

Chalmers University of Technology

Department of Computer Science and Engineering

Gothenburg, Sweden, June 2012

Software implemented fault injection for

AUTOSAR based systems

Master of Science Thesis

Software Engineering and Technology Programme

JOHAN HARALDSSON

SIGURJÓN ÞORVALDSSON

Software implemented fault injection for AUTOSAR based systems II

The Authors grant Chalmers University of Technology and the University of Gothenburg

the non-exclusive right to publish the report electronically and in a non-commercial purpose

make it accessible on the Internet.

The Authors declare that they are the authors of the report, and confirm that the report does

not contain text, pictures or other material that violates copyright law.

The Authors shall, when transferring the rights of the report to a third party (for example a

publisher or a company), inform the third party about this agreement. If the Authors have

signed a copyright agreement with a third party regarding this report, the Authors declare

hereby that he/she has obtained the necessary permissions from the third party to allow

Chalmers University of Technology and the University of Gothenburg to store the report

electronically and make it accessible on the Internet.

Software implemented fault injection for AUTOSAR based systems

JOHAN HARALDSSON

SIGURJÓN ÞORVALDSSON

© JOHAN HARALDSSON, June 2012.

© SIGURJÓN ÞORVALDSSON, June 2012.

Supervisor: JOHAN KARLSSON

Examiner: MATTHIAS TICHY

Chalmers University of Technology

Department of Computer Science and Engineering

SE-412 96 Gothenburg

Sweden

Telephone + 46 (0)31-772 1000

Cover:

Syringe image in courtesy of www.aperfectworld.org. Clamp image in courtesy of

www.CKSinfo.com. The software component image is drawn according to AUTOSAR

modelling standard (www.autosar.org).

Department of Computer Science and Engineering

Gothenburg, Sweden June 2012

http://www.aperfectworld.org/
http://www.cksinfo.com/
http://www.autosar.org/

Software implemented fault injection for AUTOSAR based systems III

ABSTRACT

This master’s thesis describes the design and implementation of a software implemented

fault injection tool, which can be used to perform robustness testing on application software

components in embedded systems based on the AUTOSAR standard architecture. The

thesis analyses the AUTOSAR standard in order to identify mechanisms, which can be used

at run-time in order to inject faults. Three techniques are identified: the use of wrappers, the

use of trace hooks and modification of the run-time environment. The wrapper technique

was found to be most suitable and therefore implemented in a prototype fault injection tool.

The fault injection tool is evaluated on two applications. The first application is a calculator

application residing on a single electronic control unit, and the second application is a

brake-by-wire system distributed over several electronic control units. The validation shows

that the tool is successful in injecting faults into the interfaces of application software

components, and that it can emulate hardware faults by causing the same reactions in the

brake-by-wire system as an open circuit fault. Furthermore, it shows that it is possible to

automate the wrapper generation by processing AUTOSAR XML configuration files and

that an AUTOSAR complex device driver component can be efficiently utilised as an

embedded fault injection controller in order to achieve performance, low intrusion and

portability.

Software implemented fault injection for AUTOSAR based systems IV

Acknowledgements

We would like to thank our supervisor Johan Karlsson for his enthusiasm and sharing of

expert knowledge which has inspired and helped us a lot during the thesis. We would also

like to thank Svante Möller and express our appreciation for all his support.

Furthermore, we would like to thank, Michael Jones, Mafijul Islam, Mats Olsson, and

Fredrik Bernin from the DEDISafe team for all their support.

Finally, we would like to thank Sara and Victoria for their understanding, support and

encouragement that have made it possible for us to conduct our studies.

Software implemented fault injection for AUTOSAR based systems V

CONTENTS

ABSTRACT ... III

CONTENTS .. V

1. INTRODUCTION ... 1

1.1. RESEARCH QUESTION ... 2
1.2. STAKEHOLDERS ... 2
1.3. STRUCTURE OF THIS DOCUMENT ... 2

2. RESEARCH METHOD .. 4

3. DEPENDABILITY TERMINOLOGY .. 6

4. OVERVIEW OF AUTOSAR ... 8

4.1. THE VIRTUAL FUNCTION BUS ... 8
4.2. RTE GENERATION ... 9
4.3. ERROR HANDLING IN AUTOSAR ... 10

5. OVERVIEW OF SWIFI ... 12

5.1. INTRODUCTION TO FAULT INJECTION ... 12
5.2. FAULT INJECTION FRAMEWORK .. 13
5.3. FAULT INJECTION TECHNIQUES .. 14

5.3.1. Fault Injection Triggers .. 14
5.3.2. Fault Injectors .. 15
5.3.3. Monitoring the Fault Injection Experiment.. 17
5.3.4. Avoiding Intrusiveness ... 17

5.4. EVALUATING DIFFERENT FAULT INJECTION TECHNIQUES ... 18

6. SWIFI FOR AUTOSAR ... 19

6.1. INTERCEPTING RTE CALLS ... 19
6.1.1. Application of Wrappers .. 20
6.1.2. Application of Trace Hooks .. 20
6.1.3. Application of RTE Modification .. 21

6.2. COMPATIBILITY MODE PREREQUISITE .. 22
6.3. TECHNIQUE SELECTION ... 22

7. PROTOTYPE TOOL ... 24

7.1. FAULT INJECTION SUPPORT ... 24
7.2. TRIGGER SUPPORT... 25
7.3. MONITOR SUPPORT... 25
7.4. USING AN EMBEDDED CONTROLLER .. 25
7.5. PROCESS OVERVIEW .. 26

7.5.1. Code Generation Configuration ... 27
7.5.2. Wrapper Generation ... 28
7.5.3. Running a Campaign ... 29

8. PROTOTYPE EVALUATION ... 31

8.1. TEST ENVIRONMENT .. 31
8.2. FAULT INJECTION VALIDATION ... 32

8.2.1. Calculator Application ... 32
8.2.2. Brake-by-wire Application ... 33

8.3. INTRUSION ON TARGET SYSTEM ... 34
8.4. PORTABILITY .. 35
8.5. REACHABILITY ... 36

Software implemented fault injection for AUTOSAR based systems VI

8.6. CONTROLLABILITY .. 36
8.7. REPEATABILITY .. 37
8.8. REPRODUCIBILITY .. 37
8.9. TIME MEASUREMENTS .. 37
8.10. EFFICACY ... 37

9. DISCUSSION AND FUTURE WORK .. 38

10. CONCLUSION ... 40

REFERENCES ... 41

Software implemented fault injection for AUTOSAR based systems 1

1. INTRODUCTION

A trend in automotive systems is the increasing use of electrical and electronic (E/E)

systems with increased integration and interaction. In 1980, electronics made up for less

than 1% of the total cost of a vehicle. In 2010, electronics accounted for roughly 20%, and

the cost is expected to rise up to 40% by 2015 [1].

Quality and Safety are two important values in the automotive industry [2], which are also

applicable for automotive electronics including embedded software. The use of increasing

amounts of electronics and software can have a negative effect on safety and quality, by

producing higher overall failure rates, if the increased complexity is not handled properly.

One of the reasons for the increasing amounts of electronics is to replace features and

components that traditionally have been implemented by mechanics or hydraulics with

electronics. This is made in order to reduce component cost, improve fuel consumption and

increase controllability.

As a response to the increasing complexity of automotive E/E systems, the major Original

Equipment Manufacturers (OEMs) and suppliers within Europe have developed the

AUTomotive Open System Architecture (AUTOSAR) standard [3], which includes a

methodology for making application software independent of hardware for automotive

applications [4].

The increasing amount of electronics has also increased the need for standardising

requirements for functional safety. Functional safety is defined as “absence of unreasonable

risk due to hazards caused by malfunctioning behaviour of E/E systems” [5], and is

standardised for road vehicles in the ISO 26262 standard. The first version of ISO 26262 is

explicitly limited to vehicles of a gross weight of up to 3.5 tonnes. It is anticipated that the

exclusion of heavy vehicles will be removed in the second revision to be initiated around

2015, with publication expected in 2018.

ISO 26262 recommends using fault injection for testing and verification [5]. Fault injection

is a testing technique used to validate the dependability of systems [6], [7], [8], [9]. During

fault injections, faults are deliberately introduced in a controlled manner into a system in

order to observe how the system responds when the error resulting from the fault

propagates through the system [7]. The two common uses of fault injection are either to test

and evaluate fault handling mechanisms, or to get a measure of the system’s dependability.

Dependability is specifically important for computer systems where a failure in the system

can cause people to die, cause severe injuries or result in a loss of large sums of money.

No tools are available on the commercial market for doing fault injections into AUTOSAR

systems. Lanigan and Fuhrman [10] discuss a technique that they used to inject faults into

an AUTOSAR system running in a CANoe simulation environment. No other articles were

found that look into ways to inject faults into AUTOSAR based systems. Furthermore, as

the automotive industry is taking on the AUTOSAR standard and ISO 26262 recommends

using fault injections, the need for fault injection tools with support for AUTOSAR based

systems is increasing.

Software implemented fault injection for AUTOSAR based systems 2

1.1. Research question

The objective of this master’s thesis is to identify interception points in the AUTOSAR

architecture, which could be suitable for injecting faults by using software implemented

fault injection (SWIFI). The purpose is to create a tool capable of testing robustness of

software components by the use of SWIFI. Software components are building blocks for

applications in the AUTOSAR architecture and robustness is defined by IEEE as “the

degree to which a system or component can function correctly in the presence of invalid

inputs or stressful environmental conditions” [11].

The objective has been broken down into the following research questions:

 Can existing fault injection techniques be used or modified for injecting faults into

AUTOSAR application components and/or basic software?

 What are the suitable interfaces and mechanisms in the AUTOSAR architecture that

can be used for fault triggering, fault injection and observation of a target system?

In the automotive industry, software components are often delivered by suppliers and the

source code may not be available. Hence, in this work we assume that software components

are delivered as object code and therefore regarded as black boxes. The focus of the

analysis is on the software layers surrounding the run-time environment in the AUTOSAR

architecture, in order to find suitable fault injection locations.

The result is validated by a proof-of-concept implementation of a prototype fault injection

tool.

1.2. Stakeholders

This thesis is aligned with two major research projects performed at Advanced Technology

and Research at Volvo Group Trucks Technology, which act as stakeholders for the thesis

outcome. The primary stakeholder is the DEDICATE project, which focuses on techniques

for improving fault management. Both in-vehicle solutions and external services are

considered, to find new techniques in order to increase the commercial vehicles’ reliability.

In the DEDICATE project the thesis outcome is intended to be used to test a hierarchal

error management concept for the E/E-system of heavy duty trucks. The second stakeholder

is the BeSafe project, which is investigating benchmarking of functional safety. The

prototype tool should be extendable to be able to perform dependability benchmark

measures on AUTOSAR basic software components in the future.

1.3. Structure of this document

This report is structured as follows:

 Chapter 1 gives an introduction to the thesis, the research question and the thesis

project stakeholders.

 Chapter 2 describes how the master’s thesis has been carried out.

 Chapter 3 gives a short introduction to the dependability terminology that the thesis

uses.

 Chapter 4 gives an overview of the AUTOSAR standardised architecture and the

error model used by AUTOSAR.

 Chapter 5 contains the result from the literature review and gives a background on

different fault injection techniques.

Software implemented fault injection for AUTOSAR based systems 3

 Chapter 6 contains the results from the analysis on which fault injection techniques

are suitable to use in order to inject faults into AUTOSAR based systems.

 Chapter 7 contains a description of the implemented SWIFI tool prototype.

 Chapter 8 contains the evaluation of the implemented SWIFI tool prototype.

 Chapter 9 summarises the current limitations of the SWIFI tool prototype and

discuss possible extensions and future work.

 Chapter 10 contains the conclusions drawn from the thesis.

Software implemented fault injection for AUTOSAR based systems 4

2. RESEARCH METHOD

The research method for this master’s thesis was derived from design science research

papers. March & Smith [12] describe the main activities in design science to be to ‘build’

and ‘evaluate’, and compare the need of justification in natural science to primarily be the

explanation to why an artefact works within its environment. The research method, as

illustrated in Figure 1, was tailored from Peffers et al. [13] into five phases: problem

analysis, literature review, architecture & design, implementation and evaluation.

Litterature

Review

Method

selection

Architecture

& Design

Implement

prototype
Evaluation

Iterations

Problem

analysis

Figure 1: The different phases and main decision point of the research method

First, the problem was defined and analysed in collaboration with stakeholders and

supervisors. A literature review was carried out in the form of a background study of fault

injection, by studying books and research articles about the subject. The main emphasis was

on identification of different techniques already used to perform software implemented

fault injections. After that, relevant specifications on the AUTOSAR application layer and

interfaces used by application layer software components were reviewed with the goal of

finding suitable interception points for fault injection. In the literature review, searching for

relevant literature was carried out in Chalmers Library Summon, IEEE Xplore, ACM

Digital Library and Google Scholar as well as using references in articles already read

(generally known as the snowball technique).

Having identified interfaces which can be used for Software Implemented Fault Injection

(SWIFI), we created a list of fault injection techniques that could be implemented in the

AUTOSAR context. A prototype was designed and implemented that uses one of the

identified fault injection techniques. Finally, the prototype was evaluated for meeting its

purpose. The architecture & design, implementation and evaluation phases were iterated in

order to elaborate the concept and the prototype.

According to Cleven, Bubler & Hüner [14] the evaluation process has a number of

variables for a design science research artefact evaluation. In this thesis, the main artefacts

are tools for generation of fault injection mechanisms and for running injection

experiments. The choices made when designing the evaluation study are shown (blue

markings) in Table 1 below.

Software implemented fault injection for AUTOSAR based systems 5

 Table 1: Method configuration in accordance with [14]

Variable

Approach

Artefact focus

Artefact type

Epistemology

Function

Method

Object

Ontology

Perspective

Position

Reference point

Time

Value

Qualitative Quantitative

Technical Organisational Strategic

Construct Model Method Instantiation Theory

Positivism Interpretivism

Knowledge Control Development Legitimisation

Action

research
Case study

Field

experiment
Formal proofs

Controlled

experiment
Prototype Survey

Artefact Artefact construction

Realism Nominalism

Economic Deployment Engineering Epistemological

Externally Internally

Artefact against

research gap

Artefact against real

world

Research gap against

real world

Ex ante Ex post

The purpose of Table 1 is mainly to make this thesis comparable with other design science

research projects. Some of the choices may be obvious, such as having a technical approach

and an engineering perspective, since this is a thesis for a master’s degree in software

engineering. The reasoning behind other choices may need some further description.

We chose to do a qualitative study, as most of the evaluation criteria will not be numerical.

Parts of the evaluation have numerical results though, such as the measurement of the time

overhead of the chosen fault injection technique. However, the main part of the evaluation

was based on the authors’ understanding of the suitability of the evaluated fault injection

technique, based on a number of defined criteria. We chose the knowledge function since it

has been a part of our course and the primary objective is learning.

As part of our collaboration with the company where the thesis was conducted, a prototype

tool was requested, and the choices of artefact, instantiation, prototype, and artefact against

the real world, were taken together with the supervisor at the company.

It was classified as internal, as we did both the design and evaluation ourselves and ex post,

since we designed the prototype first and then evaluated the implementation.

Software implemented fault injection for AUTOSAR based systems 6

3. DEPENDABILITY TERMINOLOGY

This chapter gives an introduction to the dependability terminology used in this thesis. We

use definitions and terminology for dependability and its attributes given by Avižienis et al.

[15]. The use of the term system may need some explanation before diving deeper into

dependability. The word system is used quite extensively in this text in a broad sense, and

can mean anything from a single software component to a vehicle containing several

networks of computers with software. This is important in the pathology of failure

described later on in this chapter, where the failure of one component in a system becomes

the fault at the input of another component.

A definition for dependability given by Avižienis et al. is the “ability of a system to avoid

service failures that are more frequent and more severe than is acceptable” [15]. This means

that a dependable system is a system where the user (either human or machine) can trust the

services provided by the system. The dependability of a system is characterised by a set of

attributes, and the most common attributes are:

 Availability; readiness for service

 Reliability; continuity of correct service

 Safety; absence of catastrophic consequences on the user(s) and the environment

 Integrity; absence of improper system alterations

 Maintainability; ability to undergo modifications and repairs

 Confidentiality; absence of unauthorised disclosure of information

During the life-cycle of a system (see [16] for information of life-cycle models), from

concept generation to decommissioning, events may occur that introduce faults into the

system.

An error is defined by Avižienis et al. as “a deviation of one or more states from its correct

value(s)” [15]. A fault is “the cause, either adjudged or hypothesized, behind an error” [15].

If errors propagate so that an external state of the system deviates from its correct service

state, it leads to a system service failure. A failure, also called a service failure, is defined as

“an event that occurs when the delivered service deviates from correct service” [15]. The

relationship between faults, errors and failures is called the “pathology of failure” and its

causality chain can be described as being Figure 2, where the failure of one component is

the fault of another part in the system.

In the operation phase of the life-cycle, faults may prevent the system from delivering its

intended service, if not dealt with properly. However, faults do not necessarily lead to

system failure, first the faults need to be activated and result in an error in the software

system. Faults in the system that are not (yet) activated are said to be dormant. An error is

what happens when, for example, the system executes a software instruction containing a

bug. Errors are usually what can be detected during testing and can be seen as symptoms of

faults. An error in one part of the program can lead to errors in other parts of the program.

This process is called error propagation (Figure 2).

If an error propagates to the system boundary and becomes visible to the environment of

the system, this is then called a failure of the system. If the system goes into a degraded

mode as a reaction to a fault, it is not necessarily considered a failure, if that is the specified

behaviour in that situation.

Software implemented fault injection for AUTOSAR based systems 7

This leads to a pathology of failure, where a chain of threats with causality relationship acts

recursively in a way that errors propagate through the system, which means that several

faults must usually be present in order for the system to end up in a service failure.

System/component

Failure Fault Error Failure Fault... ...

PropagationActivation

Figure 2: Fault-Error-Failure causality chain [15]

There are methods to achieve and analyse the dependability of a system which are referred

to as the “means of dependability”. The means are used at different stages in the life-cycle

and are usually: Fault Prevention, Fault Tolerance, Fault Removal, and Fault Forecasting.

Fault prevention activities are carried out in the development life-cycle with the aim of

preventing the occurrence or introduction of faults. Fault tolerance is a capability built into

the product or system to avoid service failures in the presence of faults. Fault removal

reduces the number and severity of faults, e.g. by testing and correcting bugs. Fault

forecasting involves activities to estimate the present number, the future incidence, and the

likely consequences of faults.

According to Avižienis et al. the different means of dependability have slightly different

aims. Fault prevention and fault tolerance have “the aim to provide the ability to deliver a

service that can be trusted” [15], while fault removal and fault forecasting aim to “reach

confidence in that ability by justifying that the functional and the dependability and security

specifications are adequate and that the system is likely to meet them” [15].

Software implemented fault injection for AUTOSAR based systems 8

4. OVERVIEW OF AUTOSAR

AUTOSAR (AUTomotive Open System ARchitecture) is an open industry standard for

automotive Electrical/Electronic architectures [3].

4.1. The Virtual Function Bus

One of the key concepts of AUTOSAR is the introduction of a Virtual Functional Bus

(VFB). The VFB separates the application software from lower layers. The purpose of the

VFB is to make software components (SW-C) independent of the underlying hardware and

therefore make it possible to relocate software components to other electronic control units

(ECUs) when configuring the system. This implies that a software component does not

know, and does not need to know, whether the component it is trying to communicate with

resides on the same ECU, or on another ECU on the network.

Figure 3 provides an overview of the concept of the Virtual Function Bus. Software

components are building blocks for applications. An application is built up by one or

several interconnected software components. Software components are referred to as

atomic, since a single software component cannot be distributed over several ECUs. Hence,

an application can be distributed by having several interconnected atomic software

components where the individual components are located on different electronic control

units. In addition to application software components, AUTOSAR also specifies specific

sensor and actuator software components. They are independent of the ECU, but will be

dependent on the sensor or actuator hardware they are connected to. For performance issues

the sensor and actuator components will in most cases be located on the same ECU as the

hardware they are dependent on.

Figure 3: Software Components interconnected via the Virtual Function Bus [3]

Software components have required (input) and provided (output) ports that they use to

communicate with each other [17]. All communication between application software

components has to take place using ports according to the AUTOSAR standard [17].

Commonly used port type interfaces supported by the VFB are client-server ports and

sender-receiver ports. In client-server communication, a server provider port on a SW-C

Software implemented fault injection for AUTOSAR based systems 9

provides operations to one or more SW-C that have a corresponding client required port.

The call is initiated by the client. In sender-receiver communication, the sender initiates the

operation and can provide information to several other components. A required receiver

port can also be configured to get information from several provided ports.

Figure 4 shows an ECU view of an AUTOSAR system. The implementation of the virtual

function bus is called the Run-Time Environment (RTE), which is the layer in the

AUTOSAR layered architecture that separates the application layer, from the basic

software. The basic software itself also consists of different layers. From the bottom there is

a Microcontroller Abstraction Layer (MCAL) which implements specific drivers for the

microcontroller and its internal peripherals. Above the MCAL is an ECU abstraction layer

which encapsulates the specifics of the ECU with a standardised interface. A services layer

offers real-time operating system (RTOS) functionality and services for memory,

diagnostics and mode management. The service layer is also the layer that is responsible

for the routing of communication signals to other electronic control units. There can also be

Complex Device Drivers (CDDs) to handle things not standardised by AUTOSAR, such as

legacy software. Complex device drivers can communicate directly with the basic software

[17].

Figure 4: Overview of software layers in AUTOSAR [18]

4.2. RTE Generation

The AUTOSAR specification defines a meta-model using the unified modelling language

that is used to describe the platform [19]. A model describing an AUTOSAR system can be

mapped to and stored in an XML file, whose schema is defined by the AUTOSAR standard

[19]. The AUTOSAR standard specifies that the data can be stored as a single XML file or

broken down into several smaller files [19]. The standard also defines how a section in one

XML file can reference a different section in another file and how the documents should be

merged together when parsed. Different tools used to configure each ECU or generate

source code files (such as the RTE) will then read and write the XML files.

The RTE is according to the AUTOSAR specification generated in two phases [20]. In the

first phase, the so called contract phase, header files for software components are generated

from an ECU XML configuration file and the components’ XML internal description files.

The RTE generator creates the API needed to send and receive data between different

components. In the second generation phase, the remaining RTE source code files are

generated.

Software implemented fault injection for AUTOSAR based systems 10

The naming conventions for the generated functions are standardised by the AUTOSAR

standard [20]. Depending on the type of call, the name will consist of the type of call being

made, port name, data type and the component’s name.

The RTE is also responsible for running the so called “runnables” [20], which are functions

implemented in the software components. A runnable can be scheduled to be run

periodically or when a specific event occurs in the system.

4.3. Error Handling in AUTOSAR

Error handling in AUTOSAR is described in several dimensions. There are some errors that

are handled directly by the AUTOSAR basic software, e.g. errors on the communication

link. There are other errors that are described on a conceptual level in order to advise the

application developer on how common error handling strategies can be implemented in a

software component and be supported by the mechanisms of the AUTOSAR framework.

An example of this is voting mechanisms, which need to be implemented by software

components by the application developer.

On a detailed level, as described in the “Description of the AUTOSAR standard errors”

[21], the error handling support that is built into the basic software in a standardised way, is

limited to errors on the CAN network and different types of non-volatile memory faults.

This error handling follows a process for fault detection, fault isolation, and fault recovery.

This is often referred to as the FDIR process. The errors detected in the application or the

basic software are reported to a Diagnostic Event Manager. For recovery the software

components can be notified of detected errors in order to initiate their own recovery

procedure and there is also a defined healing cycle for the basic software. The standard lists

explicitly failure modes that shall be supported and the detection, reaction, report and

recovery mechanisms that are expected if applicable.

The application error management [22] defines an error model, which includes the errors

described in Table 2. It is called an error model instead of fault model, due to the constraint

that only software mechanisms are considered and hence it is errors that are detected. The

error model focuses on errors resulting from random external faults. Both transient and

permanent faults are considered. The error handling considers mainly operational faults,

even though design faults that slip through verification and manifest themselves as

operational faults are also handled to some extent.

Table 2: AUTOSAR Error Types on application level, excerpt from [22]

Error Type Description

Data A data error is characterised by an erroneous value of a parameter, variable

or message. The source of the error can be either internal (e.g., SW defect)

or external (e.g., malfunctioning sensor, other faulty SW-Component).

Handling of data errors can break a causality chain that would lead to

subsequent errors that are more complicated to handle, such as program flow

or access violations.

Program

Flow

Program flow errors (also “control flow errors”) manifest as actual program

flows differently than expected, possibly leading to missed, wrong or

superfluous operations being carried out. The source of the program flow

error can be both internal (SW defects) and external (data errors).

Software implemented fault injection for AUTOSAR based systems 11

Access For increased separation between executing components the system designer

can partition the SW and restrict access to resources from the partition, e.g.,

memory access. When a component tries to access a resource in another

partition without the proper access rights an access violation occurs. Access

errors can be the result of a data or program flow error, e.g., an invalid

program counter or pointer.

Timing A communication (message, function invocation, etc.) is time critical when

the delivery time has an effect on the correctness/usefulness of the

communication. A timing error can be a message being delivered early, late

or missing completely (omission).

The last type of timing error, omission, is of special interest and is

sometimes referred to as crash or fail-silent behaviour (note that it may be

impossible to distinguish between crash, which is an uncontrolled state, and

fail-silence, which is a controlled state). Timing errors also refer to execution

time, where strict deadlines can be defined on how long a component is

allowed access to the CPU.

Asymmetric When errors propagate from one SW-Component to another using some

means of communication one differentiates between symmetric and

asymmetric errors. In the symmetric case all receivers receive the same

(erroneous) value. When the component can fail by sending different values

(all of which may be valid) the error is said to be asymmetric.

This error model is sometimes also referred to as the Byzantine model,

which implies that no assumptions whatsoever are made on the behaviour of

a malfunctioning component. Byzantine errors can only be detected by use

of redundant components exchanging values to reach a common result.

AUTOSAR based systems are the target environment studied in this thesis and the error

types defined by AUTOSAR is used as reference when selecting a fault injection technique.

Software implemented fault injection for AUTOSAR based systems 12

5. OVERVIEW OF SWIFI

This chapter gives an overview of Software Implemented Fault Injection (SWIFI)

techniques and aims to give a picture of the state-of-the-art within the field.

5.1. Introduction to Fault Injection

Fault injection is a widely researched technique, both Yangyang & Johnson [7] and Voas &

McGraw [23] claim that the first published work about fault injection should be credited to

Harlam Mill’s work at IBM on statistical validation of computer programs done in 1972.

According to Voas & McGraw, fault injection can be viewed as a testing technique,

although not in a traditional sense. So, in a way, while testing focuses on finding defects

that are already there according to a specification of the correct behaviour, fault injection

focuses on how the system will behave in a scenario with errors, sometimes under different,

currently unknown circumstances [23].

However, given the initial differentiation between testing and fault injection, the main

objectives of fault injection is usually either fault removal or fault forecasting [7], [6], [24]

[9], [8]. Fault removal aims at observing how a particular fault tolerant design behaves

under errors propagating from the injected fault. In this sense, fault injection is used as a

testing technique in order to verify if the system meets its specifications and to identify

issues. The designer of the experiment needs to have detailed knowledge about the system

[7]. The results can then be used to improve the existing design [8]. Fault forecasting, on

the other hand, is used to estimate the dependability of a particular component by

introducing various faults that the component should tolerate in order to establish a measure

of the component’s dependability [7] and [8]. In this sense, it is a way to rate the efficiency

of the operational behaviour of the dependable system, which aims to quantify the

confidence that can be attributed to a system by estimating the number and the

consequences of possible faults in the system. Fault forecasting can be either qualitative or

quantitative [7]; qualitative fault forecasting involves the activities of identifying,

classifying and ordering of failure modes, or to identify the event combinations that may

lead to undesired events. Quantitative fault forecasting is about evaluating in probabilistic

terms some of the measures of dependability [7]. The two major approaches for doing

quantitative fault forecasting are modelling and testing [23].

According to Yangyang & Johnson [7], fault injections can be classified by whether they

are implemented as hardware, software, simulation or hybrid fault injections. Hardware

fault injection techniques introduce faults through the physical hardware, for example using

heavy ion rays to modify the memory of the system under target [6]. Simulation based

methods focus on doing a fault injection on a simulation of the system [7]. It has the

advantage of being able to test how a design behaves under specific faults early on in the

development life-cycle, before the system is implemented [6]. The system model might,

however, not properly capture all system properties [7]. In a hybrid approach a combination

of hardware and software is used to introduce a fault into the system [7]. The remaining

part of this chapter focuses on software implemented fault injections (SWIFI).

SWIFI techniques use software to inject faults into the system. SWIFI techniques are

attractive as they can access states in the system that might not be accessible with other

hardware based testing techniques, no special hardware is needed, experiments can often be

Software implemented fault injection for AUTOSAR based systems 13

run in almost real-time, and as the experiments are often being run on the same hardware

that will be used in production it will take into account any design problems that might be

in either the software or hardware [7].

5.2. Fault Injection Framework

Hsueh et al. [6] describe the typical fault injection environment as consisting of a controller,

a fault injector, a workload generator, a monitor, a data collector and a data analyser (see

Figure 5). The target is the system into which faults will be injected. It can be a stand-alone

component, a fully implemented system or a simulation of a system during pre-design. The

injection framework might be distributed and include parts on the actual target system.

Figure 5: Basic components of a fault injection system according to [6]

The controller is responsible for setting up and controlling an experiment. An experiment is

the setup of which fault to inject into the system, including mechanisms to identify when

and where to do the injection. Several experiments can be run in a batch, called a campaign.

The fault injector injects fault(s) into the target system. Often the fault injector is split into

separate trigger and injection modules (e.g., NFTAPE [24]). After a certain state or event

occurs within the targeted system (e.g., a certain memory location is read by the CPU), the

trigger instructs the injector to inject the fault. The workload generator creates a workload

on the system, which is intended to simulate the load that the system will experience during

operation. The monitor and data collector observe and record different events and states on

the target during the fault injection experiment [6].

Before carrying out experiments where faults are injected into the system a so called golden

run is usually made, where no faults are introduced into the system [7]. This information

can then be used to decide where and when to introduce the faults and it can also be used as

a comparison to runs where fault injections are done. The data analyser is used to determine

the outcome of the experiment. According to Yangyang & Johnson [7] there are three

possible outcomes:

1. The fault is covered. This means that the fault is activated, but the error is correctly

handled by the system’s fault handling mechanism.

2. The fault is not covered. The fault is activated, but the error is not correctly handled

by the system.

Software implemented fault injection for AUTOSAR based systems 14

3. The fault does not lead to a failure in the system. The fault was not activated or the

error was masked by the system (e.g. was overwritten by a correct value) before it

caused a failure.

5.3. Fault Injection Techniques

Software implemented fault injections can be classified in different ways. Hsueh et al. [6]

classifies fault injections depending on whether they are done at (or before) compile-time or

during run-time. Compile-time techniques modify source code or assembly code whereas

run-time techniques inject the fault during run-time after some fault triggering event occurs.

Compile-time techniques are usually used for emulating permanent faults, whereas run-time

fault injections are usually used to emulate temporary or transient hardware faults [6].

Another classification made by Stott [24] classifies software implemented fault injection

techniques depending on the type of technique used to introduce the fault. The different

techniques mentioned by Stott are debugger based, driver based, performance based and

target specific fault injections. All these techniques inject faults at run-time and are further

described in Section 5.3.2.

5.3.1. Fault Injection Triggers

The fault injection trigger identifies when to inject a fault (depending on time, state or

event) and activates the fault injection mechanism. Several different triggering methods can

be used to execute a fault injection mechanism during run-time.

Exception based triggers use hardware interrupts to instruct fault injection handlers to inject

a fault [6]. One way is to use the debugging features of the CPU to cause an interrupt when

a specific event occurs, such as when a specific memory location is read. The Xception

fault injection tool can, for example, use break-point registers to inject a fault when fetching

an opcode, loading an operand, or storing an operand from a specific memory addresses

into the CPU, inject the fault after a certain time has elapsed since start-up or a combination

of all [25]. Some processors can also be configured to cause an interrupt when the system

load gets too high [24].

Trap instructions inserted into application source code can be used to cause an interrupt to

occur when they are executed [6]. An interrupt handler will then inject the fault, as in the

case of exception based hardware triggers.

Time based triggers introduce a fault after a specific time-out. One time-out method is to

generate an interrupt once a hardware or software timer expires, and a dedicated interrupt

handler will then inject a selected fault into the system. The method has the benefit of being

simple, but it is only suited for emulating transient or intermittent faults and the injection

experiments might not be reproducible [6].

Hsueh et al. also describes code insertion triggers that use instructions added to the

application code before compile-time to call fault injectors directly, instead of using

interrupts and handlers.

Hexel [9] uses what he calls "hooks" (essentially triggers) to inject faults into time triggered

real-time systems. The hooks are inserted into the target system and when executed, do a

call-back to the fault injector that introduces the fault. The experiments can be configured

before or during run-time. Different hooks that are to be triggered during the experiment

can be selected and configured.

Software implemented fault injection for AUTOSAR based systems 15

The Bond fault injection tool, designed to inject faults into applications running on the

Windows NT operating system, uses “interposition agents” to monitor the target application

and trigger an injection when certain events occur [26]. The idea is to add a new layer

between the target application and the operating system that wraps and intercept systems

calls between the two. The benefits are that no modification to the target application is

needed [26]. Different events, such as the n
th

 count of before or after a certain API call, or

an access to a particular memory location can be used as the triggering event.

5.3.2. Fault Injectors

The injection involves the actual modification of code, signal or hardware element, such as

the memory or a register in order to create a fault or error in the system. The notion of fault

injection is used even though it is often errors that are actually injected. However, due to

the pathology of faults described in Chapter 3, where a failure of one component becomes

the fault of another and that the intention is to emulate the effects of faults, it is usually

more general to refer to it as fault injections.

5.3.2.1. Compile-time Fault Injection

Compile-time fault injections (or code modification) are good for emulating permanent

faults, such as software bugs or permanent hardware faults. One method described by

Durães and Madeira [27] to emulate software bugs is to modify the executable binary by

first converting it into assembly code and then use pattern matching to modify and insert

new code depending on the type of fault that is to be introduced.

Code modification at compile time can also be used to emulate permanent hardware faults

by adding or replacing assembly instructions [28]. For example by overwriting register

content in the middle of a program execution to emulate a register fault [28].

5.3.2.2. Debugger-based Fault Injection

Debugger based methods use debugging features to write into parts of memory [24]. The

method is used to access arbitrary parts of the memory (heap, stack, code segment) and

there is no need to modify the fault injection target or the operating system. The method has

been used to inject faults into random or specific locations, for example to simulate ion

radiation in space or to target specific parts of a system [24].

The injection handling routine can be written as a system interrupt handler that gets

executed after an interrupt is triggered. The source of the interrupt can either originate from

a software trap or from a hardware event. This was, for example, one of the methods used

to inject faults into HARTS, a distributed real-time system [28]. The interrupt handling

fault injection process was given the highest scheduling priority to quickly inject the fault

and then give the control back to the application that executed the software trap.

5.3.2.3. Target Specific Fault Injection

Target specific fault injection is when extra source code is inserted into the application that

then gets executed at some point during the fault injection run [24]. This method requires

knowledge and access to the source code, but it is good for manipulating specific data

structures where random memory modifications are not adequate [24].

Lanigan and Fuhrman [10] use a method which they claim is inspired by Hexel [9], to inject

faults using hooks into an AUTOSAR application running in a CANoe simulation

environment. In [10], no clear distinction is made between fault triggers and injectors, but

Software implemented fault injection for AUTOSAR based systems 16

two types of hooks are defined that are inserted into several AUTOSAR API system calls to

inject the faults or cause an erroneous behaviour:

 Suppression hooks are used to abort specific AUTOSAR API calls and depending

on the method called, return an error code to the caller. Note that this method does

not directly inject a fault, but emulates an erroneous behaviour, as if a fault had been

activated in another component by the call.

 Manipulation hooks are used to manipulate specific data structures such as different

signal messages communication fields.

Communication protocols usually consist of several layers, where each layer is responsible

for taking care of some aspect of the communication and deliver services to the layer above

[29]. The DOCTOR fault injection tool uses a fault injection protocol layer to inject

communication faults [28]. The fault injection layer can be placed anywhere in the protocol

stack (including directly under the target application) and is completely transparent to other

protocol layers. The layer receives commands from an external module. The fault injection

layer can pass messages without modification. It can also target specific messages and

discard them, delay them or modify specific fields within the intercepted message.

5.3.2.4. Performance based Fault Injection

Performance based fault injection is based on exhausting available resources on the system

[24]. This could for example be to open multiple files or network sockets without closing

them, creating a deadlock, or taking up excessive memory on the system.

5.3.2.5. Driver based Fault Injection

For some operating environments, such as Linux or Windows, consideration needs to be

taken to the privileges of the current process or task. For instance, fault injection code that

runs in user space on a Linux machine might not have the privileges needed to access or

take up resources required to carry out the injection. There are solutions to this problem

though, and one way around this restriction is to write the module as a device driver that

will run in system mode and thus have more access rights [24]. An interface is made to the

driver so that user space programs can trigger the injection.

Even if the fault injection code runs in user space and therefore does not have direct access

to the hardware, there might still be an indirect way to inject faults into locations that are

not directly accessible. The Bond fault injection tool developed for use on the Microsoft NT

operating system can, for example, inject faults into what is called the thread context [26].

The thread context contains the processor’s state for a particular thread, including a copy of

all registers [26]. A similar approach is used by Tsai and Jewett [30], where a copy of the

registers saved in memory (e.g., saved while doing a method call) are corrupted and then

the corrupted register copies are loaded back on the processor. Another way of overcoming

hardware access limitations is to emulate the behaviour of the error instead of injecting the

fault directly into the hardware [28]. Tsai and Jewett used a test portion of a SCSI driver to

emulate disk I/O errors on Tandem machines [30]. The test interface made it possible to set

a flag that would activate a specific error handler at the next driver request.

5.3.2.6. Robustness Testing

Robustness is defined in IEEE Std. 610.12.1990 as “the degree to which a system or

component can function correctly in the presence of invalid inputs or stressful

environmental conditions” [11]. Miller, Fredriksen & So [31] and Forrester & Miller [32]

have described the Fuzz tool that can test specific operating system elements and interfaces

by injecting random data.

Software implemented fault injection for AUTOSAR based systems 17

The Ballista robustness testing method [33] tests combinations of valid and invalid input

parameters. The test cases, often referred to as “dirty tests”, use parameters which are taken

from a pool of normal and exceptional values based on the value type of each input

parameter.

5.3.3. Monitoring the Fault Injection Experiment

In order to determine the outcome of the fault injection run (covered, uncovered or no

impact from the fault), it is necessary to monitor the system, and collect and analyse how

the target system behaved during the experiment. One option is to use monitoring facilities

already in use by the system, if available. This could be events logged by the operating

system, such as kernel messages and general error logs, or events monitored and logged by

the application. The benefit is that monitoring is already integrated into the system. They

might however not always give the granularity of details needed to properly analyse and

determine the outcome of the experiment.

Often the fault injection environment contains its own mechanisms to monitor the target.

One method is to run the experiment in debug mode in order to get a full system trace

containing a detailed history of all system calls, memory addresses read, and other state

information [7]. This might however be impractical for real-time systems, as running the

system in trace mode can introduce high overheads [24].

The same methods used for triggering a fault injection are sometimes used to monitor the

target system. For example, the interposition agent used in the Bond fault injection tool is

also used for monitoring the application. The agent can monitor debug events from the

kernel, API calls and memory accesses [26].

The MAFALDA fault injector tool, developed for use on real-time microkernel based

systems uses a set of interceptors to observe the target system [34]. Events intercepted

include scheduler events, results from tasks, signals, termination and return code of system

calls.

5.3.4. Avoiding Intrusiveness

Intrusiveness refers to how much undesirable effects the fault injection has on the target

system [35]. An example of intrusiveness is when excessive memory is used as parts of the

fault injection environment resides and executes on the target system.

Systems used in the automotive industry often have hard real-time constraints, so it is

important that no timing constraints on the target system get violated by the fault injection

mechanisms. A method used by the MAFALDA tool, while injecting faults into a real-time

interrupt driven system, is to disconnect all interrupts (both internal and external devices)

[34]. As the notion of time on such systems is built from internal interrupts, it has the

effect of “freezing the progression of time” [34]. Once the fault injection tool has finished

executing, the interrupts are allowed to resume.

Another method used by Hexel [9] on a time-triggered real-time system is to try to

minimise the fault injection interference, using a combination of different strategies. Parts

of the fault injection environment are situated on the target system for better performance.

The fault injection is configured before or during system run-time so that the only parts that

are executed during an experiment are the hook (trigger) and the fault injector. The fault

injector is implemented as a call-back from the hook. Finally, the hooks are placed and

designed in such a way that the external timing of the target system remains unaffected.

Software implemented fault injection for AUTOSAR based systems 18

Sometimes, the monitoring of the target system while conducting the fault injection can

cause undesirable effects; for example, a fault injection free “golden run” of the system is

sometimes done in trace mode to record all system activity, in order to find a suitable

location to do fault injection [7]. Running the system in trace mode will, however, greatly

reduce system performance as discussed by Stott et al. [24]. One compromise could be to

do a number of experiments where the faults are randomly injected into some memory

address range and the experiments where no faults are activated are discarded [8].

5.4. Evaluating Different Fault Injection Techniques

According to Arlat et al. [35], if two different techniques produce the same sets of

behaviours, then the methods can be considered to be equivalent and other properties

should be taken into consideration when selecting between them. Methods that produce

different behaviours are considered to be complementary. Arlat et al. provides a (non-

exhaustive) list of properties that might be taken into consideration when selecting between

equivalent methods:

 Reachability is defined as the ability to reach possible fault locations on the target

system. One method might, for example, only reach parts of the memory, while

another method might reach both the memory and parts of the processor.

 Controllability is defined both with regards to time and space. The space dimension

regards how much control the method has over injecting faults into specific

reachable locations on the target. One method could for example only corrupt

random parts of a memory region while another method might be able to specify

exactly what parts of memory to corrupt. The time dimension regards controlling

the instance of when the fault is injected.

 Repeatability refers to being able to repeat an experiment exactly or at least very

similarly as before. Using, for example, a time-out to trigger a fault injection on a

non-deterministic operating system might have less repeatability than triggering a

fault injection when a certain system call is made by the target application. Events

on the target system might occur in a different order between two test runs and some

events might not even occur in one of the runs.

 Reproducibility means that when an experiment is run more than once, the same or

very similar results are obtained.

 Intrusiveness refers to how much undesirable effect the fault injection has on the

target system. Further discussion of this property can be found in Section 5.3.4.

 Time measurements relate to obtaining detailed timing information for different

monitored events, while the experiment is being run.

 Efficacy refers to the technique’s ability to produce significant results from the fault

injection experiment. That means that the fault injection produces an observable

behaviour that is either covered or not by the target system.

These properties can be used to evaluate different fault injection techniques and are

used in Chapter 8 to evaluate the implemented fault injection tool.

Software implemented fault injection for AUTOSAR based systems 19

6. SWIFI FOR AUTOSAR

We analysed the AUTOSAR specifications with the goal of finding ways to intercept and

inject faults into calls between application software components (SW-C) and the Run-Time

Environment (RTE). The objective is to test robustness of applications consisting of one or

more SW-C. Most of the focus was on the RTE specification [20] and parts of other

AUTOSAR standards. Additionally, we reviewed the automatically generated RTE source

code from one vendor.

The remaining parts of this chapter will describe techniques applicable to AUTOSAR and

specifics required to target function calls consistently. Finally, we discuss which technique

was chosen to be implemented in the prototype tool.

6.1. Intercepting RTE Calls

Compile time techniques where the software component binary or source code is modified

could be used to emulate permanent faults in the component. The drawback of this

technique is that a time consuming build will have to be made between each fault injection

experiment.

Using debugger or hardware based fault injection could be done with low intrusion on the

target system. It is an interesting technique but it was estimated that implementation could

not be done within the parameters of a master’s thesis and therefore it was ruled out.

Techniques where additional code or a new layer is added to the target system seem most

applicable for capturing calls between the SW-C and the RTE. The concept of adding a new

layer in order to do a fault injection has been used both in the Bond and the DOCTOR fault

injection tools. The MAFALDA tool uses “interceptors” to capture calls to and from the

target which is the same or a similar concept. The AUTOSAR architecture uses a layered

structure with well-defined interfaces between the layers. It should therefore be possible to

add a new layer into the architecture in order to read and write into data that is passed

between the layers.

In the automotive industry, SW-Cs might be delivered as object code from a vendor.

Adding extra source code into the SW-C might therefore not be possible. However, all data

going to and from a SW-C must pass through the RTE and the RTE layer needs to be

custom generated by an RTE generation tool for each ECU. The entire RTE is therefore

available as source code before the complete system gets compiled, linked and downloaded

to an ECU. Extra source code instructions can therefore be added to the RTE with the

purpose of monitoring, triggering or injecting a fault into the system.

We found three main approaches for intercepting calls between the RTE and software

components:

 One approach is to create a new layer, a wrapper, which is situated between a

software component and the RTE.

 Another approach is to use trace hooks, which are already in place and specified as

part of the AUTOSAR standard specification [20].

 As a third approach, the RTE can be modified using code-insertion before

compilation to include fault triggering, injection and monitoring capabilities.

Software implemented fault injection for AUTOSAR based systems 20

6.1.1. Application of Wrappers

A wrapper is an additional layer that is situated between a component or a part of a

component (e.g. a function) and its environment. The same or a similar concept is used in

the Bond [26], MAFALDA [34] and the DOCTOR [28] fault injection tools as discussed in

Chapter 5.

Adding a wrapper around software components has the benefits that both the function

parameters and return data can be modified for all calls made between the software

components and the RTE. A wrapper can also force API calls to return immediately with an

arbitrary value and thus emulate an erroneous behaviour.

Fault injection layers for basic software components residing beneath the RTE layer can be

manually created as their interfaces are standardised. Wrappers for application software

components will however have to be created individually for each component, as they have

a unique interface to and from the RTE.

Since all selected interface data would pass through a wrapper, they are suitable for use in

triggering, injecting as well as monitoring purposes.

Before an application component or parts of it can be wrapped, its interface will have to be

extracted. Three possible approaches were identified for finding interfaces on a SW-C, in

order to generate an application software component wrapper:

 Manually inspect and add code to wrap a software component. This technique is

good for testing the concept and developing the method, as a prototype can be built

fast. This approach does, however, not scale well due to the work involved in

adding the wrapper code manually.

 Automating the generation of SW-C wrappers using available RTE header files. The

component’s header file(s) can be parsed to find both API prototypes used by the

component and its runnables that are run by the RTE layer. The AUTOSAR

standard defines exactly how different RTE function calls should be named and the

API names should, therefore, be vendor independent. Some information can be

extracted from the standardised function names as it includes the type of call being

made, the SW-C name, the port name, and data types.

 Automate the wrapper generation using standard AUTOSAR XML configuration

files. As all the needed interface information, such as SW-C port names, data types

and port operation types is stored in the XML, it can be used to generate a wrapper.

6.1.2. Application of Trace Hooks

Another way to inject faults into AUTOSAR SWC’s is to use trace hooks. Trace hooks can

be inserted into all communication ports defined in the RTE and at various other locations

in the RTE and the basic software. A trace hook needs to be enabled before it can be used.

Trace hooks are called in the code that defines SW-C ports as shown in the code snippet in

Figure 6. However, the definition of the trace hook function should be user implemented

according to the standard and is thus suitable for triggering, monitoring, and in some cases

injecting faults.

For each explicit API call to and from the RTE layer, a trace hook is placed at the

beginning of the call and then another hook is placed at the end of the call [20]. The hooks

will take the same parameter as the API call, but the parameters are not always passed as

reference, which makes it harder to use them for fault injections. However, for calls made

for external ECU communication, a pointer to the signal data (and in some cases the

signal’s length) is passed to the trace hook function, and the signal can thus be modified

inside the trace hook.

Software implemented fault injection for AUTOSAR based systems 21

As hooks get called inside an RTE API function, they cannot be used to directly force a

return or modify the API return value.

6.1.3. Application of RTE Modification

It would be possible to modify the generated RTE source code before compilation to

include fault injection mechanisms. Lanigan and Fuhrman [10] used code modification and

placed fault injection call-back hooks into an AUTOSAR based system running in a

CANoe simulation environment. However, no emphasis was made in [10] on how to

automate the process of adding fault injection instructions into the target system source

code. The purpose of this study is to build a tool, and it is therefore important to automate

the process. One way to automate the code insertions would be to use the fact that the

standard defines exactly the trace-hook symbol name placed at the beginning and end of

each RTE API call (one hook for start and one hook for end), to insert extra source code as

shown in the code snippet in Figure 7.

Std_ReturnType Rte_Write_Component_Port_Element(SInt32 data)
{
 Std_ReturnType ret = OK;
 WriteHook_Component_Port_Element_Start(data);
 ComHook_Signal(&data);
 ret |= Com_SendSignal(&data);
 WriteHook_Component_Port_Element_Return(data);
 return ret;
}

define WriteHook_Component_Port_Element_Start(data) \
WriteHook_Component_Port_Element_Start(data); \
if(inject_fault_now == 1) \
{ \
 data = fault_value; \
}

Figure 6: Example of an implementation of a SW-C port send operation in the

RTE layer, including Trace hooks

Figure 7: Example of a macro that can be used to target trace hooks in order to

add fault injection instructions

Software implemented fault injection for AUTOSAR based systems 22

If the macro in Figure 7 is placed in any header file included by the Rte.c source file, then

the compiler pre-processor will modify the example from Figure 6 to the one shown in

Figure 8.

6.2. Compatibility Mode Prerequisite

The generation of the RTE software layer is according to the AUTOSAR standard

performed in two steps [20]. In the first step, the so called “contract phase”, the RTE

generator creates an application header file for each individual software component. In the

second RTE generation step, the generator creates the rest of the RTE source code.

If the RTE generator has access to the application component source code it can optimise

the code by using macros instead of function calls for inter-component communication in

the cases where components are located on the same ECU. The first problem with this,

from a fault injection perspective, is that the optimisation is vendor specific and thus not

standardised. This will make auto-generation of fault injection mechanisms tailored to the

RTE more difficult and vendor specific. The second problem is that targeting function calls

is easier than targeting code that has been in-lined using macros because the functions can

be wrapped and they will contain trace-hooks that can be used for fault injection purposes.

If the configuration uses application components that have been compiled into object code

(or thinks that it will be using object code), then no optimisation can be done and the

generator will run in “compatibility mode”, so that all RTE API calls will be implemented

as functions, and not in-lined by using macros.

The downside of using “compatibility mode” is that the application will have an extra

overhead by doing additional function calls, in addition to whatever overheads the fault

injection mechanisms will introduce to the target.

6.3. Technique Selection

Wrappers were chosen to be implemented and evaluated based on a discussion of the

findings with experts on the subject. Wrappers were chosen because they have been

successfully used to do fault injections in other environments (e.g. Bond, MAFALDA,

DOCTOR tools) and they have the benefits that both the function’s parameters and return

data can be modified for all calls made between the software components and the RTE. A

wrapper can also force API calls to return immediately with an arbitrary value and thus

emulate an erroneous behaviour. The first priority is to wrap application software

components since their interfaces are configurable and therefore more complex to generate

Std_ReturnType Rte_Write_Component_Port_Element(SInt32 data)
{
 Std_ReturnType ret = OK;
 WriteHook_Component_Port_Element_Start(data);
 if(inject_fault_now == 1)
 {
 data = fault_value;
 }
 ComHook_Signal(&data);
 ret |= Com_SendSignal(&data);
 WriteHook_Component_Port_Element_Return(data);
 return ret;
}

Figure 8: Implementation of a SW-C port with fault injection instructions added

with the macro in Figure 7

Software implemented fault injection for AUTOSAR based systems 23

wrappers for. The technique selected is considered portable to basic software components

as well, but wrapping basic software components was scoped out to do in addition to

wrapping SW-C.

Trace hooks are an interesting finding and in a way they are natural inception points already

present in the AUTOSAR standard, but they are scoped out to implement in addition to

wrappers due to resource constraints in the master’s thesis project. RTE modification using

macros was also considered, but the technique was also ruled out for the same reasons.

We have also chosen to call the fault injection mechanisms directly inside the wrappers,

instead of using trap instructions that would indirectly cause an interrupt handler to inject

the fault. The reason is that an interrupt will cause a context switch to occur which might

add some additional overhead, over calling the fault injection mechanisms directly.

Software implemented fault injection for AUTOSAR based systems 24

7. PROTOTYPE TOOL

The fault injection tool prototype is described in this chapter. The purpose of the tool is to

facilitate robustness testing of application software components. The tool generates

wrappers, as discussed in Section 6.1.1 and 6.3, which intercept all calls between the

component under test and the Run-Time Environment (RTE).

The prototype is developed to run on the Windows XP platform and uses the Microsoft

.NET framework version 4. It consists of several components which can be divided into

two major parts: the configurator and the campaign runner. This is illustrated on the left

hand side of Figure 9. The configurator and code generator provide the user with a

graphical user interface to configure an experiment with regards to setting triggers,

connecting faults to triggers and configuring monitors prior to performing an experiment or

campaign.

The campaign runner controls the fault injection experiment and consists of a PC based

application for running campaigns and experiments and also a controller located on the

target in order to get the best possible real-time performance. During a campaign the

campaign runner communicates with the embedded controller via a dedicated CAN

channel.

Target SystemPC

Campaign Runner
Configurator and

code generator

CAN channel

Basic Software

Run-Time Environment

SW-C SW-C SW-C

On target

fault injection

controller

Figure 9: Fault injection tool overview

7.1. Fault Injection Support

The purpose of the tool is to support the error model used by AUTOSAR as described in

Section 4.3. In the scope of this thesis, support for injection of data errors has been

implemented. The main reason for focusing on data errors is that robustness testing is

testing components with invalid inputs which imply the injection of data errors. The

concept is not limited to data errors though, so the tool can be extended with support for

other error types in the future.

Calls made between an application software component and the RTE were targeted. The

purpose of this is to test error handling mechanisms in the software component (or a

composition of software components) and to observe how the software component behaves

upon erroneous inputs. In the calls made between the component and the RTE, the fault

injection tool can access and modify function parameters and return values. The fault

Software implemented fault injection for AUTOSAR based systems 25

injector has configurable values to overwrite a parameter or a return value upon injection. It

can also force a function call to return immediately, with a return value selected by the fault

injection experiment designer. When forcing a return, it can be configured whether the

actual call shall be executed or not. In some cases the experiment designer wants to test

what happens if the call is dropped without notifying the caller, and in some cases the call is

cancelled with a user specified return status code.

An error can be injected once (emulation of a transient fault) or every time the targeted

function is called (emulation of a permanent fault). The concept can easily be extended to

include more logic to simulate intermittent faults or randomised fault injection.

7.2. Trigger Support

Triggers are used in the fault injection experiment to determine when to inject a fault.

Triggers are described generally in Section 5.3.1. In the tool a trigger must first be selected

in the configurator in order to generate code for the triggers in the wrapper. The following

types of triggers are implemented in the prototype:

 Trigger when an RTE API function or runnable for a component has been called a

configurable number of times.

 Trigger when a parameter or a return value in an RTE API function is higher than,

lower than, or equal to a configurable user value.

Triggers selected for an experiment must be enabled before the experiment is started. Each

enabled trigger will also have to have one or more faults connected to it that will be

activated after an event in the system activates the trigger. Any trigger can be used to

activate any fault configured in the system, regardless of where they are located.

7.3. Monitor Support

The prototype tool supports different data and events to be monitored, including all

interface parameters to software components. Monitors can be configured in the

configurator but need to be enabled prior to running an experiment. In this way parameters

of RTE API function calls can be monitored, i.e. required and provided interfaces of

software components can be monitored synchronised with the fault injection. The monitor

data is passed over the CAN channel to the campaign runner where it is logged.

The fault injection controller also supports the CAN Calibration Protocol (CCP) [36] which

means that a logger can be setup to monitor any address in memory. However, CCP support

is currently not built into the campaign runner.

7.4. Using an Embedded Controller

One part of the fault injection controller is located on the target in order to get better

accuracy for triggers, injectors and monitors with regard to real-time requirements. Having

a fault injection controller residing on an embedded real-time system has been used before

by for example Hexel [9]. In our tool, the embedded controller is implemented as an

AUTOSAR complex device driver [3] in order to have access to hardware resources on the

target, cause minimal intrusion on the software architecture for the system under test, and

also for it to be easily portable to other test targets. We consider it to cause low intrusion

from a design perspective as the tool is implemented using its own CAN channel for

communication with the fault injection tool. This means that the signal mapping for the

original software in the ECU does not have to be changed and all that is needed is an

invocation of the complex device driver. It requires that a CAN channel is free on the

Software implemented fault injection for AUTOSAR based systems 26

microprocessor and that it is connected and accessible on the circuit board. Figure 10

describes the internal structure of the on-target fault injection controller and how it is

located in the AUTOSAR system.

SW-C

(application)

SW-C

(sensor)

SW-C

(actuator)

Run-Time Environment

Basic Software

FI Complex Device Driver

CAN Driver

CCP Driver

Controller

Figure 10: In-target fault injection Controller, implemented as an AUTOSAR Complex Device Driver

The internal structure is built up by a layered structure in order to be easily portable to other

microprocessor architectures. The configuration uses a proprietary extension of the ASAM

MCD Can Calibration Protocol (CCP) [36]. The CCP is used since it already provides a

standardised way to measure internal variables in an embedded system. The standard has

been extended with commands to setup the fault injection controller to perform fault

injection experiments.

7.5. Process Overview

Figure 11 shows a diagram of the complete process for configuring and running fault

injection experiments. The rectangular boxes represent automated steps implemented in the

fault injection tool and rounded shapes represent steps currently performed manually. The

first step involves the code generator, done on a PC before the RTE is compiled, in which

the experiment designer selects which functions and fault mechanisms (monitors, triggers

and faults) should be supported. In the next step, after the target has been built with fault

injection features selected in the code generator, a campaign consisting of one or more

experiments is generated. During a campaign run, each experiment configuration is sent

from the PC over a dedicated CAN channel to the target system, where the experiment is

configured by a fault injection controller that resides on the target before the experiment is

started. Finally, a message to start the experiment is sent to the fault injection controller and

information configured to be collected during the experiment is sent by the controller over

the CAN channel to the PC host.

Software implemented fault injection for AUTOSAR based systems 27

Code

Generator

Campaign

Runner

AUTOSAR XML

configuration

files

Component and

AUTOSAR RTE

header files

Input Output

Wrapper

Source Code

Campaign

Config XML

file

Output

Input

Target

system

Build &

Download
Configure

Run

experiments

Campaign

Generation

Figure 11: Complete fault injection tool chain

7.5.1. Code Generation Configuration

Instead of wrapping all functions and providing support for monitoring all events,

triggering conditions and supported fault types, the experiment designer can select what

supported features should be built into the target system. This is to optionally make the

intrusion footprint as small as possible.

One extreme would be to select every feature supported and generate fault injection

mechanisms for all components. The benefit would be that the experiment designer only

has to build the target system once, as all supported fault injection mechanisms are already

included. The downside is that selecting all supported fault injection mechanisms will have

considerable overheads on the real-time system.

The other extreme would be to select only what to target for each experiment (i.e. target one

particular function parameter). This will have far less impact on the target, but instead a

time consuming build will have to be made between each experiment. This trade off will

have to be decided by the experiment designer depending on factors such as the systems

real-time constraints and features being tested.

Figure 12 shows the code generator’s graphical user interface (GUI). In the settings, the

experiment designer can select an ECU to target by selecting the appropriate AUTOSAR

XML configuration files and RTE headers. Once the relevant XML and header files have

been parsed, the experiment designer can browse the ECU composition and select different

types of monitors, triggers and faults to be generated.

Once all required fault injection features have been selected, the wrapper source code for

the selected features is automatically generated and will be built into the target when it is

compiled.

Software implemented fault injection for AUTOSAR based systems 28

Figure 12: Code Generator GUI

7.5.2. Wrapper Generation

The RTE is generated in two phases as discussed in Section 4.2. The wrapper for the

selected application software component is generated after the second RTE generation

phase and before the system is compiled. How the wrapper is inserted was designed using

the AUTOSAR standards, so the concept should be vendor independent. The targeted

software components can be delivered as compiled object code or source code.

The source code includes-dependency diagram in Figure 13 shows how the generated

wrapper source files connect to standard AUTOSAR RTE generated files and the targeted

SW-C code files.

Figure 13: Compile-time modification to insert a wrapper around a software component

The RTE SW-C header file for each software component needs to be modified to include

definitions for wrapper functions that encapsulate the original functions and some pre-

processing instructions. Additionally, a source code file is generated for each SW-C that

was selected to have fault injection capabilities. The automatically generated source code

implements a new wrapper function for each RTE API call or runnable that was selected

Software implemented fault injection for AUTOSAR based systems 29

during configuration of the code generator. Each wrapper function can contain; monitor,

trigger and fault injection capabilities before or after the function gets called. Figure 14

shows how a wrapper is situated between a SW-C and the RTE.

Run-Time Environment

Sw-C
Sw-C

Task()

WriteA()

WriteB()

ReadC()

Runnable()

Task()

ReadA()

ReadB()

WriteC()

Runnable()

Sw-C wrapper

Figure 14: Introducing wrappers to intercept calls between software components and the RTE

7.5.3. Running a Campaign

The campaign runner tool was implemented using the DFEAT fault injection framework.

The framework was developed by the DEDICATE project. The campaign runner uses a

configuration file that contains sections for configuring monitors, triggers and faults used

for each experiment in the campaign.

Figure 15 shows a screenshot of the campaign runner GUI. For each experiment in the

campaign, the campaign runner sends configuration messages to the fault injection

controller that resides on the target.

Figure 15: Campaign Runner GUI

The configuration of the fault injection experiment requires that a specific sequence of

configuration commands is performed (see Figure 16), in order to ensure consistency in the

relationship between triggers and faults. Configuring the experiment prior to running it is

Software implemented fault injection for AUTOSAR based systems 30

an architectural trade-off that was made in order to have less intrusion on the target. The

wrapper is designed to have the fewest amount of statements possible in-line with the

execution of the software component under test. Instead a little freedom is taken to setup

data structures in a configuration state prior to running the experiment.

Uninitialised Configure Ready

Experiment

Running

Start Configure Finalise Configure

Set Trigger

Set Trigger Value

Set Fault To Trigger

Set Fault Value

Set Monitor

StartStop

Reset

Disconnect

Figure 16: State-machine for the embedded fault injection controller

An experiment always starts with a reset request sent from the campaign runner. This is to

ensure that no residues from previous fault injections remain in the system and that the

target system always has the correct initial state. The state of the fault injection controller is

always ‘Uninitialised’ after target power-up, illustrated in Figure 16 with the double circles.

The target controller requires a command to be put into configuration mode, where all

configuration commands are accepted by the embedded controller. After finalising the

configuration the experiment can be started and stopped. At any time the fault injection tool

can send a command to reset the target, which will force the target into a soft reset and all

configuration must be done once again.

Monitors need to be configured in the configuration state but can then be enabled prior to

starting an experiment, and as soon as a monitor is enabled its monitoring events are sent

over the CAN bus to the campaign runner. Triggers and fault injections cannot be activated

unless the experiment is started. Events are logged relative to the real-time clock on the

target. The following log events are currently supported:

 Fault injection event; logs the real-time clock counter value for when a fault was

injected

 Trigger event; logs the real-time clock counter value for when a trigger was

activated

 Monitor event; real-time clock and value for a specific monitor

 Start experiment; the target time for receiving start experiment command

 Stop experiment; the target time for receiving stop experiment command

The purpose of storing events based on the target real-time clock is to be able to analyse

events in the experiment using the same time base.

Software implemented fault injection for AUTOSAR based systems 31

8. PROTOTYPE EVALUATION

The prototype was evaluated by doing fault injections on two different AUTOSAR

applications. Both target systems were developed by members of the DEDICATE project

team.

The first application is a calculator residing on a single ECU. The second application is a

brake-by-wire (BBW) system residing on several ECUs, with fault handling capabilities.

“By-wire” is an industry term for when traditional components such as brake, steering or

throttle control, which has been implemented as mechanically or pneumatically controlled

systems are replaced with electronics. In a brake-by-wire the driver intent is sent

electronically from the brake pedal (sensor) to the brake actuator, possibly also via a control

unit for algorithms for anti-lock braking and stability control.

The following section describes the experimental setup and the fault injection campaigns

run for the two systems. Then we describe the performance measurements performed in

order to evaluate the overhead that the fault injection mechanisms has on the target. Finally,

the prototype is evaluated against the criteria described in Section 5.4.

8.1. Test Environment

A test environment was setup with the goal of getting the best possible visibility on the

entire flow of a fault injection experiment. The same setup, as illustrated in Figure 17, was

used for both applications. The target system was monitored using an in-circuit debugger

making it possible to stop the target system at breakpoints and view the content of variables

and registers. CANoe from Vector was used for monitoring the communication between the

campaign runner and the embedded fault injection controller on the dedicated CAN

channel. CANoe was also used for setting the system into correct mode for the experiments

and to unit test the embedded controller. The campaign runner was run in debug mode in

Microsoft Visual Studio making it possible to set breakpoints and view the content of

variables there as well.

Target

System

Vector

CANoe

Campaign

runner

In-circuit

debugger

Microsoft

Visual

Studio

500 kBit

CAN bus

Monitors Monitors Monitors

Figure 17: Overview of the test setup environment

Software implemented fault injection for AUTOSAR based systems 32

8.2. Fault Injection Validation

This section describes fault injection campaigns run for the calculator application and the

brake-by-wire application.

8.2.1. Calculator Application

Figure 18 describes the calculator application used to evaluate the fault injection tool. The

calculator is a simple AUTOSAR application consisting of two software components, a

calculator component and an adder component. The purpose of designing the calculator was

to have a simple application with the complete behaviour easily understandable in order to

facilitate seeing all effects the fault injection caused.

The calculator implements the logic: .

A and b is sent to an adder function which returns the sum. The adder software component

is then wrapped and faults are injected into a and b in order to validate the method of

intercepting RTE API calls.

As seen in Figure 18, the calculator has two provided ports using the sender-receiver

communication pattern and one required sender-receiver port for getting the sum back. The

calculator also implements a client-server pattern for the addition. Which communication

pattern to use is controlled via the required port ‘mode’.

Calculator

Sw-C

Adder

Sw-C

a

b

sum

Add(a,b,sum)

mode

Component

Required port, sender-receiver

Provided port, sender-receiver

Required port, client-server

(i.e. it uses or invokes)

Provided port, client-server

(i.e. it implements)

Legend

Figure 18: Overview of the Calculator application.

The calculator application was designed to do the same operations periodically. The

runnable function that implements the calculator component functionality is configured to

be run every 100 milliseconds by the RTE layer. The runnable that implements the adder

component functionality is also configured to be run at an interval of 100 milliseconds. The

components were configured like they had been delivered as object code in order to force

the RTE generator to implement all port operations as standardised AUTOSAR RTE

function calls, as described in Section 6.2.

An environment configuration, that simulates the other functions in the vehicle and the

necessary environment, was developed in order to set the ECU in normal operation mode.

The same environment mode was also used for the brake-by-wire system.

Software implemented fault injection for AUTOSAR based systems 33

We created a fault injection campaign consisting of eight experiments for the calculator

application, in order to test different implemented features in the tool. The first experiment

in the campaign is a golden run where some parameters were monitored, but no fault

injections were made. All other experiments were configured to inject an error into the

target when their triggering condition was met.

Features validated in the calculator experiments were:

 The monitoring functionality

 Trigger when a function has been called a number of times

 Trigger when a parameter is lower than a certain value

 Permanent and a transient fault where a parameter or a return value is over written

by a new value

 Connecting a single fault to a trigger

 Connecting two faults to a single trigger at the same time

 Function parameters were read and written both before and after the target function

got called inside the wrapper

 The function return value was read and written to after the target function got called

inside the wrapper (before the value was returned to the original caller)

 Both sender and receiver ports were targeted

 A runnable was targeted

 Function calls were forced to return immediately

Additionally, we ran a campaign consisting of 1000 identical experiments in order to test

the stability of the tool.

The monitored output was sent from the fault injection controller residing on the embedded

target system to the PC host where they were logged and manually analysed.

8.2.2. Brake-by-wire Application

In order to validate that the fault injection concept works in a complex environment the tool

prototype was also validated on a brake-by-wire (BBW) system. The brake-by-wire system

is a research framework developed by the DEDICATE project that implements a brake-by-

wire function distributed over five ECUs. The purpose of the BBW-system is to provide a

real-world-like example of a distributed safety-critical system for validating research

projects. Figure 19 gives an overview of the five nodes in the BBW-system, including the

distribution of software components. The BBW-system also incorporates an environment

model of the vehicle in order to simulate the behaviour of the entire vehicle with regards to

acceleration and braking. In the BBW-system, the driver’s intent for braking is read by the

BrakePedalECU and then transformed to a brake force request sent to each individual

wheel node.

In the BrakePedalECU, the sensor software component reading the brake pedal (BrakePedal

sensor SW-C) was wrapped in order to emulate an open circuit fault in the brake pedal’s

electrical wiring. The detection of an open circuit fault activates the error handling

mechanism in the BBW and causes an error reaction in the system. The error reaction was

monitored in order to validate the fault injection tool’s capability of emulating the open

circuit fault.

Software implemented fault injection for AUTOSAR based systems 34

FRWheelECUFLWheelECU

BrakePedalECU

Brake Torque
conversion

SWC

Turn indicator
sensor

SWC

RLWheelECU

FL brake

actuator

SWC

RRWheelECU

Brake light

control

SWC

Turn and warning
indicator control

SWC

Brake pedal

sensor

SWC

FL wheel brake

control (ABS)
SWC

FR wheel brake

control (ABS)
SWC

RR wheel brake

control (ABS)

SWC

RL wheel brake

control (ABS)

SWC

FR brake

actuator

SWC

RL brake

actuator
SWC

RR brake

actuator
SWC

RL Brake light

actuator

SWC

FL turn indicator

actuator

SWC

FR turn indicator

actuator
SWC

RR turn

indicator

actuator

SWC

RL turn

indicator

actuator

SWC

Brake pedal

(HW or CAN signal)

Actuator

(LED or light)

Acceleration pedal

(CAN signal)

CAN network

Brake light

Brake control

SWC

Warning indicator
sensor

SWC

RR Brake light

actuator

SWC

Indicator

switch

Warning

switch

Indicator

light

Indicator

light

Indicator

light Indicator

light

Actuator

(LED or light)

Actuator

(LED or light)

Actuator

(LED or light)

Brake light

Vehicle model

SWC

Figure 19: Overview of BBW-system including distribution of application software components [37]

Features validated in the BBW experiments were:

 That the wrapping generation concept scales to handle code generation with many

software components in the configuration files

 That the tool and SWIFI technique can be used to emulate electrical faults. The

validation showed that injecting a fault in the in the BrakePedal sensor SW-C could

cause the exact behaviour of physically disconnecting the brake pedal connector

which causes an open circuit fault in the BrakePedalECU

 Wrapping ports of client-server communication pattern as complementary to sender-

receiver ports

 That we could trigger the hierarchal error handling mechanism developed in the

DEDICATE project and by using the monitors of the fault injection tool, we could

follow error conditions and reactions in the BBW system

8.3. Intrusion on Target System

In order to get an understanding on how much intrusion on the target the wrapper generates

we performed execution time measurements for a specific RTE call in the adder software

component. We measured on a sender-receiver call, and performed measurements in vendor

mode, compatibility mode, with an empty wrapper and finally a wrapper with one trigger,

one permanent fault and one monitor.

All measurements were made inside the software component using the same measurement

code. We used the real-time clock for this measurement. The accuracy of the real-time

clock is ±2 µs, which may be too course for this type of measurement. More accurate

measures can be done by using one of the special purpose registers, and adding the

measurements as in-line assembler code. However, measurements using the real time clock

Software implemented fault injection for AUTOSAR based systems 35

gave adequate measures to estimate the overhead. Each measurement is an average of 100

samples. The result from the measurements is shown in Table 3.

Table 3: Measurement of time overhead caused by wrapper

No. Measurement description Exec. time [µs]

Min Average Max

1 Without wrapper, original version,

with optimisations in the RTE

31 33 33

2 Without wrapper, RTE generated in

compatibility mode

35 35 37

3 With wrapper, no content in

wrapper

37 37 39

4 With wrapper, 1 trigger, 1

permanent fault and 1 monitor

47 47 49

The measured time to do an RTE API call went from a maximum time of 33 µs for the

original vendor optimised call, to a maximum of 49 µs for a wrapped call containing one

trigger, one fault injector and one monitor. Several factors contribute to the overhead. First,

the API call will have to be made using a function instead of a macro. This will result in an

additional function call for each call. Second, for each call that will be wrapped an

additional function call is made. Finally, the monitor, trigger and fault injector cause an

overhead to the RTE API call. The consequences of this overhead will vary depending on

the task that executes the RTE call. According to Hexel [9], care should be taken that the

"external timing" of the system is not affected by the fault injection. AUTOSAR SW-C

runnables are manually configured to run in tasks that are run by the RTE periodically or

when some events occur in the system. A task runs one or more runnables. If there is

enough available time in the task that runs the runnable where the RTE API call is made, so

that no deadlines are broken, then the overhead should not matter. If there is not enough

time in the task, then some real-time constraints might get violated. This could alter the

outcome of the fault injection experiment, compared to the same experimental setup where

no constraints are broken.

The embedded fault injection controller introduces an overhead into the system each time it

is run. The overall overhead will depend on how long it takes to execute the fault injection

controller during an experiment and the frequency of the task that runs the controller. The

number of enabled monitors will also affect the runtime of the controller, as every time the

controller is run, it will send two messages on the CAN network for each enabled monitor.

There is also a limit on the number of monitors that can be enabled at a time. There is a

static circular buffer that stores monitoring messages and it has a limited size. If there are

too many enabled monitors writing into the buffer or if the frequency of the task running

the wrapped component is much higher than the frequency of the task running the

controller, then older values might get overwritten in the buffer before they are sent out on

the CAN network. The reason for having a circular buffer is that it will not crash the target

system if it becomes overloaded by too many monitor events.

8.4. Portability

When it comes to portability, we looked at how easy it would be to add support for a

different AUTOSAR vendor. We also evaluated how portable the fault injection controller

is to different types of ECU. The wrapper code generator reads AUTOSAR XML files and

Software implemented fault injection for AUTOSAR based systems 36

RTE header files. The AUTOSAR standard does not specify how or if the XML files

should be broken down, but standardises how an element in one file can reference elements

in other files [19].

The current prototype implementation does not combine different AUTOSAR XML files

together. It reads different information from different files depending on how the current

supported vendor chooses to split information into different files. We looked at XML files

delivered from a different vendor to see if we could parse the files with the wrapper code

generator. Unfortunately, the information was split differently by the two vendors. One

vendor, for example, delivered software component descriptions as different XML files for

each software component, while the other vendor bundled all software component

descriptions together in a single XML file.

As mentioned in Section 7.4, the fault injection controller was implemented as an

AUTOSAR complex device driver. The only hardware dependent parts are the CAN

network driver, the ECU reset command, the reading of the real-time clock and the

definition of standard types. The architecture of the complex device driver fault controller

was designed to make hardware dependent components easy to replace.

8.5. Reachability

Reachability is defined as the ability to reach possible fault locations on the target system

[35]. The tool emulates errors that can propagate from faults originating at different parts of

the system. Here, we therefore look at locations where an error can be injected.

The prototype can read and write into function parameters before or after the function is

called inside the wrapper. The return value can be read or written after the targeted function

call returns. Returning immediately can also be done before or after the targeted function is

called to emulate different faults.

If the RTE function call is made to write data, then the error should in most cases be

injected before the target function is called in order to modify the data for the receiver. The

exception would be when the goal is to modify a pointer to point at an invalid location

instead of the actual data that it points to. For read operations the injection should in most

cases be made once the targeted function returns.

In the thesis work it is assumed that the user of the fault injection tool does not have access

to the source code of software components, therefore the software components are regarded

as black boxes and the fault injection tool cannot reach inside the software components.

8.6. Controllability

Controllability can refer to both time and space [35]. The space dimension concerns how

much control the method has over injecting faults into specific reachable parts of the target

system. The tool has much controllability when it comes to the space dimension as it can

accurately read all reachable data and potentially modify it exactly as wanted, given that the

corresponding fault type is implemented. If we look at the time dimension as the triggering

condition, instead of as physical time, then the tool provides good controllability. A

triggering condition can be defined on the state of the return and parameter values or when

the function has been called a certain number of times.

Currently it is not possible to trigger on the state of combined parameters and return values.

It is for example not possible to trigger when one parameter is higher than some set value

and the return value has some other specified value. We however believe that the tool could

be extended to support such features if needed.

Software implemented fault injection for AUTOSAR based systems 37

Support for triggering after a certain time has elapsed is not currently implemented. It

should however be easy to add a trigger that activates a fault once a certain time interval

has elapsed using the real-time system clock. One simple scenario would be to activate a

fault after a certain time period has elapsed since the start of the experiment.

8.7. Repeatability

Repeatability refers to being able to repeat the experiment exactly or similarly as before

[35]. The fault injection concept has good repeatability since triggers, injectors and

monitors are controlled by the wrapper, which means that the flow of data to and from the

component is controlled by the wrapper. However, it does depend on the intent of the

experiment and the determinism of the target system. In automotive systems the CAN bus

is event based and subject for arbitration which will cause a jitter that might affect the

sequence of events in the systems, which limits the repeatability of experiments. Also, start

experiment is initiated via CAN and is affected by the jitter on the CAN bus.

8.8. Reproducibility

Reproducibility means that when the experiment is run more than once, the same or very

similar results are obtained [35]. In this thesis work there has not been a focus on running a

number of experiments that can give statistical significance.

8.9. Time measurements

Time measurements refer to the ability to get detailed timing information from different

monitored events while the experiment is being run [35]. The monitors feature was setup to

log monitors and other events, such as start and stop experiments, in an event log

implemented as a static circular buffer in the embedded fault injection controller. Events are

logged relative to the real-time clock counter value. Monitors inside a wrapper can record

an event at nearly the same time that a trigger or a fault is activated.

8.10. Efficacy

Efficacy refers to the ability to produce significant results from the fault injection

experiment [35]. In all cases where an error was injected in the experiments we got

measurable results from the impact of the error on the target system.

Software implemented fault injection for AUTOSAR based systems 38

9. DISCUSSION AND FUTURE WORK

In this chapter we summarise the current limitations of the tool and discuss possible

extensions and future work.

The tool is designed to do robustness testing of application software components, and has a

focus on injection of data errors, that are defined in the AUTOSAR standard [22], and also

mentioned in Section 4.3.

Wrappers are well suited for injecting data errors in the interfaces of application software

components. The tool can be extended to also use wrappers to inject timing errors. The tool

could block for a specific time in the wrapper, before or after the targeted function is called,

or delay signals with the use of a circular buffer.

The wrapper technique is not very well suited to inject program flow errors, since it regards

the software components as black boxes. Since a wrapper has no access to the components

internals, it cannot change the internal flow in the component. The exception would be for

program flow errors caused by a data error injected into the software component’s interface.

In order to have better support for program flow errors, the tool could be extended to

support other fault injection techniques, such as debugger-based fault injection.

The error source that later propagates into an access error can be a data error [22]. In most

cases, the data that is to be passed from one software component to another gets passed as a

pointer to the function and then the return value is a standard status code to let the caller

know if the operation was successful or not. Some forms of access errors could be produced

by the tool by altering the pointer to point to an inaccessible partition.

Further improvements can be made on the prototype in order for the tool to get the maturity

of a product. For instance, database support for storing results from experiments can be

added and the GUIs of the different components can be merged into a single interface.

Campaigns are currently created manually by editing a campaign XML configuration file.

Ideally, this step would be done using a graphical user interface.

As described in Section 8.4, the wrapper code generator is not vendor independent. The

wrapper code generator can be improved to be vendor independent by extending it to

combine different XML files together according to the AUTOSAR standard.

AUTOSAR software components have special runnable “init” functions that are only called

on system start-up. The current wrapper implementation cannot target init functions, since

the embedded controller always starts in the uninitialized state, and has to be configured

before an experiment can be run. The tool needs further development to support injecting

faults into these functions.

The prototype can monitor, trigger on and inject faults into variables (e.g. a parameter

variable) that are 32 bits or smaller in size. This was sufficient for the experiments that we

conducted, but this limitation will become an issue when larger data types are targeted. The

reason for this constraint is that CAN messages are limited to a maximum data payload of 8

bytes. The current implementation of the tool uses 4 bytes for the data and 4 bytes for other

information needed for the message. Support for breaking up large data structures and then

send them using multiple CAN messages is a possible extension but this would also

increase the intrusion on the target system.

As mentioned in Section 7.4, the embedded fault injection controller supports the CAN

Calibration Protocol (CCP). CCP can be used to both read and write into memory locations

on the ECU. It would be interesting to see if CCP can be used for fault injection purposes.

Software implemented fault injection for AUTOSAR based systems 39

Support would have to be built into the campaign runner that communicates with the fault

injection controller in order to instruct what memory locations should be read or written to.

It is possible to extend the tool to support fault injection into calls between basic software

(BSW) components. BSW components and their interfaces are standardised, so the current

wrapping technique can be extended to support robustness testing of BSW components.

Large proportions of the monitoring, triggering and injection mechanisms can be re-used.

As the fault injection controller is implemented using an AUTOSAR complex device driver

it can communicate with all layers in the BSW. The fault injection controller and the

campaign runner could therefore be re-used to setup fault injection experiments targeting

BSW components.

Software implemented fault injection for AUTOSAR based systems 40

10. CONCLUSION

This thesis describes the design and implementation of a fault injection tool for robustness

testing of AUTOSAR application software components, using software implemented fault

injection (SWIFI).

The fault injection tool uses a wrapper, an extra layer introduced between the component

and the Run-Time Environment (RTE), to trigger fault injections, inject faults and to

monitor the ports of software components during experiments. We investigated two other

techniques that could be used instead of wrappers. One technique is to make use of trace

hooks placed in the RTE as standardised by the AUTOSAR standard. The other technique

uses code modification of the RTE source code.

The prototype consists of different parts that are used for creating and running fault

injection experiments. A configurator and code generator configures and generates the

wrappers based on which triggers, faults and monitors the user has selected to enable. A

campaign runner performs the actual fault injections. For each fault injection experiment

the campaign runner will restart the target system in order to begin each experiment in the

same initial state. The campaign runner will then configure what monitors, triggers and

faults to use and then start the experiment. The campaign runner uses a fault injection

controller embedded on the target system, which is implemented as an AUTOSAR complex

device driver. The use of a complex device driver is a good way of having a fault injection

controller embedded on the target in order to get real-time performance, and without

causing too much intrusion on the design process of the target system. It also facilitates

porting of the tool to other hardware platforms and other basic software vendors.

Furthermore, the tool generates wrappers automatically based on the AUTOSAR XML and

RTE header files, and can with some extension become independent of basic software

vendors.

The tool was evaluated by injecting faults into the interfaces of two different applications.

The first application is a calculator residing on a single electronic control unit, and the

second application is a brake-by-wire application distributed over several embedded control

units with fault handling capabilities. It was shown in the validation that the tool can

emulate hardware faults by causing the same reactions in the brake-by-wire system as an

open circuit fault.

Software implemented fault injection for AUTOSAR based systems 41

REFERENCES

[1] A. Biagosch, S. Knupfer, P. Radtke, U. Näher and A. E. Zielke, “Automotive Electronics -

Managing Innovations on the Road,” McKinsey, N/A, 2005.

[2] Volvo Group, “Volvo Group Global - Our Values,” 2012. [Online]. Available:

http://www.volvogroup.com/group/global/en-

gb/volvo%20group/ourvalues/Pages/volvovalues.aspx. [Accessed 22 4 2012].

[3] AUTOSAR, “AUTOSAR Technical Overview v2.2.2,” AUTOSAR, Munich, 2011a.

[4] AUTOSAR, “AUTOSAR Basics,” 2012. [Online]. Available:

http://autosar.org/index.php?p=1&up=0&uup=0&uuup=0. [Accessed 23 April 2012].

[5] ISO, “International standard ISO 26262 - Road vehicles — Functional safety,” ISO, Geneva,

2011.

[6] M.-C. Hsueh, T. K. Tsai and R. K. Iyer, “Fault Injection Techniques and Tools,” IEEE

Computer, pp. 75-82, April 1997.

[7] Y. Yangyang and B. W. Johnson, “FAULT INJECTION TECHNIQUES - A Perspective on

the State of Research,” in Fault Injection Techniques and Tools for Embedded Systems

Reliability Evaluation, A. Benso and P. Prinetto, Eds., Dordrecht, Kluwer Academic

Publishers, 2003, pp. 7-39.

[8] R. Barbosa and J. Karlsson, “Experiences from Verifying a Partitioning Kernel Using Fault

Injection,” in 12th European Workshop on Dependable Computing, EWDC 2009, Toulouse,

2009.

[9] R. Hexel, “FITS – A Fault Injection Architecture for Time-Triggered Systems,” Australasian

Computer Science Conference (ACSC ’04), vol. 16, no. 1, p. 333–338, 2003.

[10] P. E. Lanigan and T. E. Fuhrman, “Experiences with a CANoe-based Fault Injection

Framework for AUTOSAR,” In Proceedings, IEEE/IFIP International Conference on

Dependable Systems and Networks, vol. IEEE Computer Society, p. 569—574, 2010.

[11] IEEE, IEEE Std 610.12-1990, IEEE Standard Glossary of Software Engineering Terminology,

New York: IEEE, 1990.

[12] S. T. March and G. F. Smith, “Design and natural science research on information

technology,” in Decision Support Systems 15, Minneapolis, Elsevier Science B.V., 1995, pp.

251-266.

[13] K. Peffers, T. Tuunanen, M. A. Rothenberger and S. Chatterjee, “A Design Science Research

Methodology for Information Systems Research,” Journal of Management Information

Systems, vol. 24, no. 3, pp. 45-78, 2007.

[14] A. Cleven, P. Gubler and K. M. Hüner, “Design Alternatives for the Evaluation of Design

Science Research Artifacts,” in Proceedings of 4th International Conference on Design

Science Research in Information Systems and Technology, New York, 2009.

[15] A. Avižienis, J.-C. Laprie, B. Randell and C. Landwehr, “Basic Concepts and Taxonomy of

Dependable and Secure Computing,” IEEE TRANSACTIONS ON DEPENDABLE AND

SECURE COMPUTING, vol. 1, no. 1, pp. 11-33, 2004.

[16] N. Storey, “Lifecyckle models,” in Safety-Critical Computer Systems, Harlow, Pearson

Education Limited, 1996, pp. 82-88.

[17] AUTOSAR, “Virtual Functional Bus,” AUTOSAR, Munich, 2011c.

[18] AUTOSAR, “AUTOSAR Layered Software Architecture,” AUTOSAR, Munich, 2011b.

[19] AUTOSAR, “Model Persistence Rules for XML,” AUTOSAR, Munich, 2010b.

[20] AUTOSAR, “Specification of RTE,” AUTOSAR, Munich, 2010a.

[21] AUTOSAR, “Description of the AUTOSAR standard errors,” AUTOSAR, Munich, 2009a.

Software implemented fault injection for AUTOSAR based systems 42

[22] AUTOSAR, “Explanation of Error Handling on Application Level,” AUTOSAR, Munich,

2009b.

[23] J. M. Voas and G. McGraw, Software Fault Injection - Inoculating Programs Against Errors,

New York: John Wiley & Sons, Inc, 1998, pp. 5-6.

[24] D. T. Stott, B. Floering, D. Burke, Z. Kalbarczyk and R. K. Iyer, “NFTAPE: A Framework for

Assessing Dependability in Distributed Systems with Lightweight Fault Injectors,” Center for

Reliable and High-Performance Computing, University of Illinois at Urbana-Champaign,

Urbana, 1999.

[25] D. Costa, H. Madeira, J. Carreira and J. G. Silva, “XCEPTION™ : A Software Implemented

Fault Injection Tool,” in Fault Injection Techniques and Tools for Embedded Systems

Reliability Evaluation, A. Benso and P. Prinetto, Eds., Dordrecht, Kluwer Academic

Publishers, 2003, pp. 125-139.

[26] A. Baldini, A. Benso and P. Prinetto, ““BOND”: An Agents-Based Fault Injector For

Windows NT,” in Fault Injection Techniques and Tools for Embedded Systems Reliability

Evaluation, A. Benso and P. Prinetto, , Eds., Dordrecht, Kluwer Academic Publishers, 2003,

pp. 111-123.

[27] J. A. Durães and H. S. Madeira, “Emulation of Software Faults: A Field Data Study and a

Practical Approach,” IEEE Transactions on Software Engineering, vol. 32, no. 11, pp. 849-

867, 2006.

[28] S. Han, K. G. Shin and H. A. Rosenberg, “DOCTOR: An IntegrateD Software Fault

InjeCTiOn EnviRonment for Distributed Real-time Systems,” IEEE International Computer

Performance and Dependability Symposium, pp. 204-213, 1995.

[29] A. S. Tanenbaum and M. Van Steen, Distributed Systems: Principles and Paradigms, 2nd ed.,

Upper Saddle River: Pearson Education Inc., 2007.

[30] T. K. Tsai and D. Jewett, “An Approach towards Benchmarking of Fault-Tolerant Commercial

Systems,” in Proceedings of Annual Symposium on Fault Tolerant Computing, Sendai, 1996.

[31] B. P. Miller, L. Fredriksen and B. So, “An Empirical Study of the Reliability of UNIX

Utilities,” Communications of the ACM, vol. 33, no. 12, pp. 32-44, 1990.

[32] J. E. Forrester and B. P. Miller, “An Empirical Study of the Robustness of Windows NT

Applications Using Random Testing,” in 4th USENIX Windows Systems Symposium, Seattle,

2000.

[33] P. Koopman, K. DeVale and J. DeVale, “Interface Robustness Testing: Experiences and

Lessons Learned from the Ballista Project,” in Dependability Benchmarking for Computer

Systems, K. Kanoun and L. Spainhower, Eds., Hoboken, John Wiley & Sons, Inc., 2008, pp.

201-226.

[34] J. Arlat, J.-C. Fabre, M. Rodríguez and F. Salles, “MAFALDA: A Series of prototype tools for

the assessment of real time COTS Micro-kernel based systems,” in Fault Injection Techniques

and Tools for Embedded Systems Reliability Evaluation, A. Benso and P. Prinetto, Eds.,

Dordrecht, Kluwer Academic Publishers, 2003, pp. 141-156.

[35] J. Arlat, Y. Crouzet, J. Karlsson, P. Folkesson, E. Fuchs and G. H. Leber, “Comparison of

Physical and Software-Implemented Fault Injection Techniques,” IEEE Transactions on

Computers, vol. 52, no. 9, pp. 1115-1133, 2003.

[36] ASAM, “ASAM - Association for Standardisation of Automation and Measuring Systems,”

2011. [Online]. Available: http://www.asam.net/. [Accessed 04 May 2012].

[37] Volvo Group Trucks Technology, “DEDICATE framework description, Deliverable 2.4,”

Company internal, Gothenburg, 2012.

	Abstract
	Contents
	1. Introduction
	1.1. Research question
	1.2. Stakeholders
	1.3. Structure of this document

	2. Research Method
	3. Dependability Terminology
	4. Overview of AUTOSAR
	4.1. The Virtual Function Bus
	4.2. RTE Generation
	4.3. Error Handling in AUTOSAR

	5. Overview of SWIFI
	5.1. Introduction to Fault Injection
	5.2. Fault Injection Framework
	5.3. Fault Injection Techniques
	5.3.1. Fault Injection Triggers
	5.3.2. Fault Injectors
	5.3.2.1. Compile-time Fault Injection
	5.3.2.2. Debugger-based Fault Injection
	5.3.2.3. Target Specific Fault Injection
	5.3.2.4. Performance based Fault Injection
	5.3.2.5. Driver based Fault Injection
	5.3.2.6. Robustness Testing

	5.3.3. Monitoring the Fault Injection Experiment
	5.3.4. Avoiding Intrusiveness

	5.4. Evaluating Different Fault Injection Techniques

	6. SWIFI for AUTOSAR
	6.1. Intercepting RTE Calls
	6.1.1. Application of Wrappers
	6.1.2. Application of Trace Hooks
	6.1.3. Application of RTE Modification

	6.2. Compatibility Mode Prerequisite
	6.3. Technique Selection

	7. Prototype Tool
	7.1. Fault Injection Support
	7.2. Trigger Support
	7.3. Monitor Support
	7.4. Using an Embedded Controller
	7.5. Process Overview
	7.5.1. Code Generation Configuration
	7.5.2. Wrapper Generation
	7.5.3. Running a Campaign

	8. Prototype Evaluation
	8.1. Test Environment
	8.2. Fault Injection Validation
	8.2.1. Calculator Application
	8.2.2. Brake-by-wire Application

	8.3. Intrusion on Target System
	8.4. Portability
	8.5. Reachability
	8.6. Controllability
	8.7. Repeatability
	8.8. Reproducibility
	8.9. Time measurements
	8.10. Efficacy

	9. Discussion and Future Work
	10. Conclusion
	References

