interconnected atomic software 

components where the individual components are located on different electronic control 

units. In addition to application software components, AUTOSAR also specifies specific 

sensor and actuator software components. They are independent of the ECU, but will be 

dependent on the sensor or actuator hardware they are connected to. For performance issues 

the sensor and actuator components will in most cases be located on the same ECU as the 

hardware they are dependent on. 

 

 

 
Figure 3: Software Components interconnected via the Virtual Function Bus [3] 

 

 

 

Software components have required (input) and provided (output) ports that they use to 

communicate with each other [17]. All communication between application software 

components has to take place using ports according to the AUTOSAR standard [17]. 

Commonly used port type interfaces supported by the VFB are client-server ports and 

sender-receiver ports. In client-server communication, a server provider port on a SW-C 
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provides operations to one or more SW-C that have a corresponding client required port. 

The call is initiated by the client. In sender-receiver communication, the sender initiates the 

operation and can provide information to several other components. A required receiver 

port can also be configured to get information from several provided ports. 

 

Figure 4 shows an ECU view of an AUTOSAR system. The implementation of the virtual 

function bus is called the Run-Time Environment (RTE), which is the layer in the 

AUTOSAR layered architecture that separates the application layer, from the basic 

software. The basic software itself also consists of different layers. From the bottom there is 

a Microcontroller Abstraction Layer (MCAL) which implements specific drivers for the 

microcontroller and its internal peripherals. Above the MCAL is an ECU abstraction layer 

which encapsulates the specifics of the ECU with a standardised interface. A services layer 

offers real-time operating system (RTOS) functionality and services for memory, 

diagnostics and mode management.  The service layer is also the layer that is responsible 

for the routing of communication signals to other electronic control units. There can also be 

Complex Device Drivers (CDDs) to handle things not standardised by AUTOSAR, such as 

legacy software. Complex device drivers can communicate directly with the basic software 

[17]. 

 

 

Figure 4: Overview of software layers in AUTOSAR [18] 

 

4.2. RTE Generation 

The AUTOSAR specification defines a meta-model using the unified modelling language 

that is used to describe the platform [19]. A model describing an AUTOSAR system can be 

mapped to and stored in an XML file, whose schema is defined by the AUTOSAR standard 

[19]. The AUTOSAR standard specifies that the data can be stored as a single XML file or 

broken down into several smaller files [19]. The standard also defines how a section in one 

XML file can reference a different section in another file and how the documents should be 

merged together when parsed. Different tools used to configure each ECU or generate 

source code files (such as the RTE) will then read and write the XML files. 

The RTE is according to the AUTOSAR specification generated in two phases [20]. In the 

first phase, the so called contract phase, header files for software components are generated 

from an ECU XML configuration file and the components’ XML internal description files. 

The RTE generator creates the API needed to send and receive data between different 

components. In the second generation phase, the remaining RTE source code files are 

generated.  
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The naming conventions for the generated functions are standardised by the AUTOSAR 

standard [20]. Depending on the type of call, the name will consist of the type of call being 

made, port name, data type and the component’s name. 

The RTE is also responsible for running the so called “runnables” [20], which are functions 

implemented in the software components. A runnable can be scheduled to be run 

periodically or when a specific event occurs in the system. 

4.3. Error Handling in AUTOSAR 

Error handling in AUTOSAR is described in several dimensions. There are some errors that 

are handled directly by the AUTOSAR basic software, e.g. errors on the communication 

link. There are other errors that are described on a conceptual level in order to advise the 

application developer on how common error handling strategies can be implemented in a 

software component and be supported by the mechanisms of the AUTOSAR framework. 

An example of this is voting mechanisms, which need to be implemented by software 

components by the application developer. 

On a detailed level, as described in the “Description of the AUTOSAR standard errors” 

[21], the error handling support that is built into the basic software in a standardised way, is 

limited to errors on the CAN network and different types of non-volatile memory faults. 

This error handling follows a process for fault detection, fault isolation, and fault recovery. 

This is often referred to as the FDIR process. The errors detected in the application or the 

basic software are reported to a Diagnostic Event Manager. For recovery the software 

components can be notified of detected errors in order to initiate their own recovery 

procedure and there is also a defined healing cycle for the basic software. The standard lists 

explicitly failure modes that shall be supported and the detection, reaction, report and 

recovery mechanisms that are expected if applicable. 

The application error management [22] defines an error model, which includes the errors 

described in Table 2. It is called an error model instead of fault model, due to the constraint 

that only software mechanisms are considered and hence it is errors that are detected. The 

error model focuses on errors resulting from random external faults. Both transient and 

permanent faults are considered. The error handling considers mainly operational faults, 

even though design faults that slip through verification and manifest themselves as 

operational faults are also handled to some extent. 

 

Table 2: AUTOSAR Error Types on application level, excerpt from [22] 

Error Type Description 

Data A data error is characterised by an erroneous value of a parameter, variable 

or message.  The source of the error can be either internal (e.g., SW defect) 

or external (e.g., malfunctioning sensor, other faulty SW-Component). 

Handling of data errors can break a causality chain that would lead to 

subsequent errors that are more complicated to handle, such as program flow 

or access violations.  

Program 

Flow 

Program flow errors (also “control flow errors”) manifest as actual program 

flows differently than expected, possibly leading to missed, wrong or 

superfluous operations being carried out. The source of the program flow 

error can be both internal (SW defects) and external (data errors). 
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Access For increased separation between executing components the system designer 

can partition the SW and restrict access to resources from the partition, e.g., 

memory access.  When a component tries to access a resource in another 

partition without the proper access rights an access violation occurs. Access 

errors can be the result of a data or program flow error, e.g., an invalid 

program counter or pointer. 

Timing A communication (message, function invocation, etc.) is time critical when 

the delivery time has an effect on the correctness/usefulness of the 

communication. A timing error can be a message being delivered early, late 

or missing completely (omission). 

The last type of timing error, omission, is of special interest and is 

sometimes referred to as crash or fail-silent behaviour (note that it may be 

impossible to distinguish between crash, which is an uncontrolled state, and 

fail-silence, which is a controlled state). Timing errors also refer to execution 

time, where strict deadlines can be defined on how long a component is 

allowed access to the CPU. 

Asymmetric When errors propagate from one SW-Component to another using some 

means of communication one differentiates between symmetric and 

asymmetric errors. In the symmetric case all receivers receive the same 

(erroneous) value. When the component can fail by sending different values 

(all of which may be valid) the error is said to be asymmetric.  

This error model is sometimes also referred to as the Byzantine model, 

which implies that no assumptions whatsoever are made on the behaviour of 

a malfunctioning component. Byzantine errors can only be detected by use 

of redundant components exchanging values to reach a common result.  

 

 

AUTOSAR based systems are the target environment studied in this thesis and the error 

types defined by AUTOSAR is used as reference when selecting a fault injection technique. 
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5. OVERVIEW OF SWIFI 

This chapter gives an overview of Software Implemented Fault Injection (SWIFI) 

techniques and aims to give a picture of the state-of-the-art within the field. 

5.1. Introduction to Fault Injection 

Fault injection is a widely researched technique, both Yangyang & Johnson [7] and Voas & 

McGraw [23] claim that the first published work about fault injection should be credited to 

Harlam Mill’s work at IBM on statistical validation of computer programs done in 1972. 

According to Voas & McGraw, fault injection can be viewed as a testing technique, 

although not in a traditional sense. So, in a way, while testing focuses on finding defects 

that are already there according to a specification of the correct behaviour, fault injection 

focuses on how the system will behave in a scenario with errors, sometimes under different, 

currently unknown circumstances [23]. 

 

However, given the initial differentiation between testing and fault injection, the main 

objectives of fault injection is usually either fault removal or fault forecasting [7], [6], [24] 

[9], [8]. Fault removal aims at observing how a particular fault tolerant design behaves 

under errors propagating from the injected fault. In this sense, fault injection is used as a 

testing technique in order to verify if the system meets its specifications and to identify 

issues. The designer of the experiment needs to have detailed knowledge about the system 

[7]. The results can then be used to improve the existing design [8]. Fault forecasting, on 

the other hand, is used to estimate the dependability of a particular component by 

introducing various faults that the component should tolerate in order to establish a measure 

of the component’s dependability [7] and [8]. In this sense, it is a way to rate the efficiency 

of the operational behaviour of the dependable system, which aims to quantify the 

confidence that can be attributed to a system by estimating the number and the 

consequences of possible faults in the system.  Fault forecasting can be either qualitative or 

quantitative [7]; qualitative fault forecasting involves the activities of identifying, 

classifying and ordering of failure modes, or to identify the event combinations that may 

lead to undesired events. Quantitative fault forecasting is about evaluating in probabilistic 

terms some of the measures of dependability [7]. The two major approaches for doing 

quantitative fault forecasting are modelling and testing [23]. 

 

According to Yangyang & Johnson [7], fault injections can be classified by whether they 

are implemented as hardware, software, simulation or hybrid fault injections. Hardware 

fault injection techniques introduce faults through the physical hardware, for example using 

heavy ion rays to modify the memory of the system under target [6]. Simulation based 

methods focus on doing a fault injection on a simulation of the system [7]. It has the 

advantage of being able to test how a design behaves under specific faults early on in the 

development life-cycle, before the system is implemented [6]. The system model might, 

however, not properly capture all system properties [7]. In a hybrid approach a combination 

of hardware and software is used to introduce a fault into the system [7]. The remaining 

part of this chapter focuses on software implemented fault injections (SWIFI).  

 

SWIFI techniques use software to inject faults into the system. SWIFI techniques are 

attractive as they can access states in the system that might not be accessible with other 

hardware based testing techniques, no special hardware is needed, experiments can often be 
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run in almost real-time, and as the experiments are often being run on the same hardware 

that will be used in production it will take into account any design problems that might be 

in either the software or hardware [7]. 

5.2. Fault Injection Framework 

Hsueh et al. [6] describe the typical fault injection environment as consisting of a controller, 

a fault injector, a workload generator, a monitor, a data collector and a data analyser (see 

Figure 5). The target is the system into which faults will be injected. It can be a stand-alone 

component, a fully implemented system or a simulation of a system during pre-design. The 

injection framework might be distributed and include parts on the actual target system.  

 

 

 
Figure 5: Basic components of a fault injection system according to [6] 

 

The controller is responsible for setting up and controlling an experiment. An experiment is 

the setup of which fault to inject into the system, including mechanisms to identify when 

and where to do the injection. Several experiments can be run in a batch, called a campaign.  

 

The fault injector injects fault(s) into the target system. Often the fault injector is split into 

separate trigger and injection modules (e.g., NFTAPE [24]). After a certain state or event 

occurs within the targeted system (e.g., a certain memory location is read by the CPU), the 

trigger instructs the injector to inject the fault. The workload generator creates a workload 

on the system, which is intended to simulate the load that the system will experience during 

operation. The monitor and data collector observe and record different events and states on 

the target during the fault injection experiment [6]. 

 

Before carrying out experiments where faults are injected into the system a so called golden 

run is usually made, where no faults are introduced into the system [7]. This information 

can then be used to decide where and when to introduce the faults and it can also be used as 

a comparison to runs where fault injections are done. The data analyser is used to determine 

the outcome of the experiment. According to Yangyang & Johnson [7] there are three 

possible outcomes:  

1. The fault is covered. This means that the fault is activated, but the error is correctly 

handled by the system’s fault handling mechanism. 

2. The fault is not covered. The fault is activated, but the error is not correctly handled 

by the system. 
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3. The fault does not lead to a failure in the system. The fault was not activated or the 

error was masked by the system (e.g. was overwritten by a correct value) before it 

caused a failure.  

5.3. Fault Injection Techniques 

Software implemented fault injections can be classified in different ways. Hsueh et al. [6] 

classifies fault injections depending on whether they are done at (or before) compile-time or 

during run-time. Compile-time techniques modify source code or assembly code whereas 

run-time techniques inject the fault during run-time after some fault triggering event occurs. 

Compile-time techniques are usually used for emulating permanent faults, whereas run-time 

fault injections are usually used to emulate temporary or transient hardware faults [6]. 

 

Another classification made by Stott [24] classifies software implemented fault injection 

techniques depending on the type of technique used to introduce the fault. The different 

techniques mentioned by Stott are debugger based, driver based, performance based and 

target specific fault injections. All these techniques inject faults at run-time and are further 

described in Section 5.3.2. 

5.3.1. Fault Injection Triggers 

The fault injection trigger identifies when to inject a fault (depending on time, state or 

event) and activates the fault injection mechanism. Several different triggering methods can 

be used to execute a fault injection mechanism during run-time.  

 

Exception based triggers use hardware interrupts to instruct fault injection handlers to inject 

a fault [6]. One way is to use the debugging features of the CPU to cause an interrupt when 

a specific event occurs, such as when a specific memory location is read. The Xception 

fault injection tool can, for example, use break-point registers to inject a fault when fetching 

an opcode, loading an operand, or storing an operand from a specific memory addresses 

into the CPU, inject the fault after a certain time has elapsed since start-up or a combination 

of all [25]. Some processors can also be configured to cause an interrupt when the system 

load gets too high [24].  

 

Trap instructions inserted into application source code can be used to cause an interrupt to 

occur when they are executed [6]. An interrupt handler will then inject the fault, as in the 

case of exception based hardware triggers. 

 

Time based triggers introduce a fault after a specific time-out. One time-out method is to 

generate an interrupt once a hardware or software timer expires, and a dedicated interrupt 

handler will then inject a selected fault into the system. The method has the benefit of being 

simple, but it is only suited for emulating transient or intermittent faults and the injection 

experiments might not be reproducible [6].  

 

Hsueh et al. also describes code insertion triggers that use instructions added to the 

application code before compile-time to call fault injectors directly, instead of using 

interrupts and handlers.  

 

Hexel [9] uses what he calls "hooks" (essentially triggers) to inject faults into time triggered 

real-time systems.  The hooks are inserted into the target system and when executed, do a 

call-back to the fault injector that introduces the fault. The experiments can be configured 

before or during run-time. Different hooks that are to be triggered during the experiment 

can be selected and configured. 
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The Bond fault injection tool, designed to inject faults into applications running on the 

Windows NT operating system, uses “interposition agents” to monitor the target application 

and trigger an injection when certain events occur [26]. The idea is to add a new layer 

between the target application and the operating system that wraps and intercept systems 

calls between the two. The benefits are that no modification to the target application is 

needed [26]. Different events, such as the n
th

 count of before or after a certain API call, or 

an access to a particular memory location can be used as the triggering event. 

5.3.2. Fault Injectors 

The injection involves the actual modification of code, signal or hardware element, such as 

the memory or a register in order to create a fault or error in the system. The notion of fault 

injection is used even though it is often errors that are actually injected. However, due to 

the pathology of faults described in Chapter 3, where a failure of one component becomes 

the fault of another and that the intention is to emulate the effects of faults, it is usually 

more general to refer to it as fault injections.  

5.3.2.1. Compile-time Fault Injection 

Compile-time fault injections (or code modification) are good for emulating permanent 

faults, such as software bugs or permanent hardware faults. One method described by 

Durães and Madeira [27] to emulate software bugs is to modify the executable binary by 

first converting it into assembly code and then use pattern matching to modify and insert 

new code depending on the type of fault that is to be introduced. 

 

Code modification at compile time can also be used to emulate permanent hardware faults 

by adding or replacing assembly instructions [28]. For example by overwriting register 

content in the middle of a program execution to emulate a register fault [28].  

5.3.2.2. Debugger-based Fault Injection 

Debugger based methods use debugging features to write into parts of memory [24]. The 

method is used to access arbitrary parts of the memory (heap, stack, code segment) and 

there is no need to modify the fault injection target or the operating system. The method has 

been used to inject faults into random or specific locations, for example to simulate ion 

radiation in space or to target specific parts of a system [24]. 

 

The injection handling routine can be written as a system interrupt handler that gets 

executed after an interrupt is triggered. The source of the interrupt can either originate from 

a software trap or from a hardware event. This was, for example, one of the methods used 

to inject faults into HARTS, a distributed real-time system [28]. The interrupt handling 

fault injection process was given the highest scheduling priority to quickly inject the fault 

and then give the control back to the application that executed the software trap. 

5.3.2.3. Target Specific Fault Injection 

Target specific fault injection is when extra source code is inserted into the application that 

then gets executed at some point during the fault injection run [24]. This method requires 

knowledge and access to the source code, but it is good for manipulating specific data 

structures where random memory modifications are not adequate [24]. 

 

Lanigan and Fuhrman [10] use a method which they claim is inspired by Hexel [9], to inject 

faults using hooks into an AUTOSAR application running in a CANoe simulation 

environment. In [10], no clear distinction is made between fault triggers and injectors, but 
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two types of hooks are defined that are inserted into several AUTOSAR API system calls to 

inject the faults or cause an erroneous behaviour: 

 

 Suppression hooks are used to abort specific AUTOSAR API calls and depending 

on the method called, return an error code to the caller. Note that this method does 

not directly inject a fault, but emulates an erroneous behaviour, as if a fault had been 

activated in another component by the call. 

 Manipulation hooks are used to manipulate specific data structures such as different 

signal messages communication fields. 

 
Communication protocols usually consist of several layers, where each layer is responsible 

for taking care of some aspect of the communication and deliver services to the layer above 

[29]. The DOCTOR fault injection tool uses a fault injection protocol layer to inject 

communication faults [28]. The fault injection layer can be placed anywhere in the protocol 

stack (including directly under the target application) and is completely transparent to other 

protocol layers. The layer receives commands from an external module. The fault injection 

layer can pass messages without modification. It can also target specific messages and 

discard them, delay them or modify specific fields within the intercepted message. 

5.3.2.4. Performance based Fault Injection 

Performance based fault injection is based on exhausting available resources on the system 

[24]. This could for example be to open multiple files or network sockets without closing 

them, creating a deadlock, or taking up excessive memory on the system. 

5.3.2.5. Driver based Fault Injection 

For some operating environments, such as Linux or Windows, consideration needs to be 

taken to the privileges of the current process or task. For instance, fault injection code that 

runs in user space on a Linux machine might not have the privileges needed to access or 

take up resources required to carry out the injection. There are solutions to this problem 

though, and one way around this restriction is to write the module as a device driver that 

will run in system mode and thus have more access rights [24]. An interface is made to the 

driver so that user space programs can trigger the injection.  

 

Even if the fault injection code runs in user space and therefore does not have direct access 

to the hardware, there might still be an indirect way to inject faults into locations that are 

not directly accessible. The Bond fault injection tool developed for use on the Microsoft NT 

operating system can, for example, inject faults into what is called the thread context [26]. 

The thread context contains the processor’s state for a particular thread, including a copy of 

all registers [26]. A similar approach is used by Tsai and Jewett [30], where a copy of the 

registers saved in memory (e.g., saved while doing a method call) are corrupted and then 

the corrupted register copies are loaded back on the processor. Another way of overcoming 

hardware access limitations is to emulate the behaviour of the error instead of injecting the 

fault directly into the hardware [28]. Tsai and Jewett used a test portion of a SCSI driver to 

emulate disk I/O errors on Tandem machines [30]. The test interface made it possible to set 

a flag that would activate a specific error handler at the next driver request. 

5.3.2.6. Robustness Testing 

Robustness is defined in IEEE Std. 610.12.1990 as “the degree to which a system or 

component can function correctly in the presence of invalid inputs or stressful 

environmental conditions” [11]. Miller, Fredriksen & So [31] and Forrester & Miller [32] 

have described the Fuzz tool that can test specific operating system elements and interfaces 

by injecting random data. 
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The Ballista robustness testing method [33] tests combinations of valid and invalid input 

parameters. The test cases, often referred to as “dirty tests”, use parameters which are taken 

from a pool of normal and exceptional values based on the value type of each input 

parameter.  

5.3.3. Monitoring the Fault Injection Experiment 

In order to determine the outcome of the fault injection run (covered, uncovered or no 

impact from the fault), it is necessary to monitor the system, and collect and analyse how 

the target system behaved during the experiment. One option is to use monitoring facilities 

already in use by the system, if available. This could be events logged by the operating 

system, such as kernel messages and general error logs, or events monitored and logged by 

the application. The benefit is that monitoring is already integrated into the system. They 

might however not always give the granularity of details needed to properly analyse and 

determine the outcome of the experiment. 

 

Often the fault injection environment contains its own mechanisms to monitor the target. 

One method is to run the experiment in debug mode in order to get a full system trace 

containing a detailed history of all system calls, memory addresses read, and other state 

information [7]. This might however be impractical for real-time systems, as running the 

system in trace mode can introduce high overheads [24]. 

 

The same methods used for triggering a fault injection are sometimes used to monitor the 

target system. For example, the interposition agent used in the Bond fault injection tool is 

also used for monitoring the application. The agent can monitor debug events from the 

kernel, API calls and memory accesses [26]. 

 

The MAFALDA fault injector tool, developed for use on real-time microkernel based 

systems uses a set of interceptors to observe the target system [34]. Events intercepted 

include scheduler events, results from tasks, signals, termination and return code of system 

calls.  

5.3.4. Avoiding Intrusiveness 

Intrusiveness refers to how much undesirable effects the fault injection has on the target 

system [35]. An example of intrusiveness is when excessive memory is used as parts of the 

fault injection environment resides and executes on the target system. 

 

Systems used in the automotive industry often have hard real-time constraints, so it is 

important that no timing constraints on the target system get violated by the fault injection 

mechanisms. A method used by the MAFALDA tool, while injecting faults into a real-time 

interrupt driven system, is to disconnect all interrupts (both internal and external devices) 

[34].  As the notion of time on such systems is built from internal interrupts, it has the 

effect of “freezing the progression of time” [34]. Once the fault injection tool has finished 

executing, the interrupts are allowed to resume. 

  

Another method used by Hexel [9] on a time-triggered real-time system is to try to 

minimise the fault injection interference, using a combination of different strategies. Parts 

of the fault injection environment are situated on the target system for better performance. 

The fault injection is configured before or during system run-time so that the only parts that 

are executed during an experiment are the hook (trigger) and the fault injector. The fault 

injector is implemented as a call-back from the hook. Finally, the hooks are placed and 

designed in such a way that the external timing of the target system remains unaffected.  
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Sometimes, the monitoring of the target system while conducting the fault injection can 

cause undesirable effects; for example, a fault injection free “golden run” of the system is 

sometimes done in trace mode to record all system activity, in order to find a suitable 

location to do fault injection [7]. Running the system in trace mode will, however, greatly 

reduce system performance as discussed by Stott et al. [24]. One compromise could be to 

do a number of experiments where the faults are randomly injected into some memory 

address range and the experiments where no faults are activated are discarded [8]. 

5.4. Evaluating Different Fault Injection Techniques 

According to Arlat et al. [35], if two different techniques produce the same sets of 

behaviours, then the methods can be considered to be equivalent and other properties 

should be taken into consideration when selecting between them. Methods that produce 

different behaviours are considered to be complementary. Arlat et al. provides a (non-

exhaustive) list of properties that might be taken into consideration when selecting between 

equivalent methods: 

 

 Reachability is defined as the ability to reach possible fault locations on the target 

system. One method might, for example, only reach parts of the memory, while 

another method might reach both the memory and parts of the processor. 

 Controllability is defined both with regards to time and space. The space dimension 

regards how much control the method has over injecting faults into specific 

reachable locations on the target. One method could for example only corrupt 

random parts of a memory region while another method might be able to specify 

exactly what parts of memory to corrupt. The time dimension regards controlling 

the instance of when the fault is injected. 

 Repeatability refers to being able to repeat an experiment exactly or at least very 

similarly as before. Using, for example, a time-out to trigger a fault injection on a 

non-deterministic operating system might have less repeatability than triggering a 

fault injection when a certain system call is made by the target application. Events 

on the target system might occur in a different order between two test runs and some 

events might not even occur in one of the runs. 

 Reproducibility means that when an experiment is run more than once, the same or 

very similar results are obtained. 

 Intrusiveness refers to how much undesirable effect the fault injection has on the 

target system. Further discussion of this property can be found in Section 5.3.4. 

 Time measurements relate to obtaining detailed timing information for different 

monitored events, while the experiment is being run. 

 Efficacy refers to the technique’s ability to produce significant results from the fault 

injection experiment. That means that the fault injection produces an observable 

behaviour that is either covered or not by the target system. 

 

These properties can be used to evaluate different fault injection techniques and are 

used in Chapter 8 to evaluate the implemented fault injection tool. 
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6. SWIFI FOR AUTOSAR 

We analysed the AUTOSAR specifications with the goal of finding ways to intercept and 

inject faults into calls between application software components (SW-C) and the Run-Time 

Environment (RTE). The objective is to test robustness of applications consisting of one or 

more SW-C. Most of the focus was on the RTE specification [20] and parts of other 

AUTOSAR standards. Additionally, we reviewed the automatically generated RTE source 

code from one vendor.  

The remaining parts of this chapter will describe techniques applicable to AUTOSAR and 

specifics required to target function calls consistently. Finally, we discuss which technique 

was chosen to be implemented in the prototype tool. 

6.1. Intercepting RTE Calls 

Compile time techniques where the software component binary or source code is modified 

could be used to emulate permanent faults in the component. The drawback of this 

technique is that a time consuming build will have to be made between each fault injection 

experiment.   

Using debugger or hardware based fault injection could be done with low intrusion on the 

target system. It is an interesting technique but it was estimated that implementation could 

not be done within the parameters of a master’s thesis and therefore it was ruled out. 

Techniques where additional code or a new layer is added to the target system seem most 

applicable for capturing calls between the SW-C and the RTE. The concept of adding a new 

layer in order to do a fault injection has been used both in the Bond and the DOCTOR fault 

injection tools. The MAFALDA tool uses “interceptors” to capture calls to and from the 

target which is the same or a similar concept. The AUTOSAR architecture uses a layered 

structure with well-defined interfaces between the layers. It should therefore be possible to 

add a new layer into the architecture in order to read and write into data that is passed 

between the layers. 

In the automotive industry, SW-Cs might be delivered as object code from a vendor. 

Adding extra source code into the SW-C might therefore not be possible. However, all data 

going to and from a SW-C must pass through the RTE and the RTE layer needs to be 

custom generated by an RTE generation tool for each ECU. The entire RTE is therefore 

available as source code before the complete system gets compiled, linked and downloaded 

to an ECU. Extra source code instructions can therefore be added to the RTE with the 

purpose of monitoring, triggering or injecting a fault into the system.  

We found three main approaches for intercepting calls between the RTE and software 

components: 

 One approach is to create a new layer, a wrapper, which is situated between a 

software component and the RTE.  

 Another approach is to use trace hooks, which are already in place and specified as 

part of the AUTOSAR standard specification [20].  

 As a third approach, the RTE can be modified using code-insertion before 

compilation to include fault triggering, injection and monitoring capabilities. 
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6.1.1. Application of Wrappers  

A wrapper is an additional layer that is situated between a component or a part of a 

component (e.g. a function) and its environment. The same or a similar concept is used in 

the Bond [26], MAFALDA [34] and the DOCTOR [28] fault injection tools as discussed in 

Chapter 5.  

Adding a wrapper around software components has the benefits that both the function 

parameters and return data can be modified for all calls made between the software 

components and the RTE. A wrapper can also force API calls to return immediately with an 

arbitrary value and thus emulate an erroneous behaviour. 

Fault injection layers for basic software components residing beneath the RTE layer can be 

manually created as their interfaces are standardised. Wrappers for application software 

components will however have to be created individually for each component, as they have 

a unique interface to and from the RTE. 

Since all selected interface data would pass through a wrapper, they are suitable for use in 

triggering, injecting as well as monitoring purposes. 

Before an application component or parts of it can be wrapped, its interface will have to be 

extracted. Three possible approaches were identified for finding interfaces on a SW-C, in 

order to generate an application software component wrapper: 

 Manually inspect and add code to wrap a software component. This technique is 

good for testing the concept and developing the method, as a prototype can be built 

fast. This approach does, however, not scale well due to the work involved in 

adding the wrapper code manually. 

 Automating the generation of SW-C wrappers using available RTE header files. The 

component’s header file(s) can be parsed to find both API prototypes used by the 

component and its runnables that are run by the RTE layer. The AUTOSAR 

standard defines exactly how different RTE function calls should be named and the 

API names should, therefore, be vendor independent. Some information can be 

extracted from the standardised function names as it includes the type of call being 

made, the SW-C name, the port name, and data types. 

 Automate the wrapper generation using standard AUTOSAR XML configuration 

files. As all the needed interface information, such as SW-C port names, data types 

and port operation types is stored in the XML, it can be used to generate a wrapper. 

6.1.2. Application of Trace Hooks 

Another way to inject faults into AUTOSAR SWC’s is to use trace hooks. Trace hooks can 

be inserted into all communication ports defined in the RTE and at various other locations 

in the RTE and the basic software. A trace hook needs to be enabled before it can be used. 

Trace hooks are called in the code that defines SW-C ports as shown in the code snippet in 

Figure 6. However, the definition of the trace hook function should be user implemented 

according to the standard and is thus suitable for triggering, monitoring, and in some cases 

injecting faults. 

For each explicit API call to and from the RTE layer, a trace hook is placed at the 

beginning of the call and then another hook is placed at the end of the call [20]. The hooks 

will take the same parameter as the API call, but the parameters are not always passed as 

reference, which makes it harder to use them for fault injections. However, for calls made 

for external ECU communication, a pointer to the signal data (and in some cases the 

signal’s length) is passed to the trace hook function, and the signal can thus be modified 

inside the trace hook. 
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As hooks get called inside an RTE API function, they cannot be used to directly force a 

return or modify the API return value.  

 

 

 

 

 

 

 

 

 

6.1.3. Application of RTE Modification 

It would be possible to modify the generated RTE source code before compilation to 

include fault injection mechanisms. Lanigan and Fuhrman [10] used code modification and 

placed fault injection call-back hooks into an AUTOSAR based system running in a 

CANoe simulation environment. However, no emphasis was made in [10] on how to 

automate the process of adding fault injection instructions into the target system source 

code. The purpose of this study is to build a tool, and it is therefore important to automate 

the process. One way to automate the code insertions would be to use the fact that the 

standard defines exactly the trace-hook symbol name placed at the beginning and end of 

each RTE API call (one hook for start and one hook for end), to insert extra source code as 

shown in the code snippet in Figure 7. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Std_ReturnType Rte_Write_Component_Port_Element(SInt32 data) 
{ 
   Std_ReturnType ret = OK; 
   WriteHook_Component_Port_Element_Start(data); 
   ComHook_Signal(&data); 
   ret |= Com_SendSignal(&data); 
   WriteHook_Component_Port_Element_Return(data); 
   return ret; 
} 
 

# define WriteHook_Component_Port_Element_Start(data) \ 
WriteHook_Component_Port_Element_Start(data);         \ 
if(inject_fault_now == 1)                             \ 
{                                                     \ 
    data = fault_value;                               \                                                                           
}                                                      

 

Figure 6: Example of an implementation of a SW-C port send operation in the 

RTE layer, including Trace hooks 

Figure 7: Example of a macro that can be used to target trace hooks in order to 

add fault injection instructions 
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If the macro in Figure 7 is placed in any header file included by the Rte.c source file, then 

the compiler pre-processor will modify the example from Figure 6 to the one shown in 

Figure 8. 

 

 

 

 

 

 

 

 

 

 

 

6.2. Compatibility Mode Prerequisite 

The generation of the RTE software layer is according to the AUTOSAR standard 

performed in two steps [20]. In the first step, the so called “contract phase”, the RTE 

generator creates an application header file for each individual software component. In the 

second RTE generation step, the generator creates the rest of the RTE source code. 

If the RTE generator has access to the application component source code it can optimise 

the code by using macros instead of function calls for inter-component communication in 

the cases where components are located on the same ECU. The first problem with this, 

from a fault injection perspective, is that the optimisation is vendor specific and thus not 

standardised. This will make auto-generation of fault injection mechanisms tailored to the 

RTE more difficult and vendor specific. The second problem is that targeting function calls 

is easier than targeting code that has been in-lined using macros because the functions can 

be wrapped and they will contain trace-hooks that can be used for fault injection purposes. 

If the configuration uses application components that have been compiled into object code 

(or thinks that it will be using object code), then no optimisation can be done and the 

generator will run in “compatibility mode”, so that all RTE API calls will be implemented 

as functions, and not in-lined by using macros. 

The downside of using “compatibility mode” is that the application will have an extra 

overhead by doing additional function calls, in addition to whatever overheads the fault 

injection mechanisms will introduce to the target. 

6.3. Technique Selection 

Wrappers were chosen to be implemented and evaluated based on a discussion of the 

findings with experts on the subject. Wrappers were chosen because they have been 

successfully used to do fault injections in other environments (e.g. Bond, MAFALDA, 

DOCTOR tools) and they have the benefits that both the function’s parameters and return 

data can be modified for all calls made between the software components and the RTE. A 

wrapper can also force API calls to return immediately with an arbitrary value and thus 

emulate an erroneous behaviour. The first priority is to wrap application software 

components since their interfaces are configurable and therefore more complex to generate 

Std_ReturnType Rte_Write_Component_Port_Element(SInt32 data) 
{ 
   Std_ReturnType ret = OK; 
   WriteHook_Component_Port_Element_Start(data); 
   if(inject_fault_now == 1)                              
   {                                                      
    data = fault_value;                                                                                                      
   }   
   ComHook_Signal(&data); 
   ret |= Com_SendSignal(&data); 
   WriteHook_Component_Port_Element_Return(data); 
   return ret; 
} 

 

Figure 8: Implementation of a SW-C port with fault injection instructions added 

with the macro in Figure 7   
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wrappers for. The technique selected is considered portable to basic software components 

as well, but wrapping basic software components was scoped out to do in addition to 

wrapping SW-C. 

Trace hooks are an interesting finding and in a way they are natural inception points already 

present in the AUTOSAR standard, but they are scoped out to implement in addition to 

wrappers due to resource constraints in the master’s thesis project. RTE modification using 

macros was also considered, but the technique was also ruled out for the same reasons.  

We have also chosen to call the fault injection mechanisms directly inside the wrappers, 

instead of using trap instructions that would indirectly cause an interrupt handler to inject 

the fault. The reason is that an interrupt will cause a context switch to occur which might 

add some additional overhead, over calling the fault injection mechanisms directly. 
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7. PROTOTYPE TOOL 

The fault injection tool prototype is described in this chapter. The purpose of the tool is to 

facilitate robustness testing of application software components. The tool generates 

wrappers, as discussed in Section 6.1.1 and 6.3, which intercept all calls between the 

component under test and the Run-Time Environment (RTE).  

 

The prototype is developed to run on the Windows XP platform and uses the Microsoft 

.NET framework version 4. It consists of several components which can be divided into 

two major parts: the configurator and the campaign runner. This is illustrated on the left 

hand side of Figure 9. The configurator and code generator provide the user with a 

graphical user interface to configure an experiment with regards to setting triggers, 

connecting faults to triggers and configuring monitors prior to performing an experiment or 

campaign. 

The campaign runner controls the fault injection experiment and consists of a PC based 

application for running campaigns and experiments and also a controller located on the 

target in order to get the best possible real-time performance. During a campaign the 

campaign runner communicates with the embedded controller via a dedicated CAN 

channel. 

Target SystemPC

Campaign Runner
Configurator and 

code generator

CAN channel

Basic Software

Run-Time Environment

SW-C SW-C SW-C

On target 

fault injection 

controller

 
Figure 9: Fault injection tool overview 

 

7.1. Fault Injection Support 

The purpose of the tool is to support the error model used by AUTOSAR as described in 

Section 4.3. In the scope of this thesis, support for injection of data errors has been 

implemented. The main reason for focusing on data errors is that robustness testing is 

testing components with invalid inputs which imply the injection of data errors. The 

concept is not limited to data errors though, so the tool can be extended with support for 

other error types in the future.  

 

Calls made between an application software component and the RTE were targeted. The 

purpose of this is to test error handling mechanisms in the software component (or a 

composition of software components) and to observe how the software component behaves 

upon erroneous inputs. In the calls made between the component and the RTE, the fault 

injection tool can access and modify function parameters and return values. The fault 
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injector has configurable values to overwrite a parameter or a return value upon injection. It 

can also force a function call to return immediately, with a return value selected by the fault 

injection experiment designer. When forcing a return, it can be configured whether the 

actual call shall be executed or not. In some cases the experiment designer wants to test 

what happens if the call is dropped without notifying the caller, and in some cases the call is 

cancelled with a user specified return status code.  

 

An error can be injected once (emulation of a transient fault) or every time the targeted 

function is called (emulation of a permanent fault). The concept can easily be extended to 

include more logic to simulate intermittent faults or randomised fault injection. 

7.2. Trigger Support 

Triggers are used in the fault injection experiment to determine when to inject a fault. 

Triggers are described generally in Section 5.3.1. In the tool a trigger must first be selected 

in the configurator in order to generate code for the triggers in the wrapper. The following 

types of triggers are implemented in the prototype: 

 Trigger when an RTE API function or runnable for a component has been called a 

configurable number of times. 

 Trigger when a parameter or a return value in an RTE API function is higher than, 

lower than, or equal to a configurable user value. 

Triggers selected for an experiment must be enabled before the experiment is started. Each 

enabled trigger will also have to have one or more faults connected to it that will be 

activated after an event in the system activates the trigger. Any trigger can be used to 

activate any fault configured in the system, regardless of where they are located. 

7.3. Monitor Support 

The prototype tool supports different data and events to be monitored, including all 

interface parameters to software components. Monitors can be configured in the 

configurator but need to be enabled prior to running an experiment. In this way parameters 

of RTE API function calls can be monitored, i.e. required and provided interfaces of 

software components can be monitored synchronised with the fault injection. The monitor 

data is passed over the CAN channel to the campaign runner where it is logged. 

The fault injection controller also supports the CAN Calibration Protocol (CCP) [36] which 

means that a logger can be setup to monitor any address in memory. However, CCP support 

is currently not built into the campaign runner. 

7.4. Using an Embedded Controller 

One part of the fault injection controller is located on the target in order to get better 

accuracy for triggers, injectors and monitors with regard to real-time requirements. Having 

a fault injection controller residing on an embedded real-time system has been used before 

by for example Hexel [9]. In our tool, the embedded controller is implemented as an 

AUTOSAR complex device driver [3] in order to have access to hardware resources on the 

target, cause minimal intrusion on the software architecture for the system under test, and 

also for it to be easily portable to other test targets. We consider it to cause low intrusion 

from a design perspective as the tool is implemented using its own CAN channel for 

communication with the fault injection tool. This means that the signal mapping for the 

original software in the ECU does not have to be changed and all that is needed is an 

invocation of the complex device driver. It requires that a CAN channel is free on the 
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microprocessor and that it is connected and accessible on the circuit board. Figure 10 

describes the internal structure of the on-target fault injection controller and how it is 

located in the AUTOSAR system. 

 

SW-C

(application)

SW-C

(sensor)

SW-C

(actuator)

Run-Time Environment

Basic Software

FI Complex Device Driver

CAN Driver

CCP Driver

Controller

 

Figure 10: In-target fault injection Controller, implemented as an AUTOSAR Complex Device Driver 

 

The internal structure is built up by a layered structure in order to be easily portable to other 

microprocessor architectures. The configuration uses a proprietary extension of the ASAM 

MCD Can Calibration Protocol (CCP) [36]. The CCP is used since it already provides a 

standardised way to measure internal variables in an embedded system. The standard has 

been extended with commands to setup the fault injection controller to perform fault 

injection experiments. 

7.5. Process Overview 

Figure 11 shows a diagram of the complete process for configuring and running fault 

injection experiments. The rectangular boxes represent automated steps implemented in the 

fault injection tool and rounded shapes represent steps currently performed manually. The 

first step involves the code generator, done on a PC before the RTE is compiled, in which 

the experiment designer selects which functions and fault mechanisms (monitors, triggers 

and faults) should be supported. In the next step, after the target has been built with fault 

injection features selected in the code generator, a campaign consisting of one or more 

experiments is generated. During a campaign run, each experiment configuration is sent 

from the PC over a dedicated CAN channel to the target system, where the experiment is 

configured by a fault injection controller that resides on the target before the experiment is 

started. Finally, a message to start the experiment is sent to the fault injection controller and 

information configured to be collected during the experiment is sent by the controller over 

the CAN channel to the PC host. 
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Figure 11: Complete fault injection tool chain 

 

7.5.1. Code Generation Configuration 

Instead of wrapping all functions and providing support for monitoring all events, 

triggering conditions and supported fault types, the experiment designer can select what 

supported features should be built into the target system. This is to optionally make the 

intrusion footprint as small as possible. 

One extreme would be to select every feature supported and generate fault injection 

mechanisms for all components. The benefit would be that the experiment designer only 

has to build the target system once, as all supported fault injection mechanisms are already 

included. The downside is that selecting all supported fault injection mechanisms will have 

considerable overheads on the real-time system. 

The other extreme would be to select only what to target for each experiment (i.e. target one 

particular function parameter). This will have far less impact on the target, but instead a 

time consuming build will have to be made between each experiment. This trade off will 

have to be decided by the experiment designer depending on factors such as the systems 

real-time constraints and features being tested. 

Figure 12 shows the code generator’s graphical user interface (GUI). In the settings, the 

experiment designer can select an ECU to target by selecting the appropriate AUTOSAR 

XML configuration files and RTE headers. Once the relevant XML and header files have 

been parsed, the experiment designer can browse the ECU composition and select different 

types of monitors, triggers and faults to be generated. 

Once all required fault injection features have been selected, the wrapper source code for 

the selected features is automatically generated and will be built into the target when it is 

compiled. 
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Figure 12: Code Generator GUI 

 

7.5.2. Wrapper Generation 

The RTE is generated in two phases as discussed in Section 4.2. The wrapper for the 

selected application software component is generated after the second RTE generation 

phase and before the system is compiled. How the wrapper is inserted was designed using 

the AUTOSAR standards, so the concept should be vendor independent. The targeted 

software components can be delivered as compiled object code or source code. 

The source code includes-dependency diagram in Figure 13 shows how the generated 

wrapper source files connect to standard AUTOSAR RTE generated files and the targeted 

SW-C code files.  

 

 

Figure 13: Compile-time modification to insert a wrapper around a software component 

 

The RTE SW-C header file for each software component needs to be modified to include 

definitions for wrapper functions that encapsulate the original functions and some pre-

processing instructions. Additionally, a source code file is generated for each SW-C that 

was selected to have fault injection capabilities. The automatically generated source code 

implements a new wrapper function for each RTE API call or runnable that was selected 
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during configuration of the code generator. Each wrapper function can contain; monitor, 

trigger and fault injection capabilities before or after the function gets called. Figure 14 

shows how a wrapper is situated between a SW-C and the RTE. 

Run-Time Environment

Sw-C 
Sw-C

Task()

WriteA()

WriteB()

ReadC()

Runnable()

Task()

ReadA()

ReadB()

WriteC()

Runnable()

Sw-C wrapper

 

Figure 14: Introducing wrappers to intercept calls between software components and the RTE 

 

7.5.3. Running a Campaign 

The campaign runner tool was implemented using the DFEAT fault injection framework. 

The framework was developed by the DEDICATE project. The campaign runner uses a 

configuration file that contains sections for configuring monitors, triggers and faults used 

for each experiment in the campaign. 

Figure 15 shows a screenshot of the campaign runner GUI. For each experiment in the 

campaign, the campaign runner sends configuration messages to the fault injection 

controller that resides on the target. 

 

 

Figure 15: Campaign Runner GUI 

 

The configuration of the fault injection experiment requires that a specific sequence of 

configuration commands is performed (see Figure 16), in order to ensure consistency in the 

relationship between triggers and faults. Configuring the experiment prior to running it is 
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an architectural trade-off that was made in order to have less intrusion on the target. The 

wrapper is designed to have the fewest amount of statements possible in-line with the 

execution of the software component under test. Instead a little freedom is taken to setup 

data structures in a configuration state prior to running the experiment. 
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Figure 16: State-machine for the embedded fault injection controller 

 

An experiment always starts with a reset request sent from the campaign runner. This is to 

ensure that no residues from previous fault injections remain in the system and that the 

target system always has the correct initial state. The state of the fault injection controller is 

always ‘Uninitialised’ after target power-up, illustrated in Figure 16 with the double circles. 

The target controller requires a command to be put into configuration mode, where all 

configuration commands are accepted by the embedded controller. After finalising the 

configuration the experiment can be started and stopped. At any time the fault injection tool 

can send a command to reset the target, which will force the target into a soft reset and all 

configuration must be done once again. 

Monitors need to be configured in the configuration state but can then be enabled prior to 

starting an experiment, and as soon as a monitor is enabled its monitoring events are sent 

over the CAN bus to the campaign runner. Triggers and fault injections cannot be activated 

unless the experiment is started. Events are logged relative to the real-time clock on the 

target. The following log events are currently supported: 

 Fault injection event; logs the real-time clock counter value for when a fault was 

injected 

 Trigger event; logs the real-time clock counter value for when a trigger was 

activated 

 Monitor event; real-time clock and value for a specific monitor 

 Start experiment; the target time for receiving start experiment command 

 Stop experiment; the target time for receiving stop experiment command 

The purpose of storing events based on the target real-time clock is to be able to analyse 

events in the experiment using the same time base. 
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8. PROTOTYPE EVALUATION 

The prototype was evaluated by doing fault injections on two different AUTOSAR 

applications. Both target systems were developed by members of the DEDICATE project 

team.  

The first application is a calculator residing on a single ECU. The second application is a 

brake-by-wire (BBW) system residing on several ECUs, with fault handling capabilities. 

“By-wire” is an industry term for when traditional components such as brake, steering or 

throttle control, which has been implemented as mechanically or pneumatically controlled 

systems are replaced with electronics. In a brake-by-wire the driver intent is sent 

electronically from the brake pedal (sensor) to the brake actuator, possibly also via a control 

unit for algorithms for anti-lock braking and stability control. 

The following section describes the experimental setup and the fault injection campaigns 

run for the two systems. Then we describe the performance measurements performed in 

order to evaluate the overhead that the fault injection mechanisms has on the target. Finally, 

the prototype is evaluated against the criteria described in Section 5.4. 

8.1. Test Environment 

A test environment was setup with the goal of getting the best possible visibility on the 

entire flow of a fault injection experiment. The same setup, as illustrated in Figure 17, was 

used for both applications. The target system was monitored using an in-circuit debugger 

making it possible to stop the target system at breakpoints and view the content of variables 

and registers. CANoe from Vector was used for monitoring the communication between the 

campaign runner and the embedded fault injection controller on the dedicated CAN 

channel. CANoe was also used for setting the system into correct mode for the experiments 

and to unit test the embedded controller. The campaign runner was run in debug mode in 

Microsoft Visual Studio making it possible to set breakpoints and view the content of 

variables there as well. 
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Figure 17:  Overview of the test setup environment 
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8.2. Fault Injection Validation 

This section describes fault injection campaigns run for the calculator application and the 

brake-by-wire application. 

8.2.1. Calculator Application 

Figure 18 describes the calculator application used to evaluate the fault injection tool.  The 

calculator is a simple AUTOSAR application consisting of two software components, a 

calculator component and an adder component. The purpose of designing the calculator was 

to have a simple application with the complete behaviour easily understandable in order to 

facilitate seeing all effects the fault injection caused.  

The calculator implements the logic:         . 

A and b is sent to an adder function which returns the sum. The adder software component 

is then wrapped and faults are injected into a and b in order to validate the method of 

intercepting RTE API calls.  

As seen in Figure 18, the calculator has two provided ports using the sender-receiver 

communication pattern and one required sender-receiver port for getting the sum back. The 

calculator also implements a client-server pattern for the addition. Which communication 

pattern to use is controlled via the required port ‘mode’.  
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Figure 18: Overview of the Calculator application. 

 

The calculator application was designed to do the same operations periodically. The 

runnable function that implements the calculator component functionality is configured to 

be run every 100 milliseconds by the RTE layer. The runnable that implements the adder 

component functionality is also configured to be run at an interval of 100 milliseconds. The 

components were configured like they had been delivered as object code in order to force 

the RTE generator to implement all port operations as standardised AUTOSAR RTE 

function calls, as described in Section 6.2. 

An environment configuration, that simulates the other functions in the vehicle and the 

necessary environment, was developed in order to set the ECU in normal operation mode. 

The same environment mode was also used for the brake-by-wire system.  
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We created a fault injection campaign consisting of eight experiments for the calculator 

application, in order to test different implemented features in the tool. The first experiment 

in the campaign is a golden run where some parameters were monitored, but no fault 

injections were made. All other experiments were configured to inject an error into the 

target when their triggering condition was met.  

Features validated in the calculator experiments were: 

 The monitoring functionality 

 Trigger when a function has been called a number of times 

 Trigger when a parameter is lower than a certain value 

 Permanent and a transient fault where a parameter or a return value is over written 

by a new value 

 Connecting a single fault to a trigger 

 Connecting two faults to a single trigger at the same time 

 Function parameters were read and written both before and after the target function 

got called inside the wrapper 

 The function return value was read and written to after the target function got called 

inside the wrapper (before the value was returned to the original caller) 

 Both sender and receiver ports were targeted 

 A runnable was targeted 

 Function calls were forced to return immediately 

Additionally, we ran a campaign consisting of 1000 identical experiments in order to test 

the stability of the tool. 

The monitored output was sent from the fault injection controller residing on the embedded 

target system to the PC host where they were logged and manually analysed.  

8.2.2. Brake-by-wire Application 

In order to validate that the fault injection concept works in a complex environment the tool 

prototype was also validated on a brake-by-wire (BBW) system. The brake-by-wire system 

is a research framework developed by the DEDICATE project that implements a brake-by-

wire function distributed over five ECUs. The purpose of the BBW-system is to provide a 

real-world-like example of a distributed safety-critical system for validating research 

projects. Figure 19 gives an overview of the five nodes in the BBW-system, including the 

distribution of software components. The BBW-system also incorporates an environment 

model of the vehicle in order to simulate the behaviour of the entire vehicle with regards to 

acceleration and braking. In the BBW-system, the driver’s intent for braking is read by the 

BrakePedalECU and then transformed to a brake force request sent to each individual 

wheel node. 

In the BrakePedalECU, the sensor software component reading the brake pedal (BrakePedal 

sensor SW-C) was wrapped in order to emulate an open circuit fault in the brake pedal’s 

electrical wiring. The detection of an open circuit fault activates the error handling 

mechanism in the BBW and causes an error reaction in the system. The error reaction was 

monitored in order to validate the fault injection tool’s capability of emulating the open 

circuit fault. 
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Figure 19: Overview of BBW-system including distribution of application software components [37] 

 

Features validated in the BBW experiments were: 

 That the wrapping generation concept scales to handle code generation with many 

software components in the configuration files 

 That the tool and SWIFI technique can be used to emulate electrical faults. The 

validation showed that injecting a fault in the in the BrakePedal sensor SW-C could 

cause the exact behaviour of physically disconnecting the brake pedal connector 

which causes an open circuit fault in the BrakePedalECU 

 Wrapping ports of client-server communication pattern as complementary to sender-

receiver ports 

 That we could trigger the hierarchal error handling mechanism developed in the 

DEDICATE project and by using the monitors of the fault injection tool, we could 

follow error conditions and reactions in the BBW system 

8.3. Intrusion on Target System 

In order to get an understanding on how much intrusion on the target the wrapper generates 

we performed execution time measurements for a specific RTE call in the adder software 

component. We measured on a sender-receiver call, and performed measurements in vendor 

mode, compatibility mode, with an empty wrapper and finally a wrapper with one trigger, 

one permanent fault and one monitor. 

All measurements were made inside the software component using the same measurement 

code. We used the real-time clock for this measurement. The accuracy of the real-time 

clock is ±2 µs, which may be too course for this type of measurement. More accurate 

measures can be done by using one of the special purpose registers, and adding the 

measurements as in-line assembler code. However, measurements using the real time clock 
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gave adequate measures to estimate the overhead. Each measurement is an average of 100 

samples. The result from the measurements is shown in Table 3.  
 

Table 3: Measurement of time overhead caused by wrapper 

No. Measurement description Exec. time [µs] 

Min Average Max 

1 Without wrapper, original version, 

with optimisations in the RTE 

31 33 33 

2 Without wrapper, RTE generated in 

compatibility mode 

35 35 37 

3 With wrapper, no content in 

wrapper 

37 37 39 

4 With wrapper, 1 trigger, 1 

permanent fault and 1 monitor 

47 47 49 

 

The measured time to do an RTE API call went from a maximum time of 33 µs for the 

original vendor optimised call, to a maximum of 49 µs for a wrapped call containing one 

trigger, one fault injector and one monitor. Several factors contribute to the overhead. First, 

the API call will have to be made using a function instead of a macro. This will result in an 

additional function call for each call. Second, for each call that will be wrapped an 

additional function call is made. Finally, the monitor, trigger and fault injector cause an 

overhead to the RTE API call. The consequences of this overhead will vary depending on 

the task that executes the RTE call. According to Hexel [9], care should be taken that the 

"external timing" of the system is not affected by the fault injection. AUTOSAR SW-C 

runnables are manually configured to run in tasks that are run by the RTE periodically or 

when some events occur in the system. A task runs one or more runnables. If there is 

enough available time in the task that runs the runnable where the RTE API call is made, so 

that no deadlines are broken, then the overhead should not matter. If there is not enough 

time in the task, then some real-time constraints might get violated. This could alter the 

outcome of the fault injection experiment, compared to the same experimental setup where 

no constraints are broken. 

The embedded fault injection controller introduces an overhead into the system each time it 

is run. The overall overhead will depend on how long it takes to execute the fault injection 

controller during an experiment and the frequency of the task that runs the controller. The 

number of enabled monitors will also affect the runtime of the controller, as every time the 

controller is run, it will send two messages on the CAN network for each enabled monitor. 

There is also a limit on the number of monitors that can be enabled at a time. There is a 

static circular buffer that stores monitoring messages and it has a limited size. If there are 

too many enabled monitors writing into the buffer or if the frequency of the task running 

the wrapped component is much higher than the frequency of the task running the 

controller, then older values might get overwritten in the buffer before they are sent out on 

the CAN network. The reason for having a circular buffer is that it will not crash the target 

system if it becomes overloaded by too many monitor events. 

8.4. Portability 

When it comes to portability, we looked at how easy it would be to add support for a 

different AUTOSAR vendor. We also evaluated how portable the fault injection controller 

is to different types of ECU. The wrapper code generator reads AUTOSAR XML files and 
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RTE header files. The AUTOSAR standard does not specify how or if the XML files 

should be broken down, but standardises how an element in one file can reference elements 

in other files [19]. 

The current prototype implementation does not combine different AUTOSAR XML files 

together. It reads different information from different files depending on how the current 

supported vendor chooses to split information into different files. We looked at XML files 

delivered from a different vendor to see if we could parse the files with the wrapper code 

generator. Unfortunately, the information was split differently by the two vendors. One 

vendor, for example, delivered software component descriptions as different XML files for 

each software component, while the other vendor bundled all software component 

descriptions together in a single XML file.  

As mentioned in Section 7.4, the fault injection controller was implemented as an 

AUTOSAR complex device driver. The only hardware dependent parts are the CAN 

network driver, the ECU reset command, the reading of the real-time clock and the 

definition of standard types. The architecture of the complex device driver fault controller 

was designed to make hardware dependent components easy to replace. 

8.5. Reachability 

Reachability is defined as the ability to reach possible fault locations on the target system 

[35]. The tool emulates errors that can propagate from faults originating at different parts of 

the system. Here, we therefore look at locations where an error can be injected. 

The prototype can read and write into function parameters before or after the function is 

called inside the wrapper. The return value can be read or written after the targeted function 

call returns. Returning immediately can also be done before or after the targeted function is 

called to emulate different faults.  

If the RTE function call is made to write data, then the error should in most cases be 

injected before the target function is called in order to modify the data for the receiver. The 

exception would be when the goal is to modify a pointer to point at an invalid location 

instead of the actual data that it points to. For read operations the injection should in most 

cases be made once the targeted function returns. 

In the thesis work it is assumed that the user of the fault injection tool does not have access 

to the source code of software components, therefore the software components are regarded 

as black boxes and the fault injection tool cannot reach inside the software components. 

8.6. Controllability 

Controllability can refer to both time and space [35]. The space dimension concerns how 

much control the method has over injecting faults into specific reachable parts of the target 

system. The tool has much controllability when it comes to the space dimension as it can 

accurately read all reachable data and potentially modify it exactly as wanted, given that the 

corresponding fault type is implemented. If we look at the time dimension as the triggering 

condition, instead of as physical time, then the tool provides good controllability. A 

triggering condition can be defined on the state of the return and parameter values or when 

the function has been called a certain number of times.  

Currently it is not possible to trigger on the state of combined parameters and return values. 

It is for example not possible to trigger when one parameter is higher than some set value 

and the return value has some other specified value. We however believe that the tool could 

be extended to support such features if needed. 
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Support for triggering after a certain time has elapsed is not currently implemented. It 

should however be easy to add a trigger that activates a fault once a certain time interval 

has elapsed using the real-time system clock. One simple scenario would be to activate a 

fault after a certain time period has elapsed since the start of the experiment. 

8.7. Repeatability 

Repeatability refers to being able to repeat the experiment exactly or similarly as before 

[35]. The fault injection concept has good repeatability since triggers, injectors and 

monitors are controlled by the wrapper, which means that the flow of data to and from the 

component is controlled by the wrapper. However, it does depend on the intent of the 

experiment and the determinism of the target system. In automotive systems the CAN bus 

is event based and subject for arbitration which will cause a jitter that might affect the 

sequence of events in the systems, which limits the repeatability of experiments. Also, start 

experiment is initiated via CAN and is affected by the jitter on the CAN bus. 

8.8. Reproducibility 

Reproducibility means that when the experiment is run more than once, the same or very 

similar results are obtained [35]. In this thesis work there has not been a focus on running a 

number of experiments that can give statistical significance. 

8.9. Time measurements 

Time measurements refer to the ability to get detailed timing information from different 

monitored events while the experiment is being run [35]. The monitors feature was setup to 

log monitors and other events, such as start and stop experiments, in an event log 

implemented as a static circular buffer in the embedded fault injection controller. Events are 

logged relative to the real-time clock counter value. Monitors inside a wrapper can record 

an event at nearly the same time that a trigger or a fault is activated.  

8.10. Efficacy 

Efficacy refers to the ability to produce significant results from the fault injection 

experiment [35]. In all cases where an error was injected in the experiments we got 

measurable results from the impact of the error on the target system.  
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9. DISCUSSION AND FUTURE WORK 

In this chapter we summarise the current limitations of the tool and discuss possible 

extensions and future work. 

The tool is designed to do robustness testing of application software components, and has a 

focus on injection of data errors, that are defined in the AUTOSAR standard [22], and also 

mentioned in Section 4.3.  

Wrappers are well suited for injecting data errors in the interfaces of application software 

components. The tool can be extended to also use wrappers to inject timing errors. The tool 

could block for a specific time in the wrapper, before or after the targeted function is called, 

or delay signals with the use of a circular buffer. 

The wrapper technique is not very well suited to inject program flow errors, since it regards 

the software components as black boxes. Since a wrapper has no access to the components 

internals, it cannot change the internal flow in the component. The exception would be for 

program flow errors caused by a data error injected into the software component’s interface. 

In order to have better support for program flow errors, the tool could be extended to 

support other fault injection techniques, such as debugger-based fault injection. 

The error source that later propagates into an access error can be a data error [22]. In most 

cases, the data that is to be passed from one software component to another gets passed as a 

pointer to the function and then the return value is a standard status code to let the caller 

know if the operation was successful or not. Some forms of access errors could be produced 

by the tool by altering the pointer to point to an inaccessible partition.  

Further improvements can be made on the prototype in order for the tool to get the maturity 

of a product. For instance, database support for storing results from experiments can be 

added and the GUIs of the different components can be merged into a single interface. 

Campaigns are currently created manually by editing a campaign XML configuration file. 

Ideally, this step would be done using a graphical user interface.  

As described in Section 8.4, the wrapper code generator is not vendor independent. The 

wrapper code generator can be improved to be vendor independent by extending it to 

combine different XML files together according to the AUTOSAR standard. 

AUTOSAR software components have special runnable “init” functions that are only called 

on system start-up. The current wrapper implementation cannot target init functions, since 

the embedded controller always starts in the uninitialized state, and has to be configured 

before an experiment can be run. The tool needs further development to support injecting 

faults into these functions. 

The prototype can monitor, trigger on and inject faults into variables (e.g. a parameter 

variable) that are 32 bits or smaller in size. This was sufficient for the experiments that we 

conducted, but this limitation will become an issue when larger data types are targeted. The 

reason for this constraint is that CAN messages are limited to a maximum data payload of 8 

bytes. The current implementation of the tool uses 4 bytes for the data and 4 bytes for other 

information needed for the message. Support for breaking up large data structures and then 

send them using multiple CAN messages is a possible extension but this would also 

increase the intrusion on the target system.  

As mentioned in Section 7.4, the embedded fault injection controller supports the CAN 

Calibration Protocol (CCP). CCP can be used to both read and write into memory locations 

on the ECU. It would be interesting to see if CCP can be used for fault injection purposes. 
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Support would have to be built into the campaign runner that communicates with the fault 

injection controller in order to instruct what memory locations should be read or written to. 

It is possible to extend the tool to support fault injection into calls between basic software 

(BSW) components. BSW components and their interfaces are standardised, so the current 

wrapping technique can be extended to support robustness testing of BSW components. 

Large proportions of the monitoring, triggering and injection mechanisms can be re-used. 

As the fault injection controller is implemented using an AUTOSAR complex device driver 

it can communicate with all layers in the BSW. The fault injection controller and the 

campaign runner could therefore be re-used to setup fault injection experiments targeting 

BSW components. 
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10. CONCLUSION 

This thesis describes the design and implementation of a fault injection tool for robustness 

testing of AUTOSAR application software components, using software implemented fault 

injection (SWIFI).  

The fault injection tool uses a wrapper, an extra layer introduced between the component 

and the Run-Time Environment (RTE), to trigger fault injections, inject faults and to 

monitor the ports of software components during experiments. We investigated two other 

techniques that could be used instead of wrappers. One technique is to make use of trace 

hooks placed in the RTE as standardised by the AUTOSAR standard. The other technique 

uses code modification of the RTE source code. 

The prototype consists of different parts that are used for creating and running fault 

injection experiments. A configurator and code generator configures and generates the 

wrappers based on which triggers, faults and monitors the user has selected to enable. A 

campaign runner performs the actual fault injections. For each fault injection experiment 

the campaign runner will restart the target system in order to begin each experiment in the 

same initial state. The campaign runner will then configure what monitors, triggers and 

faults to use and then start the experiment. The campaign runner uses a fault injection 

controller embedded on the target system, which is implemented as an AUTOSAR complex 

device driver. The use of a complex device driver is a good way of having a fault injection 

controller embedded on the target in order to get real-time performance, and without 

causing too much intrusion on the design process of the target system. It also facilitates 

porting of the tool to other hardware platforms and other basic software vendors. 

Furthermore, the tool generates wrappers automatically based on the AUTOSAR XML and 

RTE header files, and can with some extension become independent of basic software 

vendors. 

The tool was evaluated by injecting faults into the interfaces of two different applications. 

The first application is a calculator residing on a single electronic control unit, and the 

second application is a brake-by-wire application distributed over several embedded control 

units with fault handling capabilities. It was shown in the validation that the tool can 

emulate hardware faults by causing the same reactions in the brake-by-wire system as an 

open circuit fault. 
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